monitor: Fix tracepoint crash on JSON syntax error
[qemu/armbru.git] / migration / ram.c
blob52dd678092ee66ddbf27785b647f5498fa98f072
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
5 * Copyright (c) 2011-2015 Red Hat Inc
7 * Authors:
8 * Juan Quintela <quintela@redhat.com>
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
29 #include "qemu/osdep.h"
30 #include "cpu.h"
31 #include <zlib.h>
32 #include "qemu/cutils.h"
33 #include "qemu/bitops.h"
34 #include "qemu/bitmap.h"
35 #include "qemu/main-loop.h"
36 #include "xbzrle.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "socket.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qmp/qerror.h"
49 #include "trace.h"
50 #include "exec/ram_addr.h"
51 #include "exec/target_page.h"
52 #include "qemu/rcu_queue.h"
53 #include "migration/colo.h"
54 #include "block.h"
55 #include "sysemu/sysemu.h"
56 #include "qemu/uuid.h"
57 #include "savevm.h"
58 #include "qemu/iov.h"
60 /***********************************************************/
61 /* ram save/restore */
63 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
64 * worked for pages that where filled with the same char. We switched
65 * it to only search for the zero value. And to avoid confusion with
66 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
69 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
70 #define RAM_SAVE_FLAG_ZERO 0x02
71 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
72 #define RAM_SAVE_FLAG_PAGE 0x08
73 #define RAM_SAVE_FLAG_EOS 0x10
74 #define RAM_SAVE_FLAG_CONTINUE 0x20
75 #define RAM_SAVE_FLAG_XBZRLE 0x40
76 /* 0x80 is reserved in migration.h start with 0x100 next */
77 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79 static inline bool is_zero_range(uint8_t *p, uint64_t size)
81 return buffer_is_zero(p, size);
84 XBZRLECacheStats xbzrle_counters;
86 /* struct contains XBZRLE cache and a static page
87 used by the compression */
88 static struct {
89 /* buffer used for XBZRLE encoding */
90 uint8_t *encoded_buf;
91 /* buffer for storing page content */
92 uint8_t *current_buf;
93 /* Cache for XBZRLE, Protected by lock. */
94 PageCache *cache;
95 QemuMutex lock;
96 /* it will store a page full of zeros */
97 uint8_t *zero_target_page;
98 /* buffer used for XBZRLE decoding */
99 uint8_t *decoded_buf;
100 } XBZRLE;
102 static void XBZRLE_cache_lock(void)
104 if (migrate_use_xbzrle())
105 qemu_mutex_lock(&XBZRLE.lock);
108 static void XBZRLE_cache_unlock(void)
110 if (migrate_use_xbzrle())
111 qemu_mutex_unlock(&XBZRLE.lock);
115 * xbzrle_cache_resize: resize the xbzrle cache
117 * This function is called from qmp_migrate_set_cache_size in main
118 * thread, possibly while a migration is in progress. A running
119 * migration may be using the cache and might finish during this call,
120 * hence changes to the cache are protected by XBZRLE.lock().
122 * Returns 0 for success or -1 for error
124 * @new_size: new cache size
125 * @errp: set *errp if the check failed, with reason
127 int xbzrle_cache_resize(int64_t new_size, Error **errp)
129 PageCache *new_cache;
130 int64_t ret = 0;
132 /* Check for truncation */
133 if (new_size != (size_t)new_size) {
134 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
135 "exceeding address space");
136 return -1;
139 if (new_size == migrate_xbzrle_cache_size()) {
140 /* nothing to do */
141 return 0;
144 XBZRLE_cache_lock();
146 if (XBZRLE.cache != NULL) {
147 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
148 if (!new_cache) {
149 ret = -1;
150 goto out;
153 cache_fini(XBZRLE.cache);
154 XBZRLE.cache = new_cache;
156 out:
157 XBZRLE_cache_unlock();
158 return ret;
161 /* Should be holding either ram_list.mutex, or the RCU lock. */
162 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \
163 INTERNAL_RAMBLOCK_FOREACH(block) \
164 if (!qemu_ram_is_migratable(block)) {} else
166 #undef RAMBLOCK_FOREACH
168 static void ramblock_recv_map_init(void)
170 RAMBlock *rb;
172 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
173 assert(!rb->receivedmap);
174 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
178 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
180 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
181 rb->receivedmap);
184 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
186 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
189 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
191 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
194 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
195 size_t nr)
197 bitmap_set_atomic(rb->receivedmap,
198 ramblock_recv_bitmap_offset(host_addr, rb),
199 nr);
202 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
205 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
207 * Returns >0 if success with sent bytes, or <0 if error.
209 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
210 const char *block_name)
212 RAMBlock *block = qemu_ram_block_by_name(block_name);
213 unsigned long *le_bitmap, nbits;
214 uint64_t size;
216 if (!block) {
217 error_report("%s: invalid block name: %s", __func__, block_name);
218 return -1;
221 nbits = block->used_length >> TARGET_PAGE_BITS;
224 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
225 * machines we may need 4 more bytes for padding (see below
226 * comment). So extend it a bit before hand.
228 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
231 * Always use little endian when sending the bitmap. This is
232 * required that when source and destination VMs are not using the
233 * same endianess. (Note: big endian won't work.)
235 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
237 /* Size of the bitmap, in bytes */
238 size = DIV_ROUND_UP(nbits, 8);
241 * size is always aligned to 8 bytes for 64bit machines, but it
242 * may not be true for 32bit machines. We need this padding to
243 * make sure the migration can survive even between 32bit and
244 * 64bit machines.
246 size = ROUND_UP(size, 8);
248 qemu_put_be64(file, size);
249 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
251 * Mark as an end, in case the middle part is screwed up due to
252 * some "misterious" reason.
254 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
255 qemu_fflush(file);
257 g_free(le_bitmap);
259 if (qemu_file_get_error(file)) {
260 return qemu_file_get_error(file);
263 return size + sizeof(size);
267 * An outstanding page request, on the source, having been received
268 * and queued
270 struct RAMSrcPageRequest {
271 RAMBlock *rb;
272 hwaddr offset;
273 hwaddr len;
275 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
278 /* State of RAM for migration */
279 struct RAMState {
280 /* QEMUFile used for this migration */
281 QEMUFile *f;
282 /* Last block that we have visited searching for dirty pages */
283 RAMBlock *last_seen_block;
284 /* Last block from where we have sent data */
285 RAMBlock *last_sent_block;
286 /* Last dirty target page we have sent */
287 ram_addr_t last_page;
288 /* last ram version we have seen */
289 uint32_t last_version;
290 /* We are in the first round */
291 bool ram_bulk_stage;
292 /* How many times we have dirty too many pages */
293 int dirty_rate_high_cnt;
294 /* these variables are used for bitmap sync */
295 /* last time we did a full bitmap_sync */
296 int64_t time_last_bitmap_sync;
297 /* bytes transferred at start_time */
298 uint64_t bytes_xfer_prev;
299 /* number of dirty pages since start_time */
300 uint64_t num_dirty_pages_period;
301 /* xbzrle misses since the beginning of the period */
302 uint64_t xbzrle_cache_miss_prev;
303 /* number of iterations at the beginning of period */
304 uint64_t iterations_prev;
305 /* Iterations since start */
306 uint64_t iterations;
307 /* number of dirty bits in the bitmap */
308 uint64_t migration_dirty_pages;
309 /* protects modification of the bitmap */
310 QemuMutex bitmap_mutex;
311 /* The RAMBlock used in the last src_page_requests */
312 RAMBlock *last_req_rb;
313 /* Queue of outstanding page requests from the destination */
314 QemuMutex src_page_req_mutex;
315 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests;
317 typedef struct RAMState RAMState;
319 static RAMState *ram_state;
321 uint64_t ram_bytes_remaining(void)
323 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
327 MigrationStats ram_counters;
329 /* used by the search for pages to send */
330 struct PageSearchStatus {
331 /* Current block being searched */
332 RAMBlock *block;
333 /* Current page to search from */
334 unsigned long page;
335 /* Set once we wrap around */
336 bool complete_round;
338 typedef struct PageSearchStatus PageSearchStatus;
340 struct CompressParam {
341 bool done;
342 bool quit;
343 QEMUFile *file;
344 QemuMutex mutex;
345 QemuCond cond;
346 RAMBlock *block;
347 ram_addr_t offset;
349 /* internally used fields */
350 z_stream stream;
351 uint8_t *originbuf;
353 typedef struct CompressParam CompressParam;
355 struct DecompressParam {
356 bool done;
357 bool quit;
358 QemuMutex mutex;
359 QemuCond cond;
360 void *des;
361 uint8_t *compbuf;
362 int len;
363 z_stream stream;
365 typedef struct DecompressParam DecompressParam;
367 static CompressParam *comp_param;
368 static QemuThread *compress_threads;
369 /* comp_done_cond is used to wake up the migration thread when
370 * one of the compression threads has finished the compression.
