2 * QEMU ARM CPU -- internal functions and types
4 * Copyright (c) 2014 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
28 #include "hw/registerfields.h"
30 /* register banks for CPU modes */
40 static inline bool excp_is_internal(int excp
)
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
45 return excp
== EXCP_INTERRUPT
48 || excp
== EXCP_HALTED
49 || excp
== EXCP_EXCEPTION_EXIT
50 || excp
== EXCP_KERNEL_TRAP
51 || excp
== EXCP_SEMIHOST
;
54 /* Scale factor for generic timers, ie number of ns per tick.
55 * This gives a 62.5MHz timer.
57 #define GTIMER_SCALE 16
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL
, NPRIV
, 0, 1)
61 FIELD(V7M_CONTROL
, SPSEL
, 1, 1)
62 FIELD(V7M_CONTROL
, FPCA
, 2, 1)
63 FIELD(V7M_CONTROL
, SFPA
, 3, 1)
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET
, ES
, 0, 1)
67 FIELD(V7M_EXCRET
, RES0
, 1, 1)
68 FIELD(V7M_EXCRET
, SPSEL
, 2, 1)
69 FIELD(V7M_EXCRET
, MODE
, 3, 1)
70 FIELD(V7M_EXCRET
, FTYPE
, 4, 1)
71 FIELD(V7M_EXCRET
, DCRS
, 5, 1)
72 FIELD(V7M_EXCRET
, S
, 6, 1)
73 FIELD(V7M_EXCRET
, RES1
, 7, 25) /* including the must-be-1 prefix */
75 /* Minimum value which is a magic number for exception return */
76 #define EXC_RETURN_MIN_MAGIC 0xff000000
77 /* Minimum number which is a magic number for function or exception return
78 * when using v8M security extension
80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
82 /* We use a few fake FSR values for internal purposes in M profile.
83 * M profile cores don't have A/R format FSRs, but currently our
84 * get_phys_addr() code assumes A/R profile and reports failures via
85 * an A/R format FSR value. We then translate that into the proper
86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87 * Mostly the FSR values we use for this are those defined for v7PMSA,
88 * since we share some of that codepath. A few kinds of fault are
89 * only for M profile and have no A/R equivalent, though, so we have
90 * to pick a value from the reserved range (which we never otherwise
91 * generate) to use for these.
92 * These values will never be visible to the guest.
94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
98 * raise_exception: Raise the specified exception.
99 * Raise a guest exception with the specified value, syndrome register
100 * and target exception level. This should be called from helper functions,
101 * and never returns because we will longjump back up to the CPU main loop.
103 void QEMU_NORETURN
raise_exception(CPUARMState
*env
, uint32_t excp
,
104 uint32_t syndrome
, uint32_t target_el
);
107 * For AArch64, map a given EL to an index in the banked_spsr array.
108 * Note that this mapping and the AArch32 mapping defined in bank_number()
109 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
110 * mandated mapping between each other.
112 static inline unsigned int aarch64_banked_spsr_index(unsigned int el
)
114 static const unsigned int map
[4] = {
115 [1] = BANK_SVC
, /* EL1. */
116 [2] = BANK_HYP
, /* EL2. */
117 [3] = BANK_MON
, /* EL3. */
119 assert(el
>= 1 && el
<= 3);
123 /* Map CPU modes onto saved register banks. */
124 static inline int bank_number(int mode
)
127 case ARM_CPU_MODE_USR
:
128 case ARM_CPU_MODE_SYS
:
130 case ARM_CPU_MODE_SVC
:
132 case ARM_CPU_MODE_ABT
:
134 case ARM_CPU_MODE_UND
:
136 case ARM_CPU_MODE_IRQ
:
138 case ARM_CPU_MODE_FIQ
:
140 case ARM_CPU_MODE_HYP
:
142 case ARM_CPU_MODE_MON
:
145 g_assert_not_reached();
148 void switch_mode(CPUARMState
*, int);
149 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
);
150 void arm_translate_init(void);
152 enum arm_fprounding
{
161 int arm_rmode_to_sf(int rmode
);
163 static inline void aarch64_save_sp(CPUARMState
*env
, int el
)
165 if (env
->pstate
& PSTATE_SP
) {
166 env
->sp_el
[el
] = env
->xregs
[31];
168 env
->sp_el
[0] = env
->xregs
[31];
172 static inline void aarch64_restore_sp(CPUARMState
*env
, int el
)
174 if (env
->pstate
& PSTATE_SP
) {
175 env
->xregs
[31] = env
->sp_el
[el
];
177 env
->xregs
[31] = env
->sp_el
[0];
181 static inline void update_spsel(CPUARMState
*env
, uint32_t imm
)
183 unsigned int cur_el
= arm_current_el(env
);
184 /* Update PSTATE SPSel bit; this requires us to update the
185 * working stack pointer in xregs[31].
