2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "qemu/osdep.h"
32 #include "qemu-common.h"
33 #include "qemu/units.h"
34 #include "qemu/option.h"
35 #include "monitor/qdev.h"
36 #include "qapi/error.h"
37 #include "hw/sysbus.h"
38 #include "hw/boards.h"
39 #include "hw/arm/boot.h"
40 #include "hw/arm/primecell.h"
41 #include "hw/arm/virt.h"
42 #include "hw/block/flash.h"
43 #include "hw/vfio/vfio-calxeda-xgmac.h"
44 #include "hw/vfio/vfio-amd-xgbe.h"
45 #include "hw/display/ramfb.h"
47 #include "sysemu/device_tree.h"
48 #include "sysemu/numa.h"
49 #include "sysemu/runstate.h"
50 #include "sysemu/sysemu.h"
51 #include "sysemu/tpm.h"
52 #include "sysemu/kvm.h"
53 #include "hw/loader.h"
54 #include "exec/address-spaces.h"
55 #include "qemu/bitops.h"
56 #include "qemu/error-report.h"
57 #include "qemu/module.h"
58 #include "hw/pci-host/gpex.h"
59 #include "hw/virtio/virtio-pci.h"
60 #include "hw/arm/sysbus-fdt.h"
61 #include "hw/platform-bus.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/arm/fdt.h"
64 #include "hw/intc/arm_gic.h"
65 #include "hw/intc/arm_gicv3_common.h"
68 #include "hw/firmware/smbios.h"
69 #include "qapi/visitor.h"
70 #include "qapi/qapi-visit-common.h"
71 #include "standard-headers/linux/input.h"
72 #include "hw/arm/smmuv3.h"
73 #include "hw/acpi/acpi.h"
74 #include "target/arm/internals.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "hw/mem/nvdimm.h"
77 #include "hw/acpi/generic_event_device.h"
78 #include "hw/virtio/virtio-iommu.h"
79 #include "hw/char/pl011.h"
80 #include "qemu/guest-random.h"
82 #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
83 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
86 MachineClass *mc = MACHINE_CLASS(oc); \
87 virt_machine_##major##_##minor##_options(mc); \
88 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
93 static const TypeInfo machvirt_##major##_##minor##_info = { \
94 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
95 .parent = TYPE_VIRT_MACHINE, \
96 .class_init = virt_##major##_##minor##_class_init, \
98 static void machvirt_machine_##major##_##minor##_init(void) \
100 type_register_static(&machvirt_##major##_##minor##_info); \
102 type_init(machvirt_machine_##major##_##minor##_init);
104 #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
105 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
106 #define DEFINE_VIRT_MACHINE(major, minor) \
107 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
110 /* Number of external interrupt lines to configure the GIC with */
113 #define PLATFORM_BUS_NUM_IRQS 64
115 /* Legacy RAM limit in GB (< version 4.0) */
116 #define LEGACY_RAMLIMIT_GB 255
117 #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
119 /* Addresses and sizes of our components.
120 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
121 * 128MB..256MB is used for miscellaneous device I/O.
122 * 256MB..1GB is reserved for possible future PCI support (ie where the
123 * PCI memory window will go if we add a PCI host controller).
124 * 1GB and up is RAM (which may happily spill over into the
125 * high memory region beyond 4GB).
126 * This represents a compromise between how much RAM can be given to
127 * a 32 bit VM and leaving space for expansion and in particular for PCI.
128 * Note that devices should generally be placed at multiples of 0x10000,
129 * to accommodate guests using 64K pages.
131 static const MemMapEntry base_memmap
[] = {
132 /* Space up to 0x8000000 is reserved for a boot ROM */
133 [VIRT_FLASH
] = { 0, 0x08000000 },
134 [VIRT_CPUPERIPHS
] = { 0x08000000, 0x00020000 },
135 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
136 [VIRT_GIC_DIST
] = { 0x08000000, 0x00010000 },
137 [VIRT_GIC_CPU
] = { 0x08010000, 0x00010000 },
138 [VIRT_GIC_V2M
] = { 0x08020000, 0x00001000 },
139 [VIRT_GIC_HYP
] = { 0x08030000, 0x00010000 },
140 [VIRT_GIC_VCPU
] = { 0x08040000, 0x00010000 },
141 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
142 [VIRT_GIC_ITS
] = { 0x08080000, 0x00020000 },
143 /* This redistributor space allows up to 2*64kB*123 CPUs */
144 [VIRT_GIC_REDIST
] = { 0x080A0000, 0x00F60000 },
145 [VIRT_UART
] = { 0x09000000, 0x00001000 },
146 [VIRT_RTC
] = { 0x09010000, 0x00001000 },
147 [VIRT_FW_CFG
] = { 0x09020000, 0x00000018 },
148 [VIRT_GPIO
] = { 0x09030000, 0x00001000 },
149 [VIRT_SECURE_UART
] = { 0x09040000, 0x00001000 },
150 [VIRT_SMMU
] = { 0x09050000, 0x00020000 },
151 [VIRT_PCDIMM_ACPI
] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN
},
152 [VIRT_ACPI_GED
] = { 0x09080000, ACPI_GED_EVT_SEL_LEN
},
153 [VIRT_NVDIMM_ACPI
] = { 0x09090000, NVDIMM_ACPI_IO_LEN
},
154 [VIRT_MMIO
] = { 0x0a000000, 0x00000200 },
155 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
156 [VIRT_PLATFORM_BUS
] = { 0x0c000000, 0x02000000 },
157 [VIRT_SECURE_MEM
] = { 0x0e000000, 0x01000000 },
158 [VIRT_PCIE_MMIO
] = { 0x10000000, 0x2eff0000 },
159 [VIRT_PCIE_PIO
] = { 0x3eff0000, 0x00010000 },
160 [VIRT_PCIE_ECAM
] = { 0x3f000000, 0x01000000 },
161 /* Actual RAM size depends on initial RAM and device memory settings */
162 [VIRT_MEM
] = { GiB
, LEGACY_RAMLIMIT_BYTES
},
166 * Highmem IO Regions: This memory map is floating, located after the RAM.
167 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
168 * top of the RAM, so that its base get the same alignment as the size,
169 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
170 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
171 * Note the extended_memmap is sized so that it eventually also includes the
172 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
173 * index of base_memmap).
175 static MemMapEntry extended_memmap
[] = {
176 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
177 [VIRT_HIGH_GIC_REDIST2
] = { 0x0, 64 * MiB
},
178 [VIRT_HIGH_PCIE_ECAM
] = { 0x0, 256 * MiB
},
179 /* Second PCIe window */
180 [VIRT_HIGH_PCIE_MMIO
] = { 0x0, 512 * GiB
},
183 static const int a15irqmap
[] = {
186 [VIRT_PCIE
] = 3, /* ... to 6 */
188 [VIRT_SECURE_UART
] = 8,
190 [VIRT_MMIO
] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
191 [VIRT_GIC_V2M
] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
192 [VIRT_SMMU
] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
193 [VIRT_PLATFORM_BUS
] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
196 static const char *valid_cpus
[] = {
197 ARM_CPU_TYPE_NAME("cortex-a7"),
198 ARM_CPU_TYPE_NAME("cortex-a15"),
199 ARM_CPU_TYPE_NAME("cortex-a53"),
200 ARM_CPU_TYPE_NAME("cortex-a57"),
201 ARM_CPU_TYPE_NAME("cortex-a72"),
202 ARM_CPU_TYPE_NAME("host"),
203 ARM_CPU_TYPE_NAME("max"),
206 static bool cpu_type_valid(const char *cpu
)
210 for (i
= 0; i
< ARRAY_SIZE(valid_cpus
); i
++) {
211 if (strcmp(cpu
, valid_cpus
[i
]) == 0) {
218 static void create_kaslr_seed(VirtMachineState
*vms
, const char *node
)
222 if (qemu_guest_getrandom(&seed
, sizeof(seed
), NULL
)) {
225 qemu_fdt_setprop_u64(vms
->fdt
, node
, "kaslr-seed", seed
);
228 static void create_fdt(VirtMachineState
*vms
)
230 MachineState
*ms
= MACHINE(vms
);
231 int nb_numa_nodes
= ms
->numa_state
->num_nodes
;
232 void *fdt
= create_device_tree(&vms
->fdt_size
);
235 error_report("create_device_tree() failed");
242 qemu_fdt_setprop_string(fdt
, "/", "compatible", "linux,dummy-virt");
243 qemu_fdt_setprop_cell(fdt
, "/", "#address-cells", 0x2);
244 qemu_fdt_setprop_cell(fdt
, "/", "#size-cells", 0x2);
246 /* /chosen must exist for load_dtb to fill in necessary properties later */
247 qemu_fdt_add_subnode(fdt
, "/chosen");
248 create_kaslr_seed(vms
, "/chosen");
251 qemu_fdt_add_subnode(fdt
, "/secure-chosen");
252 create_kaslr_seed(vms
, "/secure-chosen");
255 /* Clock node, for the benefit of the UART. The kernel device tree
256 * binding documentation claims the PL011 node clock properties are
257 * optional but in practice if you omit them the kernel refuses to
258 * probe for the device.
260 vms
->clock_phandle
= qemu_fdt_alloc_phandle(fdt
);
261 qemu_fdt_add_subnode(fdt
, "/apb-pclk");
262 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "compatible", "fixed-clock");
263 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "#clock-cells", 0x0);
264 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "clock-frequency", 24000000);
265 qemu_fdt_setprop_string(fdt
, "/apb-pclk", "clock-output-names",
267 qemu_fdt_setprop_cell(fdt
, "/apb-pclk", "phandle", vms
->clock_phandle
);
269 if (nb_numa_nodes
> 0 && ms
->numa_state
->have_numa_distance
) {
270 int size
= nb_numa_nodes
* nb_numa_nodes
* 3 * sizeof(uint32_t);
271 uint32_t *matrix
= g_malloc0(size
);
274 for (i
= 0; i
< nb_numa_nodes
; i
++) {
275 for (j
= 0; j
< nb_numa_nodes
; j
++) {
276 idx
= (i
* nb_numa_nodes
+ j
) * 3;
277 matrix
[idx
+ 0] = cpu_to_be32(i
);
278 matrix
[idx
+ 1] = cpu_to_be32(j
);
280 cpu_to_be32(ms
->numa_state
->nodes
[i
].distance
[j
]);
284 qemu_fdt_add_subnode(fdt
, "/distance-map");
285 qemu_fdt_setprop_string(fdt
, "/distance-map", "compatible",
286 "numa-distance-map-v1");
287 qemu_fdt_setprop(fdt
, "/distance-map", "distance-matrix",
293 static void fdt_add_timer_nodes(const VirtMachineState
*vms
)
295 /* On real hardware these interrupts are level-triggered.
296 * On KVM they were edge-triggered before host kernel version 4.4,
297 * and level-triggered afterwards.
298 * On emulated QEMU they are level-triggered.
300 * Getting the DTB info about them wrong is awkward for some
302 * pre-4.8 ignore the DT and leave the interrupt configured
303 * with whatever the GIC reset value (or the bootloader) left it at
304 * 4.8 before rc6 honour the incorrect data by programming it back
305 * into the GIC, causing problems
306 * 4.8rc6 and later ignore the DT and always write "level triggered"
309 * For backwards-compatibility, virt-2.8 and earlier will continue
310 * to say these are edge-triggered, but later machines will report
311 * the correct information.