371 * comp_done_lock is used to co-work with comp_done_cond.
373 static QemuMutex comp_done_lock;
374 static QemuCond comp_done_cond;
375 /* The empty QEMUFileOps will be used by file in CompressParam */
376 static const QEMUFileOps empty_ops = { };
378 static QEMUFile *decomp_file;
379 static DecompressParam *decomp_param;
380 static QemuThread *decompress_threads;
381 static QemuMutex decomp_done_lock;
382 static QemuCond decomp_done_cond;
384 static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
385 ram_addr_t offset, uint8_t *source_buf);
387 static void *do_data_compress(void *opaque)
389 CompressParam *param = opaque;
390 RAMBlock *block;
391 ram_addr_t offset;
393 qemu_mutex_lock(&param->mutex);
394 while (!param->quit) {
395 if (param->block) {
396 block = param->block;
397 offset = param->offset;
398 param->block = NULL;
399 qemu_mutex_unlock(&param->mutex);
401 do_compress_ram_page(param->file, &param->stream, block, offset,
402 param->originbuf);
404 qemu_mutex_lock(&comp_done_lock);
405 param->done = true;
406 qemu_cond_signal(&comp_done_cond);
407 qemu_mutex_unlock(&comp_done_lock);
409 qemu_mutex_lock(&param->mutex);
410 } else {
411 qemu_cond_wait(&param->cond, &param->mutex);
414 qemu_mutex_unlock(&param->mutex);
416 return NULL;
419 static inline void terminate_compression_threads(void)
421 int idx, thread_count;
423 thread_count = migrate_compress_threads();
425 for (idx = 0; idx < thread_count; idx++) {
426 qemu_mutex_lock(&comp_param[idx].mutex);
427 comp_param[idx].quit = true;
428 qemu_cond_signal(&comp_param[idx].cond);
429 qemu_mutex_unlock(&comp_param[idx].mutex);
433 static void compress_threads_save_cleanup(void)
435 int i, thread_count;
437 if (!migrate_use_compression()) {
438 return;
440 terminate_compression_threads();
441 thread_count = migrate_compress_threads();
442 for (i = 0; i < thread_count; i++) {
444 * we use it as a indicator which shows if the thread is
445 * properly init'd or not
447 if (!comp_param[i].file) {
448 break;
450 qemu_thread_join(compress_threads + i);
451 qemu_mutex_destroy(&comp_param[i].mutex);
452 qemu_cond_destroy(&comp_param[i].cond);
453 deflateEnd(&comp_param[i].stream);
454 g_free(comp_param[i].originbuf);
455 qemu_fclose(comp_param[i].file);
456 comp_param[i].file = NULL;
458 qemu_mutex_destroy(&comp_done_lock);
459 qemu_cond_destroy(&comp_done_cond);
460 g_free(compress_threads);
461 g_free(comp_param);
462 compress_threads = NULL;
463 comp_param = NULL;
466 static int compress_threads_save_setup(void)
468 int i, thread_count;
470 if (!migrate_use_compression()) {
471 return 0;
473 thread_count = migrate_compress_threads();
474 compress_threads = g_new0(QemuThread, thread_count);
475 comp_param = g_new0(CompressParam, thread_count);
476 qemu_cond_init(&comp_done_cond);
477 qemu_mutex_init(&comp_done_lock);
478 for (i = 0; i < thread_count; i++) {
479 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
480 if (!comp_param[i].originbuf) {
481 goto exit;
484 if (deflateInit(&comp_param[i].stream,
485 migrate_compress_level()) != Z_OK) {
486 g_free(comp_param[i].originbuf);
487 goto exit;
490 /* comp_param[i].file is just used as a dummy buffer to save data,
491 * set its ops to empty.
493 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
494 comp_param[i].done = true;
495 comp_param[i].quit = false;
496 qemu_mutex_init(&comp_param[i].mutex);
497 qemu_cond_init(&comp_param[i].cond);
498 qemu_thread_create(compress_threads + i, "compress",
499 do_data_compress, comp_param + i,
500 QEMU_THREAD_JOINABLE);
502 return 0;
504 exit:
505 compress_threads_save_cleanup();
506 return -1;
509 /* Multiple fd's */
511 #define MULTIFD_MAGIC 0x11223344U
512 #define MULTIFD_VERSION 1
514 #define MULTIFD_FLAG_SYNC (1 << 0)
516 typedef struct {
517 uint32_t magic;
518 uint32_t version;
519 unsigned char uuid[16]; /* QemuUUID */
520 uint8_t id;
521 } __attribute__((packed)) MultiFDInit_t;
523 typedef struct {
524 uint32_t magic;
525 uint32_t version;
526 uint32_t flags;
527 uint32_t size;
528 uint32_t used;
529 uint64_t packet_num;
530 char ramblock[256];
531 uint64_t offset[];
532 } __attribute__((packed)) MultiFDPacket_t;
534 typedef struct {
535 /* number of used pages */
536 uint32_t used;
537 /* number of allocated pages */
538 uint32_t allocated;
539 /* global number of generated multifd packets */
540 uint64_t packet_num;
541 /* offset of each page */
542 ram_addr_t *offset;
543 /* pointer to each page */
544 struct iovec *iov;
545 RAMBlock *block;
546 } MultiFDPages_t;
548 typedef struct {
549 /* this fields are not changed once the thread is created */
550 /* channel number */
551 uint8_t id;
552 /* channel thread name */
553 char *name;
554 /* channel thread id */
555 QemuThread thread;
556 /* communication channel */
557 QIOChannel *c;
558 /* sem where to wait for more work */
559 QemuSemaphore sem;
560 /* this mutex protects the following parameters */
561 QemuMutex mutex;
562 /* is this channel thread running */
563 bool running;
564 /* should this thread finish */
565 bool quit;
566 /* thread has work to do */
567 int pending_job;
568 /* array of pages to sent */
569 MultiFDPages_t *pages;
570 /* packet allocated len */
571 uint32_t packet_len;
572 /* pointer to the packet */
573 MultiFDPacket_t *packet;
574 /* multifd flags for each packet */
575 uint32_t flags;
576 /* global number of generated multifd packets */
577 uint64_t packet_num;
578 /* thread local variables */
579 /* packets sent through this channel */
580 uint64_t num_packets;
581 /* pages sent through this channel */
582 uint64_t num_pages;
583 /* syncs main thread and channels */
584 QemuSemaphore sem_sync;
585 } MultiFDSendParams;
587 typedef struct {
588 /* this fields are not changed once the thread is created */
589 /* channel number */
590 uint8_t id;
591 /* channel thread name */
592 char *name;
593 /* channel thread id */
594 QemuThread thread;
595 /* communication channel */
596 QIOChannel *c;
597 /* this mutex protects the following parameters */
598 QemuMutex mutex;
599 /* is this channel thread running */
600 bool running;
601 /* array of pages to receive */
602 MultiFDPages_t *pages;
603 /* packet allocated len */