187 if (!((imm
^ env
->pstate
) & PSTATE_SP
)) {
190 aarch64_save_sp(env
, cur_el
);
191 env
->pstate
= deposit32(env
->pstate
, 0, 1, imm
);
193 /* We rely on illegal updates to SPsel from EL0 to get trapped
194 * at translation time.
196 assert(cur_el
>= 1 && cur_el
<= 3);
197 aarch64_restore_sp(env
, cur_el
);
204 * Returns the implementation defined bit-width of physical addresses.
205 * The ARMv8 reference manuals refer to this as PAMax().
207 static inline unsigned int arm_pamax(ARMCPU
*cpu
)
209 static const unsigned int pamax_map
[] = {
217 unsigned int parange
= extract32(cpu
->id_aa64mmfr0
, 0, 4);
219 /* id_aa64mmfr0 is a read-only register so values outside of the
220 * supported mappings can be considered an implementation error. */
221 assert(parange
< ARRAY_SIZE(pamax_map
));
222 return pamax_map
[parange
];
225 /* Return true if extended addresses are enabled.
226 * This is always the case if our translation regime is 64 bit,
227 * but depends on TTBCR.EAE for 32 bit.
229 static inline bool extended_addresses_enabled(CPUARMState
*env
)
231 TCR
*tcr
= &env
->cp15
.tcr_el
[arm_is_secure(env
) ? 3 : 1];
232 return arm_el_is_aa64(env
, 1) ||
233 (arm_feature(env
, ARM_FEATURE_LPAE
) && (tcr
->raw_tcr
& TTBCR_EAE
));
236 /* Valid Syndrome Register EC field values */
237 enum arm_exception_class
{
238 EC_UNCATEGORIZED
= 0x00,
240 EC_CP15RTTRAP
= 0x03,
241 EC_CP15RRTTRAP
= 0x04,
242 EC_CP14RTTRAP
= 0x05,
243 EC_CP14DTTRAP
= 0x06,
244 EC_ADVSIMDFPACCESSTRAP
= 0x07,
246 EC_CP14RRTTRAP
= 0x0c,
247 EC_ILLEGALSTATE
= 0x0e,
254 EC_SYSTEMREGISTERTRAP
= 0x18,
255 EC_SVEACCESSTRAP
= 0x19,
257 EC_INSNABORT_SAME_EL
= 0x21,
258 EC_PCALIGNMENT
= 0x22,
260 EC_DATAABORT_SAME_EL
= 0x25,
261 EC_SPALIGNMENT
= 0x26,
262 EC_AA32_FPTRAP
= 0x28,
263 EC_AA64_FPTRAP
= 0x2c,
265 EC_BREAKPOINT
= 0x30,
266 EC_BREAKPOINT_SAME_EL
= 0x31,
267 EC_SOFTWARESTEP
= 0x32,
268 EC_SOFTWARESTEP_SAME_EL
= 0x33,
269 EC_WATCHPOINT
= 0x34,
270 EC_WATCHPOINT_SAME_EL
= 0x35,
272 EC_VECTORCATCH
= 0x3a,
276 #define ARM_EL_EC_SHIFT 26
277 #define ARM_EL_IL_SHIFT 25
278 #define ARM_EL_ISV_SHIFT 24
279 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
280 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
282 /* Utility functions for constructing various kinds of syndrome value.
283 * Note that in general we follow the AArch64 syndrome values; in a
284 * few cases the value in HSR for exceptions taken to AArch32 Hyp
285 * mode differs slightly, so if we ever implemented Hyp mode then the
286 * syndrome value would need some massaging on exception entry.