314 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
315 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
317 if (vmc
->claim_edge_triggered_timers
) {
318 irqflags
= GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
;
321 if (vms
->gic_version
== VIRT_GIC_VERSION_2
) {
322 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
323 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
324 (1 << vms
->smp_cpus
) - 1);
327 qemu_fdt_add_subnode(vms
->fdt
, "/timer");
329 armcpu
= ARM_CPU(qemu_get_cpu(0));
330 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
331 const char compat
[] = "arm,armv8-timer\0arm,armv7-timer";
332 qemu_fdt_setprop(vms
->fdt
, "/timer", "compatible",
333 compat
, sizeof(compat
));
335 qemu_fdt_setprop_string(vms
->fdt
, "/timer", "compatible",
338 qemu_fdt_setprop(vms
->fdt
, "/timer", "always-on", NULL
, 0);
339 qemu_fdt_setprop_cells(vms
->fdt
, "/timer", "interrupts",
340 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_S_EL1_IRQ
, irqflags
,
341 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL1_IRQ
, irqflags
,
342 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_VIRT_IRQ
, irqflags
,
343 GIC_FDT_IRQ_TYPE_PPI
, ARCH_TIMER_NS_EL2_IRQ
, irqflags
);
346 static void fdt_add_cpu_nodes(const VirtMachineState
*vms
)
350 const MachineState
*ms
= MACHINE(vms
);
353 * From Documentation/devicetree/bindings/arm/cpus.txt
354 * On ARM v8 64-bit systems value should be set to 2,
355 * that corresponds to the MPIDR_EL1 register size.
356 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
357 * in the system, #address-cells can be set to 1, since
358 * MPIDR_EL1[63:32] bits are not used for CPUs
361 * Here we actually don't know whether our system is 32- or 64-bit one.
362 * The simplest way to go is to examine affinity IDs of all our CPUs. If
363 * at least one of them has Aff3 populated, we set #address-cells to 2.
365 for (cpu
= 0; cpu
< vms
->smp_cpus
; cpu
++) {
366 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
368 if (armcpu
->mp_affinity
& ARM_AFF3_MASK
) {
374 qemu_fdt_add_subnode(vms
->fdt
, "/cpus");
375 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#address-cells", addr_cells
);
376 qemu_fdt_setprop_cell(vms
->fdt
, "/cpus", "#size-cells", 0x0);
378 for (cpu
= vms
->smp_cpus
- 1; cpu
>= 0; cpu
--) {
379 char *nodename
= g_strdup_printf("/cpus/cpu@%d", cpu
);
380 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(cpu
));
381 CPUState
*cs
= CPU(armcpu
);
383 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
384 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "cpu");
385 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
386 armcpu
->dtb_compatible
);
388 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
389 && vms
->smp_cpus
> 1) {
390 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
391 "enable-method", "psci");
394 if (addr_cells
== 2) {
395 qemu_fdt_setprop_u64(vms
->fdt
, nodename
, "reg",
396 armcpu
->mp_affinity
);
398 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "reg",
399 armcpu
->mp_affinity
);
402 if (ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.has_node_id
) {
403 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "numa-node-id",
404 ms
->possible_cpus
->cpus
[cs
->cpu_index
].props
.node_id
);
411 static void fdt_add_its_gic_node(VirtMachineState
*vms
)
415 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
416 nodename
= g_strdup_printf("/intc/its@%" PRIx64
,
417 vms
->memmap
[VIRT_GIC_ITS
].base
);
418 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
419 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
421 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
422 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
423 2, vms
->memmap
[VIRT_GIC_ITS
].base
,
424 2, vms
->memmap
[VIRT_GIC_ITS
].size
);
425 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
429 static void fdt_add_v2m_gic_node(VirtMachineState
*vms
)
433 nodename
= g_strdup_printf("/intc/v2m@%" PRIx64
,
434 vms
->memmap
[VIRT_GIC_V2M
].base
);
435 vms
->msi_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
436 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
437 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
438 "arm,gic-v2m-frame");
439 qemu_fdt_setprop(vms
->fdt
, nodename
, "msi-controller", NULL
, 0);
440 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
441 2, vms
->memmap
[VIRT_GIC_V2M
].base
,
442 2, vms
->memmap
[VIRT_GIC_V2M
].size
);
443 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->msi_phandle
);
447 static void fdt_add_gic_node(VirtMachineState
*vms
)
451 vms
->gic_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
452 qemu_fdt_setprop_cell(vms
->fdt
, "/", "interrupt-parent", vms
->gic_phandle
);
454 nodename
= g_strdup_printf("/intc@%" PRIx64
,
455 vms
->memmap
[VIRT_GIC_DIST
].base
);
456 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
457 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 3);
458 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-controller", NULL
, 0);
459 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 0x2);
460 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 0x2);
461 qemu_fdt_setprop(vms
->fdt
, nodename
, "ranges", NULL
, 0);
462 if (vms
->gic_version
== VIRT_GIC_VERSION_3
) {
463 int nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
465 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
468 qemu_fdt_setprop_cell(vms
->fdt
, nodename
,
469 "#redistributor-regions", nb_redist_regions
);
471 if (nb_redist_regions
== 1) {
472 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
473 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
474 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
475 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
476 2, vms
->memmap
[VIRT_GIC_REDIST
].size
);
478 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
479 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
480 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
481 2, vms
->memmap
[VIRT_GIC_REDIST
].base
,
482 2, vms
->memmap
[VIRT_GIC_REDIST
].size
,
483 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
,
484 2, vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
);
488 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
489 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
490 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
493 /* 'cortex-a15-gic' means 'GIC v2' */
494 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible",
495 "arm,cortex-a15-gic");
497 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
498 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
499 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
500 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
501 2, vms
->memmap
[VIRT_GIC_CPU
].size
);
503 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
504 2, vms
->memmap
[VIRT_GIC_DIST
].base
,
505 2, vms
->memmap
[VIRT_GIC_DIST
].size
,
506 2, vms
->memmap
[VIRT_GIC_CPU
].base
,
507 2, vms
->memmap
[VIRT_GIC_CPU
].size
,
508 2, vms
->memmap
[VIRT_GIC_HYP
].base
,
509 2, vms
->memmap
[VIRT_GIC_HYP
].size
,
510 2, vms
->memmap
[VIRT_GIC_VCPU
].base
,
511 2, vms
->memmap
[VIRT_GIC_VCPU
].size
);
512 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
513 GIC_FDT_IRQ_TYPE_PPI
, ARCH_GIC_MAINT_IRQ
,
514 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
518 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", vms
->gic_phandle
);
522 static void fdt_add_pmu_nodes(const VirtMachineState
*vms
)
526 uint32_t irqflags
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
529 armcpu
= ARM_CPU(cpu
);
530 if (!arm_feature(&armcpu
->env
, ARM_FEATURE_PMU
)) {
534 if (kvm_irqchip_in_kernel()) {
535 kvm_arm_pmu_set_irq(cpu
, PPI(VIRTUAL_PMU_IRQ
));
537 kvm_arm_pmu_init(cpu
);
541 if (vms
->gic_version
== VIRT_GIC_VERSION_2
) {
542 irqflags
= deposit32(irqflags
, GIC_FDT_IRQ_PPI_CPU_START
,
543 GIC_FDT_IRQ_PPI_CPU_WIDTH
,
544 (1 << vms
->smp_cpus
) - 1);
547 armcpu
= ARM_CPU(qemu_get_cpu(0));
548 qemu_fdt_add_subnode(vms
->fdt
, "/pmu");
549 if (arm_feature(&armcpu
->env
, ARM_FEATURE_V8
)) {
550 const char compat
[] = "arm,armv8-pmuv3";
551 qemu_fdt_setprop(vms
->fdt
, "/pmu", "compatible",
552 compat
, sizeof(compat
));
553 qemu_fdt_setprop_cells(vms
->fdt
, "/pmu", "interrupts",
554 GIC_FDT_IRQ_TYPE_PPI
, VIRTUAL_PMU_IRQ
, irqflags
);
558 static inline DeviceState
*create_acpi_ged(VirtMachineState
*vms
)
561 MachineState
*ms
= MACHINE(vms
);
562 int irq
= vms
->irqmap
[VIRT_ACPI_GED
];
563 uint32_t event
= ACPI_GED_PWR_DOWN_EVT
;
566 event
|= ACPI_GED_MEM_HOTPLUG_EVT
;
569 if (ms
->nvdimms_state
->is_enabled
) {
570 event
|= ACPI_GED_NVDIMM_HOTPLUG_EVT
;
573 dev
= qdev_new(TYPE_ACPI_GED
);
574 qdev_prop_set_uint32(dev
, "ged-event", event
);
576 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_ACPI_GED
].base
);
577 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 1, vms
->memmap
[VIRT_PCDIMM_ACPI
].base
);
578 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), 0, qdev_get_gpio_in(vms
->gic
, irq
));
580 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
585 static void create_its(VirtMachineState
*vms
)
587 const char *itsclass
= its_class_name();
591 /* Do nothing if not supported */
595 dev
= qdev_new(itsclass
);
597 object_property_set_link(OBJECT(dev
), "parent-gicv3", OBJECT(vms
->gic
),
599 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
600 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_ITS
].base
);
602 fdt_add_its_gic_node(vms
);
603 vms
->msi_controller
= VIRT_MSI_CTRL_ITS
;
606 static void create_v2m(VirtMachineState
*vms
)
609 int irq
= vms
->irqmap
[VIRT_GIC_V2M
];
612 dev
= qdev_new("arm-gicv2m");
613 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, vms
->memmap
[VIRT_GIC_V2M
].base
);
614 qdev_prop_set_uint32(dev
, "base-spi", irq
);
615 qdev_prop_set_uint32(dev
, "num-spi", NUM_GICV2M_SPIS
);
616 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
618 for (i
= 0; i
< NUM_GICV2M_SPIS
; i
++) {
619 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
620 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
623 fdt_add_v2m_gic_node(vms
);
624 vms
->msi_controller
= VIRT_MSI_CTRL_GICV2M
;
627 static void create_gic(VirtMachineState
*vms
)
629 MachineState
*ms
= MACHINE(vms
);
630 /* We create a standalone GIC */
631 SysBusDevice
*gicbusdev
;
633 int type
= vms
->gic_version
, i
;
634 unsigned int smp_cpus
= ms
->smp
.cpus
;
635 uint32_t nb_redist_regions
= 0;
637 gictype
= (type
== 3) ? gicv3_class_name() : gic_class_name();
639 vms
->gic
= qdev_new(gictype
);
640 qdev_prop_set_uint32(vms
->gic
, "revision", type
);
641 qdev_prop_set_uint32(vms
->gic
, "num-cpu", smp_cpus
);
642 /* Note that the num-irq property counts both internal and external
643 * interrupts; there are always 32 of the former (mandated by GIC spec).
645 qdev_prop_set_uint32(vms
->gic
, "num-irq", NUM_IRQS
+ 32);
646 if (!kvm_irqchip_in_kernel()) {
647 qdev_prop_set_bit(vms
->gic
, "has-security-extensions", vms
->secure
);
651 uint32_t redist0_capacity
=
652 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
653 uint32_t redist0_count
= MIN(smp_cpus
, redist0_capacity
);
655 nb_redist_regions
= virt_gicv3_redist_region_count(vms
);
657 qdev_prop_set_uint32(vms
->gic
, "len-redist-region-count",
659 qdev_prop_set_uint32(vms
->gic
, "redist-region-count[0]", redist0_count
);
661 if (nb_redist_regions
== 2) {
662 uint32_t redist1_capacity
=
663 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
665 qdev_prop_set_uint32(vms
->gic
, "redist-region-count[1]",
666 MIN(smp_cpus
- redist0_count
, redist1_capacity
));
669 if (!kvm_irqchip_in_kernel()) {
670 qdev_prop_set_bit(vms
->gic
, "has-virtualization-extensions",
674 gicbusdev
= SYS_BUS_DEVICE(vms
->gic
);
675 sysbus_realize_and_unref(gicbusdev
, &error_fatal
);
676 sysbus_mmio_map(gicbusdev
, 0, vms
->memmap
[VIRT_GIC_DIST
].base
);
678 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_REDIST
].base
);
679 if (nb_redist_regions
== 2) {
680 sysbus_mmio_map(gicbusdev
, 2,
681 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].base
);
684 sysbus_mmio_map(gicbusdev
, 1, vms
->memmap
[VIRT_GIC_CPU
].base
);
686 sysbus_mmio_map(gicbusdev
, 2, vms
->memmap
[VIRT_GIC_HYP
].base
);
687 sysbus_mmio_map(gicbusdev
, 3, vms
->memmap
[VIRT_GIC_VCPU
].base
);
691 /* Wire the outputs from each CPU's generic timer and the GICv3
692 * maintenance interrupt signal to the appropriate GIC PPI inputs,
693 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
695 for (i
= 0; i
< smp_cpus
; i
++) {
696 DeviceState
*cpudev
= DEVICE(qemu_get_cpu(i
));
697 int ppibase
= NUM_IRQS
+ i
* GIC_INTERNAL
+ GIC_NR_SGIS
;
699 /* Mapping from the output timer irq lines from the CPU to the
700 * GIC PPI inputs we use for the virt board.
