2 * ARM virtual CPU header
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include "kvm-consts.h"
24 #include "hw/registerfields.h"
26 #if defined(TARGET_AARCH64)
27 /* AArch64 definitions */
28 # define TARGET_LONG_BITS 64
30 # define TARGET_LONG_BITS 32
33 /* ARM processors have a weak memory model */
34 #define TCG_GUEST_DEFAULT_MO (0)
36 #define CPUArchState struct CPUARMState
38 #include "qemu-common.h"
40 #include "exec/cpu-defs.h"
42 #define EXCP_UDEF 1 /* undefined instruction */
43 #define EXCP_SWI 2 /* software interrupt */
44 #define EXCP_PREFETCH_ABORT 3
45 #define EXCP_DATA_ABORT 4
49 #define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
50 #define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
51 #define EXCP_HVC 11 /* HyperVisor Call */
52 #define EXCP_HYP_TRAP 12
53 #define EXCP_SMC 13 /* Secure Monitor Call */
56 #define EXCP_SEMIHOST 16 /* semihosting call */
57 #define EXCP_NOCP 17 /* v7M NOCP UsageFault */
58 #define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
59 #define EXCP_STKOF 19 /* v8M STKOF UsageFault */
60 /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
62 #define ARMV7M_EXCP_RESET 1
63 #define ARMV7M_EXCP_NMI 2
64 #define ARMV7M_EXCP_HARD 3
65 #define ARMV7M_EXCP_MEM 4
66 #define ARMV7M_EXCP_BUS 5
67 #define ARMV7M_EXCP_USAGE 6
68 #define ARMV7M_EXCP_SECURE 7
69 #define ARMV7M_EXCP_SVC 11
70 #define ARMV7M_EXCP_DEBUG 12
71 #define ARMV7M_EXCP_PENDSV 14
72 #define ARMV7M_EXCP_SYSTICK 15
74 /* For M profile, some registers are banked secure vs non-secure;
75 * these are represented as a 2-element array where the first element
76 * is the non-secure copy and the second is the secure copy.
77 * When the CPU does not have implement the security extension then
78 * only the first element is used.
79 * This means that the copy for the current security state can be
80 * accessed via env->registerfield[env->v7m.secure] (whether the security
81 * extension is implemented or not).
89 /* ARM-specific interrupt pending bits. */
90 #define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
91 #define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
92 #define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
94 /* The usual mapping for an AArch64 system register to its AArch32
95 * counterpart is for the 32 bit world to have access to the lower
96 * half only (with writes leaving the upper half untouched). It's
97 * therefore useful to be able to pass TCG the offset of the least
98 * significant half of a uint64_t struct member.
100 #ifdef HOST_WORDS_BIGENDIAN
101 #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
102 #define offsetofhigh32(S, M) offsetof(S, M)
104 #define offsetoflow32(S, M) offsetof(S, M)
105 #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
108 /* Meanings of the ARMCPU object's four inbound GPIO lines */
109 #define ARM_CPU_IRQ 0
110 #define ARM_CPU_FIQ 1
111 #define ARM_CPU_VIRQ 2
112 #define ARM_CPU_VFIQ 3
114 #define NB_MMU_MODES 8
115 /* ARM-specific extra insn start words:
116 * 1: Conditional execution bits
117 * 2: Partial exception syndrome for data aborts
119 #define TARGET_INSN_START_EXTRA_WORDS 2
121 /* The 2nd extra word holding syndrome info for data aborts does not use
122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
123 * help the sleb128 encoder do a better job.
124 * When restoring the CPU state, we shift it back up.
126 #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
127 #define ARM_INSN_START_WORD2_SHIFT 14
129 /* We currently assume float and double are IEEE single and double
130 precision respectively.
131 Doing runtime conversions is tricky because VFP registers may contain
132 integer values (eg. as the result of a FTOSI instruction).
133 s<2n> maps to the least significant half of d<n>
134 s<2n+1> maps to the most significant half of d<n>
139 * @desc: Contains the XML descriptions.
140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
141 * @cpregs_keys: Array that contains the corresponding Key of
142 * a given cpreg with the same order of the cpreg in the XML description.
144 typedef struct DynamicGDBXMLInfo
{
147 uint32_t *cpregs_keys
;
150 /* CPU state for each instance of a generic timer (in cp15 c14) */
151 typedef struct ARMGenericTimer
{
152 uint64_t cval
; /* Timer CompareValue register */
153 uint64_t ctl
; /* Timer Control register */
156 #define GTIMER_PHYS 0
157 #define GTIMER_VIRT 1
160 #define NUM_GTIMERS 4
168 /* Define a maximum sized vector register.
169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
170 * For 64-bit, this is a 2048-bit SVE register.
172 * Note that the mapping between S, D, and Q views of the register bank
173 * differs between AArch64 and AArch32.
175 * Qn = regs[n].d[1]:regs[n].d[0]
176 * Dn = regs[n / 2].d[n & 1]
177 * Sn = regs[n / 4].d[n % 4 / 2],
178 * bits 31..0 for even n, and bits 63..32 for odd n
179 * (and regs[16] to regs[31] are inaccessible)
182 * Qn = regs[n].d[1]:regs[n].d[0]
184 * Sn = regs[n].d[0] bits 31..0
185 * Hn = regs[n].d[0] bits 15..0
187 * This corresponds to the architecturally defined mapping between
188 * the two execution states, and means we do not need to explicitly
189 * map these registers when changing states.
191 * Align the data for use with TCG host vector operations.
194 #ifdef TARGET_AARCH64
195 # define ARM_MAX_VQ 16
197 # define ARM_MAX_VQ 1
200 typedef struct ARMVectorReg
{
201 uint64_t d
[2 * ARM_MAX_VQ
] QEMU_ALIGNED(16);
204 /* In AArch32 mode, predicate registers do not exist at all. */
205 #ifdef TARGET_AARCH64
206 typedef struct ARMPredicateReg
{
207 uint64_t p
[2 * ARM_MAX_VQ
/ 8] QEMU_ALIGNED(16);
212 typedef struct CPUARMState
{
213 /* Regs for current mode. */
216 /* 32/64 switch only happens when taking and returning from
217 * exceptions so the overlap semantics are taken care of then
218 * instead of having a complicated union.
220 /* Regs for A64 mode. */
223 /* PSTATE isn't an architectural register for ARMv8. However, it is
224 * convenient for us to assemble the underlying state into a 32 bit format
225 * identical to the architectural format used for the SPSR. (This is also
226 * what the Linux kernel's 'pstate' field in signal handlers and KVM's
227 * 'pstate' register are.) Of the PSTATE bits:
228 * NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
229 * semantics as for AArch32, as described in the comments on each field)
230 * nRW (also known as M[4]) is kept, inverted, in env->aarch64
231 * DAIF (exception masks) are kept in env->daif
232 * all other bits are stored in their correct places in env->pstate
235 uint32_t aarch64
; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
237 /* Frequently accessed CPSR bits are stored separately for efficiency.
238 This contains all the other bits. Use cpsr_{read,write} to access
240 uint32_t uncached_cpsr
;
243 /* Banked registers. */
244 uint64_t banked_spsr
[8];
245 uint32_t banked_r13
[8];
246 uint32_t banked_r14
[8];
248 /* These hold r8-r12. */
249 uint32_t usr_regs
[5];
250 uint32_t fiq_regs
[5];
252 /* cpsr flag cache for faster execution */
253 uint32_t CF
; /* 0 or 1 */
254 uint32_t VF
; /* V is the bit 31. All other bits are undefined */
255 uint32_t NF
; /* N is bit 31. All other bits are undefined. */
256 uint32_t ZF
; /* Z set if zero. */
257 uint32_t QF
; /* 0 or 1 */
258 uint32_t GE
; /* cpsr[19:16] */
259 uint32_t thumb
; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
260 uint32_t condexec_bits
; /* IT bits. cpsr[15:10,26:25]. */
261 uint64_t daif
; /* exception masks, in the bits they are in PSTATE */
263 uint64_t elr_el
[4]; /* AArch64 exception link regs */
264 uint64_t sp_el
[4]; /* AArch64 banked stack pointers */
266 /* System control coprocessor (cp15) */
269 union { /* Cache size selection */
271 uint64_t _unused_csselr0
;
273 uint64_t _unused_csselr1
;
276 uint64_t csselr_el
[4];
278 union { /* System control register. */
280 uint64_t _unused_sctlr
;
285 uint64_t sctlr_el
[4];
287 uint64_t cpacr_el1
; /* Architectural feature access control register */
288 uint64_t cptr_el
[4]; /* ARMv8 feature trap registers */
289 uint32_t c1_xscaleauxcr
; /* XScale auxiliary control register. */
290 uint64_t sder
; /* Secure debug enable register. */
291 uint32_t nsacr
; /* Non-secure access control register. */
292 union { /* MMU translation table base 0. */
294 uint64_t _unused_ttbr0_0
;
296 uint64_t _unused_ttbr0_1
;
299 uint64_t ttbr0_el
[4];
301 union { /* MMU translation table base 1. */
303 uint64_t _unused_ttbr1_0
;
305 uint64_t _unused_ttbr1_1
;
308 uint64_t ttbr1_el
[4];
310 uint64_t vttbr_el2
; /* Virtualization Translation Table Base. */
311 /* MMU translation table base control. */
313 TCR vtcr_el2
; /* Virtualization Translation Control. */
314 uint32_t c2_data
; /* MPU data cacheable bits. */
315 uint32_t c2_insn
; /* MPU instruction cacheable bits. */
316 union { /* MMU domain access control register
317 * MPU write buffer control.
327 uint32_t pmsav5_data_ap
; /* PMSAv5 MPU data access permissions */
328 uint32_t pmsav5_insn_ap
; /* PMSAv5 MPU insn access permissions */
329 uint64_t hcr_el2
; /* Hypervisor configuration register */
330 uint64_t scr_el3
; /* Secure configuration register. */
331 union { /* Fault status registers. */
342 uint64_t _unused_dfsr
;
349 uint32_t c6_region
[8]; /* MPU base/size registers. */
350 union { /* Fault address registers. */
352 uint64_t _unused_far0
;
353 #ifdef HOST_WORDS_BIGENDIAN
364 uint64_t _unused_far3
;
370 union { /* Translation result. */
372 uint64_t _unused_par_0
;
374 uint64_t _unused_par_1
;
380 uint32_t c9_insn
; /* Cache lockdown registers. */
382 uint64_t c9_pmcr
; /* performance monitor control register */
383 uint64_t c9_pmcnten
; /* perf monitor counter enables */
384 uint64_t c9_pmovsr
; /* perf monitor overflow status */
385 uint64_t c9_pmuserenr
; /* perf monitor user enable */
386 uint64_t c9_pmselr
; /* perf monitor counter selection register */
387 uint64_t c9_pminten
; /* perf monitor interrupt enables */
388 union { /* Memory attribute redirection */
390 #ifdef HOST_WORDS_BIGENDIAN
391 uint64_t _unused_mair_0
;
394 uint64_t _unused_mair_1
;
398 uint64_t _unused_mair_0
;
401 uint64_t _unused_mair_1
;
408 union { /* vector base address register */
410 uint64_t _unused_vbar
;
417 uint32_t mvbar
; /* (monitor) vector base address register */
418 struct { /* FCSE PID. */
422 union { /* Context ID. */
424 uint64_t _unused_contextidr_0
;
425 uint64_t contextidr_ns
;
426 uint64_t _unused_contextidr_1
;
427 uint64_t contextidr_s
;
429 uint64_t contextidr_el
[4];
431 union { /* User RW Thread register. */
433 uint64_t tpidrurw_ns
;
434 uint64_t tpidrprw_ns
;
438 uint64_t tpidr_el
[4];
440 /* The secure banks of these registers don't map anywhere */
445 union { /* User RO Thread register. */
446 uint64_t tpidruro_ns
;
447 uint64_t tpidrro_el
[1];
449 uint64_t c14_cntfrq
; /* Counter Frequency register */
450 uint64_t c14_cntkctl
; /* Timer Control register */
451 uint32_t cnthctl_el2
; /* Counter/Timer Hyp Control register */
452 uint64_t cntvoff_el2
; /* Counter Virtual Offset register */
453 ARMGenericTimer c14_timer
[NUM_GTIMERS
];
454 uint32_t c15_cpar
; /* XScale Coprocessor Access Register */
455 uint32_t c15_ticonfig
; /* TI925T configuration byte. */
456 uint32_t c15_i_max
; /* Maximum D-cache dirty line index. */
457 uint32_t c15_i_min
; /* Minimum D-cache dirty line index. */
458 uint32_t c15_threadid
; /* TI debugger thread-ID. */
459 uint32_t c15_config_base_address
; /* SCU base address. */
460 uint32_t c15_diagnostic
; /* diagnostic register */
461 uint32_t c15_power_diagnostic
;
462 uint32_t c15_power_control
; /* power control */
463 uint64_t dbgbvr
[16]; /* breakpoint value registers */
464 uint64_t dbgbcr
[16]; /* breakpoint control registers */
465 uint64_t dbgwvr
[16]; /* watchpoint value registers */
466 uint64_t dbgwcr
[16]; /* watchpoint control registers */
468 uint64_t oslsr_el1
; /* OS Lock Status */
471 /* If the counter is enabled, this stores the last time the counter
472 * was reset. Otherwise it stores the counter value
475 uint64_t pmccfiltr_el0
; /* Performance Monitor Filter Register */
476 uint64_t vpidr_el2
; /* Virtualization Processor ID Register */
477 uint64_t vmpidr_el2
; /* Virtualization Multiprocessor ID Register */
481 /* M profile has up to 4 stack pointers:
482 * a Main Stack Pointer and a Process Stack Pointer for each
483 * of the Secure and Non-Secure states. (If the CPU doesn't support
484 * the security extension then it has only two SPs.)