604 uint32_t packet_len;
605 /* pointer to the packet */
606 MultiFDPacket_t *packet;
607 /* multifd flags for each packet */
608 uint32_t flags;
609 /* global number of generated multifd packets */
610 uint64_t packet_num;
611 /* thread local variables */
612 /* packets sent through this channel */
613 uint64_t num_packets;
614 /* pages sent through this channel */
615 uint64_t num_pages;
616 /* syncs main thread and channels */
617 QemuSemaphore sem_sync;
618 } MultiFDRecvParams;
620 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
622 MultiFDInit_t msg;
623 int ret;
625 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
626 msg.version = cpu_to_be32(MULTIFD_VERSION);
627 msg.id = p->id;
628 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
630 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
631 if (ret != 0) {
632 return -1;
634 return 0;
637 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
639 MultiFDInit_t msg;
640 int ret;
642 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
643 if (ret != 0) {
644 return -1;
647 be32_to_cpus(&msg.magic);
648 be32_to_cpus(&msg.version);
650 if (msg.magic != MULTIFD_MAGIC) {
651 error_setg(errp, "multifd: received packet magic %x "
652 "expected %x", msg.magic, MULTIFD_MAGIC);
653 return -1;
656 if (msg.version != MULTIFD_VERSION) {
657 error_setg(errp, "multifd: received packet version %d "
658 "expected %d", msg.version, MULTIFD_VERSION);
659 return -1;
662 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
663 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
664 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
666 error_setg(errp, "multifd: received uuid '%s' and expected "
667 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
668 g_free(uuid);
669 g_free(msg_uuid);
670 return -1;
673 if (msg.id > migrate_multifd_channels()) {
674 error_setg(errp, "multifd: received channel version %d "
675 "expected %d", msg.version, MULTIFD_VERSION);
676 return -1;
679 return msg.id;
682 static MultiFDPages_t *multifd_pages_init(size_t size)
684 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
686 pages->allocated = size;
687 pages->iov = g_new0(struct iovec, size);
688 pages->offset = g_new0(ram_addr_t, size);
690 return pages;
693 static void multifd_pages_clear(MultiFDPages_t *pages)
695 pages->used = 0;
696 pages->allocated = 0;
697 pages->packet_num = 0;
698 pages->block = NULL;
699 g_free(pages->iov);
700 pages->iov = NULL;
701 g_free(pages->offset);
702 pages->offset = NULL;
703 g_free(pages);
706 static void multifd_send_fill_packet(MultiFDSendParams *p)
708 MultiFDPacket_t *packet = p->packet;
709 int i;
711 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
712 packet->version = cpu_to_be32(MULTIFD_VERSION);
713 packet->flags = cpu_to_be32(p->flags);
714 packet->size = cpu_to_be32(migrate_multifd_page_count());
715 packet->used = cpu_to_be32(p->pages->used);
716 packet->packet_num = cpu_to_be64(p->packet_num);
718 if (p->pages->block) {
719 strncpy(packet->ramblock, p->pages->block->idstr, 256);
722 for (i = 0; i < p->pages->used; i++) {
723 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
727 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
729 MultiFDPacket_t *packet = p->packet;
730 RAMBlock *block;
731 int i;
733 be32_to_cpus(&packet->magic);
734 if (packet->magic != MULTIFD_MAGIC) {
735 error_setg(errp, "multifd: received packet "
736 "magic %x and expected magic %x",
737 packet->magic, MULTIFD_MAGIC);
738 return -1;
741 be32_to_cpus(&packet->version);
742 if (packet->version != MULTIFD_VERSION) {
743 error_setg(errp, "multifd: received packet "
744 "version %d and expected version %d",
745 packet->version, MULTIFD_VERSION);
746 return -1;
749 p->flags = be32_to_cpu(packet->flags);
751 be32_to_cpus(&packet->size);
752 if (packet->size > migrate_multifd_page_count()) {
753 error_setg(errp, "multifd: received packet "
754 "with size %d and expected maximum size %d",
755 packet->size, migrate_multifd_page_count()) ;
756 return -1;
759 p->pages->used = be32_to_cpu(packet->used);
760 if (p->pages->used > packet->size) {
761 error_setg(errp, "multifd: received packet "
762 "with size %d and expected maximum size %d",
763 p->pages->used, packet->size) ;
764 return -1;
767 p->packet_num = be64_to_cpu(packet->packet_num);
769 if (p->pages->used) {
770 /* make sure that ramblock is 0 terminated */
771 packet->ramblock[255] = 0;
772 block = qemu_ram_block_by_name(packet->ramblock);
773 if (!block) {
774 error_setg(errp, "multifd: unknown ram block %s",
775 packet->ramblock);
776 return -1;
780 for (i = 0; i < p->pages->used; i++) {
781 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
783 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
784 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
785 " (max " RAM_ADDR_FMT ")",
786 offset, block->max_length);
787 return -1;
789 p->pages->iov[i].iov_base = block->host + offset;
790 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
793 return 0;
796 struct {
797 MultiFDSendParams *params;
798 /* number of created threads */
799 int count;
800 /* array of pages to sent */
801 MultiFDPages_t *pages;
802 /* syncs main thread and channels */
803 QemuSemaphore sem_sync;
804 /* global number of generated multifd packets */
805 uint64_t packet_num;
806 /* send channels ready */
807 QemuSemaphore channels_ready;
808 } *multifd_send_state;
811 * How we use multifd_send_state->pages and channel->pages?
813 * We create a pages for each channel, and a main one. Each time that
814 * we need to send a batch of pages we interchange the ones between
815 * multifd_send_state and the channel that is sending it. There are
816 * two reasons for that:
817 * - to not have to do so many mallocs during migration
818 * - to make easier to know what to free at the end of migration
820 * This way we always know who is the owner of each "pages" struct,
821 * and we don't need any loocking. It belongs to the migration thread
822 * or to the channel thread. Switching is safe because the migration
823 * thread is using the channel mutex when changing it, and the channel
824 * have to had finish with its own, otherwise pending_job can't be
825 * false.
