libqtest: Inline g_assert_no_errno()
[qemu/armbru.git] / target / arm / helper-a64.c
blob7f6ad3000b3c3ff7afe52b1081c3265f9f928735
1 /*
2 * AArch64 specific helpers
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/gdbstub.h"
23 #include "exec/helper-proto.h"
24 #include "qemu/host-utils.h"
25 #include "qemu/log.h"
26 #include "sysemu/sysemu.h"
27 #include "qemu/bitops.h"
28 #include "internals.h"
29 #include "qemu/crc32c.h"
30 #include "exec/exec-all.h"
31 #include "exec/cpu_ldst.h"
32 #include "qemu/int128.h"
33 #include "tcg.h"
34 #include "fpu/softfloat.h"
35 #include <zlib.h> /* For crc32 */
37 /* C2.4.7 Multiply and divide */
38 /* special cases for 0 and LLONG_MIN are mandated by the standard */
39 uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
41 if (den == 0) {
42 return 0;
44 return num / den;
47 int64_t HELPER(sdiv64)(int64_t num, int64_t den)
49 if (den == 0) {
50 return 0;
52 if (num == LLONG_MIN && den == -1) {
53 return LLONG_MIN;
55 return num / den;
58 uint64_t HELPER(rbit64)(uint64_t x)
60 return revbit64(x);
63 /* Convert a softfloat float_relation_ (as returned by
64 * the float*_compare functions) to the correct ARM
65 * NZCV flag state.
67 static inline uint32_t float_rel_to_flags(int res)
69 uint64_t flags;
70 switch (res) {
71 case float_relation_equal:
72 flags = PSTATE_Z | PSTATE_C;
73 break;
74 case float_relation_less:
75 flags = PSTATE_N;
76 break;
77 case float_relation_greater:
78 flags = PSTATE_C;
79 break;
80 case float_relation_unordered:
81 default:
82 flags = PSTATE_C | PSTATE_V;
83 break;
85 return flags;
88 uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status)
90 return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
93 uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status)
95 return float_rel_to_flags(float16_compare(x, y, fp_status));
98 uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
100 return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
103 uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
105 return float_rel_to_flags(float32_compare(x, y, fp_status));
108 uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
110 return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
113 uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
115 return float_rel_to_flags(float64_compare(x, y, fp_status));
118 float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
120 float_status *fpst = fpstp;
122 a = float32_squash_input_denormal(a, fpst);
123 b = float32_squash_input_denormal(b, fpst);
125 if ((float32_is_zero(a) && float32_is_infinity(b)) ||
126 (float32_is_infinity(a) && float32_is_zero(b))) {
127 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
128 return make_float32((1U << 30) |
129 ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
131 return float32_mul(a, b, fpst);
134 float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
136 float_status *fpst = fpstp;
138 a = float64_squash_input_denormal(a, fpst);
139 b = float64_squash_input_denormal(b, fpst);
141 if ((float64_is_zero(a) && float64_is_infinity(b)) ||
142 (float64_is_infinity(a) && float64_is_zero(b))) {
143 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
144 return make_float64((1ULL << 62) |
145 ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
147 return float64_mul(a, b, fpst);
150 uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
151 uint32_t rn, uint32_t numregs)
153 /* Helper function for SIMD TBL and TBX. We have to do the table
154 * lookup part for the 64 bits worth of indices we're passed in.
155 * result is the initial results vector (either zeroes for TBL
156 * or some guest values for TBX), rn the register number where
157 * the table starts, and numregs the number of registers in the table.
158 * We return the results of the lookups.
160 int shift;
162 for (shift = 0; shift < 64; shift += 8) {
163 int index = extract64(indices, shift, 8);
164 if (index < 16 * numregs) {
165 /* Convert index (a byte offset into the virtual table
166 * which is a series of 128-bit vectors concatenated)
167 * into the correct register element plus a bit offset
168 * into that element, bearing in mind that the table
169 * can wrap around from V31 to V0.