485 * In QEMU we always store the currently active SP in regs[13],
486 * and the non-active SP for the current security state in
487 * v7m.other_sp. The stack pointers for the inactive security state
488 * are stored in other_ss_msp and other_ss_psp.
489 * switch_v7m_security_state() is responsible for rearranging them
490 * when we change security state.
493 uint32_t other_ss_msp
;
494 uint32_t other_ss_psp
;
495 uint32_t vecbase
[M_REG_NUM_BANKS
];
496 uint32_t basepri
[M_REG_NUM_BANKS
];
497 uint32_t control
[M_REG_NUM_BANKS
];
498 uint32_t ccr
[M_REG_NUM_BANKS
]; /* Configuration and Control */
499 uint32_t cfsr
[M_REG_NUM_BANKS
]; /* Configurable Fault Status */
500 uint32_t hfsr
; /* HardFault Status */
501 uint32_t dfsr
; /* Debug Fault Status Register */
502 uint32_t sfsr
; /* Secure Fault Status Register */
503 uint32_t mmfar
[M_REG_NUM_BANKS
]; /* MemManage Fault Address */
504 uint32_t bfar
; /* BusFault Address */
505 uint32_t sfar
; /* Secure Fault Address Register */
506 unsigned mpu_ctrl
[M_REG_NUM_BANKS
]; /* MPU_CTRL */
508 uint32_t primask
[M_REG_NUM_BANKS
];
509 uint32_t faultmask
[M_REG_NUM_BANKS
];
510 uint32_t aircr
; /* only holds r/w state if security extn implemented */
511 uint32_t secure
; /* Is CPU in Secure state? (not guest visible) */
512 uint32_t csselr
[M_REG_NUM_BANKS
];
513 uint32_t scr
[M_REG_NUM_BANKS
];
514 uint32_t msplim
[M_REG_NUM_BANKS
];
515 uint32_t psplim
[M_REG_NUM_BANKS
];
518 /* Information associated with an exception about to be taken:
519 * code which raises an exception must set cs->exception_index and
520 * the relevant parts of this structure; the cpu_do_interrupt function
521 * will then set the guest-visible registers as part of the exception
525 uint32_t syndrome
; /* AArch64 format syndrome register */
526 uint32_t fsr
; /* AArch32 format fault status register info */
527 uint64_t vaddress
; /* virtual addr associated with exception, if any */
528 uint32_t target_el
; /* EL the exception should be targeted for */
529 /* If we implement EL2 we will also need to store information
530 * about the intermediate physical address for stage 2 faults.
534 /* Thumb-2 EE state. */
538 /* VFP coprocessor state. */
540 ARMVectorReg zregs
[32];
542 #ifdef TARGET_AARCH64
543 /* Store FFR as pregs[16] to make it easier to treat as any other. */
544 #define FFR_PRED_NUM 16
545 ARMPredicateReg pregs
[17];
546 /* Scratch space for aa64 sve predicate temporary. */
547 ARMPredicateReg preg_tmp
;
551 /* We store these fpcsr fields separately for convenience. */
555 /* Scratch space for aa32 neon expansion. */
558 /* There are a number of distinct float control structures:
560 * fp_status: is the "normal" fp status.
561 * fp_status_fp16: used for half-precision calculations
562 * standard_fp_status : the ARM "Standard FPSCR Value"
564 * Half-precision operations are governed by a separate
565 * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
566 * status structure to control this.
568 * The "Standard FPSCR", ie default-NaN, flush-to-zero,
569 * round-to-nearest and is used by any operations (generally
570 * Neon) which the architecture defines as controlled by the
571 * standard FPSCR value rather than the FPSCR.
573 * To avoid having to transfer exception bits around, we simply
574 * say that the FPSCR cumulative exception flags are the logical
575 * OR of the flags in the three fp statuses. This relies on the
576 * only thing which needs to read the exception flags being
577 * an explicit FPSCR read.
579 float_status fp_status
;
580 float_status fp_status_f16
;
581 float_status standard_fp_status
;
586 uint64_t exclusive_addr
;
587 uint64_t exclusive_val
;
588 uint64_t exclusive_high
;
590 /* iwMMXt coprocessor state. */
598 #if defined(CONFIG_USER_ONLY)
599 /* For usermode syscall translation. */
603 struct CPUBreakpoint
*cpu_breakpoint
[16];
604 struct CPUWatchpoint
*cpu_watchpoint
[16];
606 /* Fields up to this point are cleared by a CPU reset */
607 struct {} end_reset_fields
;
611 /* Fields after CPU_COMMON are preserved across CPU reset. */
613 /* Internal CPU feature flags. */
621 uint32_t rnr
[M_REG_NUM_BANKS
];
626 /* The PMSAv8 implementation also shares some PMSAv7 config
628 * pmsav7.rnr (region number register)
629 * pmsav7_dregion (number of configured regions)
631 uint32_t *rbar
[M_REG_NUM_BANKS
];
632 uint32_t *rlar
[M_REG_NUM_BANKS
];
633 uint32_t mair0
[M_REG_NUM_BANKS
];
634 uint32_t mair1
[M_REG_NUM_BANKS
];
646 const struct arm_boot_info
*boot_info
;
647 /* Store GICv3CPUState to access from this struct */
653 * type of a function which can be registered via arm_register_el_change_hook()
654 * to get callbacks when the CPU changes its exception level or mode.
656 typedef void ARMELChangeHookFn(ARMCPU
*cpu
, void *opaque
);
657 typedef struct ARMELChangeHook ARMELChangeHook
;
658 struct ARMELChangeHook
{
659 ARMELChangeHookFn
*hook
;
661 QLIST_ENTRY(ARMELChangeHook
) node
;
664 /* These values map onto the return values for
665 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
666 typedef enum ARMPSCIState
{
685 /* Coprocessor information */
687 /* For marshalling (mostly coprocessor) register state between the
688 * kernel and QEMU (for KVM) and between two QEMUs (for migration),
689 * we use these arrays.
691 /* List of register indexes managed via these arrays; (full KVM style
692 * 64 bit indexes, not CPRegInfo 32 bit indexes)
694 uint64_t *cpreg_indexes
;
695 /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
696 uint64_t *cpreg_values
;
697 /* Length of the indexes, values, reset_values arrays */
698 int32_t cpreg_array_len
;
699 /* These are used only for migration: incoming data arrives in
700 * these fields and is sanity checked in post_load before copying
701 * to the working data structures above.
703 uint64_t *cpreg_vmstate_indexes
;
704 uint64_t *cpreg_vmstate_values
;
705 int32_t cpreg_vmstate_array_len
;
707 DynamicGDBXMLInfo dyn_xml
;
709 /* Timers used by the generic (architected) timer */
710 QEMUTimer
*gt_timer
[NUM_GTIMERS
];
711 /* GPIO outputs for generic timer */
712 qemu_irq gt_timer_outputs
[NUM_GTIMERS
];
713 /* GPIO output for GICv3 maintenance interrupt signal */
714 qemu_irq gicv3_maintenance_interrupt
;
715 /* GPIO output for the PMU interrupt */
716 qemu_irq pmu_interrupt
;
718 /* MemoryRegion to use for secure physical accesses */
719 MemoryRegion
*secure_memory
;
721 /* For v8M, pointer to the IDAU interface provided by board/SoC */
724 /* 'compatible' string for this CPU for Linux device trees */
725 const char *dtb_compatible
;
727 /* PSCI version for this CPU
728 * Bits[31:16] = Major Version
729 * Bits[15:0] = Minor Version
731 uint32_t psci_version
;
733 /* Should CPU start in PSCI powered-off state? */
734 bool start_powered_off
;
736 /* Current power state, access guarded by BQL */
737 ARMPSCIState power_state
;
739 /* CPU has virtualization extension */
741 /* CPU has security extension */
743 /* CPU has PMU (Performance Monitor Unit) */
746 /* CPU has memory protection unit */
748 /* PMSAv7 MPU number of supported regions */
749 uint32_t pmsav7_dregion
;
750 /* v8M SAU number of supported regions */
751 uint32_t sau_sregion
;
753 /* PSCI conduit used to invoke PSCI methods
754 * 0 - disabled, 1 - smc, 2 - hvc
756 uint32_t psci_conduit
;
758 /* For v8M, initial value of the Secure VTOR */
761 /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
762 * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
766 /* KVM init features for this CPU */
767 uint32_t kvm_init_features
[7];
769 /* Uniprocessor system with MP extensions */
772 /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
773 * and the probe failed (so we need to report the error in realize)
775 bool host_cpu_probe_failed
;
777 /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
782 /* The instance init functions for implementation-specific subclasses
783 * set these fields to specify the implementation-dependent values of
784 * various constant registers and reset values of non-constant
786 * Some of these might become QOM properties eventually.
787 * Field names match the official register names as defined in the
788 * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
789 * is used for reset values of non-constant registers; no reset_
790 * prefix means a constant register.
794 uint32_t reset_fpsid
;
799 uint32_t reset_sctlr
;
818 uint64_t id_aa64pfr0
;
819 uint64_t id_aa64pfr1
;
820 uint64_t id_aa64dfr0
;
821 uint64_t id_aa64dfr1
;
822 uint64_t id_aa64afr0
;
823 uint64_t id_aa64afr1
;
824 uint64_t id_aa64isar0
;
825 uint64_t id_aa64isar1
;
826 uint64_t id_aa64mmfr0
;
827 uint64_t id_aa64mmfr1
;
830 uint64_t mp_affinity
; /* MP ID without feature bits */
831 /* The elements of this array are the CCSIDR values for each cache,
832 * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
836 uint32_t reset_auxcr
;
838 /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
839 uint32_t dcz_blocksize
;
842 /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
843 int gic_num_lrs
; /* number of list registers */
844 int gic_vpribits
; /* number of virtual priority bits */
845 int gic_vprebits
; /* number of virtual preemption bits */
847 /* Whether the cfgend input is high (i.e. this CPU should reset into
848 * big-endian mode). This setting isn't used directly: instead it modifies
849 * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
850 * architecture version.
854 QLIST_HEAD(, ARMELChangeHook
) pre_el_change_hooks
;
855 QLIST_HEAD(, ARMELChangeHook
) el_change_hooks
;
857 int32_t node_id
; /* NUMA node this CPU belongs to */
859 /* Used to synchronize KVM and QEMU in-kernel device levels */
860 uint8_t device_irq_level
;
862 /* Used to set the maximum vector length the cpu will support. */
866 static inline ARMCPU
*arm_env_get_cpu(CPUARMState
*env
)
868 return container_of(env
, ARMCPU
, env
);
871 uint64_t arm_cpu_mp_affinity(int idx
, uint8_t clustersz
);
873 #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
875 #define ENV_OFFSET offsetof(ARMCPU, env)
877 #ifndef CONFIG_USER_ONLY
878 extern const struct VMStateDescription vmstate_arm_cpu
;
881 void arm_cpu_do_interrupt(CPUState
*cpu
);
882 void arm_v7m_cpu_do_interrupt(CPUState
*cpu
);
883 bool arm_cpu_exec_interrupt(CPUState
*cpu
, int int_req
);
885 void arm_cpu_dump_state(CPUState
*cs
, FILE *f
, fprintf_function cpu_fprintf
,
888 hwaddr
arm_cpu_get_phys_page_attrs_debug(CPUState
*cpu
, vaddr addr
,
891 int arm_cpu_gdb_read_register(CPUState
*cpu
, uint8_t *buf
, int reg
);
892 int arm_cpu_gdb_write_register(CPUState
*cpu
, uint8_t *buf
, int reg
);
894 /* Dynamically generates for gdb stub an XML description of the sysregs from
895 * the cp_regs hashtable. Returns the registered sysregs number.
897 int arm_gen_dynamic_xml(CPUState
*cpu
);
899 /* Returns the dynamically generated XML for the gdb stub.
900 * Returns a pointer to the XML contents for the specified XML file or NULL
901 * if the XML name doesn't match the predefined one.
903 const char *arm_gdb_get_dynamic_xml(CPUState
*cpu
, const char *xmlname
);
905 int arm_cpu_write_elf64_note(WriteCoreDumpFunction f
, CPUState
*cs
,
906 int cpuid
, void *opaque
);
907 int arm_cpu_write_elf32_note(WriteCoreDumpFunction f
, CPUState
*cs
,
908 int cpuid
, void *opaque
);
910 #ifdef TARGET_AARCH64
911 int aarch64_cpu_gdb_read_register(CPUState
*cpu
, uint8_t *buf
, int reg
);
912 int aarch64_cpu_gdb_write_register(CPUState
*cpu
, uint8_t *buf
, int reg
);
913 void aarch64_sve_narrow_vq(CPUARMState
*env
, unsigned vq
);
914 void aarch64_sve_change_el(CPUARMState
*env
, int old_el
, int new_el
);
916 static inline void aarch64_sve_narrow_vq(CPUARMState
*env
, unsigned vq
) { }
917 static inline void aarch64_sve_change_el(CPUARMState
*env
, int o
, int n
) { }
920 target_ulong
do_arm_semihosting(CPUARMState
*env
);
921 void aarch64_sync_32_to_64(CPUARMState
*env
);
922 void aarch64_sync_64_to_32(CPUARMState
*env
);
924 int fp_exception_el(CPUARMState
*env
, int cur_el
);
925 int sve_exception_el(CPUARMState
*env
, int cur_el
);
926 uint32_t sve_zcr_len_for_el(CPUARMState
*env
, int el
);
928 static inline bool is_a64(CPUARMState
*env
)
933 /* you can call this signal handler from your SIGBUS and SIGSEGV
934 signal handlers to inform the virtual CPU of exceptions. non zero
935 is returned if the signal was handled by the virtual CPU. */
936 int cpu_arm_signal_handler(int host_signum
, void *pinfo
,
943 * Synchronises the counter in the PMCCNTR. This must always be called twice,
944 * once before any action that might affect the timer and again afterwards.