702 const int timer_irq
[] = {
703 [GTIMER_PHYS
] = ARCH_TIMER_NS_EL1_IRQ
,
704 [GTIMER_VIRT
] = ARCH_TIMER_VIRT_IRQ
,
705 [GTIMER_HYP
] = ARCH_TIMER_NS_EL2_IRQ
,
706 [GTIMER_SEC
] = ARCH_TIMER_S_EL1_IRQ
,
709 for (irq
= 0; irq
< ARRAY_SIZE(timer_irq
); irq
++) {
710 qdev_connect_gpio_out(cpudev
, irq
,
711 qdev_get_gpio_in(vms
->gic
,
712 ppibase
+ timer_irq
[irq
]));
716 qemu_irq irq
= qdev_get_gpio_in(vms
->gic
,
717 ppibase
+ ARCH_GIC_MAINT_IRQ
);
718 qdev_connect_gpio_out_named(cpudev
, "gicv3-maintenance-interrupt",
720 } else if (vms
->virt
) {
721 qemu_irq irq
= qdev_get_gpio_in(vms
->gic
,
722 ppibase
+ ARCH_GIC_MAINT_IRQ
);
723 sysbus_connect_irq(gicbusdev
, i
+ 4 * smp_cpus
, irq
);
726 qdev_connect_gpio_out_named(cpudev
, "pmu-interrupt", 0,
727 qdev_get_gpio_in(vms
->gic
, ppibase
730 sysbus_connect_irq(gicbusdev
, i
, qdev_get_gpio_in(cpudev
, ARM_CPU_IRQ
));
731 sysbus_connect_irq(gicbusdev
, i
+ smp_cpus
,
732 qdev_get_gpio_in(cpudev
, ARM_CPU_FIQ
));
733 sysbus_connect_irq(gicbusdev
, i
+ 2 * smp_cpus
,
734 qdev_get_gpio_in(cpudev
, ARM_CPU_VIRQ
));
735 sysbus_connect_irq(gicbusdev
, i
+ 3 * smp_cpus
,
736 qdev_get_gpio_in(cpudev
, ARM_CPU_VFIQ
));
739 fdt_add_gic_node(vms
);
741 if (type
== 3 && vms
->its
) {
743 } else if (type
== 2) {
748 static void create_uart(const VirtMachineState
*vms
, int uart
,
749 MemoryRegion
*mem
, Chardev
*chr
)
752 hwaddr base
= vms
->memmap
[uart
].base
;
753 hwaddr size
= vms
->memmap
[uart
].size
;
754 int irq
= vms
->irqmap
[uart
];
755 const char compat
[] = "arm,pl011\0arm,primecell";
756 const char clocknames
[] = "uartclk\0apb_pclk";
757 DeviceState
*dev
= qdev_new(TYPE_PL011
);
758 SysBusDevice
*s
= SYS_BUS_DEVICE(dev
);
760 qdev_prop_set_chr(dev
, "chardev", chr
);
761 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
762 memory_region_add_subregion(mem
, base
,
763 sysbus_mmio_get_region(s
, 0));
764 sysbus_connect_irq(s
, 0, qdev_get_gpio_in(vms
->gic
, irq
));
766 nodename
= g_strdup_printf("/pl011@%" PRIx64
, base
);
767 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
768 /* Note that we can't use setprop_string because of the embedded NUL */
769 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible",
770 compat
, sizeof(compat
));
771 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
773 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
774 GIC_FDT_IRQ_TYPE_SPI
, irq
,
775 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
776 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "clocks",
777 vms
->clock_phandle
, vms
->clock_phandle
);
778 qemu_fdt_setprop(vms
->fdt
, nodename
, "clock-names",
779 clocknames
, sizeof(clocknames
));
781 if (uart
== VIRT_UART
) {
782 qemu_fdt_setprop_string(vms
->fdt
, "/chosen", "stdout-path", nodename
);
784 /* Mark as not usable by the normal world */
785 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
786 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
788 qemu_fdt_setprop_string(vms
->fdt
, "/secure-chosen", "stdout-path",
795 static void create_rtc(const VirtMachineState
*vms
)
798 hwaddr base
= vms
->memmap
[VIRT_RTC
].base
;
799 hwaddr size
= vms
->memmap
[VIRT_RTC
].size
;
800 int irq
= vms
->irqmap
[VIRT_RTC
];
801 const char compat
[] = "arm,pl031\0arm,primecell";
803 sysbus_create_simple("pl031", base
, qdev_get_gpio_in(vms
->gic
, irq
));
805 nodename
= g_strdup_printf("/pl031@%" PRIx64
, base
);
806 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
807 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
808 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
810 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
811 GIC_FDT_IRQ_TYPE_SPI
, irq
,
812 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
813 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
814 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
818 static DeviceState
*gpio_key_dev
;
819 static void virt_powerdown_req(Notifier
*n
, void *opaque
)
821 VirtMachineState
*s
= container_of(n
, VirtMachineState
, powerdown_notifier
);
824 acpi_send_event(s
->acpi_dev
, ACPI_POWER_DOWN_STATUS
);
826 /* use gpio Pin 3 for power button event */
827 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev
, 0), 1);
831 static void create_gpio(const VirtMachineState
*vms
)
834 DeviceState
*pl061_dev
;
835 hwaddr base
= vms
->memmap
[VIRT_GPIO
].base
;
836 hwaddr size
= vms
->memmap
[VIRT_GPIO
].size
;
837 int irq
= vms
->irqmap
[VIRT_GPIO
];
838 const char compat
[] = "arm,pl061\0arm,primecell";
840 pl061_dev
= sysbus_create_simple("pl061", base
,
841 qdev_get_gpio_in(vms
->gic
, irq
));
843 uint32_t phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
844 nodename
= g_strdup_printf("/pl061@%" PRIx64
, base
);
845 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
846 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
848 qemu_fdt_setprop(vms
->fdt
, nodename
, "compatible", compat
, sizeof(compat
));
849 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#gpio-cells", 2);
850 qemu_fdt_setprop(vms
->fdt
, nodename
, "gpio-controller", NULL
, 0);
851 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
852 GIC_FDT_IRQ_TYPE_SPI
, irq
,
853 GIC_FDT_IRQ_FLAGS_LEVEL_HI
);
854 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "clocks", vms
->clock_phandle
);
855 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "clock-names", "apb_pclk");
856 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "phandle", phandle
);
858 gpio_key_dev
= sysbus_create_simple("gpio-key", -1,
859 qdev_get_gpio_in(pl061_dev
, 3));
860 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys");
861 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys", "compatible", "gpio-keys");
862 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#size-cells", 0);
863 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys", "#address-cells", 1);
865 qemu_fdt_add_subnode(vms
->fdt
, "/gpio-keys/poweroff");
866 qemu_fdt_setprop_string(vms
->fdt
, "/gpio-keys/poweroff",
867 "label", "GPIO Key Poweroff");
868 qemu_fdt_setprop_cell(vms
->fdt
, "/gpio-keys/poweroff", "linux,code",
870 qemu_fdt_setprop_cells(vms
->fdt
, "/gpio-keys/poweroff",
871 "gpios", phandle
, 3, 0);
875 static void create_virtio_devices(const VirtMachineState
*vms
)
878 hwaddr size
= vms
->memmap
[VIRT_MMIO
].size
;
880 /* We create the transports in forwards order. Since qbus_realize()
881 * prepends (not appends) new child buses, the incrementing loop below will
882 * create a list of virtio-mmio buses with decreasing base addresses.
884 * When a -device option is processed from the command line,
885 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
886 * order. The upshot is that -device options in increasing command line
887 * order are mapped to virtio-mmio buses with decreasing base addresses.
889 * When this code was originally written, that arrangement ensured that the
890 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
891 * the first -device on the command line. (The end-to-end order is a
892 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
893 * guest kernel's name-to-address assignment strategy.)
895 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
896 * the message, if not necessarily the code, of commit 70161ff336.
897 * Therefore the loop now establishes the inverse of the original intent.
899 * Unfortunately, we can't counteract the kernel change by reversing the
900 * loop; it would break existing command lines.
902 * In any case, the kernel makes no guarantee about the stability of
903 * enumeration order of virtio devices (as demonstrated by it changing
904 * between kernel versions). For reliable and stable identification
905 * of disks users must use UUIDs or similar mechanisms.
907 for (i
= 0; i
< NUM_VIRTIO_TRANSPORTS
; i
++) {
908 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
909 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
911 sysbus_create_simple("virtio-mmio", base
,
912 qdev_get_gpio_in(vms
->gic
, irq
));
915 /* We add dtb nodes in reverse order so that they appear in the finished
916 * device tree lowest address first.
918 * Note that this mapping is independent of the loop above. The previous
919 * loop influences virtio device to virtio transport assignment, whereas
920 * this loop controls how virtio transports are laid out in the dtb.
922 for (i
= NUM_VIRTIO_TRANSPORTS
- 1; i
>= 0; i
--) {
924 int irq
= vms
->irqmap
[VIRT_MMIO
] + i
;
925 hwaddr base
= vms
->memmap
[VIRT_MMIO
].base
+ i
* size
;
927 nodename
= g_strdup_printf("/virtio_mmio@%" PRIx64
, base
);
928 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
929 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
930 "compatible", "virtio,mmio");
931 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
933 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupts",
934 GIC_FDT_IRQ_TYPE_SPI
, irq
,
935 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
936 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
941 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
943 static PFlashCFI01
*virt_flash_create1(VirtMachineState
*vms
,
945 const char *alias_prop_name
)
948 * Create a single flash device. We use the same parameters as
949 * the flash devices on the Versatile Express board.
951 DeviceState
*dev
= qdev_new(TYPE_PFLASH_CFI01
);
953 qdev_prop_set_uint64(dev
, "sector-length", VIRT_FLASH_SECTOR_SIZE
);
954 qdev_prop_set_uint8(dev
, "width", 4);
955 qdev_prop_set_uint8(dev
, "device-width", 2);
956 qdev_prop_set_bit(dev
, "big-endian", false);
957 qdev_prop_set_uint16(dev
, "id0", 0x89);
958 qdev_prop_set_uint16(dev
, "id1", 0x18);
959 qdev_prop_set_uint16(dev
, "id2", 0x00);
960 qdev_prop_set_uint16(dev
, "id3", 0x00);
961 qdev_prop_set_string(dev
, "name", name
);
962 object_property_add_child(OBJECT(vms
), name
, OBJECT(dev
));
963 object_property_add_alias(OBJECT(vms
), alias_prop_name
,
964 OBJECT(dev
), "drive");
965 return PFLASH_CFI01(dev
);
968 static void virt_flash_create(VirtMachineState
*vms
)
970 vms
->flash
[0] = virt_flash_create1(vms
, "virt.flash0", "pflash0");
971 vms
->flash
[1] = virt_flash_create1(vms
, "virt.flash1", "pflash1");
974 static void virt_flash_map1(PFlashCFI01
*flash
,
975 hwaddr base
, hwaddr size
,
976 MemoryRegion
*sysmem
)
978 DeviceState
*dev
= DEVICE(flash
);
980 assert(QEMU_IS_ALIGNED(size
, VIRT_FLASH_SECTOR_SIZE
));
981 assert(size
/ VIRT_FLASH_SECTOR_SIZE
<= UINT32_MAX
);
982 qdev_prop_set_uint32(dev
, "num-blocks", size
/ VIRT_FLASH_SECTOR_SIZE
);
983 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
985 memory_region_add_subregion(sysmem
, base
,
986 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
),
990 static void virt_flash_map(VirtMachineState
*vms
,
991 MemoryRegion
*sysmem
,
992 MemoryRegion
*secure_sysmem
)
995 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
996 * sysmem is the system memory space. secure_sysmem is the secure view
997 * of the system, and the first flash device should be made visible only
998 * there. The second flash device is visible to both secure and nonsecure.