171 int elt = (rn * 2 + (index >> 3)) % 64;
172 int bitidx = (index & 7) * 8;
173 uint64_t *q = aa64_vfp_qreg(env, elt >> 1);
174 uint64_t val = extract64(q[elt & 1], bitidx, 8);
176 result = deposit64(result, shift, 8, val);
179 return result;
182 /* 64bit/double versions of the neon float compare functions */
183 uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
185 float_status *fpst = fpstp;
186 return -float64_eq_quiet(a, b, fpst);
189 uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
191 float_status *fpst = fpstp;
192 return -float64_le(b, a, fpst);
195 uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
197 float_status *fpst = fpstp;
198 return -float64_lt(b, a, fpst);
201 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
202 * versions, these do a fully fused multiply-add or
203 * multiply-add-and-halve.
205 #define float16_two make_float16(0x4000)
206 #define float16_three make_float16(0x4200)
207 #define float16_one_point_five make_float16(0x3e00)
209 #define float32_two make_float32(0x40000000)
210 #define float32_three make_float32(0x40400000)
211 #define float32_one_point_five make_float32(0x3fc00000)
213 #define float64_two make_float64(0x4000000000000000ULL)
214 #define float64_three make_float64(0x4008000000000000ULL)
215 #define float64_one_point_five make_float64(0x3FF8000000000000ULL)
217 uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp)
219 float_status *fpst = fpstp;
221 a = float16_squash_input_denormal(a, fpst);
222 b = float16_squash_input_denormal(b, fpst);
224 a = float16_chs(a);
225 if ((float16_is_infinity(a) && float16_is_zero(b)) ||
226 (float16_is_infinity(b) && float16_is_zero(a))) {
227 return float16_two;
229 return float16_muladd(a, b, float16_two, 0, fpst);
232 float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
234 float_status *fpst = fpstp;
236 a = float32_squash_input_denormal(a, fpst);
237 b = float32_squash_input_denormal(b, fpst);
239 a = float32_chs(a);
240 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
241 (float32_is_infinity(b) && float32_is_zero(a))) {
242 return float32_two;
244 return float32_muladd(a, b, float32_two, 0, fpst);
247 float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
249 float_status *fpst = fpstp;
251 a = float64_squash_input_denormal(a, fpst);
252 b = float64_squash_input_denormal(b, fpst);
254 a = float64_chs(a);
255 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
256 (float64_is_infinity(b) && float64_is_zero(a))) {
257 return float64_two;
259 return float64_muladd(a, b, float64_two, 0, fpst);
262 uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp)
264 float_status *fpst = fpstp;
266 a = float16_squash_input_denormal(a, fpst);
267 b = float16_squash_input_denormal(b, fpst);
269 a = float16_chs(a);
270 if ((float16_is_infinity(a) && float16_is_zero(b)) ||
271 (float16_is_infinity(b) && float16_is_zero(a))) {
272 return float16_one_point_five;
274 return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
277 float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
279 float_status *fpst = fpstp;
281 a = float32_squash_input_denormal(a, fpst);
282 b = float32_squash_input_denormal(b, fpst);
284 a = float32_chs(a);
285 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
286 (float32_is_infinity(b) && float32_is_zero(a))) {
287 return float32_one_point_five;
289 return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
292 float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
294 float_status *fpst = fpstp;
296 a = float64_squash_input_denormal(a, fpst);
297 b = float64_squash_input_denormal(b, fpst);
299 a = float64_chs(a);
300 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
301 (float64_is_infinity(b) && float64_is_zero(a))) {
302 return float64_one_point_five;
304 return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
307 /* Pairwise long add: add pairs of adjacent elements into
308 * double-width elements in the result (eg _s8 is an 8x8->16 op)
310 uint64_t HELPER(neon_addlp_s8)(uint64_t a)
312 uint64_t nsignmask = 0x0080008000800080ULL;
313 uint64_t wsignmask = 0x8000800080008000ULL;
314 uint64_t elementmask = 0x00ff00ff00ff00ffULL;
315 uint64_t tmp1, tmp2;
316 uint64_t res, signres;
318 /* Extract odd elements, sign extend each to a 16 bit field */
319 tmp1 = a & elementmask;
320 tmp1 ^= nsignmask;
321 tmp1 |= wsignmask;
322 tmp1 = (tmp1 - nsignmask) ^ wsignmask;
323 /* Ditto for the even elements */
324 tmp2 = (a >> 8) & elementmask;
325 tmp2 ^= nsignmask;
326 tmp2 |= wsignmask;
327 tmp2 = (tmp2 - nsignmask) ^ wsignmask;
329 /* calculate the result by summing bits 0..14, 16..22, etc,
330 * and then adjusting the sign bits 15, 23, etc manually.