287 * (One example of this is that AArch64 defaults to IL bit set for
288 * exceptions which don't specifically indicate information about the
289 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
291 static inline uint32_t syn_uncategorized(void)
293 return (EC_UNCATEGORIZED
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
;
296 static inline uint32_t syn_aa64_svc(uint32_t imm16
)
298 return (EC_AA64_SVC
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
| (imm16
& 0xffff);
301 static inline uint32_t syn_aa64_hvc(uint32_t imm16
)
303 return (EC_AA64_HVC
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
| (imm16
& 0xffff);
306 static inline uint32_t syn_aa64_smc(uint32_t imm16
)
308 return (EC_AA64_SMC
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
| (imm16
& 0xffff);
311 static inline uint32_t syn_aa32_svc(uint32_t imm16
, bool is_16bit
)
313 return (EC_AA32_SVC
<< ARM_EL_EC_SHIFT
) | (imm16
& 0xffff)
314 | (is_16bit
? 0 : ARM_EL_IL
);
317 static inline uint32_t syn_aa32_hvc(uint32_t imm16
)
319 return (EC_AA32_HVC
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
| (imm16
& 0xffff);
322 static inline uint32_t syn_aa32_smc(void)
324 return (EC_AA32_SMC
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
;
327 static inline uint32_t syn_aa64_bkpt(uint32_t imm16
)
329 return (EC_AA64_BKPT
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
| (imm16
& 0xffff);
332 static inline uint32_t syn_aa32_bkpt(uint32_t imm16
, bool is_16bit
)
334 return (EC_AA32_BKPT
<< ARM_EL_EC_SHIFT
) | (imm16
& 0xffff)
335 | (is_16bit
? 0 : ARM_EL_IL
);
338 static inline uint32_t syn_aa64_sysregtrap(int op0
, int op1
, int op2
,
339 int crn
, int crm
, int rt
,
342 return (EC_SYSTEMREGISTERTRAP
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
343 | (op0
<< 20) | (op2
<< 17) | (op1
<< 14) | (crn
<< 10) | (rt
<< 5)
344 | (crm
<< 1) | isread
;
347 static inline uint32_t syn_cp14_rt_trap(int cv
, int cond
, int opc1
, int opc2
,
348 int crn
, int crm
, int rt
, int isread
,
351 return (EC_CP14RTTRAP
<< ARM_EL_EC_SHIFT
)
352 | (is_16bit
? 0 : ARM_EL_IL
)
353 | (cv
<< 24) | (cond
<< 20) | (opc2
<< 17) | (opc1
<< 14)
354 | (crn
<< 10) | (rt
<< 5) | (crm
<< 1) | isread
;
357 static inline uint32_t syn_cp15_rt_trap(int cv
, int cond
, int opc1
, int opc2
,
358 int crn
, int crm
, int rt
, int isread
,
361 return (EC_CP15RTTRAP
<< ARM_EL_EC_SHIFT
)
362 | (is_16bit
? 0 : ARM_EL_IL
)
363 | (cv
<< 24) | (cond
<< 20) | (opc2
<< 17) | (opc1
<< 14)
364 | (crn
<< 10) | (rt
<< 5) | (crm
<< 1) | isread
;
367 static inline uint32_t syn_cp14_rrt_trap(int cv
, int cond
, int opc1
, int crm
,
368 int rt
, int rt2
, int isread
,
371 return (EC_CP14RRTTRAP
<< ARM_EL_EC_SHIFT
)
372 | (is_16bit
? 0 : ARM_EL_IL
)
373 | (cv
<< 24) | (cond
<< 20) | (opc1
<< 16)
374 | (rt2
<< 10) | (rt
<< 5) | (crm
<< 1) | isread
;
377 static inline uint32_t syn_cp15_rrt_trap(int cv
, int cond
, int opc1
, int crm
,
378 int rt
, int rt2
, int isread
,
381 return (EC_CP15RRTTRAP
<< ARM_EL_EC_SHIFT
)
382 | (is_16bit
? 0 : ARM_EL_IL
)
383 | (cv
<< 24) | (cond
<< 20) | (opc1
<< 16)
384 | (rt2
<< 10) | (rt
<< 5) | (crm
<< 1) | isread
;
387 static inline uint32_t syn_fp_access_trap(int cv
, int cond
, bool is_16bit
)
389 return (EC_ADVSIMDFPACCESSTRAP
<< ARM_EL_EC_SHIFT
)
390 | (is_16bit
? 0 : ARM_EL_IL
)
391 | (cv
<< 24) | (cond
<< 20);
394 static inline uint32_t syn_sve_access_trap(void)
396 return EC_SVEACCESSTRAP
<< ARM_EL_EC_SHIFT
;
399 static inline uint32_t syn_insn_abort(int same_el
, int ea