999 * If sysmem == secure_sysmem this means there is no separate Secure
1000 * address space and both flash devices are generally visible.
1002 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
1003 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
1005 virt_flash_map1(vms
->flash
[0], flashbase
, flashsize
,
1007 virt_flash_map1(vms
->flash
[1], flashbase
+ flashsize
, flashsize
,
1011 static void virt_flash_fdt(VirtMachineState
*vms
,
1012 MemoryRegion
*sysmem
,
1013 MemoryRegion
*secure_sysmem
)
1015 hwaddr flashsize
= vms
->memmap
[VIRT_FLASH
].size
/ 2;
1016 hwaddr flashbase
= vms
->memmap
[VIRT_FLASH
].base
;
1019 if (sysmem
== secure_sysmem
) {
1020 /* Report both flash devices as a single node in the DT */
1021 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
1022 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1023 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
1024 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1025 2, flashbase
, 2, flashsize
,
1026 2, flashbase
+ flashsize
, 2, flashsize
);
1027 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
1031 * Report the devices as separate nodes so we can mark one as
1032 * only visible to the secure world.
1034 nodename
= g_strdup_printf("/secflash@%" PRIx64
, flashbase
);
1035 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1036 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
1037 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1038 2, flashbase
, 2, flashsize
);
1039 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
1040 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1041 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1044 nodename
= g_strdup_printf("/flash@%" PRIx64
, flashbase
);
1045 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1046 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "compatible", "cfi-flash");
1047 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1048 2, flashbase
+ flashsize
, 2, flashsize
);
1049 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "bank-width", 4);
1054 static bool virt_firmware_init(VirtMachineState
*vms
,
1055 MemoryRegion
*sysmem
,
1056 MemoryRegion
*secure_sysmem
)
1059 BlockBackend
*pflash_blk0
;
1061 /* Map legacy -drive if=pflash to machine properties */
1062 for (i
= 0; i
< ARRAY_SIZE(vms
->flash
); i
++) {
1063 pflash_cfi01_legacy_drive(vms
->flash
[i
],
1064 drive_get(IF_PFLASH
, 0, i
));
1067 virt_flash_map(vms
, sysmem
, secure_sysmem
);
1069 pflash_blk0
= pflash_cfi01_get_blk(vms
->flash
[0]);
1077 error_report("The contents of the first flash device may be "
1078 "specified with -bios or with -drive if=pflash... "
1079 "but you cannot use both options at once");
1083 /* Fall back to -bios */
1085 fname
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
1087 error_report("Could not find ROM image '%s'", bios_name
);
1090 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(vms
->flash
[0]), 0);
1091 image_size
= load_image_mr(fname
, mr
);
1093 if (image_size
< 0) {
1094 error_report("Could not load ROM image '%s'", bios_name
);
1099 return pflash_blk0
|| bios_name
;
1102 static FWCfgState
*create_fw_cfg(const VirtMachineState
*vms
, AddressSpace
*as
)
1104 MachineState
*ms
= MACHINE(vms
);
1105 hwaddr base
= vms
->memmap
[VIRT_FW_CFG
].base
;
1106 hwaddr size
= vms
->memmap
[VIRT_FW_CFG
].size
;
1110 fw_cfg
= fw_cfg_init_mem_wide(base
+ 8, base
, 8, base
+ 16, as
);
1111 fw_cfg_add_i16(fw_cfg
, FW_CFG_NB_CPUS
, (uint16_t)ms
->smp
.cpus
);
1113 nodename
= g_strdup_printf("/fw-cfg@%" PRIx64
, base
);
1114 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1115 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1116 "compatible", "qemu,fw-cfg-mmio");
1117 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1119 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1124 static void create_pcie_irq_map(const VirtMachineState
*vms
,
1125 uint32_t gic_phandle
,
1126 int first_irq
, const char *nodename
)
1129 uint32_t full_irq_map
[4 * 4 * 10] = { 0 };
1130 uint32_t *irq_map
= full_irq_map
;
1132 for (devfn
= 0; devfn
<= 0x18; devfn
+= 0x8) {
1133 for (pin
= 0; pin
< 4; pin
++) {
1134 int irq_type
= GIC_FDT_IRQ_TYPE_SPI
;
1135 int irq_nr
= first_irq
+ ((pin
+ PCI_SLOT(devfn
)) % PCI_NUM_PINS
);
1136 int irq_level
= GIC_FDT_IRQ_FLAGS_LEVEL_HI
;
1140 devfn
<< 8, 0, 0, /* devfn */
1141 pin
+ 1, /* PCI pin */
1142 gic_phandle
, 0, 0, irq_type
, irq_nr
, irq_level
}; /* GIC irq */
1144 /* Convert map to big endian */
1145 for (i
= 0; i
< 10; i
++) {
1146 irq_map
[i
] = cpu_to_be32(map
[i
]);
1152 qemu_fdt_setprop(vms
->fdt
, nodename
, "interrupt-map",
1153 full_irq_map
, sizeof(full_irq_map
));
1155 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "interrupt-map-mask",
1156 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1160 static void create_smmu(const VirtMachineState
*vms
,
1164 const char compat
[] = "arm,smmu-v3";
1165 int irq
= vms
->irqmap
[VIRT_SMMU
];
1167 hwaddr base
= vms
->memmap
[VIRT_SMMU
].base
;
1168 hwaddr size
= vms
->memmap
[VIRT_SMMU
].size
;
1169 const char irq_names
[] = "eventq\0priq\0cmdq-sync\0gerror";
1172 if (vms
->iommu
!= VIRT_IOMMU_SMMUV3
|| !vms
->iommu_phandle
) {
1176 dev
= qdev_new("arm-smmuv3");
1178 object_property_set_link(OBJECT(dev
), "primary-bus", OBJECT(bus
),
1180 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
1181 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 0, base
);
1182 for (i
= 0; i
< NUM_SMMU_IRQS
; i
++) {
1183 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
1184 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
1187 node
= g_strdup_printf("/smmuv3@%" PRIx64
, base
);
1188 qemu_fdt_add_subnode(vms
->fdt
, node
);
1189 qemu_fdt_setprop(vms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1190 qemu_fdt_setprop_sized_cells(vms
->fdt
, node
, "reg", 2, base
, 2, size
);
1192 qemu_fdt_setprop_cells(vms
->fdt
, node
, "interrupts",
1193 GIC_FDT_IRQ_TYPE_SPI
, irq
, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1194 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1195 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
,
1196 GIC_FDT_IRQ_TYPE_SPI
, irq
+ 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI
);
1198 qemu_fdt_setprop(vms
->fdt
, node
, "interrupt-names", irq_names
,
1201 qemu_fdt_setprop_cell(vms
->fdt
, node
, "clocks", vms
->clock_phandle
);
1202 qemu_fdt_setprop_string(vms
->fdt
, node
, "clock-names", "apb_pclk");
1203 qemu_fdt_setprop(vms
->fdt
, node
, "dma-coherent", NULL
, 0);
1205 qemu_fdt_setprop_cell(vms
->fdt
, node
, "#iommu-cells", 1);
1207 qemu_fdt_setprop_cell(vms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1211 static void create_virtio_iommu_dt_bindings(VirtMachineState
*vms
)
1213 const char compat
[] = "virtio,pci-iommu";
1214 uint16_t bdf
= vms
->virtio_iommu_bdf
;
1217 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
1219 node
= g_strdup_printf("%s/virtio_iommu@%d", vms
->pciehb_nodename
, bdf
);
1220 qemu_fdt_add_subnode(vms
->fdt
, node
);
1221 qemu_fdt_setprop(vms
->fdt
, node
, "compatible", compat
, sizeof(compat
));
1222 qemu_fdt_setprop_sized_cells(vms
->fdt
, node
, "reg",
1223 1, bdf
<< 8, 1, 0, 1, 0,
1226 qemu_fdt_setprop_cell(vms
->fdt
, node
, "#iommu-cells", 1);
1227 qemu_fdt_setprop_cell(vms
->fdt
, node
, "phandle", vms
->iommu_phandle
);
1230 qemu_fdt_setprop_cells(vms
->fdt
, vms
->pciehb_nodename
, "iommu-map",
1231 0x0, vms
->iommu_phandle
, 0x0, bdf
,
1232 bdf
+ 1, vms
->iommu_phandle
, bdf
+ 1, 0xffff - bdf
);
1235 static void create_pcie(VirtMachineState
*vms
)
1237 hwaddr base_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].base
;
1238 hwaddr size_mmio
= vms
->memmap
[VIRT_PCIE_MMIO
].size
;
1239 hwaddr base_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].base
;
1240 hwaddr size_mmio_high
= vms
->memmap
[VIRT_HIGH_PCIE_MMIO
].size
;
1241 hwaddr base_pio
= vms
->memmap
[VIRT_PCIE_PIO
].base
;
1242 hwaddr size_pio
= vms
->memmap
[VIRT_PCIE_PIO
].size
;
1243 hwaddr base_ecam
, size_ecam
;
1244 hwaddr base
= base_mmio
;
1246 int irq
= vms
->irqmap
[VIRT_PCIE
];
1247 MemoryRegion
*mmio_alias
;
1248 MemoryRegion
*mmio_reg
;
1249 MemoryRegion
*ecam_alias
;
1250 MemoryRegion
*ecam_reg
;
1256 dev
= qdev_new(TYPE_GPEX_HOST
);
1257 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
1259 ecam_id
= VIRT_ECAM_ID(vms
->highmem_ecam
);
1260 base_ecam
= vms
->memmap
[ecam_id
].base
;
1261 size_ecam
= vms
->memmap
[ecam_id
].size
;
1262 nr_pcie_buses
= size_ecam
/ PCIE_MMCFG_SIZE_MIN
;
1263 /* Map only the first size_ecam bytes of ECAM space */
1264 ecam_alias
= g_new0(MemoryRegion
, 1);
1265 ecam_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 0);
1266 memory_region_init_alias(ecam_alias
, OBJECT(dev
), "pcie-ecam",
1267 ecam_reg
, 0, size_ecam
);
1268 memory_region_add_subregion(get_system_memory(), base_ecam
, ecam_alias
);
1270 /* Map the MMIO window into system address space so as to expose
1271 * the section of PCI MMIO space which starts at the same base address
1272 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1275 mmio_alias
= g_new0(MemoryRegion
, 1);
1276 mmio_reg
= sysbus_mmio_get_region(SYS_BUS_DEVICE(dev
), 1);
1277 memory_region_init_alias(mmio_alias
, OBJECT(dev
), "pcie-mmio",
1278 mmio_reg
, base_mmio
, size_mmio
);
1279 memory_region_add_subregion(get_system_memory(), base_mmio
, mmio_alias
);
1282 /* Map high MMIO space */
1283 MemoryRegion
*high_mmio_alias
= g_new0(MemoryRegion
, 1);
1285 memory_region_init_alias(high_mmio_alias
, OBJECT(dev
), "pcie-mmio-high",
1286 mmio_reg
, base_mmio_high
, size_mmio_high
);
1287 memory_region_add_subregion(get_system_memory(), base_mmio_high
,
1291 /* Map IO port space */
1292 sysbus_mmio_map(SYS_BUS_DEVICE(dev
), 2, base_pio
);
1294 for (i
= 0; i
< GPEX_NUM_IRQS
; i
++) {
1295 sysbus_connect_irq(SYS_BUS_DEVICE(dev
), i
,
1296 qdev_get_gpio_in(vms
->gic
, irq
+ i
));
1297 gpex_set_irq_num(GPEX_HOST(dev
), i
, irq
+ i
);
1300 pci
= PCI_HOST_BRIDGE(dev
);
1302 for (i
= 0; i
< nb_nics
; i
++) {
1303 NICInfo
*nd
= &nd_table
[i
];
1306 nd
->model
= g_strdup("virtio");
1309 pci_nic_init_nofail(nd
, pci
->bus
, nd
->model
, NULL
);
1313 nodename
= vms
->pciehb_nodename
= g_strdup_printf("/pcie@%" PRIx64
