4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
23 #include "exec/helper-proto.h"
28 #if defined(CONFIG_USER_ONLY)
30 void do_smm_enter(X86CPU
*cpu
)
34 void helper_rsm(CPUX86State
*env
)
41 #define SMM_REVISION_ID 0x00020064
43 #define SMM_REVISION_ID 0x00020000
46 void do_smm_enter(X86CPU
*cpu
)
48 CPUX86State
*env
= &cpu
->env
;
49 CPUState
*cs
= CPU(cpu
);
50 target_ulong sm_state
;
54 qemu_log_mask(CPU_LOG_INT
, "SMM: enter\n");
55 log_cpu_state_mask(CPU_LOG_INT
, CPU(cpu
), CPU_DUMP_CCOP
);
58 env
->hflags
|= HF_SMM_MASK
;
59 if (env
->hflags2
& HF2_NMI_MASK
) {
60 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
62 env
->hflags2
|= HF2_NMI_MASK
;
65 sm_state
= env
->smbase
+ 0x8000;
68 for (i
= 0; i
< 6; i
++) {
70 offset
= 0x7e00 + i
* 16;
71 x86_stw_phys(cs
, sm_state
+ offset
, dt
->selector
);
72 x86_stw_phys(cs
, sm_state
+ offset
+ 2, (dt
->flags
>> 8) & 0xf0ff);
73 x86_stl_phys(cs
, sm_state
+ offset
+ 4, dt
->limit
);
74 x86_stq_phys(cs
, sm_state
+ offset
+ 8, dt
->base
);
77 x86_stq_phys(cs
, sm_state
+ 0x7e68, env
->gdt
.base
);
78 x86_stl_phys(cs
, sm_state
+ 0x7e64, env
->gdt
.limit
);
80 x86_stw_phys(cs
, sm_state
+ 0x7e70, env
->ldt
.selector
);
81 x86_stq_phys(cs
, sm_state
+ 0x7e78, env
->ldt
.base
);
82 x86_stl_phys(cs
, sm_state
+ 0x7e74, env
->ldt
.limit
);
83 x86_stw_phys(cs
, sm_state
+ 0x7e72, (env
->ldt
.flags
>> 8) & 0xf0ff);
85 x86_stq_phys(cs
, sm_state
+ 0x7e88, env
->idt
.base
);
86 x86_stl_phys(cs
, sm_state
+ 0x7e84, env
->idt
.limit
);
88 x86_stw_phys(cs
, sm_state
+ 0x7e90, env
->tr
.selector
);
89 x86_stq_phys(cs
, sm_state
+ 0x7e98, env
->tr
.base
);
90 x86_stl_phys(cs
, sm_state
+ 0x7e94, env
->tr
.limit
);
91 x86_stw_phys(cs
, sm_state
+ 0x7e92, (env
->tr
.flags
>> 8) & 0xf0ff);
93 /* ??? Vol 1, 16.5.6 Intel MPX and SMM says that IA32_BNDCFGS
94 is saved at offset 7ED0. Vol 3, 34.4.1.1, Table 32-2, has
95 7EA0-7ED7 as "reserved". What's this, and what's really
96 supposed to happen? */
97 x86_stq_phys(cs
, sm_state
+ 0x7ed0, env
->efer
);
99 x86_stq_phys(cs
, sm_state
+ 0x7ff8, env
->regs
[R_EAX
]);
100 x86_stq_phys(cs
, sm_state
+ 0x7ff0, env
->regs
[R_ECX
]);
101 x86_stq_phys(cs
, sm_state
+ 0x7fe8, env
->regs
[R_EDX
]);
102 x86_stq_phys(cs
, sm_state
+ 0x7fe0, env
->regs
[R_EBX
]);
103 x86_stq_phys(cs
, sm_state