, int s1ptw
, int fsc
)
401 return (EC_INSNABORT
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
402 | ARM_EL_IL
| (ea
<< 9) | (s1ptw
<< 7) | fsc
;
405 static inline uint32_t syn_data_abort_no_iss(int same_el
,
406 int ea
, int cm
, int s1ptw
,
409 return (EC_DATAABORT
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
411 | (ea
<< 9) | (cm
<< 8) | (s1ptw
<< 7) | (wnr
<< 6) | fsc
;
414 static inline uint32_t syn_data_abort_with_iss(int same_el
,
415 int sas
, int sse
, int srt
,
417 int ea
, int cm
, int s1ptw
,
421 return (EC_DATAABORT
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
422 | (is_16bit
? 0 : ARM_EL_IL
)
423 | ARM_EL_ISV
| (sas
<< 22) | (sse
<< 21) | (srt
<< 16)
424 | (sf
<< 15) | (ar
<< 14)
425 | (ea
<< 9) | (cm
<< 8) | (s1ptw
<< 7) | (wnr
<< 6) | fsc
;
428 static inline uint32_t syn_swstep(int same_el
, int isv
, int ex
)
430 return (EC_SOFTWARESTEP
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
431 | ARM_EL_IL
| (isv
<< 24) | (ex
<< 6) | 0x22;
434 static inline uint32_t syn_watchpoint(int same_el
, int cm
, int wnr
)
436 return (EC_WATCHPOINT
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
437 | ARM_EL_IL
| (cm
<< 8) | (wnr
<< 6) | 0x22;
440 static inline uint32_t syn_breakpoint(int same_el
)
442 return (EC_BREAKPOINT
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
446 static inline uint32_t syn_wfx(int cv
, int cond
, int ti
, bool is_16bit
)
448 return (EC_WFX_TRAP
<< ARM_EL_EC_SHIFT
) |
449 (is_16bit
? 0 : (1 << ARM_EL_IL_SHIFT
)) |
450 (cv
<< 24) | (cond
<< 20) | ti
;
453 /* Update a QEMU watchpoint based on the information the guest has set in the
454 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
456 void hw_watchpoint_update(ARMCPU
*cpu
, int n
);
457 /* Update the QEMU watchpoints for every guest watchpoint. This does a
458 * complete delete-and-reinstate of the QEMU watchpoint list and so is
459 * suitable for use after migration or on reset.
461 void hw_watchpoint_update_all(ARMCPU
*cpu
);
462 /* Update a QEMU breakpoint based on the information the guest has set in the
463 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
465 void hw_breakpoint_update(ARMCPU
*cpu
, int n
);
466 /* Update the QEMU breakpoints for every guest breakpoint. This does a
467 * complete delete-and-reinstate of the QEMU breakpoint list and so is
468 * suitable for use after migration or on reset.
470 void hw_breakpoint_update_all(ARMCPU
*cpu
);
472 /* Callback function for checking if a watchpoint should trigger. */
473 bool arm_debug_check_watchpoint(CPUState
*cs
, CPUWatchpoint
*wp
);
475 /* Adjust addresses (in BE32 mode) before testing against watchpoint
478 vaddr
arm_adjust_watchpoint_address(CPUState
*cs
, vaddr addr
, int len
);
480 /* Callback function for when a watchpoint or breakpoint triggers. */
481 void arm_debug_excp_handler(CPUState
*cs
);
483 #ifdef CONFIG_USER_ONLY
484 static inline bool arm_is_psci_call(ARMCPU
*cpu
, int excp_type
)
489 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
490 bool arm_is_psci_call(ARMCPU
*cpu
, int excp_type
);
491 /* Actually handle a PSCI call */
492 void arm_handle_psci_call(ARMCPU
*cpu
);
496 * arm_clear_exclusive: clear the exclusive monitor
498 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
500 static inline void arm_clear_exclusive(CPUARMState
*env
)
502 env
->exclusive_addr
= -1;
506 * ARMFaultType: type of an ARM MMU fault
507 * This corresponds to the v8A pseudocode's Fault enumeration,
508 * with extensions for QEMU internal conditions.
