libqtest: Inline g_assert_no_errno()
[qemu/armbru.git] / target / arm / internals.h
bloba4fc709bcc7a4a2464590d5c9aec1270fa82f072
1 /*
2 * QEMU ARM CPU -- internal functions and types
4 * Copyright (c) 2014 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
28 #include "hw/registerfields.h"
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC 1
33 #define BANK_ABT 2
34 #define BANK_UND 3
35 #define BANK_IRQ 4
36 #define BANK_FIQ 5
37 #define BANK_HYP 6
38 #define BANK_MON 7
40 static inline bool excp_is_internal(int excp)
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
45 return excp == EXCP_INTERRUPT
46 || excp == EXCP_HLT
47 || excp == EXCP_DEBUG
48 || excp == EXCP_HALTED
49 || excp == EXCP_EXCEPTION_EXIT
50 || excp == EXCP_KERNEL_TRAP
51 || excp == EXCP_SEMIHOST;
54 /* Scale factor for generic timers, ie number of ns per tick.
55 * This gives a 62.5MHz timer.
57 #define GTIMER_SCALE 16
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 FIELD(V7M_CONTROL, SFPA, 3, 1)
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET, ES, 0, 1)
67 FIELD(V7M_EXCRET, RES0, 1, 1)
68 FIELD(V7M_EXCRET, SPSEL, 2, 1)
69 FIELD(V7M_EXCRET, MODE, 3, 1)
70 FIELD(V7M_EXCRET, FTYPE, 4, 1)
71 FIELD(V7M_EXCRET, DCRS, 5, 1)
72 FIELD(V7M_EXCRET, S, 6, 1)
73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
75 /* Minimum value which is a magic number for exception return */
76 #define EXC_RETURN_MIN_MAGIC 0xff000000
77 /* Minimum number which is a magic number for function or exception return
78 * when using v8M security extension
80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
82 /* We use a few fake FSR values for internal purposes in M profile.
83 * M profile cores don't have A/R format FSRs, but currently our
84 * get_phys_addr() code assumes A/R profile and reports failures via
85 * an A/R format FSR value. We then translate that into the proper
86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87 * Mostly the FSR values we use for this are those defined for v7PMSA,
88 * since we share some of that codepath. A few kinds of fault are
89 * only for M profile and have no A/R equivalent, though, so we have
90 * to pick a value from the reserved range (which we never otherwise
91 * generate) to use for these.
92 * These values will never be visible to the guest.
94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
97 /**
98 * raise_exception: Raise the specified exception.
99 * Raise a guest exception with the specified value, syndrome register
100 * and target exception level. This should be called from helper functions,
101 * and never returns because we will longjump back up to the CPU main loop.
103 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
104 uint32_t syndrome, uint32_t target_el);
107 * For AArch64, map a given EL to an index in the banked_spsr array.
108 * Note that this mapping and the AArch32 mapping defined in bank_number()
109 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
110 * mandated mapping between each other.