331 * This ensures the addition can't overflow the 16 bit field.
333 signres = (tmp1 ^ tmp2) & wsignmask;
334 res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
335 res ^= signres;
337 return res;
340 uint64_t HELPER(neon_addlp_u8)(uint64_t a)
342 uint64_t tmp;
344 tmp = a & 0x00ff00ff00ff00ffULL;
345 tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
346 return tmp;
349 uint64_t HELPER(neon_addlp_s16)(uint64_t a)
351 int32_t reslo, reshi;
353 reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
354 reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
356 return (uint32_t)reslo | (((uint64_t)reshi) << 32);
359 uint64_t HELPER(neon_addlp_u16)(uint64_t a)
361 uint64_t tmp;
363 tmp = a & 0x0000ffff0000ffffULL;
364 tmp += (a >> 16) & 0x0000ffff0000ffffULL;
365 return tmp;
368 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
369 uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp)
371 float_status *fpst = fpstp;
372 uint16_t val16, sbit;
373 int16_t exp;
375 if (float16_is_any_nan(a)) {
376 float16 nan = a;
377 if (float16_is_signaling_nan(a, fpst)) {
378 float_raise(float_flag_invalid, fpst);
379 nan = float16_silence_nan(a, fpst);
381 if (fpst->default_nan_mode) {
382 nan = float16_default_nan(fpst);
384 return nan;
387 a = float16_squash_input_denormal(a, fpst);
389 val16 = float16_val(a);
390 sbit = 0x8000 & val16;
391 exp = extract32(val16, 10, 5);
393 if (exp == 0) {
394 return make_float16(deposit32(sbit, 10, 5, 0x1e));
395 } else {
396 return make_float16(deposit32(sbit, 10, 5, ~exp));
400 float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
402 float_status *fpst = fpstp;
403 uint32_t val32, sbit;
404 int32_t exp;
406 if (float32_is_any_nan(a)) {
407 float32 nan = a;
408 if (float32_is_signaling_nan(a, fpst)) {
409 float_raise(float_flag_invalid, fpst);
410 nan = float32_silence_nan(a, fpst);
412 if (fpst->default_nan_mode) {
413 nan = float32_default_nan(fpst);
415 return nan;
418 a = float32_squash_input_denormal(a, fpst);
420 val32 = float32_val(a);
421 sbit = 0x80000000ULL & val32;
422 exp = extract32(val32, 23, 8);
424 if (exp == 0) {
425 return make_float32(sbit | (0xfe << 23));
426 } else {
427 return make_float32(sbit | (~exp & 0xff) << 23);
431 float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
433 float_status *fpst = fpstp;
434 uint64_t val64, sbit;
435 int64_t exp;
437 if (float64_is_any_nan(a)) {
438 float64 nan = a;
439 if (float64_is_signaling_nan(a, fpst)) {
440 float_raise(float_flag_invalid, fpst);
441 nan = float64_silence_nan(a, fpst);
443 if (fpst->default_nan_mode) {
444 nan = float64_default_nan(fpst);
446 return nan;
449 a = float64_squash_input_denormal(a, fpst);
451 val64 = float64_val(a);
452 sbit = 0x8000000000000000ULL & val64;
453 exp = extract64(float64_val(a), 52, 11);
455 if (exp == 0) {
456 return make_float64(sbit | (0x7feULL << 52));
457 } else {
458 return make_float64(sbit | (~exp & 0x7ffULL) << 52);
462 float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
464 /* Von Neumann rounding is implemented by using round-to-zero
465 * and then setting the LSB of the result if Inexact was raised.