828 static void multifd_send_pages(void)
830 int i;
831 static int next_channel;
832 MultiFDSendParams *p = NULL; /* make happy gcc */
833 MultiFDPages_t *pages = multifd_send_state->pages;
834 uint64_t transferred;
836 qemu_sem_wait(&multifd_send_state->channels_ready);
837 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
838 p = &multifd_send_state->params[i];
840 qemu_mutex_lock(&p->mutex);
841 if (!p->pending_job) {
842 p->pending_job++;
843 next_channel = (i + 1) % migrate_multifd_channels();
844 break;
846 qemu_mutex_unlock(&p->mutex);
848 p->pages->used = 0;
850 p->packet_num = multifd_send_state->packet_num++;
851 p->pages->block = NULL;
852 multifd_send_state->pages = p->pages;
853 p->pages = pages;
854 transferred = pages->used * TARGET_PAGE_SIZE + p->packet_len;
855 ram_counters.multifd_bytes += transferred;
856 ram_counters.transferred += transferred;;
857 qemu_mutex_unlock(&p->mutex);
858 qemu_sem_post(&p->sem);
861 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
863 MultiFDPages_t *pages = multifd_send_state->pages;
865 if (!pages->block) {
866 pages->block = block;
869 if (pages->block == block) {
870 pages->offset[pages->used] = offset;
871 pages->iov[pages->used].iov_base = block->host + offset;
872 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
873 pages->used++;
875 if (pages->used < pages->allocated) {
876 return;
880 multifd_send_pages();
882 if (pages->block != block) {
883 multifd_queue_page(block, offset);
887 static void multifd_send_terminate_threads(Error *err)
889 int i;
891 if (err) {
892 MigrationState *s = migrate_get_current();
893 migrate_set_error(s, err);
894 if (s->state == MIGRATION_STATUS_SETUP ||
895 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
896 s->state == MIGRATION_STATUS_DEVICE ||
897 s->state == MIGRATION_STATUS_ACTIVE) {
898 migrate_set_state(&s->state, s->state,
899 MIGRATION_STATUS_FAILED);
903 for (i = 0; i < migrate_multifd_channels(); i++) {
904 MultiFDSendParams *p = &multifd_send_state->params[i];
906 qemu_mutex_lock(&p->mutex);
907 p->quit = true;
908 qemu_sem_post(&p->sem);
909 qemu_mutex_unlock(&p->mutex);
913 int multifd_save_cleanup(Error **errp)
915 int i;
916 int ret = 0;
918 if (!migrate_use_multifd()) {
919 return 0;
921 multifd_send_terminate_threads(NULL);
922 for (i = 0; i < migrate_multifd_channels(); i++) {
923 MultiFDSendParams *p = &multifd_send_state->params[i];
925 if (p->running) {
926 qemu_thread_join(&p->thread);
928 socket_send_channel_destroy(p->c);
929 p->c = NULL;
930 qemu_mutex_destroy(&p->mutex);
931 qemu_sem_destroy(&p->sem);
932 qemu_sem_destroy(&p->sem_sync);
933 g_free(p->name);
934 p->name = NULL;
935 multifd_pages_clear(p->pages);
936 p->pages = NULL;
937 p->packet_len = 0;
938 g_free(p->packet);
939 p->packet = NULL;
941 qemu_sem_destroy(&multifd_send_state->channels_ready);
942 qemu_sem_destroy(&multifd_send_state->sem_sync);
943 g_free(multifd_send_state->params);
944 multifd_send_state->params = NULL;
945 multifd_pages_clear(multifd_send_state->pages);
946 multifd_send_state->pages = NULL;
947 g_free(multifd_send_state);
948 multifd_send_state = NULL;
949 return ret;
952 static void multifd_send_sync_main(void)
954 int i;
956 if (!migrate_use_multifd()) {
957 return;
959 if (multifd_send_state->pages->used) {
960 multifd_send_pages();
962 for (i = 0; i < migrate_multifd_channels(); i++) {
963 MultiFDSendParams *p = &multifd_send_state->params[i];
965 trace_multifd_send_sync_main_signal(p->id);
967 qemu_mutex_lock(&p->mutex);
969 p->packet_num = multifd_send_state->packet_num++;
970 p->flags |= MULTIFD_FLAG_SYNC;
971 p->pending_job++;
972 qemu_mutex_unlock(&p->mutex);
973 qemu_sem_post(&p->sem);
975 for (i = 0; i < migrate_multifd_channels(); i++) {
976 MultiFDSendParams *p = &multifd_send_state->params[i];
978 trace_multifd_send_sync_main_wait(p->id);
979 qemu_sem_wait(&multifd_send_state->sem_sync);
981 trace_multifd_send_sync_main(multifd_send_state->packet_num);
984 static void *multifd_send_thread(void *opaque)
986 MultiFDSendParams *p = opaque;
987 Error *local_err = NULL;
988 int ret;
990 trace_multifd_send_thread_start(p->id);
992 if (multifd_send_initial_packet(p, &local_err) < 0) {
993 goto out;
995 /* initial packet */
996 p->num_packets = 1;
998 while (true) {
999 qemu_sem_wait(&p->sem);
1000 qemu_mutex_lock(&p->mutex);
1002 if (p->pending_job) {
1003 uint32_t used = p->pages->used;
1004 uint64_t packet_num = p->packet_num;
1005 uint32_t flags = p->flags;
1007 multifd_send_fill_packet(p);
1008 p->flags = 0;
1009 p->num_packets++;
1010 p->num_pages += used;
1011 p->pages->used = 0;
1012 qemu_mutex_unlock(&p->mutex);
1014 trace_multifd_send(p->id, packet_num, used, flags);
1016 ret = qio_channel_write_all(p->c, (void *)p->packet,
1017 p->packet_len, &local_err);
1018 if (ret != 0) {
1019 break;
1022 ret = qio_channel_writev_all(p->c, p->pages->iov, used, &local_err);
1023 if (ret != 0) {
1024 break;
1027 qemu_mutex_lock(&p->mutex);
1028 p->pending_job--;
1029 qemu_mutex_unlock(&p->mutex);
1031 if (flags & MULTIFD_FLAG_SYNC) {
1032 qemu_sem_post(&multifd_send_state->sem_sync);
1034 qemu_sem_post(&multifd_send_state->channels_ready);
1035 } else if (p->quit) {
1036 qemu_mutex_unlock(&p->mutex);
1037 break;
1038 } else {
1039 qemu_mutex_unlock(&p->mutex);
1040 /* sometimes there are spurious wakeups */
1044 out:
1045 if (local_err) {
1046 multifd_send_terminate_threads(local_err);
1049 qemu_mutex_lock(&p->mutex);
1050 p->running = false;
1051 qemu_mutex_unlock(&p->mutex);
1053 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1055 return NULL;
1058 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1060 MultiFDSendParams *p = opaque;
1061 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1062 Error *local_err = NULL;
1064 if (qio_task_propagate_error(task, &local_err)) {
1065 if (multifd_save_cleanup(&local_err) != 0) {
1066 migrate_set_error(migrate_get_current(), local_err);
1068 } else {
1069 p->c = QIO_CHANNEL(sioc);
1070 qio_channel_set_delay(p->c, false);
1071 p->running = true;
1072 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1073 QEMU_THREAD_JOINABLE);
1075 atomic_inc(&multifd_send_state->count);
1079 int multifd_save_setup(void)
1081 int thread_count;
1082 uint32_t page_count = migrate_multifd_page_count();
1083 uint8_t i;
1085 if (!migrate_use_multifd()) {
1086 return 0;
1088 thread_count = migrate_multifd_channels();
1089 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1090 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
1091 atomic_set(&multifd_send_state->count, 0);
1092 multifd_send_state->pages = multifd_pages_init(page_count);
1093 qemu_sem_init(&multifd_send_state->sem_sync, 0);
1094 qemu_sem_init(&multifd_send_state->channels_ready, 0);
1096 for (i = 0; i < thread_count; i++) {
1097 MultiFDSendParams *p = &multifd_send_state->params[i];
1099 qemu_mutex_init(&p->mutex);
1100 qemu_sem_init(&p->sem, 0);
1101 qemu_sem_init(&p->sem_sync, 0);
1102 p->quit = false;
1103 p->pending_job = 0;
1104 p->id = i;
1105 p->pages = multifd_pages_init(page_count);
1106 p->packet_len = sizeof(MultiFDPacket_t)
1107 + sizeof(ram_addr_t) * page_count;
1108 p->packet = g_malloc0(p->packet_len);
1109 p->name = g_strdup_printf("multifdsend_%d", i);
