2 * TriCore emulation for qemu: fpu helper.
4 * Copyright (c) 2016 Bastian Koppelmann University of Paderborn
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/helper-proto.h"
23 #include "fpu/softfloat.h"
25 #define QUIET_NAN 0x7fc00000
26 #define ADD_NAN 0x7fc00001
27 #define DIV_NAN 0x7fc00008
28 #define MUL_NAN 0x7fc00002
29 #define FPU_FS PSW_USB_C
30 #define FPU_FI PSW_USB_V
31 #define FPU_FV PSW_USB_SV
32 #define FPU_FZ PSW_USB_AV
33 #define FPU_FU PSW_USB_SAV
35 /* we don't care about input_denormal */
36 static inline uint8_t f_get_excp_flags(CPUTriCoreState
*env
)
38 return get_float_exception_flags(&env
->fp_status
)
41 | float_flag_underflow
42 | float_flag_output_denormal
43 | float_flag_divbyzero
44 | float_flag_inexact
);
47 static inline bool f_is_denormal(float32 arg
)
49 return float32_is_zero_or_denormal(arg
) && !float32_is_zero(arg
);
52 static inline float32
f_maddsub_nan_result(float32 arg1
, float32 arg2
,
53 float32 arg3
, float32 result
,
54 uint32_t muladd_negate_c
)
56 uint32_t aSign
, bSign
, cSign
;
57 uint32_t aExp
, bExp
, cExp
;
59 if (float32_is_any_nan(arg1
) || float32_is_any_nan(arg2
) ||
60 float32_is_any_nan(arg3
)) {
62 } else if (float32_is_infinity(arg1
) && float32_is_zero(arg2
)) {
64 } else if (float32_is_zero(arg1
) && float32_is_infinity(arg2
)) {
71 aExp
= (arg1
>> 23) & 0xff;
72 bExp
= (arg2
>> 23) & 0xff;
73 cExp
= (arg3
>> 23) & 0xff;
75 if (muladd_negate_c
) {
78 if (((aExp
== 0xff) || (bExp
== 0xff)) && (cExp
== 0xff)) {
79 if (aSign
^ bSign
^ cSign
) {
88 static void f_update_psw_flags(CPUTriCoreState
*env
, uint8_t flags
)
90 uint8_t some_excp
= 0;
91 set_float_exception_flags(0, &env
->fp_status
);
93 if (flags
& float_flag_invalid
) {
94 env
->FPU_FI
= 1 << 31;
98 if (flags
& float_flag_overflow
) {
99 env
->FPU_FV
= 1 << 31;
103 if (flags
& float_flag_underflow
|| flags
& float_flag_output_denormal
) {
104 env
->FPU_FU
= 1 << 31;
108 if (flags
& float_flag_divbyzero
) {
109 env
->FPU_FZ
= 1 << 31;
113 if (flags
& float_flag_inexact
|| flags
& float_flag_output_denormal
) {
118 env
->FPU_FS
= some_excp
;
121 #define FADD_SUB(op) \
122 uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2) \
124 float32 arg1 = make_float32(r1); \
125 float32 arg2 = make_float32(r2); \
129 f_result = float32_##op(arg2, arg1, &env->fp_status); \
130 flags = f_get_excp_flags(env); \
132 /* If the output is a NaN, but the inputs aren't, \
133 we return a unique value. */ \
134 if ((flags & float_flag_invalid) \
135 && !float32_is_any_nan(arg1) \
136 && !float32_is_any_nan(arg2)) { \
137 f_result = ADD_NAN; \
139 f_update_psw_flags(env, flags); \
143 return (uint32_t)f_result; \
148 uint32_t helper_fmul(CPUTriCoreState
*env
, uint32_t r1
, uint32_t r2
)
151 float32 arg1
= make_float32(r1
);
152 float32 arg2
= make_float32(r2
);
155 f_result
= float32_mul(arg1
, arg2
, &env
->fp_status
);
157 flags
= f_get_excp_flags(env
);
159 /* If the output is a NaN, but the inputs aren't,
160 we return a unique value. */
161 if ((flags
& float_flag_invalid
)
162 && !float32_is_any_nan(arg1
)
163 && !float32_is_any_nan(arg2
)) {
166 f_update_psw_flags(env
, flags
);
170 return (uint32_t)f_result
;
174 uint32_t helper_fdiv(CPUTriCoreState
*env
, uint32_t r1
, uint32_t r2
)
177 float32 arg1
= make_float32(r1
);
178 float32 arg2
= make_float32(r2
);
181 f_result
= float32_div(arg1
, arg2
, &env
->fp_status
);
183 flags
= f_get_excp_flags(env
);
185 /* If the output is a NaN, but the inputs aren't,
186 we return a unique value. */
187 if ((flags
& float_flag_invalid
)
188 && !float32_is_any_nan(arg1
)
189 && !float32_is_any_nan(arg2