112 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
114 static const unsigned int map[4] = {
115 [1] = BANK_SVC, /* EL1. */
116 [2] = BANK_HYP, /* EL2. */
117 [3] = BANK_MON, /* EL3. */
119 assert(el >= 1 && el <= 3);
120 return map[el];
123 /* Map CPU modes onto saved register banks. */
124 static inline int bank_number(int mode)
126 switch (mode) {
127 case ARM_CPU_MODE_USR:
128 case ARM_CPU_MODE_SYS:
129 return BANK_USRSYS;
130 case ARM_CPU_MODE_SVC:
131 return BANK_SVC;
132 case ARM_CPU_MODE_ABT:
133 return BANK_ABT;
134 case ARM_CPU_MODE_UND:
135 return BANK_UND;
136 case ARM_CPU_MODE_IRQ:
137 return BANK_IRQ;
138 case ARM_CPU_MODE_FIQ:
139 return BANK_FIQ;
140 case ARM_CPU_MODE_HYP:
141 return BANK_HYP;
142 case ARM_CPU_MODE_MON:
143 return BANK_MON;
145 g_assert_not_reached();
148 void switch_mode(CPUARMState *, int);
149 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
150 void arm_translate_init(void);
152 enum arm_fprounding {
153 FPROUNDING_TIEEVEN,
154 FPROUNDING_POSINF,
155 FPROUNDING_NEGINF,
156 FPROUNDING_ZERO,
157 FPROUNDING_TIEAWAY,
158 FPROUNDING_ODD
161 int arm_rmode_to_sf(int rmode);
163 static inline void aarch64_save_sp(CPUARMState *env, int el)
165 if (env->pstate & PSTATE_SP) {
166 env->sp_el[el] = env->xregs[31];
167 } else {
168 env->sp_el[0] = env->xregs[31];
172 static inline void aarch64_restore_sp(CPUARMState *env, int el)
174 if (env->pstate & PSTATE_SP) {
175 env->xregs[31] = env->sp_el[el];
176 } else {
177 env->xregs[31] = env->sp_el[0];
181 static inline void update_spsel(CPUARMState *env, uint32_t imm)
183 unsigned int cur_el = arm_current_el(env);
184 /* Update PSTATE SPSel bit; this requires us to update the
185 * working stack pointer in xregs[31].
187 if (!((imm ^ env->pstate) & PSTATE_SP)) {
188 return;
190 aarch64_save_sp(env, cur_el);
191 env->pstate = deposit32(env->pstate, 0, 1, imm);
193 /* We rely on illegal updates to SPsel from EL0 to get trapped
194 * at translation time.
196 assert(cur_el >= 1 && cur_el <= 3);
197 aarch64_restore_sp(env, cur_el);
201 * arm_pamax
202 * @cpu: ARMCPU
204 * Returns the implementation defined bit-width of physical addresses.
205 * The ARMv8 reference manuals refer to this as PAMax().
207 static inline unsigned int arm_pamax(ARMCPU *cpu)
209 static const unsigned int pamax_map[] = {
210 [0] = 32,
211 [1] = 36,
212 [2] = 40,
213 [3] = 42,
214 [4] = 44,
215 [5] = 48,
217 unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
219 /* id_aa64mmfr0 is a read-only register so values outside of the
220 * supported mappings can be considered an implementation error. */
221 assert(parange < ARRAY_SIZE(pamax_map));
222 return pamax_map[parange];
225 /* Return true if extended addresses are enabled.
226 * This is always the case if our translation regime is 64 bit,
227 * but depends on TTBCR.EAE for 32 bit.
229 static inline bool extended_addresses_enabled(CPUARMState *env)
231 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
232 return arm_el_is_aa64(env, 1) ||
233 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
236 /* Valid Syndrome Register EC field values */
237 enum arm_exception_class {
238 EC_UNCATEGORIZED = 0x00,
239 EC_WFX_TRAP = 0x01,
240 EC_CP15RTTRAP = 0x03,
241 EC_CP15RRTTRAP = 0x04,
242 EC_CP14RTTRAP = 0x05,
243 EC_CP14DTTRAP = 0x06,
244 EC_ADVSIMDFPACCESSTRAP = 0x07,
245 EC_FPIDTRAP = 0x08,
246 EC_CP14RRTTRAP = 0x0c,
247 EC_ILLEGALSTATE = 0x0e,
248 EC_AA32_SVC = 0x11,
249 EC_AA32_HVC = 0x12,
250 EC_AA32_SMC = 0x13,
251 EC_AA64_SVC = 0x15,
252 EC_AA64_HVC = 0x16,
253 EC_AA64_SMC = 0x17,
254 EC_SYSTEMREGISTERTRAP = 0x18,
255 EC_SVEACCESSTRAP = 0x19,
256 EC_INSNABORT = 0x20,
257 EC_INSNABORT_SAME_EL = 0x21,
258 EC_PCALIGNMENT = 0x22,
259 EC_DATAABORT = 0x24,
260 EC_DATAABORT_SAME_EL = 0x25,
261 EC_SPALIGNMENT = 0x26,
262 EC_AA32_FPTRAP = 0x28,
263 EC_AA64_FPTRAP = 0x2c,
264 EC_SERROR = 0x2f,
265 EC_BREAKPOINT = 0x30,
266 EC_BREAKPOINT_SAME_EL = 0x31,
267 EC_SOFTWARESTEP = 0x32,
268 EC_SOFTWARESTEP_SAME_EL = 0x33,
269 EC_WATCHPOINT = 0x34,
270 EC_WATCHPOINT_SAME_EL = 0x35,
271 EC_AA32_BKPT = 0x38,
272 EC_VECTORCATCH = 0x3a,
273 EC_AA64_BKPT = 0x3c,
276 #define ARM_EL_EC_SHIFT 26
277 #define ARM_EL_IL_SHIFT 25
278 #define ARM_EL_ISV_SHIFT 24
279 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
280 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
282 /* Utility functions for constructing various kinds of syndrome value.
