libqtest: Inline g_assert_no_errno()
[qemu/armbru.git] / target / arm / arm-powerctl.c
blobce55eeb682bb622a3b73795cee1111360b7de5e2
1 /*
2 * QEMU support -- ARM Power Control specific functions.
4 * Copyright (c) 2016 Jean-Christophe Dubois
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include "cpu.h"
13 #include "cpu-qom.h"
14 #include "internals.h"
15 #include "arm-powerctl.h"
16 #include "qemu/log.h"
17 #include "qemu/main-loop.h"
19 #ifndef DEBUG_ARM_POWERCTL
20 #define DEBUG_ARM_POWERCTL 0
21 #endif
23 #define DPRINTF(fmt, args...) \
24 do { \
25 if (DEBUG_ARM_POWERCTL) { \
26 fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
27 } \
28 } while (0)
30 CPUState *arm_get_cpu_by_id(uint64_t id)
32 CPUState *cpu;
34 DPRINTF("cpu %" PRId64 "\n", id);
36 CPU_FOREACH(cpu) {
37 ARMCPU *armcpu = ARM_CPU(cpu);
39 if (armcpu->mp_affinity == id) {
40 return cpu;
44 qemu_log_mask(LOG_GUEST_ERROR,
45 "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
46 __func__, id);
48 return NULL;
51 struct CpuOnInfo {
52 uint64_t entry;
53 uint64_t context_id;
54 uint32_t target_el;
55 bool target_aa64;
59 static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
60 run_on_cpu_data data)
62 ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
63 struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
65 /* Initialize the cpu we are turning on */
66 cpu_reset(target_cpu_state);
67 target_cpu_state->halted = 0;
69 if (info->target_aa64) {
70 if ((info->target_el < 3) && arm_feature(&target_cpu->env,
71 ARM_FEATURE_EL3)) {
73 * As target mode is AArch64, we need to set lower
74 * exception level (the requested level 2) to AArch64
76 target_cpu->env.cp15.scr_el3 |= SCR_RW;
79 if ((info->target_el < 2) && arm_feature(&target_cpu->env,
80 ARM_FEATURE_EL2)) {
82 * As target mode is AArch64, we need to set lower
83 * exception level (the requested level 1) to AArch64
85 target_cpu->env.cp15.hcr_el2 |= HCR_RW;
88 target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
89 } else {
90 /* We are requested to boot in AArch32 mode */
91 static const uint32_t mode_for_el[] = { 0,
92 ARM_CPU_MODE_SVC,
93 ARM_CPU_MODE_HYP,
94 ARM_CPU_MODE_SVC };
96 cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
97 CPSRWriteRaw);
100 if (info->target_el == 3) {
101 /* Processor is in secure mode */
102 target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
103 } else {
104 /* Processor is not in secure mode */
105 target_cpu->env.cp15.scr_el3 |= SCR_NS;
108 /* We check if the started CPU is now at the correct level */
109 assert(info->target_el == arm_current_el(&target_cpu->env));
111 if (info->target_aa64) {
112 target_cpu->env.xregs[0] = info->context_id;
113 target_cpu->env.thumb = false;
114 } else {
115 target_cpu->env.regs[0] = info->context_id;
116 target_cpu->env.thumb = info->entry & 1;
117 info->entry &= 0xfffffffe;
120 /* Start the new CPU at the requested address */
121 cpu_set_pc(target_cpu_state, info->entry);
123 g_free(info);
125 /* Finally set the power status */
126 assert(qemu_mutex_iothread_locked());
127 target_cpu->power_state = PSCI_ON;
130 int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
131 uint32_t target_el, bool target_aa64)
133 CPUState *target_cpu_state;
134 ARMCPU *target_cpu;
135 struct CpuOnInfo *info;
137 assert(qemu_mutex_iothread_locked());
139 DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
140 "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
141 context_id);
143 /* requested EL level need to be in the 1 to 3 range */
144 assert((target_el > 0) && (target_el < 4));
146 if (target_aa64 && (entry & 3)) {
148 * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
149 * aligned.