, base
);
1314 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1315 qemu_fdt_setprop_string(vms
->fdt
, nodename
,
1316 "compatible", "pci-host-ecam-generic");
1317 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "pci");
1318 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#address-cells", 3);
1319 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#size-cells", 2);
1320 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "linux,pci-domain", 0);
1321 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "bus-range", 0,
1323 qemu_fdt_setprop(vms
->fdt
, nodename
, "dma-coherent", NULL
, 0);
1325 if (vms
->msi_phandle
) {
1326 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "msi-parent",
1330 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg",
1331 2, base_ecam
, 2, size_ecam
);
1334 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1335 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1336 2, base_pio
, 2, size_pio
,
1337 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1338 2, base_mmio
, 2, size_mmio
,
1339 1, FDT_PCI_RANGE_MMIO_64BIT
,
1341 2, base_mmio_high
, 2, size_mmio_high
);
1343 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "ranges",
1344 1, FDT_PCI_RANGE_IOPORT
, 2, 0,
1345 2, base_pio
, 2, size_pio
,
1346 1, FDT_PCI_RANGE_MMIO
, 2, base_mmio
,
1347 2, base_mmio
, 2, size_mmio
);
1350 qemu_fdt_setprop_cell(vms
->fdt
, nodename
, "#interrupt-cells", 1);
1351 create_pcie_irq_map(vms
, vms
->gic_phandle
, irq
, nodename
);
1354 vms
->iommu_phandle
= qemu_fdt_alloc_phandle(vms
->fdt
);
1356 switch (vms
->iommu
) {
1357 case VIRT_IOMMU_SMMUV3
:
1358 create_smmu(vms
, pci
->bus
);
1359 qemu_fdt_setprop_cells(vms
->fdt
, nodename
, "iommu-map",
1360 0x0, vms
->iommu_phandle
, 0x0, 0x10000);
1363 g_assert_not_reached();
1368 static void create_platform_bus(VirtMachineState
*vms
)
1373 MemoryRegion
*sysmem
= get_system_memory();
1375 dev
= qdev_new(TYPE_PLATFORM_BUS_DEVICE
);
1376 dev
->id
= TYPE_PLATFORM_BUS_DEVICE
;
1377 qdev_prop_set_uint32(dev
, "num_irqs", PLATFORM_BUS_NUM_IRQS
);
1378 qdev_prop_set_uint32(dev
, "mmio_size", vms
->memmap
[VIRT_PLATFORM_BUS
].size
);
1379 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
1380 vms
->platform_bus_dev
= dev
;
1382 s
= SYS_BUS_DEVICE(dev
);
1383 for (i
= 0; i
< PLATFORM_BUS_NUM_IRQS
; i
++) {
1384 int irq
= vms
->irqmap
[VIRT_PLATFORM_BUS
] + i
;
1385 sysbus_connect_irq(s
, i
, qdev_get_gpio_in(vms
->gic
, irq
));
1388 memory_region_add_subregion(sysmem
,
1389 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1390 sysbus_mmio_get_region(s
, 0));
1393 static void create_tag_ram(MemoryRegion
*tag_sysmem
,
1394 hwaddr base
, hwaddr size
,
1397 MemoryRegion
*tagram
= g_new(MemoryRegion
, 1);
1399 memory_region_init_ram(tagram
, NULL
, name
, size
/ 32, &error_fatal
);
1400 memory_region_add_subregion(tag_sysmem
, base
/ 32, tagram
);
1403 static void create_secure_ram(VirtMachineState
*vms
,
1404 MemoryRegion
*secure_sysmem
,
1405 MemoryRegion
*secure_tag_sysmem
)
1407 MemoryRegion
*secram
= g_new(MemoryRegion
, 1);
1409 hwaddr base
= vms
->memmap
[VIRT_SECURE_MEM
].base
;
1410 hwaddr size
= vms
->memmap
[VIRT_SECURE_MEM
].size
;
1412 memory_region_init_ram(secram
, NULL
, "virt.secure-ram", size
,
1414 memory_region_add_subregion(secure_sysmem
, base
, secram
);
1416 nodename
= g_strdup_printf("/secram@%" PRIx64
, base
);
1417 qemu_fdt_add_subnode(vms
->fdt
, nodename
);
1418 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "device_type", "memory");
1419 qemu_fdt_setprop_sized_cells(vms
->fdt
, nodename
, "reg", 2, base
, 2, size
);
1420 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "status", "disabled");
1421 qemu_fdt_setprop_string(vms
->fdt
, nodename
, "secure-status", "okay");
1423 if (secure_tag_sysmem
) {
1424 create_tag_ram(secure_tag_sysmem
, base
, size
, "mach-virt.secure-tag");
1430 static void *machvirt_dtb(const struct arm_boot_info
*binfo
, int *fdt_size
)
1432 const VirtMachineState
*board
= container_of(binfo
, VirtMachineState
,
1435 *fdt_size
= board
->fdt_size
;
1439 static void virt_build_smbios(VirtMachineState
*vms
)
1441 MachineClass
*mc
= MACHINE_GET_CLASS(vms
);
1442 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1443 uint8_t *smbios_tables
, *smbios_anchor
;
1444 size_t smbios_tables_len
, smbios_anchor_len
;
1445 const char *product
= "QEMU Virtual Machine";
1447 if (kvm_enabled()) {
1448 product
= "KVM Virtual Machine";
1451 smbios_set_defaults("QEMU", product
,
1452 vmc
->smbios_old_sys_ver
? "1.0" : mc
->name
, false,
1453 true, SMBIOS_ENTRY_POINT_30
);
1455 smbios_get_tables(MACHINE(vms
), NULL
, 0, &smbios_tables
, &smbios_tables_len
,
1456 &smbios_anchor
, &smbios_anchor_len
);
1458 if (smbios_anchor
) {
1459 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-tables",
1460 smbios_tables
, smbios_tables_len
);
1461 fw_cfg_add_file(vms
->fw_cfg
, "etc/smbios/smbios-anchor",
1462 smbios_anchor
, smbios_anchor_len
);
1467 void virt_machine_done(Notifier
*notifier
, void *data
)
1469 VirtMachineState
*vms
= container_of(notifier
, VirtMachineState
,
1471 MachineState
*ms
= MACHINE(vms
);
1472 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1473 struct arm_boot_info
*info
= &vms
->bootinfo
;
1474 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1477 * If the user provided a dtb, we assume the dynamic sysbus nodes
1478 * already are integrated there. This corresponds to a use case where
1479 * the dynamic sysbus nodes are complex and their generation is not yet
1480 * supported. In that case the user can take charge of the guest dt
1481 * while qemu takes charge of the qom stuff.
1483 if (info
->dtb_filename
== NULL
) {
1484 platform_bus_add_all_fdt_nodes(vms
->fdt
, "/intc",
1485 vms
->memmap
[VIRT_PLATFORM_BUS
].base
,
1486 vms
->memmap
[VIRT_PLATFORM_BUS
].size
,
1487 vms
->irqmap
[VIRT_PLATFORM_BUS
]);
1489 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
, ms
) < 0) {
1493 virt_acpi_setup(vms
);
1494 virt_build_smbios(vms
);
1497 static uint64_t virt_cpu_mp_affinity(VirtMachineState
*vms
, int idx
)
1499 uint8_t clustersz
= ARM_DEFAULT_CPUS_PER_CLUSTER
;
1500 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
1502 if (!vmc
->disallow_affinity_adjustment
) {
1503 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1504 * GIC's target-list limitations. 32-bit KVM hosts currently
1505 * always create clusters of 4 CPUs, but that is expected to
1506 * change when they gain support for gicv3. When KVM is enabled
1507 * it will override the changes we make here, therefore our
1508 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1509 * and to improve SGI efficiency.
1511 if (vms
->gic_version
== VIRT_GIC_VERSION_3
) {
1512 clustersz
= GICV3_TARGETLIST_BITS
;
1514 clustersz
= GIC_TARGETLIST_BITS
;
1517 return arm_cpu_mp_affinity(idx
, clustersz
);
1520 static void virt_set_memmap(VirtMachineState
*vms
)
1522 MachineState
*ms
= MACHINE(vms
);
1523 hwaddr base
, device_memory_base
, device_memory_size
;
1526 vms
->memmap
= extended_memmap
;
1528 for (i
= 0; i
< ARRAY_SIZE(base_memmap
); i
++) {
1529 vms
->memmap
[i
] = base_memmap
[i
];
1532 if (ms
->ram_slots
> ACPI_MAX_RAM_SLOTS
) {
1533 error_report("unsupported number of memory slots: %"PRIu64
,
1539 * We compute the base of the high IO region depending on the
1540 * amount of initial and device memory. The device memory start/size
1541 * is aligned on 1GiB. We never put the high IO region below 256GiB
1542 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1543 * The device region size assumes 1GiB page max alignment per slot.
1545 device_memory_base
=
1546 ROUND_UP(vms
->memmap
[VIRT_MEM
].base
+ ms
->ram_size
, GiB
);
1547 device_memory_size
= ms
->maxram_size
- ms
->ram_size
+ ms
->ram_slots
* GiB
;
1549 /* Base address of the high IO region */
1550 base
= device_memory_base
+ ROUND_UP(device_memory_size
, GiB
);
1551 if (base
< device_memory_base
) {
1552 error_report("maxmem/slots too huge");
1555 if (base
< vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
) {
1556 base
= vms
->memmap
[VIRT_MEM
].base
+ LEGACY_RAMLIMIT_BYTES
;
1559 for (i
= VIRT_LOWMEMMAP_LAST
; i
< ARRAY_SIZE(extended_memmap
); i
++) {
1560 hwaddr size
= extended_memmap
[i
].size
;
1562 base
= ROUND_UP(base
, size
);
1563 vms
->memmap
[i
].base
= base
;
1564 vms
->memmap
[i
].size
= size
;
1567 vms
->highest_gpa
= base
- 1;
1568 if (device_memory_size
> 0) {
1569 ms
->device_memory
= g_malloc0(sizeof(*ms
->device_memory
));
1570 ms
->device_memory
->base
= device_memory_base
;
1571 memory_region_init(&ms
->device_memory
->mr
, OBJECT(vms
),
1572 "device-memory", device_memory_size
);
1577 * finalize_gic_version - Determines the final gic_version
1578 * according to the gic-version property
1580 * Default GIC type is v2
1582 static void finalize_gic_version(VirtMachineState
*vms
)
1584 unsigned int max_cpus
= MACHINE(vms
)->smp
.max_cpus
;
1586 if (kvm_enabled()) {
1589 if (!kvm_irqchip_in_kernel()) {
1590 switch (vms
->gic_version
) {
1591 case VIRT_GIC_VERSION_HOST
:
1593 "gic-version=host not relevant with kernel-irqchip=off "
1594 "as only userspace GICv2 is supported. Using v2 ...");
1596 case VIRT_GIC_VERSION_MAX
:
1597 case VIRT_GIC_VERSION_NOSEL
:
1598 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1600 case VIRT_GIC_VERSION_2
:
1602 case VIRT_GIC_VERSION_3
:
1604 "gic-version=3 is not supported with kernel-irqchip=off");
1609 probe_bitmap
= kvm_arm_vgic_probe();
1610 if (!probe_bitmap
) {
1611 error_report("Unable to determine GIC version supported by host");
1615 switch (vms
->gic_version
) {
1616 case VIRT_GIC_VERSION_HOST
:
1617 case VIRT_GIC_VERSION_MAX
:
1618 if (probe_bitmap
& KVM_ARM_VGIC_V3
) {
1619 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1621 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1624 case VIRT_GIC_VERSION_NOSEL
:
1625 if ((probe_bitmap
& KVM_ARM_VGIC_V2
) && max_cpus
<= GIC_NCPU
) {
1626 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1627 } else if (probe_bitmap
& KVM_ARM_VGIC_V3
) {
1629 * in case the host does not support v2 in-kernel emulation or
1630 * the end-user requested more than 8 VCPUs we now default
1631 * to v3. In any case defaulting to v2 would be broken.