467 float32 r;
468 float_status *fpst = &env->vfp.fp_status;
469 float_status tstat = *fpst;
470 int exflags;
472 set_float_rounding_mode(float_round_to_zero, &tstat);
473 set_float_exception_flags(0, &tstat);
474 r = float64_to_float32(a, &tstat);
475 exflags = get_float_exception_flags(&tstat);
476 if (exflags & float_flag_inexact) {
477 r = make_float32(float32_val(r) | 1);
479 exflags |= get_float_exception_flags(fpst);
480 set_float_exception_flags(exflags, fpst);
481 return r;
484 /* 64-bit versions of the CRC helpers. Note that although the operation
485 * (and the prototypes of crc32c() and crc32() mean that only the bottom
486 * 32 bits of the accumulator and result are used, we pass and return
487 * uint64_t for convenience of the generated code. Unlike the 32-bit
488 * instruction set versions, val may genuinely have 64 bits of data in it.
489 * The upper bytes of val (above the number specified by 'bytes') must have
490 * been zeroed out by the caller.
492 uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
494 uint8_t buf[8];
496 stq_le_p(buf, val);
498 /* zlib crc32 converts the accumulator and output to one's complement. */
499 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
502 uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
504 uint8_t buf[8];
506 stq_le_p(buf, val);
508 /* Linux crc32c converts the output to one's complement. */
509 return crc32c(acc, buf, bytes) ^ 0xffffffff;
512 /* Returns 0 on success; 1 otherwise. */
513 static uint64_t do_paired_cmpxchg64_le(CPUARMState *env, uint64_t addr,
514 uint64_t new_lo, uint64_t new_hi,
515 bool parallel, uintptr_t ra)
517 Int128 oldv, cmpv, newv;
518 bool success;
520 cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
521 newv = int128_make128(new_lo, new_hi);
523 if (parallel) {
524 #ifndef CONFIG_ATOMIC128
525 cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
526 #else
527 int mem_idx = cpu_mmu_index(env, false);
528 TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
529 oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
530 success = int128_eq(oldv, cmpv);
531 #endif
532 } else {
533 uint64_t o0, o1;
535 #ifdef CONFIG_USER_ONLY
536 /* ??? Enforce alignment. */
537 uint64_t *haddr = g2h(addr);
539 helper_retaddr = ra;
540 o0 = ldq_le_p(haddr + 0);
541 o1 = ldq_le_p(haddr + 1);
542 oldv = int128_make128(o0, o1);
544 success = int128_eq(oldv, cmpv);
545 if (success) {
546 stq_le_p(haddr + 0, int128_getlo(newv));
547 stq_le_p(haddr + 1, int128_gethi(newv));
549 helper_retaddr = 0;
550 #else
551 int mem_idx = cpu_mmu_index(env, false);
552 TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
553 TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx);
555 o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra);
556 o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra);
557 oldv = int128_make128(o0, o1);
559 success = int128_eq(oldv, cmpv);
560 if (success) {
561 helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
562 helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
564 #endif
567 return !success;
570 uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
571 uint64_t new_lo, uint64_t new_hi)
573 return do_paired_cmpxchg64_le(env, addr, new_lo, new_hi, false, GETPC());
576 uint64_t HELPER(paired_cmpxchg64_le_parallel)(CPUARMState *env, uint64_t addr,
577 uint64_t new_lo, uint64_t new_hi)
579 return do_paired_cmpxchg64_le(env, addr, new_lo, new_hi, true, GETPC());
582 static uint64_t do_paired_cmpxchg64_be(CPUARMState *env, uint64_t addr,
583 uint64_t new_lo, uint64_t new_hi,
584 bool parallel, uintptr_t ra)
586 Int128 oldv, cmpv, newv;
587 bool success;
589 /* high and low need to be switched here because this is not actually a
590 * 128bit store but two doublewords stored consecutively
592 cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
593 newv = int128_make128(new_hi, new_lo);
595 if (parallel) {
596 #ifndef CONFIG_ATOMIC128
597 cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
598 #else
599 int mem_idx = cpu_mmu_index(env, false);
600 TCGMemOpIdx oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