)) {
192 f_update_psw_flags(env
, flags
);
197 return (uint32_t)f_result
;
200 uint32_t helper_fmadd(CPUTriCoreState
*env
, uint32_t r1
,
201 uint32_t r2
, uint32_t r3
)
204 float32 arg1
= make_float32(r1
);
205 float32 arg2
= make_float32(r2
);
206 float32 arg3
= make_float32(r3
);
209 f_result
= float32_muladd(arg1
, arg2
, arg3
, 0, &env
->fp_status
);
211 flags
= f_get_excp_flags(env
);
213 if (flags
& float_flag_invalid
) {
214 arg1
= float32_squash_input_denormal(arg1
, &env
->fp_status
);
215 arg2
= float32_squash_input_denormal(arg2
, &env
->fp_status
);
216 arg3
= float32_squash_input_denormal(arg3
, &env
->fp_status
);
217 f_result
= f_maddsub_nan_result(arg1
, arg2
, arg3
, f_result
, 0);
219 f_update_psw_flags(env
, flags
);
223 return (uint32_t)f_result
;
226 uint32_t helper_fmsub(CPUTriCoreState
*env
, uint32_t r1
,
227 uint32_t r2
, uint32_t r3
)
230 float32 arg1
= make_float32(r1
);
231 float32 arg2
= make_float32(r2
);
232 float32 arg3
= make_float32(r3
);
235 f_result
= float32_muladd(arg1
, arg2
, arg3
, float_muladd_negate_product
,
238 flags
= f_get_excp_flags(env
);
240 if (flags
& float_flag_invalid
) {
241 arg1
= float32_squash_input_denormal(arg1
, &env
->fp_status
);
242 arg2
= float32_squash_input_denormal(arg2
, &env
->fp_status
);
243 arg3
= float32_squash_input_denormal(arg3
, &env
->fp_status
);
245 f_result
= f_maddsub_nan_result(arg1
, arg2
, arg3
, f_result
, 1);
247 f_update_psw_flags(env
, flags
);
251 return (uint32_t)f_result
;
254 uint32_t helper_fcmp(CPUTriCoreState
*env
, uint32_t r1
, uint32_t r2
)
256 uint32_t result
, flags
;
257 float32 arg1
= make_float32(r1
);
258 float32 arg2
= make_float32(r2
);
260 set_flush_inputs_to_zero(0, &env
->fp_status
);
262 result
= 1 << (float32_compare_quiet(arg1
, arg2
, &env
->fp_status
) + 1);
263 result
|= f_is_denormal(arg1
) << 4;
264 result
|= f_is_denormal(arg2
) << 5;
266 flags
= f_get_excp_flags(env
);
268 f_update_psw_flags(env
, flags
);
273 set_flush_inputs_to_zero(1, &env
->fp_status
);
277 uint32_t helper_ftoi(CPUTriCoreState
*env
, uint32_t arg
)
279 float32 f_arg
= make_float32(arg
);
280 int32_t result
, flags
;
282 result
= float32_to_int32(f_arg
, &env
->fp_status
);
284 flags
= f_get_excp_flags(env
);
286 if (float32_is_any_nan(f_arg
)) {
289 f_update_psw_flags(env
, flags
);
293 return (uint32_t)result
;
296 uint32_t helper_itof(CPUTriCoreState
*env
, uint32_t arg
)
300 f_result
= int32_to_float32(arg
, &env
->fp_status
);
302 flags
= f_get_excp_flags(env
);
304 f_update_psw_flags(env
, flags
);
308 return (uint32_t)f_result
;
311 uint32_t helper_ftouz(CPUTriCoreState
*env
, uint32_t arg
)
313 float32 f_arg
= make_float32(arg
);
317 result
= float32_to_uint32_round_to_zero(f_arg
, &env
->fp_status
);
319 flags
= f_get_excp_flags(env
);
320 if (flags
& float_flag_invalid
) {
321 flags
&= ~float_flag_inexact
;
322 if (float32_is_any_nan(f_arg
)) {
325 } else if (float32_lt_quiet(f_arg
, 0, &env
->fp_status
)) {
326 flags
= float_flag_invalid
;
331 f_update_psw_flags(env
, flags
);
338 void helper_updfl(CPUTriCoreState
*env
, uint32_t arg
)
340 env
->FPU_FS
= extract32(arg
, 7, 1) & extract32(arg
, 15, 1);
341 env
->FPU_FI
= (extract32(arg
, 6, 1) & extract32(arg
, 14, 1)) << 31;
342 env
->FPU_FV
= (extract32(arg
, 5, 1) & extract32(arg
, 13, 1)) << 31;
343 env
->FPU_FZ
= (extract32(arg
, 4, 1) & extract32(arg
, 12, 1)) << 31;
344 env
->FPU_FU
= (extract32(arg
, 3, 1) & extract32(arg
, 11, 1)) << 31;
345 /* clear FX and RM */
346 env
->PSW
&= ~(extract32(arg
, 10, 1) << 26);
347 env
->PSW
|= (extract32(arg
, 2, 1) & extract32(arg
, 10, 1)) << 26;