283 * Note that in general we follow the AArch64 syndrome values; in a
284 * few cases the value in HSR for exceptions taken to AArch32 Hyp
285 * mode differs slightly, so if we ever implemented Hyp mode then the
286 * syndrome value would need some massaging on exception entry.
287 * (One example of this is that AArch64 defaults to IL bit set for
288 * exceptions which don't specifically indicate information about the
289 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
291 static inline uint32_t syn_uncategorized(void)
293 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
296 static inline uint32_t syn_aa64_svc(uint32_t imm16)
298 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
301 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
303 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
306 static inline uint32_t syn_aa64_smc(uint32_t imm16)
308 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
311 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
313 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
314 | (is_16bit ? 0 : ARM_EL_IL);
317 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
319 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
322 static inline uint32_t syn_aa32_smc(void)
324 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
327 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
329 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
332 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
334 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
335 | (is_16bit ? 0 : ARM_EL_IL);
338 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
339 int crn, int crm, int rt,
340 int isread)
342 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
343 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
344 | (crm << 1) | isread;
347 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
348 int crn, int crm, int rt, int isread,
349 bool is_16bit)
351 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
352 | (is_16bit ? 0 : ARM_EL_IL)
353 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
354 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
357 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
358 int crn, int crm, int rt, int isread,
359 bool is_16bit)
361 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
362 | (is_16bit ? 0 : ARM_EL_IL)
363 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
364 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
367 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
368 int rt, int rt2, int isread,
369 bool is_16bit)
371 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
372 | (is_16bit ? 0 : ARM_EL_IL)
373 | (cv << 24) | (cond << 20) | (opc1 << 16)
374 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
377 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
378 int rt, int rt2, int isread,
379 bool is_16bit)
381 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
382 | (is_16bit ? 0 : ARM_EL_IL)
383 | (cv << 24) | (cond << 20) | (opc1 << 16)
384 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
387 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
389 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
390 | (is_16bit ? 0 : ARM_EL_IL)
391 | (cv << 24) | (cond << 20);
394 static inline uint32_t syn_sve_access_trap(void)
396 return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
399 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
401 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
402 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
405 static inline uint32_t syn_data_abort_no_iss(int same_el,
406 int ea, int cm, int s1ptw,
407 int wnr, int fsc)
409 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
410 | ARM_EL_IL
411 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
414 static inline uint32_t syn_data_abort_with_iss(int same_el,
415 int sas, int sse, int srt,
416 int sf, int ar,
417 int ea, int cm, int s1ptw,
418 int wnr, int fsc,
419 bool is_16bit)
421 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
422 | (is_16bit ? 0 : ARM_EL_IL)
423 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
424 | (sf << 15) | (ar << 14)
425 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
428 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
430 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
431 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
434 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
436 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
437 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
440 static inline uint32_t syn_breakpoint(int same_el)
442 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
443 | ARM_EL_IL | 0x22;
446 static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
448 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
449 (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
450 (cv << 24) | (cond << 20) | ti;
453 /* Update a QEMU watchpoint based on the information the guest has set in the
454 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
456 void hw_watchpoint_update(ARMCPU *cpu, int n);
457 /* Update the QEMU watchpoints for every guest watchpoint. This does a
458 * complete delete-and-reinstate of the QEMU watchpoint list and so is
459 * suitable for use after migration or on reset.