1633 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1634 } else if (max_cpus
> GIC_NCPU
) {
1635 error_report("host only supports in-kernel GICv2 emulation "
1636 "but more than 8 vcpus are requested");
1640 case VIRT_GIC_VERSION_2
:
1641 case VIRT_GIC_VERSION_3
:
1645 /* Check chosen version is effectively supported by the host */
1646 if (vms
->gic_version
== VIRT_GIC_VERSION_2
&&
1647 !(probe_bitmap
& KVM_ARM_VGIC_V2
)) {
1648 error_report("host does not support in-kernel GICv2 emulation");
1650 } else if (vms
->gic_version
== VIRT_GIC_VERSION_3
&&
1651 !(probe_bitmap
& KVM_ARM_VGIC_V3
)) {
1652 error_report("host does not support in-kernel GICv3 emulation");
1659 switch (vms
->gic_version
) {
1660 case VIRT_GIC_VERSION_NOSEL
:
1661 vms
->gic_version
= VIRT_GIC_VERSION_2
;
1663 case VIRT_GIC_VERSION_MAX
:
1664 vms
->gic_version
= VIRT_GIC_VERSION_3
;
1666 case VIRT_GIC_VERSION_HOST
:
1667 error_report("gic-version=host requires KVM");
1669 case VIRT_GIC_VERSION_2
:
1670 case VIRT_GIC_VERSION_3
:
1675 static void machvirt_init(MachineState
*machine
)
1677 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
1678 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(machine
);
1679 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1680 const CPUArchIdList
*possible_cpus
;
1681 MemoryRegion
*sysmem
= get_system_memory();
1682 MemoryRegion
*secure_sysmem
= NULL
;
1683 MemoryRegion
*tag_sysmem
= NULL
;
1684 MemoryRegion
*secure_tag_sysmem
= NULL
;
1685 int n
, virt_max_cpus
;
1686 bool firmware_loaded
;
1687 bool aarch64
= true;
1688 bool has_ged
= !vmc
->no_ged
;
1689 unsigned int smp_cpus
= machine
->smp
.cpus
;
1690 unsigned int max_cpus
= machine
->smp
.max_cpus
;
1693 * In accelerated mode, the memory map is computed earlier in kvm_type()
1694 * to create a VM with the right number of IPA bits.
1697 virt_set_memmap(vms
);
1700 /* We can probe only here because during property set
1701 * KVM is not available yet
1703 finalize_gic_version(vms
);
1705 if (!cpu_type_valid(machine
->cpu_type
)) {
1706 error_report("mach-virt: CPU type %s not supported", machine
->cpu_type
);
1711 if (kvm_enabled()) {
1712 error_report("mach-virt: KVM does not support Security extensions");
1717 * The Secure view of the world is the same as the NonSecure,
1718 * but with a few extra devices. Create it as a container region
1719 * containing the system memory at low priority; any secure-only
1720 * devices go in at higher priority and take precedence.
1722 secure_sysmem
= g_new(MemoryRegion
, 1);
1723 memory_region_init(secure_sysmem
, OBJECT(machine
), "secure-memory",
1725 memory_region_add_subregion_overlap(secure_sysmem
, 0, sysmem
, -1);
1728 firmware_loaded
= virt_firmware_init(vms
, sysmem
,
1729 secure_sysmem
?: sysmem
);
1731 /* If we have an EL3 boot ROM then the assumption is that it will
1732 * implement PSCI itself, so disable QEMU's internal implementation
1733 * so it doesn't get in the way. Instead of starting secondary
1734 * CPUs in PSCI powerdown state we will start them all running and
1735 * let the boot ROM sort them out.
1736 * The usual case is that we do use QEMU's PSCI implementation;
1737 * if the guest has EL2 then we will use SMC as the conduit,
1738 * and otherwise we will use HVC (for backwards compatibility and
1739 * because if we're using KVM then we must use HVC).
1741 if (vms
->secure
&& firmware_loaded
) {
1742 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1743 } else if (vms
->virt
) {
1744 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_SMC
;
1746 vms
->psci_conduit
= QEMU_PSCI_CONDUIT_HVC
;
1749 /* The maximum number of CPUs depends on the GIC version, or on how
1750 * many redistributors we can fit into the memory map.
1752 if (vms
->gic_version
== VIRT_GIC_VERSION_3
) {
1754 vms
->memmap
[VIRT_GIC_REDIST
].size
/ GICV3_REDIST_SIZE
;
1756 vms
->memmap
[VIRT_HIGH_GIC_REDIST2
].size
/ GICV3_REDIST_SIZE
;
1758 virt_max_cpus
= GIC_NCPU
;
1761 if (max_cpus
> virt_max_cpus
) {
1762 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1763 "supported by machine 'mach-virt' (%d)",
1764 max_cpus
, virt_max_cpus
);
1768 vms
->smp_cpus
= smp_cpus
;
1770 if (vms
->virt
&& kvm_enabled()) {
1771 error_report("mach-virt: KVM does not support providing "
1772 "Virtualization extensions to the guest CPU");
1776 if (vms
->mte
&& kvm_enabled()) {
1777 error_report("mach-virt: KVM does not support providing "
1778 "MTE to the guest CPU");
1784 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
1785 for (n
= 0; n
< possible_cpus
->len
; n
++) {
1789 if (n
>= smp_cpus
) {
1793 cpuobj
= object_new(possible_cpus
->cpus
[n
].type
);
1794 object_property_set_int(cpuobj
, "mp-affinity",
1795 possible_cpus
->cpus
[n
].arch_id
, NULL
);
1800 numa_cpu_pre_plug(&possible_cpus
->cpus
[cs
->cpu_index
], DEVICE(cpuobj
),
1803 aarch64
&= object_property_get_bool(cpuobj
, "aarch64", NULL
);
1806 object_property_set_bool(cpuobj
, "has_el3", false, NULL
);
1809 if (!vms
->virt
&& object_property_find(cpuobj
, "has_el2", NULL
)) {
1810 object_property_set_bool(cpuobj
, "has_el2", false, NULL
);
1813 if (vms
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1814 object_property_set_int(cpuobj
, "psci-conduit", vms
->psci_conduit
,
1817 /* Secondary CPUs start in PSCI powered-down state */
1819 object_property_set_bool(cpuobj
, "start-powered-off", true,
1824 if (vmc
->kvm_no_adjvtime
&&
1825 object_property_find(cpuobj
, "kvm-no-adjvtime", NULL
)) {
1826 object_property_set_bool(cpuobj
, "kvm-no-adjvtime", true, NULL
);
1829 if (vmc
->no_pmu
&& object_property_find(cpuobj
, "pmu", NULL
)) {
1830 object_property_set_bool(cpuobj
, "pmu", false, NULL
);
1833 if (object_property_find(cpuobj
, "reset-cbar", NULL
)) {
1834 object_property_set_int(cpuobj
, "reset-cbar",
1835 vms
->memmap
[VIRT_CPUPERIPHS
].base
,
1839 object_property_set_link(cpuobj
, "memory", OBJECT(sysmem
),
1842 object_property_set_link(cpuobj
, "secure-memory",
1843 OBJECT(secure_sysmem
), &error_abort
);
1847 /* Create the memory region only once, but link to all cpus. */
1850 * The property exists only if MemTag is supported.
1851 * If it is, we must allocate the ram to back that up.
1853 if (!object_property_find(cpuobj
, "tag-memory", NULL
)) {
1854 error_report("MTE requested, but not supported "
1855 "by the guest CPU");
1859 tag_sysmem
= g_new(MemoryRegion
, 1);
1860 memory_region_init(tag_sysmem
, OBJECT(machine
),
1861 "tag-memory", UINT64_MAX
/ 32);
1864 secure_tag_sysmem
= g_new(MemoryRegion
, 1);
1865 memory_region_init(secure_tag_sysmem
, OBJECT(machine
),
1866 "secure-tag-memory", UINT64_MAX
/ 32);
1868 /* As with ram, secure-tag takes precedence over tag. */
1869 memory_region_add_subregion_overlap(secure_tag_sysmem
, 0,
1874 object_property_set_link(cpuobj
, "tag-memory", OBJECT(tag_sysmem
),
1877 object_property_set_link(cpuobj
, "secure-tag-memory",
1878 OBJECT(secure_tag_sysmem
),
1883 qdev_realize(DEVICE(cpuobj
), NULL
, &error_fatal
);
1884 object_unref(cpuobj
);
1886 fdt_add_timer_nodes(vms
);
1887 fdt_add_cpu_nodes(vms
);
1889 if (!kvm_enabled()) {
1890 ARMCPU
*cpu
= ARM_CPU(first_cpu
);
1891 bool aarch64
= object_property_get_bool(OBJECT(cpu
), "aarch64", NULL
);
1893 if (aarch64
&& vms
->highmem
) {
1894 int requested_pa_size
, pamax
= arm_pamax(cpu
);
1896 requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
1897 if (pamax
< requested_pa_size
) {
1898 error_report("VCPU supports less PA bits (%d) than requested "
1899 "by the memory map (%d)", pamax
, requested_pa_size
);
1905 memory_region_add_subregion(sysmem
, vms
->memmap
[VIRT_MEM
].base
,
1907 if (machine
->device_memory
) {
1908 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
1909 &machine
->device_memory
->mr
);
1912 virt_flash_fdt(vms
, sysmem
, secure_sysmem
?: sysmem
);
1916 fdt_add_pmu_nodes(vms
);
1918 create_uart(vms
, VIRT_UART
, sysmem
, serial_hd(0));
1921 create_secure_ram(vms
, secure_sysmem
, secure_tag_sysmem
);
1922 create_uart(vms
, VIRT_SECURE_UART
, secure_sysmem
, serial_hd(1));
1926 create_tag_ram(tag_sysmem
, vms
->memmap
[VIRT_MEM
].base
,
1927 machine
->ram_size
, "mach-virt.tag");
1930 vms
->highmem_ecam
&= vms
->highmem
&& (!firmware_loaded
|| aarch64
);
1936 if (has_ged
&& aarch64
&& firmware_loaded
&& virt_is_acpi_enabled(vms
)) {
1937 vms
->acpi_dev
= create_acpi_ged(vms
);
1942 /* connect powerdown request */
1943 vms
->powerdown_notifier
.notify
= virt_powerdown_req
;
1944 qemu_register_powerdown_notifier(&vms
->powerdown_notifier
);
1946 /* Create mmio transports, so the user can create virtio backends
1947 * (which will be automatically plugged in to the transports). If
1948 * no backend is created the transport will just sit harmlessly idle.