945 * The function is used to swap the state of the register if required.
946 * This only happens when not in user mode (!CONFIG_USER_ONLY)
948 void pmccntr_sync(CPUARMState
*env
);
950 /* SCTLR bit meanings. Several bits have been reused in newer
951 * versions of the architecture; in that case we define constants
952 * for both old and new bit meanings. Code which tests against those
953 * bits should probably check or otherwise arrange that the CPU
954 * is the architectural version it expects.
956 #define SCTLR_M (1U << 0)
957 #define SCTLR_A (1U << 1)
958 #define SCTLR_C (1U << 2)
959 #define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
960 #define SCTLR_SA (1U << 3)
961 #define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
962 #define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
963 #define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
964 #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
965 #define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
966 #define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
967 #define SCTLR_ITD (1U << 7) /* v8 onward */
968 #define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
969 #define SCTLR_SED (1U << 8) /* v8 onward */
970 #define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
971 #define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
972 #define SCTLR_F (1U << 10) /* up to v6 */
973 #define SCTLR_SW (1U << 10) /* v7 onward */
974 #define SCTLR_Z (1U << 11)
975 #define SCTLR_I (1U << 12)
976 #define SCTLR_V (1U << 13)
977 #define SCTLR_RR (1U << 14) /* up to v7 */
978 #define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
979 #define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
980 #define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
981 #define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
982 #define SCTLR_nTWI (1U << 16) /* v8 onward */
983 #define SCTLR_HA (1U << 17)
984 #define SCTLR_BR (1U << 17) /* PMSA only */
985 #define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
986 #define SCTLR_nTWE (1U << 18) /* v8 onward */
987 #define SCTLR_WXN (1U << 19)
988 #define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
989 #define SCTLR_UWXN (1U << 20) /* v7 onward */
990 #define SCTLR_FI (1U << 21)
991 #define SCTLR_U (1U << 22)
992 #define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
993 #define SCTLR_VE (1U << 24) /* up to v7 */
994 #define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
995 #define SCTLR_EE (1U << 25)
996 #define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
997 #define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
998 #define SCTLR_NMFI (1U << 27)
999 #define SCTLR_TRE (1U << 28)
1000 #define SCTLR_AFE (1U << 29)
1001 #define SCTLR_TE (1U << 30)
1003 #define CPTR_TCPAC (1U << 31)
1004 #define CPTR_TTA (1U << 20)
1005 #define CPTR_TFP (1U << 10)
1006 #define CPTR_TZ (1U << 8) /* CPTR_EL2 */
1007 #define CPTR_EZ (1U << 8) /* CPTR_EL3 */
1009 #define MDCR_EPMAD (1U << 21)
1010 #define MDCR_EDAD (1U << 20)
1011 #define MDCR_SPME (1U << 17)
1012 #define MDCR_SDD (1U << 16)
1013 #define MDCR_SPD (3U << 14)
1014 #define MDCR_TDRA (1U << 11)
1015 #define MDCR_TDOSA (1U << 10)
1016 #define MDCR_TDA (1U << 9)
1017 #define MDCR_TDE (1U << 8)
1018 #define MDCR_HPME (1U << 7)
1019 #define MDCR_TPM (1U << 6)
1020 #define MDCR_TPMCR (1U << 5)
1022 /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1023 #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1025 #define CPSR_M (0x1fU)
1026 #define CPSR_T (1U << 5)
1027 #define CPSR_F (1U << 6)
1028 #define CPSR_I (1U << 7)
1029 #define CPSR_A (1U << 8)
1030 #define CPSR_E (1U << 9)
1031 #define CPSR_IT_2_7 (0xfc00U)
1032 #define CPSR_GE (0xfU << 16)
1033 #define CPSR_IL (1U << 20)
1034 /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1035 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1036 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1037 * where it is live state but not accessible to the AArch32 code.
1039 #define CPSR_RESERVED (0x7U << 21)
1040 #define CPSR_J (1U << 24)
1041 #define CPSR_IT_0_1 (3U << 25)
1042 #define CPSR_Q (1U << 27)
1043 #define CPSR_V (1U << 28)
1044 #define CPSR_C (1U << 29)
1045 #define CPSR_Z (1U << 30)
1046 #define CPSR_N (1U << 31)
1047 #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1048 #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1050 #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1051 #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1053 /* Bits writable in user mode. */
1054 #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1055 /* Execution state bits. MRS read as zero, MSR writes ignored. */
1056 #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1057 /* Mask of bits which may be set by exception return copying them from SPSR */
1058 #define CPSR_ERET_MASK (~CPSR_RESERVED)
1060 /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1061 #define XPSR_EXCP 0x1ffU
1062 #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1063 #define XPSR_IT_2_7 CPSR_IT_2_7
1064 #define XPSR_GE CPSR_GE
1065 #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1066 #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1067 #define XPSR_IT_0_1 CPSR_IT_0_1
1068 #define XPSR_Q CPSR_Q
1069 #define XPSR_V CPSR_V
1070 #define XPSR_C CPSR_C
1071 #define XPSR_Z CPSR_Z
1072 #define XPSR_N CPSR_N
1073 #define XPSR_NZCV CPSR_NZCV
1074 #define XPSR_IT CPSR_IT
1076 #define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
1077 #define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
1078 #define TTBCR_PD0 (1U << 4)
1079 #define TTBCR_PD1 (1U << 5)
1080 #define TTBCR_EPD0 (1U << 7)
1081 #define TTBCR_IRGN0 (3U << 8)
1082 #define TTBCR_ORGN0 (3U << 10)
1083 #define TTBCR_SH0 (3U << 12)
1084 #define TTBCR_T1SZ (3U << 16)
1085 #define TTBCR_A1 (1U << 22)
1086 #define TTBCR_EPD1 (1U << 23)
1087 #define TTBCR_IRGN1 (3U << 24)
1088 #define TTBCR_ORGN1 (3U << 26)
1089 #define TTBCR_SH1 (1U << 28)
1090 #define TTBCR_EAE (1U << 31)
1092 /* Bit definitions for ARMv8 SPSR (PSTATE) format.
1093 * Only these are valid when in AArch64 mode; in
1094 * AArch32 mode SPSRs are basically CPSR-format.
1096 #define PSTATE_SP (1U)
1097 #define PSTATE_M (0xFU)
1098 #define PSTATE_nRW (1U << 4)
1099 #define PSTATE_F (1U << 6)
1100 #define PSTATE_I (1U << 7)
1101 #define PSTATE_A (1U << 8)
1102 #define PSTATE_D (1U << 9)
1103 #define PSTATE_IL (1U << 20)
1104 #define PSTATE_SS (1U << 21)
1105 #define PSTATE_V (1U << 28)
1106 #define PSTATE_C (1U << 29)
1107 #define PSTATE_Z (1U << 30)
1108 #define PSTATE_N (1U << 31)
1109 #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1110 #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1111 #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
1112 /* Mode values for AArch64 */
1113 #define PSTATE_MODE_EL3h 13
1114 #define PSTATE_MODE_EL3t 12
1115 #define PSTATE_MODE_EL2h 9
1116 #define PSTATE_MODE_EL2t 8
1117 #define PSTATE_MODE_EL1h 5
1118 #define PSTATE_MODE_EL1t 4
1119 #define PSTATE_MODE_EL0t 0
1121 /* Write a new value to v7m.exception, thus transitioning into or out
1122 * of Handler mode; this may result in a change of active stack pointer.
1124 void write_v7m_exception(CPUARMState
*env
, uint32_t new_exc
);
1126 /* Map EL and handler into a PSTATE_MODE. */
1127 static inline unsigned int aarch64_pstate_mode(unsigned int el
, bool handler
)
1129 return (el
<< 2) | handler
;
1132 /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1133 * interprocessing, so we don't attempt to sync with the cpsr state used by
1134 * the 32 bit decoder.
1136 static inline uint32_t pstate_read(CPUARMState
*env
)
1140 ZF
= (env
->ZF
== 0);
1141 return (env
->NF
& 0x80000000) | (ZF
<< 30)
1142 | (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3)
1143 | env
->pstate
| env
->daif
;
1146 static inline void pstate_write(CPUARMState
*env
, uint32_t val
)
1148 env
->ZF
= (~val
) & PSTATE_Z
;
1150 env
->CF
= (val
>> 29) & 1;
1151 env
->VF
= (val
<< 3) & 0x80000000;
1152 env
->daif
= val
& PSTATE_DAIF
;
1153 env
->pstate
= val
& ~CACHED_PSTATE_BITS
;
1156 /* Return the current CPSR value. */
1157 uint32_t cpsr_read(CPUARMState
*env
);
1159 typedef enum CPSRWriteType
{
1160 CPSRWriteByInstr
= 0, /* from guest MSR or CPS */
1161 CPSRWriteExceptionReturn
= 1, /* from guest exception return insn */
1162 CPSRWriteRaw
= 2, /* trust values, do not switch reg banks */
1163 CPSRWriteByGDBStub
= 3, /* from the GDB stub */
1166 /* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
1167 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
,
1168 CPSRWriteType write_type
);
1170 /* Return the current xPSR value. */
1171 static inline uint32_t xpsr_read(CPUARMState
*env
)
1174 ZF
= (env
->ZF
== 0);
1175 return (env
->NF
& 0x80000000) | (ZF
<< 30)
1176 | (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
1177 | (env
->thumb
<< 24) | ((env
->condexec_bits
& 3) << 25)
1178 | ((env
->condexec_bits
& 0xfc) << 8)
1179 | env
->v7m
.exception
;
1182 /* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
1183 static inline void xpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
1185 if (mask
& XPSR_NZCV
) {
1186 env
->ZF
= (~val
) & XPSR_Z
;
1188 env
->CF
= (val
>> 29) & 1;
1189 env
->VF
= (val
<< 3) & 0x80000000;
1191 if (mask
& XPSR_Q
) {
1192 env
->QF
= ((val
& XPSR_Q
) != 0);
1194 if (mask
& XPSR_T
) {
1195 env
->thumb
= ((val
& XPSR_T
) != 0);
1197 if (mask
& XPSR_IT_0_1
) {
1198 env
->condexec_bits
&= ~3;
1199 env
->condexec_bits
|= (val
>> 25) & 3;
1201 if (mask
& XPSR_IT_2_7
) {
1202 env
->condexec_bits
&= 3;
1203 env
->condexec_bits
|= (val
>> 8) & 0xfc;
1205 if (mask
& XPSR_EXCP
) {
1206 /* Note that this only happens on exception exit */
1207 write_v7m_exception(env
, val
& XPSR_EXCP
);
1211 #define HCR_VM (1ULL << 0)
1212 #define HCR_SWIO (1ULL << 1)
1213 #define HCR_PTW (1ULL << 2)
1214 #define HCR_FMO (1ULL << 3)
1215 #define HCR_IMO (1ULL << 4)
1216 #define HCR_AMO (1ULL << 5)
1217 #define HCR_VF (1ULL << 6)
1218 #define HCR_VI (1ULL << 7)
1219 #define HCR_VSE (1ULL << 8)
1220 #define HCR_FB (1ULL << 9)
1221 #define HCR_BSU_MASK (3ULL << 10)
1222 #define HCR_DC (1ULL << 12)
1223 #define HCR_TWI (1ULL << 13)
1224 #define HCR_TWE (1ULL << 14)
1225 #define HCR_TID0 (1ULL << 15)
1226 #define HCR_TID1 (1ULL << 16)
1227 #define HCR_TID2 (1ULL << 17)
1228 #define HCR_TID3 (1ULL << 18)
1229 #define HCR_TSC (1ULL << 19)
1230 #define HCR_TIDCP (1ULL << 20)
1231 #define HCR_TACR (1ULL << 21)
1232 #define HCR_TSW (1ULL << 22)
1233 #define HCR_TPC (1ULL << 23)
1234 #define HCR_TPU (1ULL << 24)
1235 #define HCR_TTLB (1ULL << 25)
1236 #define HCR_TVM (1ULL << 26)
1237 #define HCR_TGE (1ULL << 27)
1238 #define HCR_TDZ (1ULL << 28)
1239 #define HCR_HCD (1ULL << 29)
1240 #define HCR_TRVM (1ULL << 30)
1241 #define HCR_RW (1ULL << 31)
1242 #define HCR_CD (1ULL << 32)
1243 #define HCR_ID (1ULL << 33)
1244 #define HCR_E2H (1ULL << 34)
1246 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1247 * HCR_MASK and then clear it again if the feature bit is not set in
1250 #define HCR_MASK ((1ULL << 34) - 1)
1252 #define SCR_NS (1U << 0)
1253 #define SCR_IRQ (1U << 1)
1254 #define SCR_FIQ (1U << 2)
1255 #define SCR_EA (1U << 3)
1256 #define SCR_FW (1U << 4)
1257 #define SCR_AW (1U << 5)
1258 #define SCR_NET (1U << 6)
1259 #define SCR_SMD (1U << 7)
1260 #define SCR_HCE (1U << 8)
1261 #define SCR_SIF (1U << 9)
1262 #define SCR_RW (1U << 10)
1263 #define SCR_ST (1U << 11)
1264 #define SCR_TWI (1U << 12)
1265 #define SCR_TWE (1U << 13)
1266 #define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
1267 #define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
1269 /* Return the current FPSCR value. */
1270 uint32_t vfp_get_fpscr(CPUARMState
*env
);
1271 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
);
1273 /* FPCR, Floating Point Control Register
1274 * FPSR, Floating Poiht Status Register
1276 * For A64 the FPSCR is split into two logically distinct registers,
1277 * FPCR and FPSR. However since they still use non-overlapping bits
1278 * we store the underlying state in fpscr and just mask on read/write.