1110 socket_send_channel_create(multifd_new_send_channel_async, p);
1112 return 0;
1115 struct {
1116 MultiFDRecvParams *params;
1117 /* number of created threads */
1118 int count;
1119 /* syncs main thread and channels */
1120 QemuSemaphore sem_sync;
1121 /* global number of generated multifd packets */
1122 uint64_t packet_num;
1123 } *multifd_recv_state;
1125 static void multifd_recv_terminate_threads(Error *err)
1127 int i;
1129 if (err) {
1130 MigrationState *s = migrate_get_current();
1131 migrate_set_error(s, err);
1132 if (s->state == MIGRATION_STATUS_SETUP ||
1133 s->state == MIGRATION_STATUS_ACTIVE) {
1134 migrate_set_state(&s->state, s->state,
1135 MIGRATION_STATUS_FAILED);
1139 for (i = 0; i < migrate_multifd_channels(); i++) {
1140 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1142 qemu_mutex_lock(&p->mutex);
1143 /* We could arrive here for two reasons:
1144 - normal quit, i.e. everything went fine, just finished
1145 - error quit: We close the channels so the channel threads
1146 finish the qio_channel_read_all_eof() */
1147 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
1148 qemu_mutex_unlock(&p->mutex);
1152 int multifd_load_cleanup(Error **errp)
1154 int i;
1155 int ret = 0;
1157 if (!migrate_use_multifd()) {
1158 return 0;
1160 multifd_recv_terminate_threads(NULL);
1161 for (i = 0; i < migrate_multifd_channels(); i++) {
1162 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1164 if (p->running) {
1165 qemu_thread_join(&p->thread);
1167 object_unref(OBJECT(p->c));
1168 p->c = NULL;
1169 qemu_mutex_destroy(&p->mutex);
1170 qemu_sem_destroy(&p->sem_sync);
1171 g_free(p->name);
1172 p->name = NULL;
1173 multifd_pages_clear(p->pages);
1174 p->pages = NULL;
1175 p->packet_len = 0;
1176 g_free(p->packet);
1177 p->packet = NULL;
1179 qemu_sem_destroy(&multifd_recv_state->sem_sync);
1180 g_free(multifd_recv_state->params);
1181 multifd_recv_state->params = NULL;
1182 g_free(multifd_recv_state);
1183 multifd_recv_state = NULL;
1185 return ret;
1188 static void multifd_recv_sync_main(void)
1190 int i;
1192 if (!migrate_use_multifd()) {
1193 return;
1195 for (i = 0; i < migrate_multifd_channels(); i++) {
1196 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1198 trace_multifd_recv_sync_main_wait(p->id);
1199 qemu_sem_wait(&multifd_recv_state->sem_sync);
1200 qemu_mutex_lock(&p->mutex);
1201 if (multifd_recv_state->packet_num < p->packet_num) {
1202 multifd_recv_state->packet_num = p->packet_num;
1204 qemu_mutex_unlock(&p->mutex);
1206 for (i = 0; i < migrate_multifd_channels(); i++) {
1207 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1209 trace_multifd_recv_sync_main_signal(p->id);
1210 qemu_sem_post(&p->sem_sync);
1212 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1215 static void *multifd_recv_thread(void *opaque)
1217 MultiFDRecvParams *p = opaque;
1218 Error *local_err = NULL;
1219 int ret;
1221 trace_multifd_recv_thread_start(p->id);
1223 while (true) {
1224 uint32_t used;
1225 uint32_t flags;
1227 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1228 p->packet_len, &local_err);
1229 if (ret == 0) { /* EOF */
1230 break;
1232 if (ret == -1) { /* Error */
1233 break;
1236 qemu_mutex_lock(&p->mutex);
1237 ret = multifd_recv_unfill_packet(p, &local_err);
1238 if (ret) {
1239 qemu_mutex_unlock(&p->mutex);
1240 break;
1243 used = p->pages->used;
1244 flags = p->flags;
1245 trace_multifd_recv(p->id, p->packet_num, used, flags);
1246 p->num_packets++;
1247 p->num_pages += used;
1248 qemu_mutex_unlock(&p->mutex);
1250 ret = qio_channel_readv_all(p->c, p->pages->iov, used, &local_err);
1251 if (ret != 0) {
1252 break;
1255 if (flags & MULTIFD_FLAG_SYNC) {
1256 qemu_sem_post(&multifd_recv_state->sem_sync);
1257 qemu_sem_wait(&p->sem_sync);
1261 if (local_err) {
1262 multifd_recv_terminate_threads(local_err);
1264 qemu_mutex_lock(&p->mutex);
1265 p->running = false;
1266 qemu_mutex_unlock(&p->mutex);
1268 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1270 return NULL;
1273 int multifd_load_setup(void)
1275 int thread_count;
1276 uint32_t page_count = migrate_multifd_page_count();
1277 uint8_t i;
1279 if (!migrate_use_multifd()) {
1280 return 0;
1282 thread_count = migrate_multifd_channels();
1283 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1284 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
1285 atomic_set(&multifd_recv_state->count, 0);
1286 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
1288 for (i = 0; i < thread_count; i++) {
1289 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1291 qemu_mutex_init(&p->mutex);
1292 qemu_sem_init(&p->sem_sync, 0);
1293 p->id = i;
1294 p->pages = multifd_pages_init(page_count);
1295 p->packet_len = sizeof(MultiFDPacket_t)
1296 + sizeof(ram_addr_t) * page_count;
1297 p->packet = g_malloc0(p->packet_len);
1298 p->name = g_strdup_printf("multifdrecv_%d", i);
1300 return 0;
1303 bool multifd_recv_all_channels_created(void)
1305 int thread_count = migrate_multifd_channels();
1307 if (!migrate_use_multifd()) {
1308 return true;
1311 return thread_count == atomic_read(&multifd_recv_state->count);
1314 /* Return true if multifd is ready for the migration, otherwise false */
1315 bool multifd_recv_new_channel(QIOChannel *ioc)
1317 MultiFDRecvParams *p;
1318 Error *local_err = NULL;
1319 int id;
1321 id = multifd_recv_initial_packet(ioc, &local_err);
1322 if (id < 0) {
1323 multifd_recv_terminate_threads(local_err);
1324 return false;
1327 p = &multifd_recv_state->params[id];
1328 if (p->c != NULL) {
1329 error_setg(&local_err, "multifd: received id '%d' already setup'",
1330 id);
1331 multifd_recv_terminate_threads(local_err);
1332 return false;
1334 p->c = ioc;
1335 object_ref(OBJECT(ioc));
1336 /* initial packet */
1337 p->num_packets = 1;
1339 p->running = true;
1340 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1341 QEMU_THREAD_JOINABLE);
1342 atomic_inc(&multifd_recv_state->count);
1343 return multifd_recv_state->count == migrate_multifd_channels();
1347 * save_page_header: write page header to wire
1349 * If this is the 1st block, it also writes the block identification
1351 * Returns the number of bytes written
1353 * @f: QEMUFile where to send the data
1354 * @block: block that contains the page we want to send
1355 * @offset: offset inside the block for the page
1356 * in the lower bits, it contains flags
1358 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1359 ram_addr_t offset)
1361 size_t size, len;
1363 if (block == rs->last_sent_block) {
1364 offset |= RAM_SAVE_FLAG_CONTINUE;
1366 qemu_put_be64(f, offset);
1367 size = 8;
1369 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
1370 len = strlen(block->idstr);
1371 qemu_put_byte(f, len);
1372 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
1373 size += 1 + len;
1374 rs->last_sent_block = block;
1376 return size;
1380 * mig_throttle_guest_down: throotle down the guest
1382 * Reduce amount of guest cpu execution to hopefully slow down memory
1383 * writes. If guest dirty memory rate is reduced below the rate at
1384 * which we can transfer pages to the destination then we should be
1385 * able to complete migration. Some workloads dirty memory way too
1386 * fast and will not effectively converge, even with auto-converge.