601 oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
602 success = int128_eq(oldv, cmpv);
603 #endif
604 } else {
605 uint64_t o0, o1;
607 #ifdef CONFIG_USER_ONLY
608 /* ??? Enforce alignment. */
609 uint64_t *haddr = g2h(addr);
611 helper_retaddr = ra;
612 o1 = ldq_be_p(haddr + 0);
613 o0 = ldq_be_p(haddr + 1);
614 oldv = int128_make128(o0, o1);
616 success = int128_eq(oldv, cmpv);
617 if (success) {
618 stq_be_p(haddr + 0, int128_gethi(newv));
619 stq_be_p(haddr + 1, int128_getlo(newv));
621 helper_retaddr = 0;
622 #else
623 int mem_idx = cpu_mmu_index(env, false);
624 TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
625 TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx);
627 o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra);
628 o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra);
629 oldv = int128_make128(o0, o1);
631 success = int128_eq(oldv, cmpv);
632 if (success) {
633 helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
634 helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
636 #endif
639 return !success;
642 uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
643 uint64_t new_lo, uint64_t new_hi)
645 return do_paired_cmpxchg64_be(env, addr, new_lo, new_hi, false, GETPC());
648 uint64_t HELPER(paired_cmpxchg64_be_parallel)(CPUARMState *env, uint64_t addr,
649 uint64_t new_lo, uint64_t new_hi)
651 return do_paired_cmpxchg64_be(env, addr, new_lo, new_hi, true, GETPC());
654 /* Writes back the old data into Rs. */
655 void HELPER(casp_le_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
656 uint64_t new_lo, uint64_t new_hi)
658 uintptr_t ra = GETPC();
659 #ifndef CONFIG_ATOMIC128
660 cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
661 #else
662 Int128 oldv, cmpv, newv;
664 cmpv = int128_make128(env->xregs[rs], env->xregs[rs + 1]);
665 newv = int128_make128(new_lo, new_hi);
667 int mem_idx = cpu_mmu_index(env, false);
668 TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
669 oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
671 env->xregs[rs] = int128_getlo(oldv);
672 env->xregs[rs + 1] = int128_gethi(oldv);
673 #endif
676 void HELPER(casp_be_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
677 uint64_t new_hi, uint64_t new_lo)
679 uintptr_t ra = GETPC();
680 #ifndef CONFIG_ATOMIC128
681 cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
682 #else
683 Int128 oldv, cmpv, newv;
685 cmpv = int128_make128(env->xregs[rs + 1], env->xregs[rs]);
686 newv = int128_make128(new_lo, new_hi);
688 int mem_idx = cpu_mmu_index(env, false);
689 TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
690 oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
692 env->xregs[rs + 1] = int128_getlo(oldv);
693 env->xregs[rs] = int128_gethi(oldv);
694 #endif
698 * AdvSIMD half-precision
701 #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
703 #define ADVSIMD_HALFOP(name) \
704 uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \
706 float_status *fpst = fpstp; \
707 return float16_ ## name(a, b, fpst); \
710 ADVSIMD_HALFOP(add)
711 ADVSIMD_HALFOP(sub)
712 ADVSIMD_HALFOP(mul)
713 ADVSIMD_HALFOP(div)
714 ADVSIMD_HALFOP(min)
715 ADVSIMD_HALFOP(max)
716 ADVSIMD_HALFOP(minnum)
717 ADVSIMD_HALFOP(maxnum)
719 #define ADVSIMD_TWOHALFOP(name) \
720 uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
722 float16 a1, a2, b1, b2; \
723 uint32_t r1, r2; \
724 float_status *fpst = fpstp; \
725 a1 = extract32(two_a, 0, 16); \
726 a2 = extract32(two_a, 16, 16); \
727 b1 = extract32(two_b, 0, 16); \
728 b2 = extract32(two_b, 16, 16); \
729 r1 = float16_ ## name(a1, b1, fpst); \
730 r2 = float16_ ## name(a2, b2, fpst); \
731 return deposit32(r1, 16, 16, r2); \
734 ADVSIMD_TWOHALFOP(add)
735 ADVSIMD_TWOHALFOP(sub)
736 ADVSIMD_TWOHALFOP(mul)
737 ADVSIMD_TWOHALFOP(div)
738 ADVSIMD_TWOHALFOP(min)
739 ADVSIMD_TWOHALFOP(max)
740 ADVSIMD_TWOHALFOP(minnum)
741 ADVSIMD_TWOHALFOP(maxnum)
743 /* Data processing - scalar floating-point and advanced SIMD */
744 static float16 float16_mulx(float16 a, float16 b, void *fpstp)
746 float_status *fpst = fpstp;
748 a = float16_squash_input_denormal(a, fpst);
