libqtest: Inline g_assert_no_errno()
[qemu/armbru.git] / target / arm / kvm32.c
blob4e91c11796b8fa26d8c22bfb71f466a7e9c2834f
1 /*
2 * ARM implementation of KVM hooks, 32 bit specific code.
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
17 #include "cpu.h"
18 #include "qemu/timer.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
21 #include "kvm_arm.h"
22 #include "internals.h"
23 #include "hw/arm/arm.h"
24 #include "qemu/log.h"
26 static inline void set_feature(uint64_t *features, int feature)
28 *features |= 1ULL << feature;
31 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
33 /* Identify the feature bits corresponding to the host CPU, and
34 * fill out the ARMHostCPUClass fields accordingly. To do this
35 * we have to create a scratch VM, create a single CPU inside it,
36 * and then query that CPU for the relevant ID registers.
38 int i, ret, fdarray[3];
39 uint32_t midr, id_pfr0, mvfr1;
40 uint64_t features = 0;
41 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
42 * we know these will only support creating one kind of guest CPU,
43 * which is its preferred CPU type.
45 static const uint32_t cpus_to_try[] = {
46 QEMU_KVM_ARM_TARGET_CORTEX_A15,
47 QEMU_KVM_ARM_TARGET_NONE
49 struct kvm_vcpu_init init;
50 struct kvm_one_reg idregs[] = {
52 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
53 | ENCODE_CP_REG(15, 0, 0, 0, 0, 0, 0),
54 .addr = (uintptr_t)&midr,
57 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
58 | ENCODE_CP_REG(15, 0, 0, 0, 1, 0, 0),
59 .addr = (uintptr_t)&id_pfr0,
62 .id = KVM_REG_ARM | KVM_REG_SIZE_U32
63 | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1,
64 .addr = (uintptr_t)&mvfr1,
68 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
69 return false;
72 ahcf->target = init.target;
74 /* This is not strictly blessed by the device tree binding docs yet,
75 * but in practice the kernel does not care about this string so
76 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
78 ahcf->dtb_compatible = "arm,arm-v7";
80 for (i = 0; i < ARRAY_SIZE(idregs); i++) {
81 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]);
82 if (ret) {
83 break;
87 kvm_arm_destroy_scratch_host_vcpu(fdarray);
89 if (ret) {
90 return false;
93 /* Now we've retrieved all the register information we can
94 * set the feature bits based on the ID register fields.
95 * We can assume any KVM supporting CPU is at least a v7
96 * with VFPv3, virtualization extensions, and the generic
97 * timers; this in turn implies most of the other feature
98 * bits, but a few must be tested.
100 set_feature(&features, ARM_FEATURE_V7VE);
101 set_feature(&features, ARM_FEATURE_VFP3);
102 set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
104 if (extract32(id_pfr0, 12, 4) == 1) {
105 set_feature(&features, ARM_FEATURE_THUMB2EE);
107 if (extract32(mvfr1, 20, 4) == 1) {
108 set_feature(&features, ARM_FEATURE_VFP_FP16);
110 if (extract32(mvfr1, 12, 4) == 1) {
111 set_feature(&features, ARM_FEATURE_NEON);
113 if (extract32(mvfr1, 28, 4) == 1) {
114 /* FMAC support implies VFPv4 */
115 set_feature(&features, ARM_FEATURE_VFP4);
118 ahcf->features = features;
120 return true;
123 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
125 /* Return true if the regidx is a register we should synchronize
126 * via the cpreg_tuples array (ie is not a core reg we sync by
127 * hand in kvm_arch_get/put_registers())
129 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
130 case KVM_REG_ARM_CORE:
131 case KVM_REG_ARM_VFP:
132 return false;
133 default:
134 return true;
138 typedef struct CPRegStateLevel {
139 uint64_t regidx;
140 int level;
141 } CPRegStateLevel;
143 /* All coprocessor registers not listed in the following table are assumed to
144 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
145 * often, you must add it to this table with a state of either
146 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
148 static const CPRegStateLevel non_runtime_cpregs[] = {
149 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
152 int kvm_arm_cpreg_level(uint64_t regidx)
154 int i;
156 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
157 const CPRegStateLevel *l = &non_runtime_cpregs[i];
158 if (l->regidx == regidx) {
159 return l->level;
163 return KVM_PUT_RUNTIME_STATE;
166 #define ARM_CPU_ID_MPIDR 0, 0, 0, 5
168 int kvm_arch_init_vcpu(CPUState *cs)
170 int ret;
171 uint64_t v;
172 uint32_t mpidr;
173 struct kvm_one_reg r;
174 ARMCPU *cpu = ARM_CPU(cs);
176 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
177 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
178 return -EINVAL;
181 /* Determine init features for this CPU */
182 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
183 if (cpu->start_powered_off) {
184 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
186 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
187 cpu->psci_version = 2;
188 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
191 /* Do KVM_ARM_VCPU_INIT ioctl */
192 ret = kvm_arm_vcpu_init(cs);
193 if (ret) {
194 return ret;
197 /* Query the kernel to make sure it supports 32 VFP
198 * registers: QEMU's "cortex-a15" CPU is always a
199 * VFP-D32 core. The simplest way to do this is just
200 * to attempt to read register d31.