1280 #define FPSR_MASK 0xf800009f
1281 #define FPCR_MASK 0x07ff9f00
1283 #define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
1284 #define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
1285 #define FPCR_DN (1 << 25) /* Default NaN enable bit */
1287 static inline uint32_t vfp_get_fpsr(CPUARMState
*env
)
1289 return vfp_get_fpscr(env
) & FPSR_MASK
;
1292 static inline void vfp_set_fpsr(CPUARMState
*env
, uint32_t val
)
1294 uint32_t new_fpscr
= (vfp_get_fpscr(env
) & ~FPSR_MASK
) | (val
& FPSR_MASK
);
1295 vfp_set_fpscr(env
, new_fpscr
);
1298 static inline uint32_t vfp_get_fpcr(CPUARMState
*env
)
1300 return vfp_get_fpscr(env
) & FPCR_MASK
;
1303 static inline void vfp_set_fpcr(CPUARMState
*env
, uint32_t val
)
1305 uint32_t new_fpscr
= (vfp_get_fpscr(env
) & ~FPCR_MASK
) | (val
& FPCR_MASK
);
1306 vfp_set_fpscr(env
, new_fpscr
);
1310 ARM_CPU_MODE_USR
= 0x10,
1311 ARM_CPU_MODE_FIQ
= 0x11,
1312 ARM_CPU_MODE_IRQ
= 0x12,
1313 ARM_CPU_MODE_SVC
= 0x13,
1314 ARM_CPU_MODE_MON
= 0x16,
1315 ARM_CPU_MODE_ABT
= 0x17,
1316 ARM_CPU_MODE_HYP
= 0x1a,
1317 ARM_CPU_MODE_UND
= 0x1b,
1318 ARM_CPU_MODE_SYS
= 0x1f
1321 /* VFP system registers. */
1322 #define ARM_VFP_FPSID 0
1323 #define ARM_VFP_FPSCR 1
1324 #define ARM_VFP_MVFR2 5
1325 #define ARM_VFP_MVFR1 6
1326 #define ARM_VFP_MVFR0 7
1327 #define ARM_VFP_FPEXC 8
1328 #define ARM_VFP_FPINST 9
1329 #define ARM_VFP_FPINST2 10
1331 /* iwMMXt coprocessor control registers. */
1332 #define ARM_IWMMXT_wCID 0
1333 #define ARM_IWMMXT_wCon 1
1334 #define ARM_IWMMXT_wCSSF 2
1335 #define ARM_IWMMXT_wCASF 3
1336 #define ARM_IWMMXT_wCGR0 8
1337 #define ARM_IWMMXT_wCGR1 9
1338 #define ARM_IWMMXT_wCGR2 10
1339 #define ARM_IWMMXT_wCGR3 11
1342 FIELD(V7M_CCR
, NONBASETHRDENA
, 0, 1)
1343 FIELD(V7M_CCR
, USERSETMPEND
, 1, 1)
1344 FIELD(V7M_CCR
, UNALIGN_TRP
, 3, 1)
1345 FIELD(V7M_CCR
, DIV_0_TRP
, 4, 1)
1346 FIELD(V7M_CCR
, BFHFNMIGN
, 8, 1)
1347 FIELD(V7M_CCR
, STKALIGN
, 9, 1)
1348 FIELD(V7M_CCR
, STKOFHFNMIGN
, 10, 1)
1349 FIELD(V7M_CCR
, DC
, 16, 1)
1350 FIELD(V7M_CCR
, IC
, 17, 1)
1351 FIELD(V7M_CCR
, BP
, 18, 1)
1354 FIELD(V7M_SCR
, SLEEPONEXIT
, 1, 1)
1355 FIELD(V7M_SCR
, SLEEPDEEP
, 2, 1)
1356 FIELD(V7M_SCR
, SLEEPDEEPS
, 3, 1)
1357 FIELD(V7M_SCR
, SEVONPEND
, 4, 1)
1359 /* V7M AIRCR bits */
1360 FIELD(V7M_AIRCR
, VECTRESET
, 0, 1)
1361 FIELD(V7M_AIRCR
, VECTCLRACTIVE
, 1, 1)
1362 FIELD(V7M_AIRCR
, SYSRESETREQ
, 2, 1)
1363 FIELD(V7M_AIRCR
, SYSRESETREQS
, 3, 1)
1364 FIELD(V7M_AIRCR
, PRIGROUP
, 8, 3)
1365 FIELD(V7M_AIRCR
, BFHFNMINS
, 13, 1)
1366 FIELD(V7M_AIRCR
, PRIS
, 14, 1)
1367 FIELD(V7M_AIRCR
, ENDIANNESS
, 15, 1)
1368 FIELD(V7M_AIRCR
, VECTKEY
, 16, 16)
1370 /* V7M CFSR bits for MMFSR */
1371 FIELD(V7M_CFSR
, IACCVIOL
, 0, 1)
1372 FIELD(V7M_CFSR
, DACCVIOL
, 1, 1)
1373 FIELD(V7M_CFSR
, MUNSTKERR
, 3, 1)
1374 FIELD(V7M_CFSR
, MSTKERR
, 4, 1)
1375 FIELD(V7M_CFSR
, MLSPERR
, 5, 1)
1376 FIELD(V7M_CFSR
, MMARVALID
, 7, 1)
1378 /* V7M CFSR bits for BFSR */
1379 FIELD(V7M_CFSR
, IBUSERR
, 8 + 0, 1)
1380 FIELD(V7M_CFSR
, PRECISERR
, 8 + 1, 1)
1381 FIELD(V7M_CFSR
, IMPRECISERR
, 8 + 2, 1)
1382 FIELD(V7M_CFSR
, UNSTKERR
, 8 + 3, 1)
1383 FIELD(V7M_CFSR
, STKERR
, 8 + 4, 1)
1384 FIELD(V7M_CFSR
, LSPERR
, 8 + 5, 1)
1385 FIELD(V7M_CFSR
, BFARVALID
, 8 + 7, 1)
1387 /* V7M CFSR bits for UFSR */
1388 FIELD(V7M_CFSR
, UNDEFINSTR
, 16 + 0, 1)
1389 FIELD(V7M_CFSR
, INVSTATE
, 16 + 1, 1)
1390 FIELD(V7M_CFSR
, INVPC
, 16 + 2, 1)
1391 FIELD(V7M_CFSR
, NOCP
, 16 + 3, 1)
1392 FIELD(V7M_CFSR
, STKOF
, 16 + 4, 1)
1393 FIELD(V7M_CFSR
, UNALIGNED
, 16 + 8, 1)
1394 FIELD(V7M_CFSR
, DIVBYZERO
, 16 + 9, 1)
1396 /* V7M CFSR bit masks covering all of the subregister bits */
1397 FIELD(V7M_CFSR
, MMFSR
, 0, 8)
1398 FIELD(V7M_CFSR
, BFSR
, 8, 8)
1399 FIELD(V7M_CFSR
, UFSR
, 16, 16)
1402 FIELD(V7M_HFSR
, VECTTBL
, 1, 1)
1403 FIELD(V7M_HFSR
, FORCED
, 30, 1)
1404 FIELD(V7M_HFSR
, DEBUGEVT
, 31, 1)
1407 FIELD(V7M_DFSR
, HALTED
, 0, 1)
1408 FIELD(V7M_DFSR
, BKPT
, 1, 1)
1409 FIELD(V7M_DFSR
, DWTTRAP
, 2, 1)
1410 FIELD(V7M_DFSR
, VCATCH
, 3, 1)
1411 FIELD(V7M_DFSR
, EXTERNAL
, 4, 1)
1414 FIELD(V7M_SFSR
, INVEP
, 0, 1)
1415 FIELD(V7M_SFSR
, INVIS
, 1, 1)
1416 FIELD(V7M_SFSR
, INVER
, 2, 1)
1417 FIELD(V7M_SFSR
, AUVIOL
, 3, 1)
1418 FIELD(V7M_SFSR
, INVTRAN
, 4, 1)
1419 FIELD(V7M_SFSR
, LSPERR
, 5, 1)
1420 FIELD(V7M_SFSR
, SFARVALID
, 6, 1)
1421 FIELD(V7M_SFSR
, LSERR
, 7, 1)
1423 /* v7M MPU_CTRL bits */
1424 FIELD(V7M_MPU_CTRL
, ENABLE
, 0, 1)
1425 FIELD(V7M_MPU_CTRL
, HFNMIENA
, 1, 1)
1426 FIELD(V7M_MPU_CTRL
, PRIVDEFENA
, 2, 1)
1428 /* v7M CLIDR bits */
1429 FIELD(V7M_CLIDR
, CTYPE_ALL
, 0, 21)
1430 FIELD(V7M_CLIDR
, LOUIS
, 21, 3)
1431 FIELD(V7M_CLIDR
, LOC
, 24, 3)
1432 FIELD(V7M_CLIDR
, LOUU
, 27, 3)
1433 FIELD(V7M_CLIDR
, ICB
, 30, 2)
1435 FIELD(V7M_CSSELR
, IND
, 0, 1)
1436 FIELD(V7M_CSSELR
, LEVEL
, 1, 3)
1437 /* We use the combination of InD and Level to index into cpu->ccsidr[];
1438 * define a mask for this and check that it doesn't permit running off
1439 * the end of the array.
1441 FIELD(V7M_CSSELR
, INDEX
, 0, 4)
1443 QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU
*)0)->ccsidr
) <= R_V7M_CSSELR_INDEX_MASK
);
1445 /* If adding a feature bit which corresponds to a Linux ELF
1446 * HWCAP bit, remember to update the feature-bit-to-hwcap
1447 * mapping in linux-user/elfload.c:get_elf_hwcap().
1451 ARM_FEATURE_AUXCR
, /* ARM1026 Auxiliary control register. */
1452 ARM_FEATURE_XSCALE
, /* Intel XScale extensions. */
1453 ARM_FEATURE_IWMMXT
, /* Intel iwMMXt extension. */
1458 ARM_FEATURE_PMSA
, /* no MMU; may have Memory Protection Unit */
1460 ARM_FEATURE_VFP_FP16
,
1462 ARM_FEATURE_THUMB_DIV
, /* divide supported in Thumb encoding */
1463 ARM_FEATURE_M
, /* Microcontroller profile. */
1464 ARM_FEATURE_OMAPCP
, /* OMAP specific CP15 ops handling. */
1465 ARM_FEATURE_THUMB2EE
,
1466 ARM_FEATURE_V7MP
, /* v7 Multiprocessing Extensions */
1467 ARM_FEATURE_V7VE
, /* v7 Virtualization Extensions (non-EL2 parts) */
1470 ARM_FEATURE_STRONGARM
,
1471 ARM_FEATURE_VAPA
, /* cp15 VA to PA lookups */
1472 ARM_FEATURE_ARM_DIV
, /* divide supported in ARM encoding */
1473 ARM_FEATURE_VFP4
, /* VFPv4 (implies that NEON is v2) */
1474 ARM_FEATURE_GENERIC_TIMER
,
1475 ARM_FEATURE_MVFR
, /* Media and VFP Feature Registers 0 and 1 */
1476 ARM_FEATURE_DUMMY_C15_REGS
, /* RAZ/WI all of cp15 crn=15 */
1477 ARM_FEATURE_CACHE_TEST_CLEAN
, /* 926/1026 style test-and-clean ops */
1478 ARM_FEATURE_CACHE_DIRTY_REG
, /* 1136/1176 cache dirty status register */
1479 ARM_FEATURE_CACHE_BLOCK_OPS
, /* v6 optional cache block operations */
1480 ARM_FEATURE_MPIDR
, /* has cp15 MPIDR */
1481 ARM_FEATURE_PXN
, /* has Privileged Execute Never bit */
1482 ARM_FEATURE_LPAE
, /* has Large Physical Address Extension */
1484 ARM_FEATURE_AARCH64
, /* supports 64 bit mode */
1485 ARM_FEATURE_V8_AES
, /* implements AES part of v8 Crypto Extensions */
1486 ARM_FEATURE_CBAR
, /* has cp15 CBAR */
1487 ARM_FEATURE_CRC
, /* ARMv8 CRC instructions */
1488 ARM_FEATURE_CBAR_RO
, /* has cp15 CBAR and it is read-only */
1489 ARM_FEATURE_EL2
, /* has EL2 Virtualization support */
1490 ARM_FEATURE_EL3
, /* has EL3 Secure monitor support */
1491 ARM_FEATURE_V8_SHA1
, /* implements SHA1 part of v8 Crypto Extensions */
1492 ARM_FEATURE_V8_SHA256
, /* implements SHA256 part of v8 Crypto Extensions */
1493 ARM_FEATURE_V8_PMULL
, /* implements PMULL part of v8 Crypto Extensions */
1494 ARM_FEATURE_THUMB_DSP
, /* DSP insns supported in the Thumb encodings */
1495 ARM_FEATURE_PMU
, /* has PMU support */
1496 ARM_FEATURE_VBAR
, /* has cp15 VBAR */
1497 ARM_FEATURE_M_SECURITY
, /* M profile Security Extension */
1498 ARM_FEATURE_JAZELLE
, /* has (trivial) Jazelle implementation */
1499 ARM_FEATURE_SVE
, /* has Scalable Vector Extension */
1500 ARM_FEATURE_V8_SHA512
, /* implements SHA512 part of v8 Crypto Extensions */
1501 ARM_FEATURE_V8_SHA3
, /* implements SHA3 part of v8 Crypto Extensions */
1502 ARM_FEATURE_V8_SM3
, /* implements SM3 part of v8 Crypto Extensions */
1503 ARM_FEATURE_V8_SM4
, /* implements SM4 part of v8 Crypto Extensions */
1504 ARM_FEATURE_V8_ATOMICS
, /* ARMv8.1-Atomics feature */
1505 ARM_FEATURE_V8_RDM
, /* implements v8.1 simd round multiply */
1506 ARM_FEATURE_V8_DOTPROD
, /* implements v8.2 simd dot product */
1507 ARM_FEATURE_V8_FP16
, /* implements v8.2 half-precision float */
1508 ARM_FEATURE_V8_FCMA
, /* has complex number part of v8.3 extensions. */
1509 ARM_FEATURE_M_MAIN
, /* M profile Main Extension */
1512 static inline int arm_feature(CPUARMState
*env
, int feature
)
1514 return (env
->features
& (1ULL << feature
)) != 0;
1517 #if !defined(CONFIG_USER_ONLY)
1518 /* Return true if exception levels below EL3 are in secure state,
1519 * or would be following an exception return to that level.