+ 0x7fd8, env
->regs
[R_ESP
]);
104 x86_stq_phys(cs
, sm_state
+ 0x7fd0, env
->regs
[R_EBP
]);
105 x86_stq_phys(cs
, sm_state
+ 0x7fc8, env
->regs
[R_ESI
]);
106 x86_stq_phys(cs
, sm_state
+ 0x7fc0, env
->regs
[R_EDI
]);
107 for (i
= 8; i
< 16; i
++) {
108 x86_stq_phys(cs
, sm_state
+ 0x7ff8 - i
* 8, env
->regs
[i
]);
110 x86_stq_phys(cs
, sm_state
+ 0x7f78, env
->eip
);
111 x86_stl_phys(cs
, sm_state
+ 0x7f70, cpu_compute_eflags(env
));
112 x86_stl_phys(cs
, sm_state
+ 0x7f68, env
->dr
[6]);
113 x86_stl_phys(cs
, sm_state
+ 0x7f60, env
->dr
[7]);
115 x86_stl_phys(cs
, sm_state
+ 0x7f48, env
->cr
[4]);
116 x86_stq_phys(cs
, sm_state
+ 0x7f50, env
->cr
[3]);
117 x86_stl_phys(cs
, sm_state
+ 0x7f58, env
->cr
[0]);
119 x86_stl_phys(cs
, sm_state
+ 0x7efc, SMM_REVISION_ID
);
120 x86_stl_phys(cs
, sm_state
+ 0x7f00, env
->smbase
);
122 x86_stl_phys(cs
, sm_state
+ 0x7ffc, env
->cr
[0]);
123 x86_stl_phys(cs
, sm_state
+ 0x7ff8, env
->cr
[3]);
124 x86_stl_phys(cs
, sm_state
+ 0x7ff4, cpu_compute_eflags(env
));
125 x86_stl_phys(cs
, sm_state
+ 0x7ff0, env
->eip
);
126 x86_stl_phys(cs
, sm_state
+ 0x7fec, env
->regs
[R_EDI
]);
127 x86_stl_phys(cs
, sm_state
+ 0x7fe8, env
->regs
[R_ESI
]);
128 x86_stl_phys(cs
, sm_state
+ 0x7fe4, env
->regs
[R_EBP
]);
129 x86_stl_phys(cs
, sm_state
+ 0x7fe0, env
->regs
[R_ESP
]);
130 x86_stl_phys(cs
, sm_state
+ 0x7fdc, env
->regs
[R_EBX
]);
131 x86_stl_phys(cs
, sm_state
+ 0x7fd8, env
->regs
[R_EDX
]);
132 x86_stl_phys(cs
, sm_state
+ 0x7fd4, env
->regs
[R_ECX
]);
133 x86_stl_phys(cs
, sm_state
+ 0x7fd0, env
->regs
[R_EAX
]);
134 x86_stl_phys(cs
, sm_state
+ 0x7fcc, env
->dr
[6]);
135 x86_stl_phys(cs
, sm_state
+ 0x7fc8, env
->dr
[7]);
137 x86_stl_phys(cs
, sm_state
+ 0x7fc4, env
->tr
.selector
);
138 x86_stl_phys(cs
, sm_state
+ 0x7f64, env
->tr
.base
);
139 x86_stl_phys(cs
, sm_state
+ 0x7f60, env
->tr
.limit
);
140 x86_stl_phys(cs
, sm_state
+ 0x7f5c, (env
->tr
.flags
>> 8) & 0xf0ff);
142 x86_stl_phys(cs
, sm_state
+ 0x7fc0, env
->ldt
.selector
);
143 x86_stl_phys(cs
, sm_state
+ 0x7f80, env
->ldt
.base
);
144 x86_stl_phys(cs
, sm_state
+ 0x7f7c, env
->ldt
.limit
);
145 x86_stl_phys(cs
, sm_state
+ 0x7f78, (env
->ldt
.flags
>> 8) & 0xf0ff);
147 x86_stl_phys(cs
, sm_state
+ 0x7f74, env
->gdt
.base
);
148 x86_stl_phys(cs
, sm_state
+ 0x7f70, env
->gdt
.limit