1950 create_virtio_devices(vms
);
1952 vms
->fw_cfg
= create_fw_cfg(vms
, &address_space_memory
);
1953 rom_set_fw(vms
->fw_cfg
);
1955 create_platform_bus(vms
);
1957 if (machine
->nvdimms_state
->is_enabled
) {
1958 const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio
= {
1959 .space_id
= AML_AS_SYSTEM_MEMORY
,
1960 .address
= vms
->memmap
[VIRT_NVDIMM_ACPI
].base
,
1961 .bit_width
= NVDIMM_ACPI_IO_LEN
<< 3
1964 nvdimm_init_acpi_state(machine
->nvdimms_state
, sysmem
,
1965 arm_virt_nvdimm_acpi_dsmio
,
1966 vms
->fw_cfg
, OBJECT(vms
));
1969 vms
->bootinfo
.ram_size
= machine
->ram_size
;
1970 vms
->bootinfo
.nb_cpus
= smp_cpus
;
1971 vms
->bootinfo
.board_id
= -1;
1972 vms
->bootinfo
.loader_start
= vms
->memmap
[VIRT_MEM
].base
;
1973 vms
->bootinfo
.get_dtb
= machvirt_dtb
;
1974 vms
->bootinfo
.skip_dtb_autoload
= true;
1975 vms
->bootinfo
.firmware_loaded
= firmware_loaded
;
1976 arm_load_kernel(ARM_CPU(first_cpu
), machine
, &vms
->bootinfo
);
1978 vms
->machine_done
.notify
= virt_machine_done
;
1979 qemu_add_machine_init_done_notifier(&vms
->machine_done
);
1982 static bool virt_get_secure(Object
*obj
, Error
**errp
)
1984 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1989 static void virt_set_secure(Object
*obj
, bool value
, Error
**errp
)
1991 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
1993 vms
->secure
= value
;
1996 static bool virt_get_virt(Object
*obj
, Error
**errp
)
1998 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2003 static void virt_set_virt(Object
*obj
, bool value
, Error
**errp
)
2005 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2010 static bool virt_get_highmem(Object
*obj
, Error
**errp
)
2012 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2014 return vms
->highmem
;
2017 static void virt_set_highmem(Object
*obj
, bool value
, Error
**errp
)
2019 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2021 vms
->highmem
= value
;
2024 static bool virt_get_its(Object
*obj
, Error
**errp
)
2026 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2031 static void virt_set_its(Object
*obj
, bool value
, Error
**errp
)
2033 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2038 bool virt_is_acpi_enabled(VirtMachineState
*vms
)
2040 if (vms
->acpi
== ON_OFF_AUTO_OFF
) {
2046 static void virt_get_acpi(Object
*obj
, Visitor
*v
, const char *name
,
2047 void *opaque
, Error
**errp
)
2049 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2050 OnOffAuto acpi
= vms
->acpi
;
2052 visit_type_OnOffAuto(v
, name
, &acpi
, errp
);
2055 static void virt_set_acpi(Object
*obj
, Visitor
*v
, const char *name
,
2056 void *opaque
, Error
**errp
)
2058 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2060 visit_type_OnOffAuto(v
, name
, &vms
->acpi
, errp
);
2063 static bool virt_get_ras(Object
*obj
, Error
**errp
)
2065 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2070 static void virt_set_ras(Object
*obj
, bool value
, Error
**errp
)
2072 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2077 static bool virt_get_mte(Object
*obj
, Error
**errp
)
2079 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2084 static void virt_set_mte(Object
*obj
, bool value
, Error
**errp
)
2086 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2091 static char *virt_get_gic_version(Object
*obj
, Error
**errp
)
2093 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2094 const char *val
= vms
->gic_version
== VIRT_GIC_VERSION_3
? "3" : "2";
2096 return g_strdup(val
);
2099 static void virt_set_gic_version(Object
*obj
, const char *value
, Error
**errp
)
2101 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2103 if (!strcmp(value
, "3")) {
2104 vms
->gic_version
= VIRT_GIC_VERSION_3
;
2105 } else if (!strcmp(value
, "2")) {
2106 vms
->gic_version
= VIRT_GIC_VERSION_2
;
2107 } else if (!strcmp(value
, "host")) {
2108 vms
->gic_version
= VIRT_GIC_VERSION_HOST
; /* Will probe later */
2109 } else if (!strcmp(value
, "max")) {
2110 vms
->gic_version
= VIRT_GIC_VERSION_MAX
; /* Will probe later */
2112 error_setg(errp
, "Invalid gic-version value");
2113 error_append_hint(errp
, "Valid values are 3, 2, host, max.\n");
2117 static char *virt_get_iommu(Object
*obj
, Error
**errp
)
2119 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2121 switch (vms
->iommu
) {
2122 case VIRT_IOMMU_NONE
:
2123 return g_strdup("none");
2124 case VIRT_IOMMU_SMMUV3
:
2125 return g_strdup("smmuv3");
2127 g_assert_not_reached();
2131 static void virt_set_iommu(Object
*obj
, const char *value
, Error
**errp
)
2133 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2135 if (!strcmp(value
, "smmuv3")) {
2136 vms
->iommu
= VIRT_IOMMU_SMMUV3
;
2137 } else if (!strcmp(value
, "none")) {
2138 vms
->iommu
= VIRT_IOMMU_NONE
;
2140 error_setg(errp
, "Invalid iommu value");
2141 error_append_hint(errp
, "Valid values are none, smmuv3.\n");
2145 static CpuInstanceProperties
2146 virt_cpu_index_to_props(MachineState
*ms
, unsigned cpu_index
)
2148 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
2149 const CPUArchIdList
*possible_cpus
= mc
->possible_cpu_arch_ids(ms
);
2151 assert(cpu_index
< possible_cpus
->len
);
2152 return possible_cpus
->cpus
[cpu_index
].props
;
2155 static int64_t virt_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
2157 return idx
% ms
->numa_state
->num_nodes
;
2160 static const CPUArchIdList
*virt_possible_cpu_arch_ids(MachineState
*ms
)
2163 unsigned int max_cpus
= ms
->smp
.max_cpus
;
2164 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
2166 if (ms
->possible_cpus
) {
2167 assert(ms
->possible_cpus
->len
== max_cpus
);
2168 return ms
->possible_cpus
;
2171 ms
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
2172 sizeof(CPUArchId
) * max_cpus
);
2173 ms
->possible_cpus
->len
= max_cpus
;
2174 for (n
= 0; n
< ms
->possible_cpus
->len
; n
++) {
2175 ms
->possible_cpus
->cpus
[n
].type
= ms
->cpu_type
;
2176 ms
->possible_cpus
->cpus
[n
].arch_id
=
2177 virt_cpu_mp_affinity(vms
, n
);
2178 ms
->possible_cpus
->cpus
[n
].props
.has_thread_id
= true;
2179 ms
->possible_cpus
->cpus
[n
].props
.thread_id
= n
;
2181 return ms
->possible_cpus
;
2184 static void virt_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
2187 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2188 const MachineState
*ms
= MACHINE(hotplug_dev
);
2189 const bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
2191 if (!vms
->acpi_dev
) {
2193 "memory hotplug is not enabled: missing acpi-ged device");
2198 error_setg(errp
, "memory hotplug is not enabled: MTE is enabled");
2202 if (is_nvdimm
&& !ms
->nvdimms_state
->is_enabled
) {
2203 error_setg(errp
, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
2207 pc_dimm_pre_plug(PC_DIMM(dev
), MACHINE(hotplug_dev
), NULL
, errp
);
2210 static void virt_memory_plug(HotplugHandler
*hotplug_dev
,
2211 DeviceState
*dev
, Error
**errp
)
2213 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2214 MachineState
*ms
= MACHINE(hotplug_dev
);
2215 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
2216 Error
*local_err
= NULL
;
2218 pc_dimm_plug(PC_DIMM(dev
), MACHINE(vms
), &local_err
);
2224 nvdimm_plug(ms
->nvdimms_state
);
2227 hotplug_handler_plug(HOTPLUG_HANDLER(vms
->acpi_dev
),
2231 error_propagate(errp
, local_err
);
2234 static void virt_machine_device_pre_plug_cb(HotplugHandler
*hotplug_dev
,
2235 DeviceState
*dev
, Error
**errp
)
2237 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2239 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2240 virt_memory_pre_plug(hotplug_dev
, dev
, errp
);
2241 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_IOMMU_PCI
)) {
2242 hwaddr db_start
= 0, db_end
= 0;
2243 char *resv_prop_str
;
2245 switch (vms
->msi_controller
) {
2246 case VIRT_MSI_CTRL_NONE
:
2248 case VIRT_MSI_CTRL_ITS
:
2249 /* GITS_TRANSLATER page */
2250 db_start
= base_memmap
[VIRT_GIC_ITS
].base
+ 0x10000;
2251 db_end
= base_memmap
[VIRT_GIC_ITS
].base
+
2252 base_memmap
[VIRT_GIC_ITS
].size
- 1;
2254 case VIRT_MSI_CTRL_GICV2M
:
2255 /* MSI_SETSPI_NS page */
2256 db_start
= base_memmap
[VIRT_GIC_V2M
].base
;
2257 db_end
= db_start
+ base_memmap
[VIRT_GIC_V2M
].size
- 1;
2260 resv_prop_str
= g_strdup_printf("0x%"PRIx64
":0x%"PRIx64
":%u",
2262 VIRTIO_IOMMU_RESV_MEM_T_MSI
);
2264 qdev_prop_set_uint32(dev
, "len-reserved-regions", 1);
2265 qdev_prop_set_string(dev
, "reserved-regions[0]", resv_prop_str
);
2266 g_free(resv_prop_str
);
2270 static void virt_machine_device_plug_cb(HotplugHandler
*hotplug_dev
,
2271 DeviceState
*dev
, Error
**errp
)
2273 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2275 if (vms
->platform_bus_dev
) {
2276 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
)) {
2277 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms
->platform_bus_dev
),
2278 SYS_BUS_DEVICE(dev
));
2281 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2282 virt_memory_plug(hotplug_dev
, dev
, errp
);
2284 if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_IOMMU_PCI
)) {
2285 PCIDevice
*pdev
= PCI_DEVICE(dev
);
2287 vms
->iommu
= VIRT_IOMMU_VIRTIO
;
2288 vms
->virtio_iommu_bdf
= pci_get_bdf(pdev
);
2289 create_virtio_iommu_dt_bindings(vms
);
2293 static void virt_dimm_unplug_request(HotplugHandler
*hotplug_dev
,
2294 DeviceState
*dev
, Error
**errp
)
2296 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2297 Error
*local_err
= NULL
;
2299 if (!vms
->acpi_dev
) {
2300 error_setg(&local_err
,
2301 "memory hotplug is not enabled: missing acpi-ged device");
2305 if (object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
)) {
2306 error_setg(&local_err
,
2307 "nvdimm device hot unplug is not supported yet.");
2311 hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms
->acpi_dev
), dev
,
2314 error_propagate(errp
, local_err
);
2317 static void virt_dimm_unplug(HotplugHandler
*hotplug_dev
,
2318 DeviceState
*dev
, Error
**errp
)
2320 VirtMachineState
*vms
= VIRT_MACHINE(hotplug_dev
);
2321 Error
*local_err
= NULL
;
2323 hotplug_handler_unplug(HOTPLUG_HANDLER(vms
->acpi_dev
), dev
, &local_err
);
2328 pc_dimm_unplug(PC_DIMM(dev
), MACHINE(vms
));
2329 qdev_unrealize(dev
);
2332 error_propagate(errp
, local_err
);
2335 static void virt_machine_device_unplug_request_cb(HotplugHandler
*hotplug_dev
,
2336 DeviceState
*dev
, Error
**errp
)
2338 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2339 virt_dimm_unplug_request(hotplug_dev
, dev
, errp
);
2341 error_setg(errp
, "device unplug request for unsupported device"
2342 " type: %s", object_get_typename(OBJECT(dev
)));
2346 static void virt_machine_device_unplug_cb(HotplugHandler
*hotplug_dev
,
2347 DeviceState
*dev
, Error
**errp
)
2349 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
2350 virt_dimm_unplug(hotplug_dev
, dev
, errp
);
2352 error_setg(errp
, "virt: device unplug for unsupported device"
2353 " type: %s", object_get_typename(OBJECT(dev
)));
2357 static HotplugHandler
*virt_machine_get_hotplug_handler(MachineState
*machine
,
2360 if (object_dynamic_cast(OBJECT(dev
), TYPE_SYS_BUS_DEVICE
) ||
2361 (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
))) {
2362 return HOTPLUG_HANDLER(machine
);
2364 if (object_dynamic_cast(OBJECT(dev
), TYPE_VIRTIO_IOMMU_PCI
)) {
2365 VirtMachineState
*vms
= VIRT_MACHINE(machine
);
2367 if (!vms
->bootinfo
.firmware_loaded
|| !virt_is_acpi_enabled(vms
)) {
2368 return HOTPLUG_HANDLER(machine
);
2375 * for arm64 kvm_type [7-0] encodes the requested number of bits
2376 * in the IPA address space
2378 static int virt_kvm_type(MachineState
*ms
, const char *type_str
)
2380 VirtMachineState
*vms
= VIRT_MACHINE(ms
);
2381 int max_vm_pa_size
= kvm_arm_get_max_vm_ipa_size(ms
);
2382 int requested_pa_size
;
2384 /* we freeze the memory map to compute the highest gpa */
2385 virt_set_memmap(vms
);
2387 requested_pa_size
= 64 - clz64(vms
->highest_gpa
);
2389 if (requested_pa_size
> max_vm_pa_size
) {
2390 error_report("-m and ,maxmem option values "
2391 "require an IPA range (%d bits) larger than "
2392 "the one supported by the host (%d bits)",
2393 requested_pa_size
, max_vm_pa_size
);
2397 * By default we return 0 which corresponds to an implicit legacy
2398 * 40b IPA setting. Otherwise we return the actual requested PA
2401 return requested_pa_size
> 40 ? requested_pa_size
: 0;
2404 static void virt_machine_class_init(ObjectClass
*oc
, void *data
)
2406 MachineClass
*mc
= MACHINE_CLASS(oc
);
2407 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
2409 mc
->init
= machvirt_init
;
2410 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2411 * The value may be reduced later when we have more information about the
2412 * configuration of the particular instance.