1520 * Unlike arm_is_secure() (which is always a question about the
1521 * _current_ state of the CPU) this doesn't care about the current
1524 static inline bool arm_is_secure_below_el3(CPUARMState
*env
)
1526 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1527 return !(env
->cp15
.scr_el3
& SCR_NS
);
1529 /* If EL3 is not supported then the secure state is implementation
1530 * defined, in which case QEMU defaults to non-secure.
1536 /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1537 static inline bool arm_is_el3_or_mon(CPUARMState
*env
)
1539 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1540 if (is_a64(env
) && extract32(env
->pstate
, 2, 2) == 3) {
1541 /* CPU currently in AArch64 state and EL3 */
1543 } else if (!is_a64(env
) &&
1544 (env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
1545 /* CPU currently in AArch32 state and monitor mode */
1552 /* Return true if the processor is in secure state */
1553 static inline bool arm_is_secure(CPUARMState
*env
)
1555 if (arm_is_el3_or_mon(env
)) {
1558 return arm_is_secure_below_el3(env
);
1562 static inline bool arm_is_secure_below_el3(CPUARMState
*env
)
1567 static inline bool arm_is_secure(CPUARMState
*env
)
1573 /* Return true if the specified exception level is running in AArch64 state. */
1574 static inline bool arm_el_is_aa64(CPUARMState
*env
, int el
)
1576 /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1577 * and if we're not in EL0 then the state of EL0 isn't well defined.)
1579 assert(el
>= 1 && el
<= 3);
1580 bool aa64
= arm_feature(env
, ARM_FEATURE_AARCH64
);
1582 /* The highest exception level is always at the maximum supported
1583 * register width, and then lower levels have a register width controlled
1584 * by bits in the SCR or HCR registers.
1590 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1591 aa64
= aa64
&& (env
->cp15
.scr_el3
& SCR_RW
);
1598 if (arm_feature(env
, ARM_FEATURE_EL2
) && !arm_is_secure_below_el3(env
)) {
1599 aa64
= aa64
&& (env
->cp15
.hcr_el2
& HCR_RW
);
1605 /* Function for determing whether guest cp register reads and writes should
1606 * access the secure or non-secure bank of a cp register. When EL3 is
1607 * operating in AArch32 state, the NS-bit determines whether the secure
1608 * instance of a cp register should be used. When EL3 is AArch64 (or if
1609 * it doesn't exist at all) then there is no register banking, and all
1610 * accesses are to the non-secure version.
1612 static inline bool access_secure_reg(CPUARMState
*env
)
1614 bool ret
= (arm_feature(env
, ARM_FEATURE_EL3
) &&
1615 !arm_el_is_aa64(env
, 3) &&
1616 !(env
->cp15
.scr_el3
& SCR_NS
));
1621 /* Macros for accessing a specified CP register bank */
1622 #define A32_BANKED_REG_GET(_env, _regname, _secure) \
1623 ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1625 #define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
1628 (_env)->cp15._regname##_s = (_val); \
1630 (_env)->cp15._regname##_ns = (_val); \
1634 /* Macros for automatically accessing a specific CP register bank depending on
1635 * the current secure state of the system. These macros are not intended for
1636 * supporting instruction translation reads/writes as these are dependent
1637 * solely on the SCR.NS bit and not the mode.
1639 #define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
1640 A32_BANKED_REG_GET((_env), _regname, \
1641 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1643 #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
1644 A32_BANKED_REG_SET((_env), _regname, \
1645 (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1648 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
);
1649 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
1650 uint32_t cur_el
, bool secure
);
1652 /* Interface between CPU and Interrupt controller. */
1653 #ifndef CONFIG_USER_ONLY
1654 bool armv7m_nvic_can_take_pending_exception(void *opaque
);
1656 static inline bool armv7m_nvic_can_take_pending_exception(void *opaque
)
1662 * armv7m_nvic_set_pending: mark the specified exception as pending
1664 * @irq: the exception number to mark pending
1665 * @secure: false for non-banked exceptions or for the nonsecure
1666 * version of a banked exception, true for the secure version of a banked
1669 * Marks the specified exception as pending. Note that we will assert()
1670 * if @secure is true and @irq does not specify one of the fixed set
1671 * of architecturally banked exceptions.
1673 void armv7m_nvic_set_pending(void *opaque
, int irq
, bool secure
);
1675 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1677 * @irq: the exception number to mark pending
1678 * @secure: false for non-banked exceptions or for the nonsecure
1679 * version of a banked exception, true for the secure version of a banked
1682 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1683 * exceptions (exceptions generated in the course of trying to take
1684 * a different exception).
1686 void armv7m_nvic_set_pending_derived(void *opaque
, int irq
, bool secure
);
1688 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1689 * exception, and whether it targets Secure state
1691 * @pirq: set to pending exception number
1692 * @ptargets_secure: set to whether pending exception targets Secure
1694 * This function writes the number of the highest priority pending
1695 * exception (the one which would be made active by
1696 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1697 * to true if the current highest priority pending exception should
1698 * be taken to Secure state, false for NS.
1700 void armv7m_nvic_get_pending_irq_info(void *opaque
, int *pirq
,
1701 bool *ptargets_secure
);
1703 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1706 * Move the current highest priority pending exception from the pending
1707 * state to the active state, and update v7m.exception to indicate that
1708 * it is the exception currently being handled.
1710 void armv7m_nvic_acknowledge_irq(void *opaque
);
1712 * armv7m_nvic_complete_irq: complete specified interrupt or exception
1714 * @irq: the exception number to complete
1715 * @secure: true if this exception was secure
1717 * Returns: -1 if the irq was not active
1718 * 1 if completing this irq brought us back to base (no active irqs)
1719 * 0 if there is still an irq active after this one was completed
1720 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
1722 int armv7m_nvic_complete_irq(void *opaque
, int irq
, bool secure
);
1724 * armv7m_nvic_raw_execution_priority: return the raw execution priority
1727 * Returns: the raw execution priority as defined by the v8M architecture.
1728 * This is the execution priority minus the effects of AIRCR.PRIS,
1729 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
1730 * (v8M ARM ARM I_PKLD.)
1732 int armv7m_nvic_raw_execution_priority(void *opaque
);
1734 * armv7m_nvic_neg_prio_requested: return true if the requested execution
1735 * priority is negative for the specified security state.
1737 * @secure: the security state to test
1738 * This corresponds to the pseudocode IsReqExecPriNeg().
1740 #ifndef CONFIG_USER_ONLY
1741 bool armv7m_nvic_neg_prio_requested(void *opaque
, bool secure
);
1743 static inline bool armv7m_nvic_neg_prio_requested(void *opaque
, bool secure
)
1749 /* Interface for defining coprocessor registers.
1750 * Registers are defined in tables of arm_cp_reginfo structs
1751 * which are passed to define_arm_cp_regs().
1754 /* When looking up a coprocessor register we look for it
1755 * via an integer which encodes all of:
1756 * coprocessor number
1757 * Crn, Crm, opc1, opc2 fields
1758 * 32 or 64 bit register (ie is it accessed via MRC/MCR
1759 * or via MRRC/MCRR?)
1760 * non-secure/secure bank (AArch32 only)
1761 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
1762 * (In this case crn and opc2 should be zero.)
1763 * For AArch64, there is no 32/64 bit size distinction;
1764 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
1765 * and 4 bit CRn and CRm. The encoding patterns are chosen
1766 * to be easy to convert to and from the KVM encodings, and also
1767 * so that the hashtable can contain both AArch32 and AArch64
1768 * registers (to allow for interprocessing where we might run
1769 * 32 bit code on a 64 bit core).
1771 /* This bit is private to our hashtable cpreg; in KVM register
1772 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
1773 * in the upper bits of the 64 bit ID.
1775 #define CP_REG_AA64_SHIFT 28
1776 #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
1778 /* To enable banking of coprocessor registers depending on ns-bit we
1779 * add a bit to distinguish between secure and non-secure cpregs in the
1782 #define CP_REG_NS_SHIFT 29
1783 #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
1785 #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
1786 ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
1787 ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
1789 #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
1790 (CP_REG_AA64_MASK | \
1791 ((cp) << CP_REG_ARM_COPROC_SHIFT) | \
1792 ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
1793 ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
1794 ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
1795 ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
1796 ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
1798 /* Convert a full 64 bit KVM register ID to the truncated 32 bit
1799 * version used as a key for the coprocessor register hashtable
1801 static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid
)
1803 uint32_t cpregid
= kvmid
;
1804 if ((kvmid
& CP_REG_ARCH_MASK
) == CP_REG_ARM64
) {
1805 cpregid
|= CP_REG_AA64_MASK
;
1807 if ((kvmid
& CP_REG_SIZE_MASK
) == CP_REG_SIZE_U64
) {
1808 cpregid
|= (1 << 15);
1811 /* KVM is always non-secure so add the NS flag on AArch32 register
1814 cpregid
|= 1 << CP_REG_NS_SHIFT
;
1819 /* Convert a truncated 32 bit hashtable key into the full
1820 * 64 bit KVM register ID.
1822 static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid
)
1826 if (cpregid
& CP_REG_AA64_MASK
) {
1827 kvmid
= cpregid
& ~CP_REG_AA64_MASK
;
1828 kvmid
|= CP_REG_SIZE_U64
| CP_REG_ARM64
;
1830 kvmid
= cpregid
& ~(1 << 15);
1831 if (cpregid
& (1 << 15)) {
1832 kvmid
|= CP_REG_SIZE_U64
| CP_REG_ARM
;
1834 kvmid
|= CP_REG_SIZE_U32
| CP_REG_ARM
;
1840 /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
1841 * special-behaviour cp reg and bits [11..8] indicate what behaviour
1842 * it has. Otherwise it is a simple cp reg, where CONST indicates that
1843 * TCG can assume the value to be constant (ie load at translate time)
1844 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
1845 * indicates that the TB should not be ended after a write to this register
1846 * (the default is that the TB ends after cp writes). OVERRIDE permits
1847 * a register definition to override a previous definition for the
1848 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
1849 * old must have the OVERRIDE bit set.
1850 * ALIAS indicates that this register is an alias view of some underlying
1851 * state which is also visible via another register, and that the other
1852 * register is handling migration and reset; registers marked ALIAS will not be
1853 * migrated but may have their state set by syncing of register state from KVM.
1854 * NO_RAW indicates that this register has no underlying state and does not
1855 * support raw access for state saving/loading; it will not be used for either
1856 * migration or KVM state synchronization. (Typically this is for "registers"
1857 * which are actually used as instructions for cache maintenance and so on.)
1858 * IO indicates that this register does I/O and therefore its accesses
1859 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
1860 * registers which implement clocks or timers require this.
1862 #define ARM_CP_SPECIAL 0x0001
1863 #define ARM_CP_CONST 0x0002
1864 #define ARM_CP_64BIT 0x0004
1865 #define ARM_CP_SUPPRESS_TB_END 0x0008
1866 #define ARM_CP_OVERRIDE 0x0010
1867 #define ARM_CP_ALIAS 0x0020
1868 #define ARM_CP_IO 0x0040
1869 #define ARM_CP_NO_RAW 0x0080
1870 #define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
1871 #define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
1872 #define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
1873 #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
1874 #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
1875 #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
1876 #define ARM_CP_FPU 0x1000
1877 #define ARM_CP_SVE 0x2000
1878 #define ARM_CP_NO_GDB 0x4000
1879 /* Used only as a terminator for ARMCPRegInfo lists */
1880 #define ARM_CP_SENTINEL 0xffff
1881 /* Mask of only the flag bits in a type field */
1882 #define ARM_CP_FLAG_MASK 0x70ff
1884 /* Valid values for ARMCPRegInfo state field, indicating which of
1885 * the AArch32 and AArch64 execution states this register is visible in.