);
150 x86_stl_phys(cs
, sm_state
+ 0x7f58, env
->idt
.base
);
151 x86_stl_phys(cs
, sm_state
+ 0x7f54, env
->idt
.limit
);
153 for (i
= 0; i
< 6; i
++) {
156 offset
= 0x7f84 + i
* 12;
158 offset
= 0x7f2c + (i
- 3) * 12;
160 x86_stl_phys(cs
, sm_state
+ 0x7fa8 + i
* 4, dt
->selector
);
161 x86_stl_phys(cs
, sm_state
+ offset
+ 8, dt
->base
);
162 x86_stl_phys(cs
, sm_state
+ offset
+ 4, dt
->limit
);
163 x86_stl_phys(cs
, sm_state
+ offset
, (dt
->flags
>> 8) & 0xf0ff);
165 x86_stl_phys(cs
, sm_state
+ 0x7f14, env
->cr
[4]);
167 x86_stl_phys(cs
, sm_state
+ 0x7efc, SMM_REVISION_ID
);
168 x86_stl_phys(cs
, sm_state
+ 0x7ef8, env
->smbase
);
170 /* init SMM cpu state */
173 cpu_load_efer(env
, 0);
175 cpu_load_eflags(env
, 0, ~(CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
|
177 env
->eip
= 0x00008000;
178 cpu_x86_update_cr0(env
,
179 env
->cr
[0] & ~(CR0_PE_MASK
| CR0_EM_MASK
| CR0_TS_MASK
|
181 cpu_x86_update_cr4(env
, 0);
182 env
->dr
[7] = 0x00000400;
184 cpu_x86_load_seg_cache(env
, R_CS
, (env
->smbase
>> 4) & 0xffff, env
->smbase
,
186 DESC_P_MASK
| DESC_S_MASK
| DESC_W_MASK
|
187 DESC_G_MASK
| DESC_A_MASK
);
188 cpu_x86_load_seg_cache(env
, R_DS
, 0, 0, 0xffffffff,
189 DESC_P_MASK
| DESC_S_MASK
| DESC_W_MASK
|
190 DESC_G_MASK
| DESC_A_MASK
);
191 cpu_x86_load_seg_cache(env
, R_ES
, 0, 0, 0xffffffff,
192 DESC_P_MASK
| DESC_S_MASK
| DESC_W_MASK
|
193 DESC_G_MASK
| DESC_A_MASK
);
194 cpu_x86_load_seg_cache(env
, R_SS
, 0, 0, 0xffffffff,
195 DESC_P_MASK
| DESC_S_MASK
| DESC_W_MASK
|
196 DESC_G_MASK
| DESC_A_MASK
);
197 cpu_x86_load_seg_cache(env
, R_FS
, 0, 0, 0xffffffff,
198 DESC_P_MASK
| DESC_S_MASK
| DESC_W_MASK
|
199 DESC_G_MASK
| DESC_A_MASK
);
200 cpu_x86_load_seg_cache(env
, R_GS
, 0, 0, 0xffffffff,
201 DESC_P_MASK
| DESC_S_MASK
| DESC_W_MASK
|
202 DESC_G_MASK
| DESC_A_MASK
);
205 void helper_rsm(CPUX86State
*env
)
207 X86CPU
*cpu
= x86_env_get_cpu(env
);
208 CPUState
*cs
= CPU(cpu
);
209 target_ulong sm_state
;
213 sm_state
= env
->smbase
+ 0x8000;
215 cpu_load_efer(env
, x86_ldq_phys(cs
, sm_state
+ 0x7ed0));
217 env
->gdt
.base
= x86_ldq_phys(cs
, sm_state
+ 0x7e68);
218 env
->gdt
.limit
= x86_ldl_phys(cs
, sm_state
+ 0x7e64);
220 env
->ldt
.selector
= x86_lduw_phys(cs
, sm_state
+ 0x7e70);
221 env
->ldt
.base
= x86_ldq_phys(cs
, sm_state
+ 0x7e78);
222 env