461 void hw_watchpoint_update_all(ARMCPU *cpu);
462 /* Update a QEMU breakpoint based on the information the guest has set in the
463 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
465 void hw_breakpoint_update(ARMCPU *cpu, int n);
466 /* Update the QEMU breakpoints for every guest breakpoint. This does a
467 * complete delete-and-reinstate of the QEMU breakpoint list and so is
468 * suitable for use after migration or on reset.
470 void hw_breakpoint_update_all(ARMCPU *cpu);
472 /* Callback function for checking if a watchpoint should trigger. */
473 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
475 /* Adjust addresses (in BE32 mode) before testing against watchpoint
476 * addresses.
478 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
480 /* Callback function for when a watchpoint or breakpoint triggers. */
481 void arm_debug_excp_handler(CPUState *cs);
483 #ifdef CONFIG_USER_ONLY
484 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
486 return false;
488 #else
489 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
490 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
491 /* Actually handle a PSCI call */
492 void arm_handle_psci_call(ARMCPU *cpu);
493 #endif
496 * arm_clear_exclusive: clear the exclusive monitor
497 * @env: CPU env
498 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
500 static inline void arm_clear_exclusive(CPUARMState *env)
502 env->exclusive_addr = -1;
506 * ARMFaultType: type of an ARM MMU fault
507 * This corresponds to the v8A pseudocode's Fault enumeration,
508 * with extensions for QEMU internal conditions.
510 typedef enum ARMFaultType {
511 ARMFault_None,
512 ARMFault_AccessFlag,
513 ARMFault_Alignment,
514 ARMFault_Background,
515 ARMFault_Domain,
516 ARMFault_Permission,
517 ARMFault_Translation,
518 ARMFault_AddressSize,
519 ARMFault_SyncExternal,
520 ARMFault_SyncExternalOnWalk,
521 ARMFault_SyncParity,
522 ARMFault_SyncParityOnWalk,
523 ARMFault_AsyncParity,
524 ARMFault_AsyncExternal,
525 ARMFault_Debug,
526 ARMFault_TLBConflict,
527 ARMFault_Lockdown,
528 ARMFault_Exclusive,
529 ARMFault_ICacheMaint,
530 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
531 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
532 } ARMFaultType;
535 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
536 * @type: Type of fault
537 * @level: Table walk level (for translation, access flag and permission faults)
538 * @domain: Domain of the fault address (for non-LPAE CPUs only)
539 * @s2addr: Address that caused a fault at stage 2
540 * @stage2: True if we faulted at stage 2
541 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
542 * @ea: True if we should set the EA (external abort type) bit in syndrome
544 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
545 struct ARMMMUFaultInfo {
546 ARMFaultType type;
547 target_ulong s2addr;
548 int level;
549 int domain;
550 bool stage2;
551 bool s1ptw;
552 bool ea;
556 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
557 * Compare pseudocode EncodeSDFSC(), though unlike that function
558 * we set up a whole FSR-format code including domain field and
559 * putting the high bit of the FSC into bit 10.