1886 * If the reginfo doesn't explicitly specify then it is AArch32 only.
1887 * If the reginfo is declared to be visible in both states then a second
1888 * reginfo is synthesised for the AArch32 view of the AArch64 register,
1889 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
1890 * Note that we rely on the values of these enums as we iterate through
1891 * the various states in some places.
1894 ARM_CP_STATE_AA32
= 0,
1895 ARM_CP_STATE_AA64
= 1,
1896 ARM_CP_STATE_BOTH
= 2,
1899 /* ARM CP register secure state flags. These flags identify security state
1900 * attributes for a given CP register entry.
1901 * The existence of both or neither secure and non-secure flags indicates that
1902 * the register has both a secure and non-secure hash entry. A single one of
1903 * these flags causes the register to only be hashed for the specified
1905 * Although definitions may have any combination of the S/NS bits, each
1906 * registered entry will only have one to identify whether the entry is secure
1910 ARM_CP_SECSTATE_S
= (1 << 0), /* bit[0]: Secure state register */
1911 ARM_CP_SECSTATE_NS
= (1 << 1), /* bit[1]: Non-secure state register */
1914 /* Return true if cptype is a valid type field. This is used to try to
1915 * catch errors where the sentinel has been accidentally left off the end
1916 * of a list of registers.
1918 static inline bool cptype_valid(int cptype
)
1920 return ((cptype
& ~ARM_CP_FLAG_MASK
) == 0)
1921 || ((cptype
& ARM_CP_SPECIAL
) &&
1922 ((cptype
& ~ARM_CP_FLAG_MASK
) <= ARM_LAST_SPECIAL
));
1926 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
1927 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
1928 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
1929 * (ie any of the privileged modes in Secure state, or Monitor mode).
1930 * If a register is accessible in one privilege level it's always accessible
1931 * in higher privilege levels too. Since "Secure PL1" also follows this rule
1932 * (ie anything visible in PL2 is visible in S-PL1, some things are only
1933 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
1934 * terminology a little and call this PL3.
1935 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
1936 * with the ELx exception levels.
1938 * If access permissions for a register are more complex than can be
1939 * described with these bits, then use a laxer set of restrictions, and
1940 * do the more restrictive/complex check inside a helper function.
1944 #define PL2_R (0x20 | PL3_R)
1945 #define PL2_W (0x10 | PL3_W)
1946 #define PL1_R (0x08 | PL2_R)
1947 #define PL1_W (0x04 | PL2_W)
1948 #define PL0_R (0x02 | PL1_R)
1949 #define PL0_W (0x01 | PL1_W)
1951 #define PL3_RW (PL3_R | PL3_W)
1952 #define PL2_RW (PL2_R | PL2_W)
1953 #define PL1_RW (PL1_R | PL1_W)
1954 #define PL0_RW (PL0_R | PL0_W)
1956 /* Return the highest implemented Exception Level */
1957 static inline int arm_highest_el(CPUARMState
*env
)
1959 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1962 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
1968 /* Return true if a v7M CPU is in Handler mode */
1969 static inline bool arm_v7m_is_handler_mode(CPUARMState
*env
)
1971 return env
->v7m
.exception
!= 0;
1974 /* Return the current Exception Level (as per ARMv8; note that this differs
1975 * from the ARMv7 Privilege Level).
1977 static inline int arm_current_el(CPUARMState
*env
)
1979 if (arm_feature(env
, ARM_FEATURE_M
)) {
1980 return arm_v7m_is_handler_mode(env
) ||
1981 !(env
->v7m
.control
[env
->v7m
.secure
] & 1);
1985 return extract32(env
->pstate
, 2, 2);
1988 switch (env
->uncached_cpsr
& 0x1f) {
1989 case ARM_CPU_MODE_USR
:
1991 case ARM_CPU_MODE_HYP
:
1993 case ARM_CPU_MODE_MON
:
1996 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3)) {
1997 /* If EL3 is 32-bit then all secure privileged modes run in
2007 typedef struct ARMCPRegInfo ARMCPRegInfo
;
2009 typedef enum CPAccessResult
{
2010 /* Access is permitted */
2012 /* Access fails due to a configurable trap or enable which would
2013 * result in a categorized exception syndrome giving information about
2014 * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2015 * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2016 * PL1 if in EL0, otherwise to the current EL).
2019 /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2020 * Note that this is not a catch-all case -- the set of cases which may
2021 * result in this failure is specifically defined by the architecture.
2023 CP_ACCESS_TRAP_UNCATEGORIZED
= 2,
2024 /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2025 CP_ACCESS_TRAP_EL2
= 3,
2026 CP_ACCESS_TRAP_EL3
= 4,
2027 /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2028 CP_ACCESS_TRAP_UNCATEGORIZED_EL2
= 5,
2029 CP_ACCESS_TRAP_UNCATEGORIZED_EL3
= 6,
2030 /* Access fails and results in an exception syndrome for an FP access,
2031 * trapped directly to EL2 or EL3
2033 CP_ACCESS_TRAP_FP_EL2
= 7,
2034 CP_ACCESS_TRAP_FP_EL3
= 8,
2037 /* Access functions for coprocessor registers. These cannot fail and
2038 * may not raise exceptions.
2040 typedef uint64_t CPReadFn(CPUARMState
*env
, const ARMCPRegInfo
*opaque
);
2041 typedef void CPWriteFn(CPUARMState
*env
, const ARMCPRegInfo
*opaque
,
2043 /* Access permission check functions for coprocessor registers. */
2044 typedef CPAccessResult
CPAccessFn(CPUARMState
*env
,
2045 const ARMCPRegInfo
*opaque
,
2047 /* Hook function for register reset */
2048 typedef void CPResetFn(CPUARMState
*env
, const ARMCPRegInfo
*opaque
);
2052 /* Definition of an ARM coprocessor register */
2053 struct ARMCPRegInfo
{
2054 /* Name of register (useful mainly for debugging, need not be unique) */
2056 /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2057 * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2058 * 'wildcard' field -- any value of that field in the MRC/MCR insn
2059 * will be decoded to this register. The register read and write
2060 * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2061 * used by the program, so it is possible to register a wildcard and
2062 * then behave differently on read/write if necessary.
2063 * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2064 * must both be zero.
2065 * For AArch64-visible registers, opc0 is also used.
2066 * Since there are no "coprocessors" in AArch64, cp is purely used as a
2067 * way to distinguish (for KVM's benefit) guest-visible system registers
2068 * from demuxed ones provided to preserve the "no side effects on
2069 * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2070 * visible (to match KVM's encoding); cp==0 will be converted to
2071 * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2079 /* Execution state in which this register is visible: ARM_CP_STATE_* */
2081 /* Register type: ARM_CP_* bits/values */
2083 /* Access rights: PL*_[RW] */
2085 /* Security state: ARM_CP_SECSTATE_* bits/values */
2087 /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2088 * this register was defined: can be used to hand data through to the
2089 * register read/write functions, since they are passed the ARMCPRegInfo*.
2092 /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2093 * fieldoffset is non-zero, the reset value of the register.
2095 uint64_t resetvalue
;
2096 /* Offset of the field in CPUARMState for this register.
2098 * This is not needed if either:
2099 * 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2100 * 2. both readfn and writefn are specified
2102 ptrdiff_t fieldoffset
; /* offsetof(CPUARMState, field) */
2104 /* Offsets of the secure and non-secure fields in CPUARMState for the
2105 * register if it is banked. These fields are only used during the static
2106 * registration of a register. During hashing the bank associated
2107 * with a given security state is copied to fieldoffset which is used from
2110 * It is expected that register definitions use either fieldoffset or
2111 * bank_fieldoffsets in the definition but not both. It is also expected
2112 * that both bank offsets are set when defining a banked register. This
2113 * use indicates that a register is banked.
2115 ptrdiff_t bank_fieldoffsets
[2];
2117 /* Function for making any access checks for this register in addition to
2118 * those specified by the 'access' permissions bits. If NULL, no extra
2119 * checks required. The access check is performed at runtime, not at
2122 CPAccessFn
*accessfn
;
2123 /* Function for handling reads of this register. If NULL, then reads
2124 * will be done by loading from the offset into CPUARMState specified
2128 /* Function for handling writes of this register. If NULL, then writes
2129 * will be done by writing to the offset into CPUARMState specified
2133 /* Function for doing a "raw" read; used when we need to copy
2134 * coprocessor state to the kernel for KVM or out for
2135 * migration. This only needs to be provided if there is also a
2136 * readfn and it has side effects (for instance clear-on-read bits).
2138 CPReadFn
*raw_readfn
;
2139 /* Function for doing a "raw" write; used when we need to copy KVM
2140 * kernel coprocessor state into userspace, or for inbound
2141 * migration. This only needs to be provided if there is also a
2142 * writefn and it masks out "unwritable" bits or has write-one-to-clear
2143 * or similar behaviour.
2145 CPWriteFn
*raw_writefn
;
2146 /* Function for resetting the register. If NULL, then reset will be done
2147 * by writing resetvalue to the field specified in fieldoffset. If
2148 * fieldoffset is 0 then no reset will be done.
2153 /* Macros which are lvalues for the field in CPUARMState for the
2156 #define CPREG_FIELD32(env, ri) \
2157 (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2158 #define CPREG_FIELD64(env, ri) \
2159 (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2161 #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2163 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
2164 const ARMCPRegInfo
*regs
, void *opaque
);
2165 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
2166 const ARMCPRegInfo
*regs
, void *opaque
);
2167 static inline void define_arm_cp_regs(ARMCPU
*cpu
, const ARMCPRegInfo
*regs
)
2169 define_arm_cp_regs_with_opaque(cpu
, regs
, 0);
2171 static inline void define_one_arm_cp_reg(ARMCPU
*cpu
, const ARMCPRegInfo
*regs
)
2173 define_one_arm_cp_reg_with_opaque(cpu
, regs
, 0);
2175 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
);
2177 /* CPWriteFn that can be used to implement writes-ignored behaviour */
2178 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2180 /* CPReadFn that can be used for read-as-zero behaviour */
2181 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
);
2183 /* CPResetFn that does nothing, for use if no reset is required even
2184 * if fieldoffset is non zero.
2186 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
);
2188 /* Return true if this reginfo struct's field in the cpu state struct
2191 static inline bool cpreg_field_is_64bit(const ARMCPRegInfo
*ri
)
2193 return (ri
->state
== ARM_CP_STATE_AA64
) || (ri
->type
& ARM_CP_64BIT
);
2196 static inline bool cp_access_ok(int current_el
,
2197 const ARMCPRegInfo
*ri
, int isread
)
2199 return (ri
->access
>> ((current_el
* 2) + isread
)) & 1;
2202 /* Raw read of a coprocessor register (as needed for migration, etc) */
2203 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
);
2206 * write_list_to_cpustate
2209 * For each register listed in the ARMCPU cpreg_indexes list, write
2210 * its value from the cpreg_values list into the ARMCPUState structure.
2211 * This updates TCG's working data structures from KVM data or
2212 * from incoming migration state.
2214 * Returns: true if all register values were updated correctly,
2215 * false if some register was unknown or could not be written.
2216 * Note that we do not stop early on failure -- we will attempt
2217 * writing all registers in the list.
2219 bool write_list_to_cpustate(ARMCPU
*cpu
);
2222 * write_cpustate_to_list:
2225 * For each register listed in the ARMCPU cpreg_indexes list, write
2226 * its value from the ARMCPUState structure into the cpreg_values list.
2227 * This is used to copy info from TCG's working data structures into
2228 * KVM or for outbound migration.
2230 * Returns: true if all register values were read correctly,
2231 * false if some register was unknown or could not be read.
2232 * Note that we do not stop early on failure -- we will attempt
2233 * reading all registers in the list.
2235 bool write_cpustate_to_list(ARMCPU
*cpu
);
2237 #define ARM_CPUID_TI915T 0x54029152
2238 #define ARM_CPUID_TI925T 0x54029252
2240 #if defined(CONFIG_USER_ONLY)
2241 #define TARGET_PAGE_BITS 12
2243 /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2244 * have to support 1K tiny pages.
2246 #define TARGET_PAGE_BITS_VARY
2247 #define TARGET_PAGE_BITS_MIN 10
2250 #if defined(TARGET_AARCH64)
2251 # define TARGET_PHYS_ADDR_SPACE_BITS 48
2252 # define TARGET_VIRT_ADDR_SPACE_BITS 64
2254 # define TARGET_PHYS_ADDR_SPACE_BITS 40
2255 # define TARGET_VIRT_ADDR_SPACE_BITS 32
2259 * arm_hcr_el2_imo(): Return the effective value of HCR_EL2.IMO.