510 typedef enum ARMFaultType
{
517 ARMFault_Translation
,
518 ARMFault_AddressSize
,
519 ARMFault_SyncExternal
,
520 ARMFault_SyncExternalOnWalk
,
522 ARMFault_SyncParityOnWalk
,
523 ARMFault_AsyncParity
,
524 ARMFault_AsyncExternal
,
526 ARMFault_TLBConflict
,
529 ARMFault_ICacheMaint
,
530 ARMFault_QEMU_NSCExec
, /* v8M: NS executing in S&NSC memory */
531 ARMFault_QEMU_SFault
, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
535 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
536 * @type: Type of fault
537 * @level: Table walk level (for translation, access flag and permission faults)
538 * @domain: Domain of the fault address (for non-LPAE CPUs only)
539 * @s2addr: Address that caused a fault at stage 2
540 * @stage2: True if we faulted at stage 2
541 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
542 * @ea: True if we should set the EA (external abort type) bit in syndrome
544 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo
;
545 struct ARMMMUFaultInfo
{
556 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
557 * Compare pseudocode EncodeSDFSC(), though unlike that function
558 * we set up a whole FSR-format code including domain field and
559 * putting the high bit of the FSC into bit 10.
561 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo
*fi
)
568 case ARMFault_AccessFlag
:
569 fsc
= fi
->level
== 1 ? 0x3 : 0x6;
571 case ARMFault_Alignment
:
574 case ARMFault_Permission
:
575 fsc
= fi
->level
== 1 ? 0xd : 0xf;
577 case ARMFault_Domain
:
578 fsc
= fi
->level
== 1 ? 0x9 : 0xb;
580 case ARMFault_Translation
:
581 fsc
= fi
->level
== 1 ? 0x5 : 0x7;
583 case ARMFault_SyncExternal
:
584 fsc
= 0x8 | (fi
->ea
<< 12);
586 case ARMFault_SyncExternalOnWalk
:
587 fsc
= fi
->level
== 1 ? 0xc : 0xe;
588 fsc
|= (fi
->ea
<< 12);
590 case ARMFault_SyncParity
:
593 case ARMFault_SyncParityOnWalk
:
594 fsc
= fi
->level
== 1 ? 0x40c : 0x40e;
596 case ARMFault_AsyncParity
:
599 case ARMFault_AsyncExternal
:
600 fsc
= 0x406 | (fi
->ea
<< 12);
605 case ARMFault_TLBConflict
:
608 case ARMFault_Lockdown
:
611 case ARMFault_Exclusive
:
614 case ARMFault_ICacheMaint
:
617 case ARMFault_Background
:
620 case ARMFault_QEMU_NSCExec
:
621 fsc
= M_FAKE_FSR_NSC_EXEC
;
623 case ARMFault_QEMU_SFault
:
624 fsc
= M_FAKE_FSR_SFAULT
;
627 /* Other faults can't occur in a context that requires a
628 * short-format status code.
630 g_assert_not_reached();
633 fsc
|= (fi
->domain
<< 4);
638 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
639 * Compare pseudocode EncodeLDFSC(), though unlike that function
640 * we fill in also the LPAE bit 9 of a DFSR format.
642 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo
*fi
)
649 case ARMFault_AddressSize
:
652 case ARMFault_AccessFlag
:
653 fsc
= (fi
->level
& 3) | (0x2 << 2);
655 case ARMFault_Permission
:
656 fsc
= (fi
->level
& 3) | (0x3 << 2);
658 case ARMFault_Translation
:
659 fsc
= (fi
->level
& 3) | (0x1 << 2);
661 case ARMFault_SyncExternal
:
662 fsc
= 0x10 | (fi
->ea
<< 12);
664 case ARMFault_SyncExternalOnWalk
:
665 fsc
= (fi
->level
& 3) | (0x5 << 2) | (fi
->ea
<< 12);
667 case ARMFault_SyncParity
:
670 case ARMFault_SyncParityOnWalk
:
671 fsc
= (fi
->level
& 3) | (0x7 << 2);
673 case ARMFault_AsyncParity
:
676 case ARMFault_AsyncExternal
:
677 fsc
= 0x11 | (fi
->ea
<< 12);
679 case ARMFault_Alignment
:
685 case ARMFault_TLBConflict
:
688 case ARMFault_Lockdown
:
691 case ARMFault_Exclusive
:
695 /* Other faults can't occur in a context that requires a
696 * long-format status code.
698 g_assert_not_reached();
705 static inline bool arm_extabort_type(MemTxResult result
)
707 /* The EA bit in syndromes and fault status registers is an
708 * IMPDEF classification of external aborts. ARM implementations
709 * usually use this to indicate AXI bus Decode error (0) or
710 * Slave error (1); in QEMU we follow that.