561 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
563 uint32_t fsc;
565 switch (fi->type) {
566 case ARMFault_None:
567 return 0;
568 case ARMFault_AccessFlag:
569 fsc = fi->level == 1 ? 0x3 : 0x6;
570 break;
571 case ARMFault_Alignment:
572 fsc = 0x1;
573 break;
574 case ARMFault_Permission:
575 fsc = fi->level == 1 ? 0xd : 0xf;
576 break;
577 case ARMFault_Domain:
578 fsc = fi->level == 1 ? 0x9 : 0xb;
579 break;
580 case ARMFault_Translation:
581 fsc = fi->level == 1 ? 0x5 : 0x7;
582 break;
583 case ARMFault_SyncExternal:
584 fsc = 0x8 | (fi->ea << 12);
585 break;
586 case ARMFault_SyncExternalOnWalk:
587 fsc = fi->level == 1 ? 0xc : 0xe;
588 fsc |= (fi->ea << 12);
589 break;
590 case ARMFault_SyncParity:
591 fsc = 0x409;
592 break;
593 case ARMFault_SyncParityOnWalk:
594 fsc = fi->level == 1 ? 0x40c : 0x40e;
595 break;
596 case ARMFault_AsyncParity:
597 fsc = 0x408;
598 break;
599 case ARMFault_AsyncExternal:
600 fsc = 0x406 | (fi->ea << 12);
601 break;
602 case ARMFault_Debug:
603 fsc = 0x2;
604 break;
605 case ARMFault_TLBConflict:
606 fsc = 0x400;
607 break;
608 case ARMFault_Lockdown:
609 fsc = 0x404;
610 break;
611 case ARMFault_Exclusive:
612 fsc = 0x405;
613 break;
614 case ARMFault_ICacheMaint:
615 fsc = 0x4;
616 break;
617 case ARMFault_Background:
618 fsc = 0x0;
619 break;
620 case ARMFault_QEMU_NSCExec:
621 fsc = M_FAKE_FSR_NSC_EXEC;
622 break;
623 case ARMFault_QEMU_SFault:
624 fsc = M_FAKE_FSR_SFAULT;
625 break;
626 default:
627 /* Other faults can't occur in a context that requires a
628 * short-format status code.
630 g_assert_not_reached();
633 fsc |= (fi->domain << 4);
634 return fsc;
638 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
639 * Compare pseudocode EncodeLDFSC(), though unlike that function
640 * we fill in also the LPAE bit 9 of a DFSR format.
642 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
644 uint32_t fsc;
646 switch (fi->type) {
647 case ARMFault_None:
648 return 0;
649 case ARMFault_AddressSize:
650 fsc = fi->level & 3;
651 break;
652 case ARMFault_AccessFlag:
653 fsc = (fi->level & 3) | (0x2 << 2);
654 break;
655 case ARMFault_Permission:
656 fsc = (fi->level & 3) | (0x3 << 2);
657 break;
658 case ARMFault_Translation:
659 fsc = (fi->level & 3) | (0x1 << 2);
660 break;
661 case ARMFault_SyncExternal:
662 fsc = 0x10 | (fi->ea << 12);
663 break;
664 case ARMFault_SyncExternalOnWalk:
665 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
666 break;
667 case ARMFault_SyncParity:
668 fsc = 0x18;
669 break;
670 case ARMFault_SyncParityOnWalk:
671 fsc = (fi->level & 3) | (0x7 << 2);
672 break;
673 case ARMFault_AsyncParity:
674 fsc = 0x19;
675 break;
676 case ARMFault_AsyncExternal:
677 fsc = 0x11 | (fi->ea << 12);
678 break;
679 case ARMFault_Alignment:
680 fsc = 0x21;
681 break;
682 case ARMFault_Debug:
683 fsc = 0x22;
684 break;
685 case ARMFault_TLBConflict:
686 fsc = 0x30;
687 break;
688 case ARMFault_Lockdown:
689 fsc = 0x34;
690 break;
691 case ARMFault_Exclusive:
692 fsc = 0x35;
693 break;
694 default:
695 /* Other faults can't occur in a context that requires a
696 * long-format status code.
698 g_assert_not_reached();
701 fsc |= 1 << 9;
702 return fsc;
705 static inline bool arm_extabort_type(MemTxResult result)
707 /* The EA bit in syndromes and fault status registers is an
708 * IMPDEF classification of external aborts. ARM implementations
709 * usually use this to indicate AXI bus Decode error (0) or
710 * Slave error (1); in QEMU we follow that.