749 b = float16_squash_input_denormal(b, fpst);
751 if ((float16_is_zero(a) && float16_is_infinity(b)) ||
752 (float16_is_infinity(a) && float16_is_zero(b))) {
753 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
754 return make_float16((1U << 14) |
755 ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
757 return float16_mul(a, b, fpst);
760 ADVSIMD_HALFOP(mulx)
761 ADVSIMD_TWOHALFOP(mulx)
763 /* fused multiply-accumulate */
764 uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
765 void *fpstp)
767 float_status *fpst = fpstp;
768 return float16_muladd(a, b, c, 0, fpst);
771 uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
772 uint32_t two_c, void *fpstp)
774 float_status *fpst = fpstp;
775 float16 a1, a2, b1, b2, c1, c2;
776 uint32_t r1, r2;
777 a1 = extract32(two_a, 0, 16);
778 a2 = extract32(two_a, 16, 16);
779 b1 = extract32(two_b, 0, 16);
780 b2 = extract32(two_b, 16, 16);
781 c1 = extract32(two_c, 0, 16);
782 c2 = extract32(two_c, 16, 16);
783 r1 = float16_muladd(a1, b1, c1, 0, fpst);
784 r2 = float16_muladd(a2, b2, c2, 0, fpst);
785 return deposit32(r1, 16, 16, r2);
789 * Floating point comparisons produce an integer result. Softfloat
790 * routines return float_relation types which we convert to the 0/-1
791 * Neon requires.
794 #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
796 uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp)
798 float_status *fpst = fpstp;
799 int compare = float16_compare_quiet(a, b, fpst);
800 return ADVSIMD_CMPRES(compare == float_relation_equal);
803 uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp)
805 float_status *fpst = fpstp;
806 int compare = float16_compare(a, b, fpst);
807 return ADVSIMD_CMPRES(compare == float_relation_greater ||
808 compare == float_relation_equal);
811 uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp)
813 float_status *fpst = fpstp;
814 int compare = float16_compare(a, b, fpst);
815 return ADVSIMD_CMPRES(compare == float_relation_greater);
818 uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp)
820 float_status *fpst = fpstp;
821 float16 f0 = float16_abs(a);
822 float16 f1 = float16_abs(b);
823 int compare = float16_compare(f0, f1, fpst);
824 return ADVSIMD_CMPRES(compare == float_relation_greater ||
825 compare == float_relation_equal);
828 uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp)
830 float_status *fpst = fpstp;
831 float16 f0 = float16_abs(a);
832 float16 f1 = float16_abs(b);
833 int compare = float16_compare(f0, f1, fpst);
834 return ADVSIMD_CMPRES(compare == float_relation_greater);
837 /* round to integral */
838 uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status)
840 return float16_round_to_int(x, fp_status);
843 uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status)
845 int old_flags = get_float_exception_flags(fp_status), new_flags;
846 float16 ret;
848 ret = float16_round_to_int(x, fp_status);
850 /* Suppress any inexact exceptions the conversion produced */
851 if (!(old_flags & float_flag_inexact)) {
852 new_flags = get_float_exception_flags(fp_status);
853 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
856 return ret;
860 * Half-precision floating point conversion functions
862 * There are a multitude of conversion functions with various
863 * different rounding modes. This is dealt with by the calling code
864 * setting the mode appropriately before calling the helper.
867 uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp)
869 float_status *fpst = fpstp;
871 /* Invalid if we are passed a NaN */
872 if (float16_is_any_nan(a)) {
873 float_raise(float_flag_invalid, fpst);
874 return 0;
876 return float16_to_int16(a, fpst);
879 uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp)
881 float_status *fpst = fpstp;
883 /* Invalid if we are passed a NaN */
884 if (float16_is_any_nan(a)) {
885 float_raise(float_flag_invalid, fpst);
886 return 0;
888 return float16_to_uint16(a, fpst);
892 * Square Root and Reciprocal square root
895 uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp)
897 float_status *s = fpstp;
899 return float16_sqrt(a, s);