2260 * Depending on the values of HCR_EL2.E2H and TGE, this may be
2261 * "behaves as 1 for all purposes other than direct read/write" or
2262 * "behaves as 0 for all purposes other than direct read/write"
2264 static inline bool arm_hcr_el2_imo(CPUARMState
*env
)
2266 switch (env
->cp15
.hcr_el2
& (HCR_TGE
| HCR_E2H
)) {
2269 case HCR_TGE
| HCR_E2H
:
2272 return env
->cp15
.hcr_el2
& HCR_IMO
;
2277 * arm_hcr_el2_fmo(): Return the effective value of HCR_EL2.FMO.
2279 static inline bool arm_hcr_el2_fmo(CPUARMState
*env
)
2281 switch (env
->cp15
.hcr_el2
& (HCR_TGE
| HCR_E2H
)) {
2284 case HCR_TGE
| HCR_E2H
:
2287 return env
->cp15
.hcr_el2
& HCR_FMO
;
2292 * arm_hcr_el2_amo(): Return the effective value of HCR_EL2.AMO.
2294 static inline bool arm_hcr_el2_amo(CPUARMState
*env
)
2296 switch (env
->cp15
.hcr_el2
& (HCR_TGE
| HCR_E2H
)) {
2299 case HCR_TGE
| HCR_E2H
:
2302 return env
->cp15
.hcr_el2
& HCR_AMO
;
2306 static inline bool arm_excp_unmasked(CPUState
*cs
, unsigned int excp_idx
,
2307 unsigned int target_el
)
2309 CPUARMState
*env
= cs
->env_ptr
;
2310 unsigned int cur_el
= arm_current_el(env
);
2311 bool secure
= arm_is_secure(env
);
2312 bool pstate_unmasked
;
2313 int8_t unmasked
= 0;
2315 /* Don't take exceptions if they target a lower EL.
2316 * This check should catch any exceptions that would not be taken but left
2319 if (cur_el
> target_el
) {
2325 pstate_unmasked
= !(env
->daif
& PSTATE_F
);
2329 pstate_unmasked
= !(env
->daif
& PSTATE_I
);
2333 if (secure
|| !arm_hcr_el2_fmo(env
) || (env
->cp15
.hcr_el2
& HCR_TGE
)) {
2334 /* VFIQs are only taken when hypervized and non-secure. */
2337 return !(env
->daif
& PSTATE_F
);
2339 if (secure
|| !arm_hcr_el2_imo(env
) || (env
->cp15
.hcr_el2
& HCR_TGE
)) {
2340 /* VIRQs are only taken when hypervized and non-secure. */
2343 return !(env
->daif
& PSTATE_I
);
2345 g_assert_not_reached();
2348 /* Use the target EL, current execution state and SCR/HCR settings to
2349 * determine whether the corresponding CPSR bit is used to mask the
2352 if ((target_el
> cur_el
) && (target_el
!= 1)) {
2353 /* Exceptions targeting a higher EL may not be maskable */
2354 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
2355 /* 64-bit masking rules are simple: exceptions to EL3
2356 * can't be masked, and exceptions to EL2 can only be
2357 * masked from Secure state. The HCR and SCR settings
2358 * don't affect the masking logic, only the interrupt routing.
2360 if (target_el
== 3 || !secure
) {
2364 /* The old 32-bit-only environment has a more complicated
2365 * masking setup. HCR and SCR bits not only affect interrupt
2366 * routing but also change the behaviour of masking.
2372 /* If FIQs are routed to EL3 or EL2 then there are cases where
2373 * we override the CPSR.F in determining if the exception is
2374 * masked or not. If neither of these are set then we fall back
2375 * to the CPSR.F setting otherwise we further assess the state
2378 hcr
= arm_hcr_el2_fmo(env
);
2379 scr
= (env
->cp15
.scr_el3
& SCR_FIQ
);
2381 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2382 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2383 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2384 * when non-secure but only when FIQs are only routed to EL3.
2386 scr
= scr
&& !((env
->cp15
.scr_el3
& SCR_FW
) && !hcr
);
2389 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2390 * we may override the CPSR.I masking when in non-secure state.
2391 * The SCR.IRQ setting has already been taken into consideration
2392 * when setting the target EL, so it does not have a further
2395 hcr
= arm_hcr_el2_imo(env
);
2399 g_assert_not_reached();
2402 if ((scr
|| hcr
) && !secure
) {
2408 /* The PSTATE bits only mask the interrupt if we have not overriden the
2411 return unmasked
|| pstate_unmasked
;
2414 #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2415 #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2416 #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2418 #define cpu_signal_handler cpu_arm_signal_handler
2419 #define cpu_list arm_cpu_list
2421 /* ARM has the following "translation regimes" (as the ARM ARM calls them):
2424 * + NonSecure EL1 & 0 stage 1
2425 * + NonSecure EL1 & 0 stage 2
2427 * + Secure EL1 & EL0
2430 * + NonSecure PL1 & 0 stage 1
2431 * + NonSecure PL1 & 0 stage 2
2433 * + Secure PL0 & PL1
2434 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2436 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2437 * 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2438 * may differ in access permissions even if the VA->PA map is the same
2439 * 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2440 * translation, which means that we have one mmu_idx that deals with two
2441 * concatenated translation regimes [this sort of combined s1+2 TLB is
2442 * architecturally permitted]
2443 * 3. we don't need to allocate an mmu_idx to translations that we won't be
2444 * handling via the TLB. The only way to do a stage 1 translation without
2445 * the immediate stage 2 translation is via the ATS or AT system insns,
2446 * which can be slow-pathed and always do a page table walk.
2447 * 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2448 * translation regimes, because they map reasonably well to each other
2449 * and they can't both be active at the same time.
2450 * This gives us the following list of mmu_idx values:
2452 * NS EL0 (aka NS PL0) stage 1+2
2453 * NS EL1 (aka NS PL1) stage 1+2
2454 * NS EL2 (aka NS PL2)
2457 * S EL1 (not used if EL3 is 32 bit)
2460 * (The last of these is an mmu_idx because we want to be able to use the TLB
2461 * for the accesses done as part of a stage 1 page table walk, rather than
2462 * having to walk the stage 2 page table over and over.)
2464 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2465 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2466 * NS EL2 if we ever model a Cortex-R52).
2468 * M profile CPUs are rather different as they do not have a true MMU.
2469 * They have the following different MMU indexes:
2472 * User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2473 * Privileged, execution priority negative (ditto)
2474 * If the CPU supports the v8M Security Extension then there are also:
2477 * Secure User, execution priority negative
2478 * Secure Privileged, execution priority negative
2480 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2481 * are not quite the same -- different CPU types (most notably M profile
2482 * vs A/R profile) would like to use MMU indexes with different semantics,
2483 * but since we don't ever need to use all of those in a single CPU we
2484 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2485 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2486 * the same for any particular CPU.
2487 * Variables of type ARMMUIdx are always full values, and the core
2488 * index values are in variables of type 'int'.
2490 * Our enumeration includes at the end some entries which are not "true"
2491 * mmu_idx values in that they don't have corresponding TLBs and are only
2492 * valid for doing slow path page table walks.
2494 * The constant names here are patterned after the general style of the names
2495 * of the AT/ATS operations.
2496 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2497 * For M profile we arrange them to have a bit for priv, a bit for negpri
2498 * and a bit for secure.
2500 #define ARM_MMU_IDX_A 0x10 /* A profile */
2501 #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2502 #define ARM_MMU_IDX_M 0x40 /* M profile */
2504 /* meanings of the bits for M profile mmu idx values */
2505 #define ARM_MMU_IDX_M_PRIV 0x1
2506 #define ARM_MMU_IDX_M_NEGPRI 0x2
2507 #define ARM_MMU_IDX_M_S 0x4
2509 #define ARM_MMU_IDX_TYPE_MASK (~0x7)
2510 #define ARM_MMU_IDX_COREIDX_MASK 0x7
2512 typedef enum ARMMMUIdx
{
2513 ARMMMUIdx_S12NSE0
= 0 | ARM_MMU_IDX_A
,
2514 ARMMMUIdx_S12NSE1
= 1 | ARM_MMU_IDX_A
,
2515 ARMMMUIdx_S1E2
= 2 | ARM_MMU_IDX_A
,
2516 ARMMMUIdx_S1E3
= 3 | ARM_MMU_IDX_A
,
2517 ARMMMUIdx_S1SE0
= 4 | ARM_MMU_IDX_A
,
2518 ARMMMUIdx_S1SE1
= 5 | ARM_MMU_IDX_A
,
2519 ARMMMUIdx_S2NS
= 6 | ARM_MMU_IDX_A
,
2520 ARMMMUIdx_MUser
= 0 | ARM_MMU_IDX_M
,
2521 ARMMMUIdx_MPriv
= 1 | ARM_MMU_IDX_M
,
2522 ARMMMUIdx_MUserNegPri
= 2 | ARM_MMU_IDX_M
,
2523 ARMMMUIdx_MPrivNegPri
= 3 | ARM_MMU_IDX_M
,
2524 ARMMMUIdx_MSUser
= 4 | ARM_MMU_IDX_M
,
2525 ARMMMUIdx_MSPriv
= 5 | ARM_MMU_IDX_M
,
2526 ARMMMUIdx_MSUserNegPri
= 6 | ARM_MMU_IDX_M
,
2527 ARMMMUIdx_MSPrivNegPri
= 7 | ARM_MMU_IDX_M
,
2528 /* Indexes below here don't have TLBs and are used only for AT system
2529 * instructions or for the first stage of an S12 page table walk.
2531 ARMMMUIdx_S1NSE0
= 0 | ARM_MMU_IDX_NOTLB
,
2532 ARMMMUIdx_S1NSE1
= 1 | ARM_MMU_IDX_NOTLB
,
2535 /* Bit macros for the core-mmu-index values for each index,
2536 * for use when calling tlb_flush_by_mmuidx() and friends.
2538 typedef enum ARMMMUIdxBit
{
2539 ARMMMUIdxBit_S12NSE0
= 1 << 0,
2540 ARMMMUIdxBit_S12NSE1
= 1 << 1,
2541 ARMMMUIdxBit_S1E2
= 1 << 2,
2542 ARMMMUIdxBit_S1E3
= 1 << 3,
2543 ARMMMUIdxBit_S1SE0
= 1 << 4,
2544 ARMMMUIdxBit_S1SE1
= 1 << 5,
2545 ARMMMUIdxBit_S2NS
= 1 << 6,
2546 ARMMMUIdxBit_MUser
= 1 << 0,
2547 ARMMMUIdxBit_MPriv
= 1 << 1,
2548 ARMMMUIdxBit_MUserNegPri
= 1 << 2,
2549 ARMMMUIdxBit_MPrivNegPri
= 1 << 3,
2550 ARMMMUIdxBit_MSUser
= 1 << 4,
2551 ARMMMUIdxBit_MSPriv
= 1 << 5,
2552 ARMMMUIdxBit_MSUserNegPri
= 1 << 6,
2553 ARMMMUIdxBit_MSPrivNegPri
= 1 << 7,
2556 #define MMU_USER_IDX 0
2558 static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx
)
2560 return mmu_idx
& ARM_MMU_IDX_COREIDX_MASK
;
2563 static inline ARMMMUIdx
core_to_arm_mmu_idx(CPUARMState
*env
, int mmu_idx
)
2565 if (arm_feature(env
, ARM_FEATURE_M
)) {
2566 return mmu_idx
| ARM_MMU_IDX_M
;
2568 return mmu_idx
| ARM_MMU_IDX_A
;
2572 /* Return the exception level we're running at if this is our mmu_idx */
2573 static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx
)
2575 switch (mmu_idx
& ARM_MMU_IDX_TYPE_MASK
) {
2579 return mmu_idx
& ARM_MMU_IDX_M_PRIV
;
2581 g_assert_not_reached();
2585 /* Return the MMU index for a v7M CPU in the specified security and
2588 static inline ARMMMUIdx
arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState
*env
,
2592 ARMMMUIdx mmu_idx
= ARM_MMU_IDX_M
;
2595 mmu_idx
|= ARM_MMU_IDX_M_PRIV
;
2598 if (armv7m_nvic_neg_prio_requested(env
->nvic
, secstate
)) {
2599 mmu_idx
|= ARM_MMU_IDX_M_NEGPRI
;
2603 mmu_idx
|= ARM_MMU_IDX_M_S
;
2609 /* Return the MMU index for a v7M CPU in the specified security state */
2610 static inline ARMMMUIdx
arm_v7m_mmu_idx_for_secstate(CPUARMState
*env
,
2613 bool priv
= arm_current_el(env
) != 0;
2615 return arm_v7m_mmu_idx_for_secstate_and_priv(env
, secstate
, priv
);
2618 /* Determine the current mmu_idx to use for normal loads/stores */
2619 static inline int cpu_mmu_index(CPUARMState
*env
, bool ifetch
)
2621 int el
= arm_current_el(env
);
2623 if (arm_feature(env
, ARM_FEATURE_M
)) {
2624 ARMMMUIdx mmu_idx
= arm_v7m_mmu_idx_for_secstate(env
, env
->v7m
.secure
);
2626 return arm_to_core_mmu_idx(mmu_idx
);
2629 if (el
< 2 && arm_is_secure_below_el3(env
)) {
2630 return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0
+ el
);
2635 /* Indexes used when registering address spaces with cpu_address_space_init */
2636 typedef enum ARMASIdx
{
2641 /* Return the Exception Level targeted by debug exceptions. */
2642 static inline int arm_debug_target_el(CPUARMState
*env
)
2644 bool secure
= arm_is_secure(env
);
2645 bool route_to_el2
= false;
2647 if (arm_feature(env
, ARM_FEATURE_EL2
) && !secure
) {
2648 route_to_el2
= env
->cp15
.hcr_el2
& HCR_TGE
||
2649 env
->cp15
.mdcr_el2
& (1 << 8);
2654 } else if (arm_feature(env
, ARM_FEATURE_EL3
) &&
2655 !arm_el_is_aa64(env
, 3) && secure
) {
2662 static inline bool arm_v7m_csselr_razwi(ARMCPU
*cpu
)
2664 /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2667 return (cpu
->clidr
& R_V7M_CLIDR_CTYPE_ALL_MASK
) != 0;
2670 static inline bool aa64_generate_debug_exceptions(CPUARMState
*env
)
2672 if (arm_is_secure(env
)) {
2673 /* MDCR_EL3.SDD disables debug events from Secure state */
2674 if (extract32(env
->cp15
.mdcr_el3
, 16, 1) != 0
2675 || arm_current_el(env
) == 3) {
2680 if (arm_current_el(env
) == arm_debug_target_el(env
)) {
2681 if ((extract32(env
->cp15
.mdscr_el1
, 13, 1) == 0)
2682 || (env
->daif
& PSTATE_D
)) {
2689 static inline bool aa32_generate_debug_exceptions(CPUARMState
*env
)
2691 int el
= arm_current_el(env
);
2693 if (el
== 0 && arm_el_is_aa64(env
, 1)) {
2694 return aa64_generate_debug_exceptions(env
);
2697 if (arm_is_secure(env
)) {
2700 if (el
== 0 && (env
->cp15
.sder
& 1)) {
2701 /* SDER.SUIDEN means debug exceptions from Secure EL0
2702 * are always enabled. Otherwise they are controlled by
2703 * SDCR.SPD like those from other Secure ELs.