2415 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_CALXEDA_XGMAC
);
2416 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_AMD_XGBE
);
2417 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_RAMFB_DEVICE
);
2418 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_VFIO_PLATFORM
);
2419 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_TPM_TIS_SYSBUS
);
2420 mc
->block_default_type
= IF_VIRTIO
;
2422 mc
->pci_allow_0_address
= true;
2423 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2424 mc
->minimum_page_bits
= 12;
2425 mc
->possible_cpu_arch_ids
= virt_possible_cpu_arch_ids
;
2426 mc
->cpu_index_to_instance_props
= virt_cpu_index_to_props
;
2427 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-a15");
2428 mc
->get_default_cpu_node_id
= virt_get_default_cpu_node_id
;
2429 mc
->kvm_type
= virt_kvm_type
;
2430 assert(!mc
->get_hotplug_handler
);
2431 mc
->get_hotplug_handler
= virt_machine_get_hotplug_handler
;
2432 hc
->pre_plug
= virt_machine_device_pre_plug_cb
;
2433 hc
->plug
= virt_machine_device_plug_cb
;
2434 hc
->unplug_request
= virt_machine_device_unplug_request_cb
;
2435 hc
->unplug
= virt_machine_device_unplug_cb
;
2436 mc
->nvdimm_supported
= true;
2437 mc
->auto_enable_numa_with_memhp
= true;
2438 mc
->auto_enable_numa_with_memdev
= true;
2439 mc
->default_ram_id
= "mach-virt.ram";
2441 object_class_property_add(oc
, "acpi", "OnOffAuto",
2442 virt_get_acpi
, virt_set_acpi
,
2444 object_class_property_set_description(oc
, "acpi",
2448 static void virt_instance_init(Object
*obj
)
2450 VirtMachineState
*vms
= VIRT_MACHINE(obj
);
2451 VirtMachineClass
*vmc
= VIRT_MACHINE_GET_CLASS(vms
);
2453 /* EL3 is disabled by default on virt: this makes us consistent
2454 * between KVM and TCG for this board, and it also allows us to
2455 * boot UEFI blobs which assume no TrustZone support.
2457 vms
->secure
= false;
2458 object_property_add_bool(obj
, "secure", virt_get_secure
,
2460 object_property_set_description(obj
, "secure",
2461 "Set on/off to enable/disable the ARM "
2462 "Security Extensions (TrustZone)");
2464 /* EL2 is also disabled by default, for similar reasons */
2466 object_property_add_bool(obj
, "virtualization", virt_get_virt
,
2468 object_property_set_description(obj
, "virtualization",
2469 "Set on/off to enable/disable emulating a "
2470 "guest CPU which implements the ARM "
2471 "Virtualization Extensions");
2473 /* High memory is enabled by default */
2474 vms
->highmem
= true;
2475 object_property_add_bool(obj
, "highmem", virt_get_highmem
,
2477 object_property_set_description(obj
, "highmem",
2478 "Set on/off to enable/disable using "
2479 "physical address space above 32 bits");
2480 vms
->gic_version
= VIRT_GIC_VERSION_NOSEL
;
2481 object_property_add_str(obj
, "gic-version", virt_get_gic_version
,
2482 virt_set_gic_version
);
2483 object_property_set_description(obj
, "gic-version",
2485 "Valid values are 2, 3, host and max");
2487 vms
->highmem_ecam
= !vmc
->no_highmem_ecam
;
2492 /* Default allows ITS instantiation */
2494 object_property_add_bool(obj
, "its", virt_get_its
,
2496 object_property_set_description(obj
, "its",
2497 "Set on/off to enable/disable "
2498 "ITS instantiation");
2501 /* Default disallows iommu instantiation */
2502 vms
->iommu
= VIRT_IOMMU_NONE
;
2503 object_property_add_str(obj
, "iommu", virt_get_iommu
, virt_set_iommu
);
2504 object_property_set_description(obj
, "iommu",
2505 "Set the IOMMU type. "
2506 "Valid values are none and smmuv3");
2508 /* Default disallows RAS instantiation */
2510 object_property_add_bool(obj
, "ras", virt_get_ras
,
2512 object_property_set_description(obj
, "ras",
2513 "Set on/off to enable/disable reporting host memory errors "
2514 "to a KVM guest using ACPI and guest external abort exceptions");
2516 /* MTE is disabled by default. */
2518 object_property_add_bool(obj
, "mte", virt_get_mte
, virt_set_mte
);
2519 object_property_set_description(obj
, "mte",
2520 "Set on/off to enable/disable emulating a "
2521 "guest CPU which implements the ARM "
2522 "Memory Tagging Extension");
2524 vms
->irqmap
= a15irqmap
;
2526 virt_flash_create(vms
);
2529 static const TypeInfo virt_machine_info
= {
2530 .name
= TYPE_VIRT_MACHINE
,
2531 .parent
= TYPE_MACHINE
,
2533 .instance_size
= sizeof(VirtMachineState
),
2534 .class_size
= sizeof(VirtMachineClass
),
2535 .class_init
= virt_machine_class_init
,
2536 .instance_init
= virt_instance_init
,
2537 .interfaces
= (InterfaceInfo
[]) {
2538 { TYPE_HOTPLUG_HANDLER
},
2543 static void machvirt_machine_init(void)
2545 type_register_static(&virt_machine_info
);
2547 type_init(machvirt_machine_init
);
2549 static void virt_machine_5_1_options(MachineClass
*mc
)
2552 DEFINE_VIRT_MACHINE_AS_LATEST(5, 1)
2554 static void virt_machine_5_0_options(MachineClass
*mc
)
2556 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2558 virt_machine_5_1_options(mc
);
2559 compat_props_add(mc
->compat_props
, hw_compat_5_0
, hw_compat_5_0_len
);
2560 mc
->numa_mem_supported
= true;
2561 vmc
->acpi_expose_flash
= true;
2562 mc
->auto_enable_numa_with_memdev
= false;
2564 DEFINE_VIRT_MACHINE(5, 0)
2566 static void virt_machine_4_2_options(MachineClass
*mc
)
2568 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2570 virt_machine_5_0_options(mc
);
2571 compat_props_add(mc
->compat_props
, hw_compat_4_2
, hw_compat_4_2_len
);
2572 vmc
->kvm_no_adjvtime
= true;
2574 DEFINE_VIRT_MACHINE(4, 2)
2576 static void virt_machine_4_1_options(MachineClass
*mc
)
2578 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2580 virt_machine_4_2_options(mc
);
2581 compat_props_add(mc
->compat_props
, hw_compat_4_1
, hw_compat_4_1_len
);
2583 mc
->auto_enable_numa_with_memhp
= false;
2585 DEFINE_VIRT_MACHINE(4, 1)
2587 static void virt_machine_4_0_options(MachineClass
*mc
)
2589 virt_machine_4_1_options(mc
);
2590 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
2592 DEFINE_VIRT_MACHINE(4, 0)
2594 static void virt_machine_3_1_options(MachineClass
*mc
)
2596 virt_machine_4_0_options(mc
);
2597 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
2599 DEFINE_VIRT_MACHINE(3, 1)
2601 static void virt_machine_3_0_options(MachineClass
*mc
)
2603 virt_machine_3_1_options(mc
);
2604 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
2606 DEFINE_VIRT_MACHINE(3, 0)
2608 static void virt_machine_2_12_options(MachineClass
*mc
)
2610 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2612 virt_machine_3_0_options(mc
);
2613 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
2614 vmc
->no_highmem_ecam
= true;
2617 DEFINE_VIRT_MACHINE(2, 12)
2619 static void virt_machine_2_11_options(MachineClass
*mc
)
2621 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2623 virt_machine_2_12_options(mc
);
2624 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
2625 vmc
->smbios_old_sys_ver
= true;
2627 DEFINE_VIRT_MACHINE(2, 11)
2629 static void virt_machine_2_10_options(MachineClass
*mc
)
2631 virt_machine_2_11_options(mc
);
2632 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
2633 /* before 2.11 we never faulted accesses to bad addresses */
2634 mc
->ignore_memory_transaction_failures
= true;
2636 DEFINE_VIRT_MACHINE(2, 10)
2638 static void virt_machine_2_9_options(MachineClass
*mc
)
2640 virt_machine_2_10_options(mc
);
2641 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
2643 DEFINE_VIRT_MACHINE(2, 9)
2645 static void virt_machine_2_8_options(MachineClass
*mc
)
2647 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2649 virt_machine_2_9_options(mc
);
2650 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
2651 /* For 2.8 and earlier we falsely claimed in the DT that
2652 * our timers were edge-triggered, not level-triggered.
2654 vmc
->claim_edge_triggered_timers
= true;
2656 DEFINE_VIRT_MACHINE(2, 8)
2658 static void virt_machine_2_7_options(MachineClass
*mc
)
2660 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2662 virt_machine_2_8_options(mc
);
2663 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
2664 /* ITS was introduced with 2.8 */
2666 /* Stick with 1K pages for migration compatibility */
2667 mc
->minimum_page_bits
= 0;
2669 DEFINE_VIRT_MACHINE(2, 7)
2671 static void virt_machine_2_6_options(MachineClass
*mc
)
2673 VirtMachineClass
*vmc
= VIRT_MACHINE_CLASS(OBJECT_CLASS(mc
));
2675 virt_machine_2_7_options(mc
);
2676 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
2677 vmc
->disallow_affinity_adjustment
= true;
2678 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2681 DEFINE_VIRT_MACHINE(2, 6)