712 return result != MEMTX_DECODE_ERROR;
715 /* Do a page table walk and add page to TLB if possible */
716 bool arm_tlb_fill(CPUState *cpu, vaddr address,
717 MMUAccessType access_type, int mmu_idx,
718 ARMMMUFaultInfo *fi);
720 /* Return true if the stage 1 translation regime is using LPAE format page
721 * tables */
722 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
724 /* Raise a data fault alignment exception for the specified virtual address */
725 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
726 MMUAccessType access_type,
727 int mmu_idx, uintptr_t retaddr);
729 /* arm_cpu_do_transaction_failed: handle a memory system error response
730 * (eg "no device/memory present at address") by raising an external abort
731 * exception
733 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
734 vaddr addr, unsigned size,
735 MMUAccessType access_type,
736 int mmu_idx, MemTxAttrs attrs,
737 MemTxResult response, uintptr_t retaddr);
739 /* Call any registered EL change hooks */
740 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
742 ARMELChangeHook *hook, *next;
743 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
744 hook->hook(cpu, hook->opaque);
747 static inline void arm_call_el_change_hook(ARMCPU *cpu)
749 ARMELChangeHook *hook, *next;
750 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
751 hook->hook(cpu, hook->opaque);
755 /* Return true if this address translation regime is secure */
756 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
758 switch (mmu_idx) {
759 case ARMMMUIdx_S12NSE0:
760 case ARMMMUIdx_S12NSE1:
761 case ARMMMUIdx_S1NSE0:
762 case ARMMMUIdx_S1NSE1:
763 case ARMMMUIdx_S1E2:
764 case ARMMMUIdx_S2NS:
765 case ARMMMUIdx_MPrivNegPri:
766 case ARMMMUIdx_MUserNegPri:
767 case ARMMMUIdx_MPriv:
768 case ARMMMUIdx_MUser:
769 return false;
770 case ARMMMUIdx_S1E3:
771 case ARMMMUIdx_S1SE0:
772 case ARMMMUIdx_S1SE1:
773 case ARMMMUIdx_MSPrivNegPri:
774 case ARMMMUIdx_MSUserNegPri:
775 case ARMMMUIdx_MSPriv:
776 case ARMMMUIdx_MSUser:
777 return true;
778 default:
779 g_assert_not_reached();
783 /* Return the FSR value for a debug exception (watchpoint, hardware
784 * breakpoint or BKPT insn) targeting the specified exception level.
786 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
788 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
789 int target_el = arm_debug_target_el(env);
790 bool using_lpae = false;
792 if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
793 using_lpae = true;
794 } else {
795 if (arm_feature(env, ARM_FEATURE_LPAE) &&
796 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
797 using_lpae = true;
801 if (using_lpae) {
802 return arm_fi_to_lfsc(&fi);
803 } else {
804 return arm_fi_to_sfsc(&fi);
808 /* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
809 * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
811 #define MEMOPIDX_SHIFT 8
814 * v7m_using_psp: Return true if using process stack pointer
815 * Return true if the CPU is currently using the process stack
816 * pointer, or false if it is using the main stack pointer.
818 static inline bool v7m_using_psp(CPUARMState *env)
820 /* Handler mode always uses the main stack; for thread mode
821 * the CONTROL.SPSEL bit determines the answer.
822 * Note that in v7M it is not possible to be in Handler mode with
823 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
825 return !arm_v7m_is_handler_mode(env) &&
826 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
830 * v7m_sp_limit: Return SP limit for current CPU state
831 * Return the SP limit value for the current CPU security state
832 * and stack pointer.
834 static inline uint32_t v7m_sp_limit(CPUARMState *env)
836 if (v7m_using_psp(env)) {
837 return env->v7m.psplim[env->v7m.secure];
838 } else {
839 return env->v7m.msplim[env->v7m.secure];
843 #endif