151 return QEMU_ARM_POWERCTL_INVALID_PARAM;
154 /* Retrieve the cpu we are powering up */
155 target_cpu_state = arm_get_cpu_by_id(cpuid);
156 if (!target_cpu_state) {
157 /* The cpu was not found */
158 return QEMU_ARM_POWERCTL_INVALID_PARAM;
161 target_cpu = ARM_CPU(target_cpu_state);
162 if (target_cpu->power_state == PSCI_ON) {
163 qemu_log_mask(LOG_GUEST_ERROR,
164 "[ARM]%s: CPU %" PRId64 " is already on\n",
165 __func__, cpuid);
166 return QEMU_ARM_POWERCTL_ALREADY_ON;
170 * The newly brought CPU is requested to enter the exception level
171 * "target_el" and be in the requested mode (AArch64 or AArch32).
174 if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
175 ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
177 * The CPU does not support requested level
179 return QEMU_ARM_POWERCTL_INVALID_PARAM;
182 if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
184 * For now we don't support booting an AArch64 CPU in AArch32 mode
185 * TODO: We should add this support later
187 qemu_log_mask(LOG_UNIMP,
188 "[ARM]%s: Starting AArch64 CPU %" PRId64
189 " in AArch32 mode is not supported yet\n",
190 __func__, cpuid);
191 return QEMU_ARM_POWERCTL_INVALID_PARAM;
195 * If another CPU has powered the target on we are in the state
196 * ON_PENDING and additional attempts to power on the CPU should
197 * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
198 * spec)
200 if (target_cpu->power_state == PSCI_ON_PENDING) {
201 qemu_log_mask(LOG_GUEST_ERROR,
202 "[ARM]%s: CPU %" PRId64 " is already powering on\n",
203 __func__, cpuid);
204 return QEMU_ARM_POWERCTL_ON_PENDING;
207 /* To avoid racing with a CPU we are just kicking off we do the
208 * final bit of preparation for the work in the target CPUs
209 * context.
211 info = g_new(struct CpuOnInfo, 1);
212 info->entry = entry;
213 info->context_id = context_id;
214 info->target_el = target_el;
215 info->target_aa64 = target_aa64;
217 async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
218 RUN_ON_CPU_HOST_PTR(info));
220 /* We are good to go */
221 return QEMU_ARM_POWERCTL_RET_SUCCESS;
224 static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
225 run_on_cpu_data data)
227 ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
229 assert(qemu_mutex_iothread_locked());
230 target_cpu->power_state = PSCI_OFF;
231 target_cpu_state->halted = 1;
232 target_cpu_state->exception_index = EXCP_HLT;
235 int arm_set_cpu_off(uint64_t cpuid)
237 CPUState *target_cpu_state;
238 ARMCPU *target_cpu;
240 assert(qemu_mutex_iothread_locked());
242 DPRINTF("cpu %" PRId64 "\n", cpuid);
244 /* change to the cpu we are powering up */
245 target_cpu_state = arm_get_cpu_by_id(cpuid);
246 if (!target_cpu_state) {
247 return QEMU_ARM_POWERCTL_INVALID_PARAM;
249 target_cpu = ARM_CPU(target_cpu_state);
250 if (target_cpu->power_state == PSCI_OFF) {
251 qemu_log_mask(LOG_GUEST_ERROR,
252 "[ARM]%s: CPU %" PRId64 " is already off\n",
253 __func__, cpuid);
254 return QEMU_ARM_POWERCTL_IS_OFF;
257 /* Queue work to run under the target vCPUs context */
258 async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
259 RUN_ON_CPU_NULL);
261 return QEMU_ARM_POWERCTL_RET_SUCCESS;
264 static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
265 run_on_cpu_data data)
267 /* Reset the cpu */
268 cpu_reset(target_cpu_state);
271 int arm_reset_cpu(uint64_t cpuid)
273 CPUState *target_cpu_state;
274 ARMCPU *target_cpu;
276 assert(qemu_mutex_iothread_locked());
278 DPRINTF("cpu %" PRId64 "\n", cpuid);
280 /* change to the cpu we are resetting */
281 target_cpu_state = arm_get_cpu_by_id(cpuid);
282 if (!target_cpu_state) {
283 return QEMU_ARM_POWERCTL_INVALID_PARAM;
285 target_cpu = ARM_CPU(target_cpu_state);
287 if (target_cpu->power_state == PSCI_OFF) {
288 qemu_log_mask(LOG_GUEST_ERROR,
289 "[ARM]%s: CPU %" PRId64 " is off\n",
290 __func__, cpuid);
291 return QEMU_ARM_POWERCTL_IS_OFF;
294 /* Queue work to run under the target vCPUs context */
295 async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
296 RUN_ON_CPU_NULL);
298 return QEMU_ARM_POWERCTL_RET_SUCCESS;