712 return result
!= MEMTX_DECODE_ERROR
;
715 /* Do a page table walk and add page to TLB if possible */
716 bool arm_tlb_fill(CPUState
*cpu
, vaddr address
,
717 MMUAccessType access_type
, int mmu_idx
,
718 ARMMMUFaultInfo
*fi
);
720 /* Return true if the stage 1 translation regime is using LPAE format page
722 bool arm_s1_regime_using_lpae_format(CPUARMState
*env
, ARMMMUIdx mmu_idx
);
724 /* Raise a data fault alignment exception for the specified virtual address */
725 void arm_cpu_do_unaligned_access(CPUState
*cs
, vaddr vaddr
,
726 MMUAccessType access_type
,
727 int mmu_idx
, uintptr_t retaddr
);
729 /* arm_cpu_do_transaction_failed: handle a memory system error response
730 * (eg "no device/memory present at address") by raising an external abort
733 void arm_cpu_do_transaction_failed(CPUState
*cs
, hwaddr physaddr
,
734 vaddr addr
, unsigned size
,
735 MMUAccessType access_type
,
736 int mmu_idx
, MemTxAttrs attrs
,
737 MemTxResult response
, uintptr_t retaddr
);
739 /* Call any registered EL change hooks */
740 static inline void arm_call_pre_el_change_hook(ARMCPU
*cpu
)
742 ARMELChangeHook
*hook
, *next
;
743 QLIST_FOREACH_SAFE(hook
, &cpu
->pre_el_change_hooks
, node
, next
) {
744 hook
->hook(cpu
, hook
->opaque
);
747 static inline void arm_call_el_change_hook(ARMCPU
*cpu
)
749 ARMELChangeHook
*hook
, *next
;
750 QLIST_FOREACH_SAFE(hook
, &cpu
->el_change_hooks
, node
, next
) {
751 hook
->hook(cpu
, hook
->opaque
);
755 /* Return true if this address translation regime is secure */
756 static inline bool regime_is_secure(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
759 case ARMMMUIdx_S12NSE0
:
760 case ARMMMUIdx_S12NSE1
:
761 case ARMMMUIdx_S1NSE0
:
762 case ARMMMUIdx_S1NSE1
:
765 case ARMMMUIdx_MPrivNegPri
:
766 case ARMMMUIdx_MUserNegPri
:
767 case ARMMMUIdx_MPriv
:
768 case ARMMMUIdx_MUser
:
771 case ARMMMUIdx_S1SE0
:
772 case ARMMMUIdx_S1SE1
:
773 case ARMMMUIdx_MSPrivNegPri
:
774 case ARMMMUIdx_MSUserNegPri
:
775 case ARMMMUIdx_MSPriv
:
776 case ARMMMUIdx_MSUser
:
779 g_assert_not_reached();
783 /* Return the FSR value for a debug exception (watchpoint, hardware
784 * breakpoint or BKPT insn) targeting the specified exception level.
786 static inline uint32_t arm_debug_exception_fsr(CPUARMState
*env
)
788 ARMMMUFaultInfo fi
= { .type
= ARMFault_Debug
};
789 int target_el
= arm_debug_target_el(env
);
790 bool using_lpae
= false;
792 if (target_el
== 2 || arm_el_is_aa64(env
, target_el
)) {
795 if (arm_feature(env
, ARM_FEATURE_LPAE
) &&
796 (env
->cp15
.tcr_el
[target_el
].raw_tcr
& TTBCR_EAE
)) {
802 return arm_fi_to_lfsc(&fi
);
804 return arm_fi_to_sfsc(&fi
);
808 /* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
809 * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
811 #define MEMOPIDX_SHIFT 8
814 * v7m_using_psp: Return true if using process stack pointer
815 * Return true if the CPU is currently using the process stack
816 * pointer, or false if it is using the main stack pointer.
818 static inline bool v7m_using_psp(CPUARMState
*env
)
820 /* Handler mode always uses the main stack; for thread mode
821 * the CONTROL.SPSEL bit determines the answer.
822 * Note that in v7M it is not possible to be in Handler mode with
823 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
825 return !arm_v7m_is_handler_mode(env
) &&
826 env
->v7m
.control
[env
->v7m
.secure
] & R_V7M_CONTROL_SPSEL_MASK
;
830 * v7m_sp_limit: Return SP limit for current CPU state
831 * Return the SP limit value for the current CPU security state
834 static inline uint32_t v7m_sp_limit(CPUARMState
*env
)
836 if (v7m_using_psp(env
)) {
837 return env
->v7m
.psplim
[env
->v7m
.secure
];
839 return env
->v7m
.msplim
[env
->v7m
.secure
];