1388 static void mig_throttle_guest_down(void)
1390 MigrationState *s = migrate_get_current();
1391 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1392 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
1394 /* We have not started throttling yet. Let's start it. */
1395 if (!cpu_throttle_active()) {
1396 cpu_throttle_set(pct_initial);
1397 } else {
1398 /* Throttling already on, just increase the rate */
1399 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement);
1404 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1406 * @rs: current RAM state
1407 * @current_addr: address for the zero page
1409 * Update the xbzrle cache to reflect a page that's been sent as all 0.
1410 * The important thing is that a stale (not-yet-0'd) page be replaced
1411 * by the new data.
1412 * As a bonus, if the page wasn't in the cache it gets added so that
1413 * when a small write is made into the 0'd page it gets XBZRLE sent.
1415 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
1417 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
1418 return;
1421 /* We don't care if this fails to allocate a new cache page
1422 * as long as it updated an old one */
1423 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
1424 ram_counters.dirty_sync_count);
1427 #define ENCODING_FLAG_XBZRLE 0x1
1430 * save_xbzrle_page: compress and send current page
1432 * Returns: 1 means that we wrote the page
1433 * 0 means that page is identical to the one already sent
1434 * -1 means that xbzrle would be longer than normal
1436 * @rs: current RAM state
1437 * @current_data: pointer to the address of the page contents
1438 * @current_addr: addr of the page
1439 * @block: block that contains the page we want to send
1440 * @offset: offset inside the block for the page
1441 * @last_stage: if we are at the completion stage
1443 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
1444 ram_addr_t current_addr, RAMBlock *block,
1445 ram_addr_t offset, bool last_stage)
1447 int encoded_len = 0, bytes_xbzrle;
1448 uint8_t *prev_cached_page;
1450 if (!cache_is_cached(XBZRLE.cache, current_addr,
1451 ram_counters.dirty_sync_count)) {
1452 xbzrle_counters.cache_miss++;
1453 if (!last_stage) {
1454 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
1455 ram_counters.dirty_sync_count) == -1) {
1456 return -1;
1457 } else {
1458 /* update *current_data when the page has been
1459 inserted into cache */
1460 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1463 return -1;
1466 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1468 /* save current buffer into memory */
1469 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1471 /* XBZRLE encoding (if there is no overflow) */
1472 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1473 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1474 TARGET_PAGE_SIZE);
1475 if (encoded_len == 0) {
1476 trace_save_xbzrle_page_skipping();
1477 return 0;
1478 } else if (encoded_len == -1) {
1479 trace_save_xbzrle_page_overflow();
1480 xbzrle_counters.overflow++;
1481 /* update data in the cache */
1482 if (!last_stage) {
1483 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
1484 *current_data = prev_cached_page;
1486 return -1;
1489 /* we need to update the data in the cache, in order to get the same data */
1490 if (!last_stage) {
1491 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1494 /* Send XBZRLE based compressed page */
1495 bytes_xbzrle = save_page_header(rs, rs->f, block,
1496 offset | RAM_SAVE_FLAG_XBZRLE);
1497 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1498 qemu_put_be16(rs->f, encoded_len);
1499 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
1500 bytes_xbzrle += encoded_len + 1 + 2;
1501 xbzrle_counters.pages++;
1502 xbzrle_counters.bytes += bytes_xbzrle;
1503 ram_counters.transferred += bytes_xbzrle;
1505 return 1;
1509 * migration_bitmap_find_dirty: find the next dirty page from start
1511 * Called with rcu_read_lock() to protect migration_bitmap
1513 * Returns the byte offset within memory region of the start of a dirty page
1515 * @rs: current RAM state
1516 * @rb: RAMBlock where to search for dirty pages
1517 * @start: page where we start the search
1519 static inline
1520 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
1521 unsigned long start)
1523 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1524 unsigned long *bitmap = rb->bmap;
1525 unsigned long next;
1527 if (!qemu_ram_is_migratable(rb)) {
1528 return size;
1531 if (rs->ram_bulk_stage && start > 0) {
1532 next = start + 1;
1533 } else {
1534 next = find_next_bit(bitmap, size, start);
1537 return next;
1540 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
1541 RAMBlock *rb,
1542 unsigned long page)
1544 bool ret;
1546 ret = test_and_clear_bit(page, rb->bmap);
1548 if (ret) {
1549 rs->migration_dirty_pages--;
1551 return ret;
1554 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1555 ram_addr_t start, ram_addr_t length)
1557 rs->migration_dirty_pages +=
1558 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
1559 &rs->num_dirty_pages_period);
1563 * ram_pagesize_summary: calculate all the pagesizes of a VM
1565 * Returns a summary bitmap of the page sizes of all RAMBlocks
1567 * For VMs with just normal pages this is equivalent to the host page
1568 * size. If it's got some huge pages then it's the OR of all the
1569 * different page sizes.
1571 uint64_t ram_pagesize_summary(void)
1573 RAMBlock *block;
1574 uint64_t summary = 0;
1576 RAMBLOCK_FOREACH_MIGRATABLE(block) {
1577 summary |= block->page_size;
1580 return summary;
1583 static void migration_update_rates(RAMState *rs, int64_t end_time)
1585 uint64_t iter_count = rs->iterations - rs->iterations_prev;
1587 /* calculate period counters */
1588 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1589 / (end_time - rs->time_last_bitmap_sync);
1591 if (!iter_count) {
1592 return;
1595 if (migrate_use_xbzrle()) {
1596 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1597 rs->xbzrle_cache_miss_prev) / iter_count;
1598 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1602 static void migration_bitmap_sync(RAMState *rs)
1604 RAMBlock *block;
1605 int64_t end_time;
1606 uint64_t bytes_xfer_now;
1608 ram_counters.dirty_sync_count++;
1610 if (!rs->time_last_bitmap_sync) {
1611 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1614 trace_migration_bitmap_sync_start();
1615 memory_global_dirty_log_sync();
1617 qemu_mutex_lock(&rs->bitmap_mutex);
1618 rcu_read_lock();
1619 RAMBLOCK_FOREACH_MIGRATABLE(block) {
1620 migration_bitmap_sync_range(rs, block, 0, block->used_length);
1622 ram_counters.remaining = ram_bytes_remaining();
1623 rcu_read_unlock();
1624 qemu_mutex_unlock(&rs->bitmap_mutex);
1626 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1628 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1630 /* more than 1 second = 1000 millisecons */
1631 if (end_time > rs->time_last_bitmap_sync + 1000) {
1632 bytes_xfer_now = ram_counters.transferred;
1634 /* During block migration the auto-converge logic incorrectly detects
1635 * that ram migration makes no progress. Avoid this by disabling the
1636 * throttling logic during the bulk phase of block migration. */
1637 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1638 /* The following detection logic can be refined later. For now:
1639 Check to see if the dirtied bytes is 50% more than the approx.
1640 amount of bytes that just got transferred since the last time we
1641 were in this routine. If that happens twice, start or increase
1642 throttling */
1644 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
1645 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
1646 (++rs->dirty_rate_high_cnt >= 2)) {
1647 trace_migration_throttle();
1648 rs->dirty_rate_high_cnt = 0;
1649 mig_throttle_guest_down();
1653 migration_update_rates(rs, end_time);
1655 rs->iterations_prev = rs->iterations;
1657 /* reset period counters */
1658 rs->time_last_bitmap_sync = end_time;
1659 rs->num_dirty_pages_period = 0;
1660 rs->bytes_xfer_prev = bytes_xfer_now;
1662 if (migrate_use_events()) {
1663 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL);
1668 * save_zero_page: send the zero page to the stream
1670 * Returns the number of pages written.