->ldt
.limit
= x86_ldl_phys(cs
, sm_state
+ 0x7e74);
223 env
->ldt
.flags
= (x86_lduw_phys(cs
, sm_state
+ 0x7e72) & 0xf0ff) << 8;
225 env
->idt
.base
= x86_ldq_phys(cs
, sm_state
+ 0x7e88);
226 env
->idt
.limit
= x86_ldl_phys(cs
, sm_state
+ 0x7e84);
228 env
->tr
.selector
= x86_lduw_phys(cs
, sm_state
+ 0x7e90);
229 env
->tr
.base
= x86_ldq_phys(cs
, sm_state
+ 0x7e98);
230 env
->tr
.limit
= x86_ldl_phys(cs
, sm_state
+ 0x7e94);
231 env
->tr
.flags
= (x86_lduw_phys(cs
, sm_state
+ 0x7e92) & 0xf0ff) << 8;
233 env
->regs
[R_EAX
] = x86_ldq_phys(cs
, sm_state
+ 0x7ff8);
234 env
->regs
[R_ECX
] = x86_ldq_phys(cs
, sm_state
+ 0x7ff0);
235 env
->regs
[R_EDX
] = x86_ldq_phys(cs
, sm_state
+ 0x7fe8);
236 env
->regs
[R_EBX
] = x86_ldq_phys(cs
, sm_state
+ 0x7fe0);
237 env
->regs
[R_ESP
] = x86_ldq_phys(cs
, sm_state
+ 0x7fd8);
238 env
->regs
[R_EBP
] = x86_ldq_phys(cs
, sm_state
+ 0x7fd0);
239 env
->regs
[R_ESI
] = x86_ldq_phys(cs
, sm_state
+ 0x7fc8);
240 env
->regs
[R_EDI
] = x86_ldq_phys(cs
, sm_state
+ 0x7fc0);
241 for (i
= 8; i
< 16; i
++) {
242 env
->regs
[i
] = x86_ldq_phys(cs
, sm_state
+ 0x7ff8 - i
* 8);
244 env
->eip
= x86_ldq_phys(cs
, sm_state
+ 0x7f78);
245 cpu_load_eflags(env
, x86_ldl_phys(cs
, sm_state
+ 0x7f70),
246 ~(CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
| DF_MASK
));
247 env
->dr
[6] = x86_ldl_phys(cs
, sm_state
+ 0x7f68);
248 env
->dr
[7] = x86_ldl_phys(cs
, sm_state
+ 0x7f60);
250 cpu_x86_update_cr4(env
, x86_ldl_phys(cs
, sm_state
+ 0x7f48));
251 cpu_x86_update_cr3(env
, x86_ldq_phys(cs
, sm_state
+ 0x7f50));
252 cpu_x86_update_cr0(env
, x86_ldl_phys(cs
, sm_state
+ 0x7f58));
254 for (i
= 0; i
< 6; i
++) {
255 offset
= 0x7e00 + i
* 16;
256 cpu_x86_load_seg_cache(env
, i
,
257 x86_lduw_phys(cs
, sm_state
+ offset
),
258 x86_ldq_phys(cs
, sm_state
+ offset
+ 8),
259 x86_ldl_phys(cs
, sm_state
+ offset
+ 4),
260 (x86_lduw_phys(cs
, sm_state
+ offset
+ 2) &
264 val
= x86_ldl_phys(cs
, sm_state
+ 0x7efc); /* revision ID */
266 env
->smbase
= x86_ldl_phys(cs
, sm_state
+ 0x7f00);
269 cpu_x86_update_cr0(env
, x86_ldl_phys(cs
, sm_state
+ 0x7ffc));
270 cpu_x86_update_cr3(env
, x86_ldl_phys(cs
, sm_state
+ 0x7ff8));
271 cpu_load_eflags(env
, x86_ldl_phys(cs
, sm_state
+ 0x7ff4),
272 ~(CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
| DF_MASK
));