202 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
203 r.addr = (uintptr_t)(&v);
204 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
205 if (ret == -ENOENT) {
206 return -EINVAL;
210 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
211 * Currently KVM has its own idea about MPIDR assignment, so we
212 * override our defaults with what we get from KVM.
214 ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
215 if (ret) {
216 return ret;
218 cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK;
220 return kvm_arm_init_cpreg_list(cpu);
223 typedef struct Reg {
224 uint64_t id;
225 int offset;
226 } Reg;
228 #define COREREG(KERNELNAME, QEMUFIELD) \
230 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
231 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
232 offsetof(CPUARMState, QEMUFIELD) \
235 #define VFPSYSREG(R) \
237 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
238 KVM_REG_ARM_VFP_##R, \
239 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
242 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
243 #define COREREG64(KERNELNAME, QEMUFIELD) \
245 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
246 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
247 offsetoflow32(CPUARMState, QEMUFIELD) \
250 static const Reg regs[] = {
251 /* R0_usr .. R14_usr */
252 COREREG(usr_regs.uregs[0], regs[0]),
253 COREREG(usr_regs.uregs[1], regs[1]),
254 COREREG(usr_regs.uregs[2], regs[2]),
255 COREREG(usr_regs.uregs[3], regs[3]),
256 COREREG(usr_regs.uregs[4], regs[4]),
257 COREREG(usr_regs.uregs[5], regs[5]),
258 COREREG(usr_regs.uregs[6], regs[6]),
259 COREREG(usr_regs.uregs[7], regs[7]),
260 COREREG(usr_regs.uregs[8], usr_regs[0]),
261 COREREG(usr_regs.uregs[9], usr_regs[1]),
262 COREREG(usr_regs.uregs[10], usr_regs[2]),
263 COREREG(usr_regs.uregs[11], usr_regs[3]),
264 COREREG(usr_regs.uregs[12], usr_regs[4]),
265 COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]),
266 COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]),
267 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
268 COREREG(svc_regs[0], banked_r13[BANK_SVC]),
269 COREREG(svc_regs[1], banked_r14[BANK_SVC]),
270 COREREG64(svc_regs[2], banked_spsr[BANK_SVC]),
271 COREREG(abt_regs[0], banked_r13[BANK_ABT]),
272 COREREG(abt_regs[1], banked_r14[BANK_ABT]),
273 COREREG64(abt_regs[2], banked_spsr[BANK_ABT]),
274 COREREG(und_regs[0], banked_r13[BANK_UND]),
275 COREREG(und_regs[1], banked_r14[BANK_UND]),
276 COREREG64(und_regs[2], banked_spsr[BANK_UND]),
277 COREREG(irq_regs[0], banked_r13[BANK_IRQ]),
278 COREREG(irq_regs[1], banked_r14[BANK_IRQ]),
279 COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]),
280 /* R8_fiq .. R14_fiq and SPSR_fiq */
281 COREREG(fiq_regs[0], fiq_regs[0]),
282 COREREG(fiq_regs[1], fiq_regs[1]),
283 COREREG(fiq_regs[2], fiq_regs[2]),
284 COREREG(fiq_regs[3], fiq_regs[3]),
285 COREREG(fiq_regs[4], fiq_regs[4]),
286 COREREG(fiq_regs[5], banked_r13[BANK_FIQ]),
287 COREREG(fiq_regs[6], banked_r14[BANK_FIQ]),
288 COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]),
289 /* R15 */
290 COREREG(usr_regs.uregs[15], regs[15]),
291 /* VFP system registers */
292 VFPSYSREG(FPSID),
293 VFPSYSREG(MVFR1),
294 VFPSYSREG(MVFR0),
295 VFPSYSREG(FPEXC),
296 VFPSYSREG(FPINST),
297 VFPSYSREG(FPINST2),
300 int kvm_arch_put_registers(CPUState *cs, int level)
302 ARMCPU *cpu = ARM_CPU(cs);
303 CPUARMState *env = &cpu->env;
304 struct kvm_one_reg r;
305 int mode, bn;
306 int ret, i;
307 uint32_t cpsr, fpscr;
309 /* Make sure the banked regs are properly set */
310 mode = env->uncached_cpsr & CPSR_M;
311 bn = bank_number(mode);
312 if (mode == ARM_CPU_MODE_FIQ) {
313 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
314 } else {
315 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
317 env->banked_r13[bn] = env->regs[13];
318 env->banked_r14[bn] = env->regs[14];
319 env->banked_spsr[bn] = env->spsr;
321 /* Now we can safely copy stuff down to the kernel */
322 for (i = 0; i < ARRAY_SIZE(regs); i++) {
323 r.id = regs[i].id;
324 r.addr = (uintptr_t)(env) + regs[i].offset;
325 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
326 if (ret) {
327 return ret;
331 /* Special cases which aren't a single CPUARMState field */
332 cpsr = cpsr_read(env);
333 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
334 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
335 r.addr = (uintptr_t)(&cpsr);
336 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
337 if (ret) {
338 return ret;
341 /* VFP registers */
342 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
343 for (i = 0; i < 32; i++) {
344 r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