1672 * @rs: current RAM state
1673 * @block: block that contains the page we want to send
1674 * @offset: offset inside the block for the page
1676 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1678 uint8_t *p = block->host + offset;
1679 int pages = -1;
1681 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1682 ram_counters.duplicate++;
1683 ram_counters.transferred +=
1684 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO);
1685 qemu_put_byte(rs->f, 0);
1686 ram_counters.transferred += 1;
1687 pages = 1;
1690 return pages;
1693 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1695 if (!migrate_release_ram() || !migration_in_postcopy()) {
1696 return;
1699 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
1703 * @pages: the number of pages written by the control path,
1704 * < 0 - error
1705 * > 0 - number of pages written
1707 * Return true if the pages has been saved, otherwise false is returned.
1709 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1710 int *pages)
1712 uint64_t bytes_xmit = 0;
1713 int ret;
1715 *pages = -1;
1716 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1717 &bytes_xmit);
1718 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1719 return false;
1722 if (bytes_xmit) {
1723 ram_counters.transferred += bytes_xmit;
1724 *pages = 1;
1727 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1728 return true;
1731 if (bytes_xmit > 0) {
1732 ram_counters.normal++;
1733 } else if (bytes_xmit == 0) {
1734 ram_counters.duplicate++;
1737 return true;
1741 * directly send the page to the stream
1743 * Returns the number of pages written.
1745 * @rs: current RAM state
1746 * @block: block that contains the page we want to send
1747 * @offset: offset inside the block for the page
1748 * @buf: the page to be sent
1749 * @async: send to page asyncly
1751 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1752 uint8_t *buf, bool async)
1754 ram_counters.transferred += save_page_header(rs, rs->f, block,
1755 offset | RAM_SAVE_FLAG_PAGE);
1756 if (async) {
1757 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1758 migrate_release_ram() &
1759 migration_in_postcopy());
1760 } else {
1761 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1763 ram_counters.transferred += TARGET_PAGE_SIZE;
1764 ram_counters.normal++;
1765 return 1;
1769 * ram_save_page: send the given page to the stream
1771 * Returns the number of pages written.
1772 * < 0 - error
1773 * >=0 - Number of pages written - this might legally be 0
1774 * if xbzrle noticed the page was the same.
1776 * @rs: current RAM state
1777 * @block: block that contains the page we want to send
1778 * @offset: offset inside the block for the page
1779 * @last_stage: if we are at the completion stage
1781 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
1783 int pages = -1;
1784 uint8_t *p;
1785 bool send_async = true;
1786 RAMBlock *block = pss->block;
1787 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
1788 ram_addr_t current_addr = block->offset + offset;
1790 p = block->host + offset;
1791 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1793 XBZRLE_cache_lock();
1794 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1795 migrate_use_xbzrle()) {
1796 pages = save_xbzrle_page(rs, &p, current_addr, block,
1797 offset, last_stage);
1798 if (!last_stage) {
1799 /* Can't send this cached data async, since the cache page
1800 * might get updated before it gets to the wire
1802 send_async = false;
1806 /* XBZRLE overflow or normal page */
1807 if (pages == -1) {
1808 pages = save_normal_page(rs, block, offset, p, send_async);
1811 XBZRLE_cache_unlock();
1813 return pages;
1816 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1817 ram_addr_t offset)
1819 multifd_queue_page(block, offset);
1820 ram_counters.normal++;
1822 return 1;
1825 static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
1826 ram_addr_t offset, uint8_t *source_buf)
1828 RAMState *rs = ram_state;
1829 int bytes_sent, blen;
1830 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
1832 bytes_sent = save_page_header(rs, f, block, offset |
1833 RAM_SAVE_FLAG_COMPRESS_PAGE);
1836 * copy it to a internal buffer to avoid it being modified by VM
1837 * so that we can catch up the error during compression and
1838 * decompression
1840 memcpy(source_buf, p, TARGET_PAGE_SIZE);
1841 blen = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
1842 if (blen < 0) {
1843 bytes_sent = 0;
1844 qemu_file_set_error(migrate_get_current()->to_dst_file, blen);
1845 error_report("compressed data failed!");
1846 } else {
1847 bytes_sent += blen;
1848 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
1851 return bytes_sent;
1854 static void flush_compressed_data(RAMState *rs)
1856 int idx, len, thread_count;
1858 if (!migrate_use_compression()) {
1859 return;
1861 thread_count = migrate_compress_threads();
1863 qemu_mutex_lock(&comp_done_lock);
1864 for (idx = 0; idx < thread_count; idx++) {
1865 while (!comp_param[idx].done) {
1866 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1869 qemu_mutex_unlock(&comp_done_lock);
1871 for (idx = 0; idx < thread_count; idx++) {
1872 qemu_mutex_lock(&comp_param[idx].mutex);
1873 if (!comp_param[idx].quit) {
1874 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1875 ram_counters.transferred += len;
1877 qemu_mutex_unlock(&comp_param[idx].mutex);
1881 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1882 ram_addr_t offset)
1884 param->block = block;
1885 param->offset = offset;
1888 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1889 ram_addr_t offset)
1891 int idx, thread_count, bytes_xmit = -1, pages = -1;
1893 thread_count = migrate_compress_threads();
1894 qemu_mutex_lock(&comp_done_lock);
1895 while (true) {
1896 for (idx = 0; idx < thread_count; idx++) {
1897 if (comp_param[idx].done) {
1898 comp_param[idx].done = false;
1899 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1900 qemu_mutex_lock(&comp_param[idx].mutex);
1901 set_compress_params(&comp_param[idx], block, offset);
1902 qemu_cond_signal(&comp_param[idx].cond);
1903 qemu_mutex_unlock(&comp_param[idx].mutex);
1904 pages = 1;
1905 ram_counters.normal++;
1906 ram_counters.transferred += bytes_xmit;
1907 break;
1910 if (pages > 0) {
1911 break;
1912 } else {
1913 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1916 qemu_mutex_unlock(&comp_done_lock);
1918 return pages;
1922 * find_dirty_block: find the next dirty page and update any state
1923 * associated with the search process.
1925 * Returns if a page is found
1927 * @rs: current RAM state
1928 * @pss: data about the state of the current dirty page scan
1929 * @again: set to false if the search has scanned the whole of RAM
1931 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
1933 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
1934 if (pss->complete_round && pss->block == rs->last_seen_block &&
1935 pss->page >= rs->last_page) {
1937 * We've been once around the RAM and haven't found anything.
1938 * Give up.
1940 *again = false;
1941 return false;
1943 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
1944 /* Didn't find anything in this RAM Block */
1945 pss->page = 0;
1946 pss->block = QLIST_NEXT_RCU(pss->block, next);
1947 if (!pss->block) {
1948 /* Hit the end of the list */
1949 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1950 /* Flag that we've looped */
1951 pss->complete_round = true;
1952 rs->ram_bulk_stage = false;
1953 if (migrate_use_xbzrle()) {
1954 /* If xbzrle is on, stop using the data compression at this
1955 * point. In theory, xbzrle can do better than compression.