2708 spd
= extract32(env
->cp15
.mdcr_el3
, 14, 2);
2711 /* SPD == 0b01 is reserved, but behaves as 0b00. */
2713 /* For 0b00 we return true if external secure invasive debug
2714 * is enabled. On real hardware this is controlled by external
2715 * signals to the core. QEMU always permits debug, and behaves
2716 * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2729 /* Return true if debugging exceptions are currently enabled.
2730 * This corresponds to what in ARM ARM pseudocode would be
2731 * if UsingAArch32() then
2732 * return AArch32.GenerateDebugExceptions()
2734 * return AArch64.GenerateDebugExceptions()
2735 * We choose to push the if() down into this function for clarity,
2736 * since the pseudocode has it at all callsites except for the one in
2737 * CheckSoftwareStep(), where it is elided because both branches would
2738 * always return the same value.
2740 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
2741 * don't yet implement those exception levels or their associated trap bits.
2743 static inline bool arm_generate_debug_exceptions(CPUARMState
*env
)
2746 return aa64_generate_debug_exceptions(env
);
2748 return aa32_generate_debug_exceptions(env
);
2752 /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
2753 * implicitly means this always returns false in pre-v8 CPUs.)
2755 static inline bool arm_singlestep_active(CPUARMState
*env
)
2757 return extract32(env
->cp15
.mdscr_el1
, 0, 1)
2758 && arm_el_is_aa64(env
, arm_debug_target_el(env
))
2759 && arm_generate_debug_exceptions(env
);
2762 static inline bool arm_sctlr_b(CPUARMState
*env
)
2765 /* We need not implement SCTLR.ITD in user-mode emulation, so
2766 * let linux-user ignore the fact that it conflicts with SCTLR_B.
2767 * This lets people run BE32 binaries with "-cpu any".
2769 #ifndef CONFIG_USER_ONLY
2770 !arm_feature(env
, ARM_FEATURE_V7
) &&
2772 (env
->cp15
.sctlr_el
[1] & SCTLR_B
) != 0;
2775 /* Return true if the processor is in big-endian mode. */
2776 static inline bool arm_cpu_data_is_big_endian(CPUARMState
*env
)
2780 /* In 32bit endianness is determined by looking at CPSR's E bit */
2783 #ifdef CONFIG_USER_ONLY
2784 /* In system mode, BE32 is modelled in line with the
2785 * architecture (as word-invariant big-endianness), where loads
2786 * and stores are done little endian but from addresses which
2787 * are adjusted by XORing with the appropriate constant. So the
2788 * endianness to use for the raw data access is not affected by
2790 * In user mode, however, we model BE32 as byte-invariant
2791 * big-endianness (because user-only code cannot tell the
2792 * difference), and so we need to use a data access endianness
2793 * that depends on SCTLR.B.
2797 ((env
->uncached_cpsr
& CPSR_E
) ? 1 : 0);
2800 cur_el
= arm_current_el(env
);
2803 return (env
->cp15
.sctlr_el
[1] & SCTLR_E0E
) != 0;
2806 return (env
->cp15
.sctlr_el
[cur_el
] & SCTLR_EE
) != 0;
2809 #include "exec/cpu-all.h"
2811 /* Bit usage in the TB flags field: bit 31 indicates whether we are
2812 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
2813 * We put flags which are shared between 32 and 64 bit mode at the top
2814 * of the word, and flags which apply to only one mode at the bottom.
2816 #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
2817 #define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
2818 #define ARM_TBFLAG_MMUIDX_SHIFT 28
2819 #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
2820 #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
2821 #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
2822 #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
2823 #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
2824 /* Target EL if we take a floating-point-disabled exception */
2825 #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
2826 #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
2828 /* Bit usage when in AArch32 state: */
2829 #define ARM_TBFLAG_THUMB_SHIFT 0
2830 #define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
2831 #define ARM_TBFLAG_VECLEN_SHIFT 1
2832 #define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
2833 #define ARM_TBFLAG_VECSTRIDE_SHIFT 4
2834 #define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
2835 #define ARM_TBFLAG_VFPEN_SHIFT 7
2836 #define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
2837 #define ARM_TBFLAG_CONDEXEC_SHIFT 8
2838 #define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
2839 #define ARM_TBFLAG_SCTLR_B_SHIFT 16
2840 #define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
2841 /* We store the bottom two bits of the CPAR as TB flags and handle
2842 * checks on the other bits at runtime
2844 #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
2845 #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2846 /* Indicates whether cp register reads and writes by guest code should access
2847 * the secure or nonsecure bank of banked registers; note that this is not
2848 * the same thing as the current security state of the processor!
2850 #define ARM_TBFLAG_NS_SHIFT 19
2851 #define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
2852 #define ARM_TBFLAG_BE_DATA_SHIFT 20
2853 #define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
2854 /* For M profile only, Handler (ie not Thread) mode */
2855 #define ARM_TBFLAG_HANDLER_SHIFT 21
2856 #define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
2857 /* For M profile only, whether we should generate stack-limit checks */
2858 #define ARM_TBFLAG_STACKCHECK_SHIFT 22
2859 #define ARM_TBFLAG_STACKCHECK_MASK (1 << ARM_TBFLAG_STACKCHECK_SHIFT)
2861 /* Bit usage when in AArch64 state */
2862 #define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
2863 #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
2864 #define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
2865 #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
2866 #define ARM_TBFLAG_SVEEXC_EL_SHIFT 2
2867 #define ARM_TBFLAG_SVEEXC_EL_MASK (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
2868 #define ARM_TBFLAG_ZCR_LEN_SHIFT 4
2869 #define ARM_TBFLAG_ZCR_LEN_MASK (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
2871 /* some convenience accessor macros */
2872 #define ARM_TBFLAG_AARCH64_STATE(F) \
2873 (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
2874 #define ARM_TBFLAG_MMUIDX(F) \
2875 (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
2876 #define ARM_TBFLAG_SS_ACTIVE(F) \
2877 (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
2878 #define ARM_TBFLAG_PSTATE_SS(F) \
2879 (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
2880 #define ARM_TBFLAG_FPEXC_EL(F) \
2881 (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
2882 #define ARM_TBFLAG_THUMB(F) \
2883 (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
2884 #define ARM_TBFLAG_VECLEN(F) \
2885 (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
2886 #define ARM_TBFLAG_VECSTRIDE(F) \
2887 (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
2888 #define ARM_TBFLAG_VFPEN(F) \
2889 (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
2890 #define ARM_TBFLAG_CONDEXEC(F) \
2891 (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
2892 #define ARM_TBFLAG_SCTLR_B(F) \
2893 (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
2894 #define ARM_TBFLAG_XSCALE_CPAR(F) \
2895 (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
2896 #define ARM_TBFLAG_NS(F) \
2897 (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
2898 #define ARM_TBFLAG_BE_DATA(F) \
2899 (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
2900 #define ARM_TBFLAG_HANDLER(F) \
2901 (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
2902 #define ARM_TBFLAG_STACKCHECK(F) \
2903 (((F) & ARM_TBFLAG_STACKCHECK_MASK) >> ARM_TBFLAG_STACKCHECK_SHIFT)
2904 #define ARM_TBFLAG_TBI0(F) \
2905 (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
2906 #define ARM_TBFLAG_TBI1(F) \
2907 (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
2908 #define ARM_TBFLAG_SVEEXC_EL(F) \
2909 (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
2910 #define ARM_TBFLAG_ZCR_LEN(F) \
2911 (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
2913 static inline bool bswap_code(bool sctlr_b
)
2915 #ifdef CONFIG_USER_ONLY
2916 /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
2917 * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
2918 * would also end up as a mixed-endian mode with BE code, LE data.
2921 #ifdef TARGET_WORDS_BIGENDIAN
2926 /* All code access in ARM is little endian, and there are no loaders
2927 * doing swaps that need to be reversed
2933 #ifdef CONFIG_USER_ONLY
2934 static inline bool arm_cpu_bswap_data(CPUARMState
*env
)
2937 #ifdef TARGET_WORDS_BIGENDIAN
2940 arm_cpu_data_is_big_endian(env
);
2944 #ifndef CONFIG_USER_ONLY
2948 * @mmu_idx: MMU index indicating required translation regime
2950 * Extracts the TBI0 value from the appropriate TCR for the current EL
2952 * Returns: the TBI0 value.
2954 uint32_t arm_regime_tbi0(CPUARMState
*env
, ARMMMUIdx mmu_idx
);
2959 * @mmu_idx: MMU index indicating required translation regime
2961 * Extracts the TBI1 value from the appropriate TCR for the current EL
2963 * Returns: the TBI1 value.
2965 uint32_t arm_regime_tbi1(CPUARMState
*env
, ARMMMUIdx mmu_idx
);
2967 /* We can't handle tagged addresses properly in user-only mode */
2968 static inline uint32_t arm_regime_tbi0(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
2973 static inline uint32_t arm_regime_tbi1(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
2979 void cpu_get_tb_cpu_state(CPUARMState
*env
, target_ulong
*pc
,
2980 target_ulong
*cs_base
, uint32_t *flags
);
2983 QEMU_PSCI_CONDUIT_DISABLED
= 0,
2984 QEMU_PSCI_CONDUIT_SMC
= 1,
2985 QEMU_PSCI_CONDUIT_HVC
= 2,
2988 #ifndef CONFIG_USER_ONLY
2989 /* Return the address space index to use for a memory access */
2990 static inline int arm_asidx_from_attrs(CPUState
*cs
, MemTxAttrs attrs
)
2992 return attrs
.secure
? ARMASIdx_S
: ARMASIdx_NS
;
2995 /* Return the AddressSpace to use for a memory access
2996 * (which depends on whether the access is S or NS, and whether
2997 * the board gave us a separate AddressSpace for S accesses).
2999 static inline AddressSpace
*arm_addressspace(CPUState
*cs
, MemTxAttrs attrs
)
3001 return cpu_get_address_space(cs
, arm_asidx_from_attrs(cs
, attrs
));
3006 * arm_register_pre_el_change_hook:
3007 * Register a hook function which will be called immediately before this
3008 * CPU changes exception level or mode. The hook function will be
3009 * passed a pointer to the ARMCPU and the opaque data pointer passed
3010 * to this function when the hook was registered.
3012 * Note that if a pre-change hook is called, any registered post-change hooks
3013 * are guaranteed to subsequently be called.
3015 void arm_register_pre_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
,
3018 * arm_register_el_change_hook:
3019 * Register a hook function which will be called immediately after this
3020 * CPU changes exception level or mode. The hook function will be
3021 * passed a pointer to the ARMCPU and the opaque data pointer passed
3022 * to this function when the hook was registered.
3024 * Note that any registered hooks registered here are guaranteed to be called
3025 * if pre-change hooks have been.
3027 void arm_register_el_change_hook(ARMCPU
*cpu
, ARMELChangeHookFn
*hook
, void
3032 * Return a pointer to the Dn register within env in 32-bit mode.
3034 static inline uint64_t *aa32_vfp_dreg(CPUARMState
*env
, unsigned regno
)
3036 return &env
->vfp
.zregs
[regno
>> 1].d
[regno
& 1];
3041 * Return a pointer to the Qn register within env in 32-bit mode.
3043 static inline uint64_t *aa32_vfp_qreg(CPUARMState
*env
, unsigned regno
)
3045 return &env
->vfp
.zregs
[regno
].d
[0];
3050 * Return a pointer to the Qn register within env in 64-bit mode.
3052 static inline uint64_t *aa64_vfp_qreg(CPUARMState
*env
, unsigned regno
)
3054 return &env
->vfp
.zregs
[regno
].d
[0];
3057 /* Shared between translate-sve.c and sve_helper.c. */
3058 extern const uint64_t pred_esz_masks
[4];