273 env
->eip
= x86_ldl_phys(cs
, sm_state
+ 0x7ff0);
274 env
->regs
[R_EDI
] = x86_ldl_phys(cs
, sm_state
+ 0x7fec);
275 env
->regs
[R_ESI
] = x86_ldl_phys(cs
, sm_state
+ 0x7fe8);
276 env
->regs
[R_EBP
] = x86_ldl_phys(cs
, sm_state
+ 0x7fe4);
277 env
->regs
[R_ESP
] = x86_ldl_phys(cs
, sm_state
+ 0x7fe0);
278 env
->regs
[R_EBX
] = x86_ldl_phys(cs
, sm_state
+ 0x7fdc);
279 env
->regs
[R_EDX
] = x86_ldl_phys(cs
, sm_state
+ 0x7fd8);
280 env
->regs
[R_ECX
] = x86_ldl_phys(cs
, sm_state
+ 0x7fd4);
281 env
->regs
[R_EAX
] = x86_ldl_phys(cs
, sm_state
+ 0x7fd0);
282 env
->dr
[6] = x86_ldl_phys(cs
, sm_state
+ 0x7fcc);
283 env
->dr
[7] = x86_ldl_phys(cs
, sm_state
+ 0x7fc8);
285 env
->tr
.selector
= x86_ldl_phys(cs
, sm_state
+ 0x7fc4) & 0xffff;
286 env
->tr
.base
= x86_ldl_phys(cs
, sm_state
+ 0x7f64);
287 env
->tr
.limit
= x86_ldl_phys(cs
, sm_state
+ 0x7f60);
288 env
->tr
.flags
= (x86_ldl_phys(cs
, sm_state
+ 0x7f5c) & 0xf0ff) << 8;
290 env
->ldt
.selector
= x86_ldl_phys(cs
, sm_state
+ 0x7fc0) & 0xffff;
291 env
->ldt
.base
= x86_ldl_phys(cs
, sm_state
+ 0x7f80);
292 env
->ldt
.limit
= x86_ldl_phys(cs
, sm_state
+ 0x7f7c);
293 env
->ldt
.flags
= (x86_ldl_phys(cs
, sm_state
+ 0x7f78) & 0xf0ff) << 8;
295 env
->gdt
.base
= x86_ldl_phys(cs
, sm_state
+ 0x7f74);
296 env
->gdt
.limit
= x86_ldl_phys(cs
, sm_state
+ 0x7f70);
298 env
->idt
.base
= x86_ldl_phys(cs
, sm_state
+ 0x7f58);
299 env
->idt
.limit
= x86_ldl_phys(cs
, sm_state
+ 0x7f54);
301 for (i
= 0; i
< 6; i
++) {
303 offset
= 0x7f84 + i
* 12;
305 offset
= 0x7f2c + (i
- 3) * 12;
307 cpu_x86_load_seg_cache(env
, i
,
309 sm_state
+ 0x7fa8 + i
* 4) & 0xffff,
310 x86_ldl_phys(cs
, sm_state
+ offset
+ 8),
311 x86_ldl_phys(cs
, sm_state
+ offset
+ 4),
313 sm_state
+ offset
) & 0xf0ff) << 8);
315 cpu_x86_update_cr4(env
, x86_ldl_phys(cs
, sm_state
+ 0x7f14));
317 val
= x86_ldl_phys(cs
, sm_state
+ 0x7efc); /* revision ID */
319 env
->smbase
= x86_ldl_phys(cs
, sm_state
+ 0x7ef8);
322 if ((env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
) == 0) {
323 env
->hflags2
&= ~HF2_NMI_MASK
;
325 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
326 env
->hflags
&= ~HF_SMM_MASK
;
328 qemu_log_mask(CPU_LOG_INT
, "SMM: after RSM\n");
329 log_cpu_state_mask(CPU_LOG_INT
, CPU(cpu
), CPU_DUMP_CCOP
);
332 #endif /* !CONFIG_USER_ONLY */