345 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
346 if (ret) {
347 return ret;
349 r.id++;
352 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
353 KVM_REG_ARM_VFP_FPSCR;
354 fpscr = vfp_get_fpscr(env);
355 r.addr = (uintptr_t)&fpscr;
356 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
357 if (ret) {
358 return ret;
361 /* Note that we do not call write_cpustate_to_list()
362 * here, so we are only writing the tuple list back to
363 * KVM. This is safe because nothing can change the
364 * CPUARMState cp15 fields (in particular gdb accesses cannot)
365 * and so there are no changes to sync. In fact syncing would
366 * be wrong at this point: for a constant register where TCG and
367 * KVM disagree about its value, the preceding write_list_to_cpustate()
368 * would not have had any effect on the CPUARMState value (since the
369 * register is read-only), and a write_cpustate_to_list() here would
370 * then try to write the TCG value back into KVM -- this would either
371 * fail or incorrectly change the value the guest sees.
373 * If we ever want to allow the user to modify cp15 registers via
374 * the gdb stub, we would need to be more clever here (for instance
375 * tracking the set of registers kvm_arch_get_registers() successfully
376 * managed to update the CPUARMState with, and only allowing those
377 * to be written back up into the kernel).
379 if (!write_list_to_kvmstate(cpu, level)) {
380 return EINVAL;
383 kvm_arm_sync_mpstate_to_kvm(cpu);
385 return ret;
388 int kvm_arch_get_registers(CPUState *cs)
390 ARMCPU *cpu = ARM_CPU(cs);
391 CPUARMState *env = &cpu->env;
392 struct kvm_one_reg r;
393 int mode, bn;
394 int ret, i;
395 uint32_t cpsr, fpscr;
397 for (i = 0; i < ARRAY_SIZE(regs); i++) {
398 r.id = regs[i].id;
399 r.addr = (uintptr_t)(env) + regs[i].offset;
400 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
401 if (ret) {
402 return ret;
406 /* Special cases which aren't a single CPUARMState field */
407 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
408 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
409 r.addr = (uintptr_t)(&cpsr);
410 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
411 if (ret) {
412 return ret;
414 cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw);
416 /* Make sure the current mode regs are properly set */
417 mode = env->uncached_cpsr & CPSR_M;
418 bn = bank_number(mode);
419 if (mode == ARM_CPU_MODE_FIQ) {
420 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
421 } else {
422 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
424 env->regs[13] = env->banked_r13[bn];
425 env->regs[14] = env->banked_r14[bn];
426 env->spsr = env->banked_spsr[bn];
428 /* VFP registers */
429 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
430 for (i = 0; i < 32; i++) {
431 r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
432 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
433 if (ret) {
434 return ret;
436 r.id++;
439 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
440 KVM_REG_ARM_VFP_FPSCR;
441 r.addr = (uintptr_t)&fpscr;
442 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
443 if (ret) {
444 return ret;
446 vfp_set_fpscr(env, fpscr);
448 if (!write_kvmstate_to_list(cpu)) {
449 return EINVAL;
451 /* Note that it's OK to have registers which aren't in CPUState,
452 * so we can ignore a failure return here.
454 write_list_to_cpustate(cpu);
456 kvm_arm_sync_mpstate_to_qemu(cpu);
458 return 0;
461 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
463 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
464 return -EINVAL;
467 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
469 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
470 return -EINVAL;
473 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
475 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
476 return false;
479 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
480 target_ulong len, int type)
482 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
483 return -EINVAL;
486 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
487 target_ulong len, int type)
489 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
490 return -EINVAL;
493 void kvm_arch_remove_all_hw_breakpoints(void)
495 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
498 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
500 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
503 bool kvm_arm_hw_debug_active(CPUState *cs)
505 return false;
508 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
510 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
513 void kvm_arm_pmu_init(CPUState *cs)
515 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);