1957 flush_compressed_data(rs);
1960 /* Didn't find anything this time, but try again on the new block */
1961 *again = true;
1962 return false;
1963 } else {
1964 /* Can go around again, but... */
1965 *again = true;
1966 /* We've found something so probably don't need to */
1967 return true;
1972 * unqueue_page: gets a page of the queue
1974 * Helper for 'get_queued_page' - gets a page off the queue
1976 * Returns the block of the page (or NULL if none available)
1978 * @rs: current RAM state
1979 * @offset: used to return the offset within the RAMBlock
1981 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1983 RAMBlock *block = NULL;
1985 qemu_mutex_lock(&rs->src_page_req_mutex);
1986 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1987 struct RAMSrcPageRequest *entry =
1988 QSIMPLEQ_FIRST(&rs->src_page_requests);
1989 block = entry->rb;
1990 *offset = entry->offset;
1992 if (entry->len > TARGET_PAGE_SIZE) {
1993 entry->len -= TARGET_PAGE_SIZE;
1994 entry->offset += TARGET_PAGE_SIZE;
1995 } else {
1996 memory_region_unref(block->mr);
1997 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1998 g_free(entry);
1999 migration_consume_urgent_request();
2002 qemu_mutex_unlock(&rs->src_page_req_mutex);
2004 return block;
2008 * get_queued_page: unqueue a page from the postocpy requests
2010 * Skips pages that are already sent (!dirty)
2012 * Returns if a queued page is found
2014 * @rs: current RAM state
2015 * @pss: data about the state of the current dirty page scan
2017 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
2019 RAMBlock *block;
2020 ram_addr_t offset;
2021 bool dirty;
2023 do {
2024 block = unqueue_page(rs, &offset);
2026 * We're sending this page, and since it's postcopy nothing else
2027 * will dirty it, and we must make sure it doesn't get sent again
2028 * even if this queue request was received after the background
2029 * search already sent it.
2031 if (block) {
2032 unsigned long page;
2034 page = offset >> TARGET_PAGE_BITS;
2035 dirty = test_bit(page, block->bmap);
2036 if (!dirty) {
2037 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
2038 page, test_bit(page, block->unsentmap));
2039 } else {
2040 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
2044 } while (block && !dirty);
2046 if (block) {
2048 * As soon as we start servicing pages out of order, then we have
2049 * to kill the bulk stage, since the bulk stage assumes
2050 * in (migration_bitmap_find_and_reset_dirty) that every page is
2051 * dirty, that's no longer true.
2053 rs->ram_bulk_stage = false;
2056 * We want the background search to continue from the queued page
2057 * since the guest is likely to want other pages near to the page
2058 * it just requested.
2060 pss->block = block;
2061 pss->page = offset >> TARGET_PAGE_BITS;
2064 return !!block;
2068 * migration_page_queue_free: drop any remaining pages in the ram
2069 * request queue
2071 * It should be empty at the end anyway, but in error cases there may
2072 * be some left. in case that there is any page left, we drop it.
2075 static void migration_page_queue_free(RAMState *rs)
2077 struct RAMSrcPageRequest *mspr, *next_mspr;
2078 /* This queue generally should be empty - but in the case of a failed
2079 * migration might have some droppings in.
2081 rcu_read_lock();
2082 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2083 memory_region_unref(mspr->rb->mr);
2084 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2085 g_free(mspr);
2087 rcu_read_unlock();
2091 * ram_save_queue_pages: queue the page for transmission
2093 * A request from postcopy destination for example.
2095 * Returns zero on success or negative on error
2097 * @rbname: Name of the RAMBLock of the request. NULL means the
2098 * same that last one.
2099 * @start: starting address from the start of the RAMBlock
2100 * @len: length (in bytes) to send
2102 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2104 RAMBlock *ramblock;
2105 RAMState *rs = ram_state;
2107 ram_counters.postcopy_requests++;
2108 rcu_read_lock();
2109 if (!rbname) {
2110 /* Reuse last RAMBlock */
2111 ramblock = rs->last_req_rb;
2113 if (!ramblock) {
2115 * Shouldn't happen, we can't reuse the last RAMBlock if
2116 * it's the 1st request.
2118 error_report("ram_save_queue_pages no previous block");
2119 goto err;
2121 } else {
2122 ramblock = qemu_ram_block_by_name(rbname);
2124 if (!ramblock) {
2125 /* We shouldn't be asked for a non-existent RAMBlock */
2126 error_report("ram_save_queue_pages no block '%s'", rbname);
2127 goto err;
2129 rs->last_req_rb = ramblock;
2131 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2132 if (start+len > ramblock->used_length) {
2133 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2134 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2135 __func__, start, len, ramblock->used_length);
2136 goto err;
2139 struct RAMSrcPageRequest *new_entry =
2140 g_malloc0(sizeof(struct RAMSrcPageRequest));
2141 new_entry->rb = ramblock;
2142 new_entry->offset = start;
2143 new_entry->len = len;
2145 memory_region_ref(ramblock->mr);
2146 qemu_mutex_lock(&rs->src_page_req_mutex);
2147 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2148 migration_make_urgent_request();
2149 qemu_mutex_unlock(&rs->src_page_req_mutex);
2150 rcu_read_unlock();
2152 return 0;
2154 err:
2155 rcu_read_unlock();
2156 return -1;
2159 static bool save_page_use_compression(RAMState *rs)
2161 if (!migrate_use_compression()) {
2162 return false;
2166 * If xbzrle is on, stop using the data compression after first
2167 * round of migration even if compression is enabled. In theory,
2168 * xbzrle can do better than compression.
2170 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2171 return true;
2174 return false;
2178 * ram_save_target_page: save one target page
2180 * Returns the number of pages written
2182 * @rs: current RAM state
2183 * @pss: data about the page we want to send
2184 * @last_stage: if we are at the completion stage
2186 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2187 bool last_stage)
2189 RAMBlock *block = pss->block;
2190 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2191 int res;
2193 if (control_save_page(rs, block, offset, &res)) {
2194 return res;
2198 * When starting the process of a new block, the first page of
2199 * the block should be sent out before other pages in the same
2200 * block, and all the pages in last block should have been sent
2201 * out, keeping this order is important, because the 'cont' flag
2202 * is used to avoid resending the block name.
2204 if (block != rs->last_sent_block && save_page_use_compression(rs)) {
2205 flush_compressed_data(rs);
2208 res = save_zero_page(rs, block, offset);
2209 if (res > 0) {
2210 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2211 * page would be stale
2213 if (!save_page_use_compression(rs)) {
2214 XBZRLE_cache_lock();
2215 xbzrle_cache_zero_page(rs, block->offset + offset);
2216 XBZRLE_cache_unlock();
2218 ram_release_pages(block->idstr, offset, res);
2219 return res;
2223 * Make sure the first page is sent out before other pages.
2225 * we post it as normal page as compression will take much
2226 * CPU resource.
2228 if (block == rs->last_sent_block && save_page_use_compression(rs)) {
2229 return compress_page_with_multi_thread(rs, block, offset);
2230 } else if (migrate_use_multifd()) {
2231 return ram_save_multifd_page(rs, block, offset);
2234 return ram_save_page(rs, pss, last_stage);
2238 * ram_save_host_page: save a whole host page
2240 * Starting at *offset send pages up to the end of the current host
2241 * page. It's valid for the initial offset to point into the middle of
2242 * a host page in which case the remainder of the hostpage is sent.
2243 * Only dirty target pages are sent. Note that the host page size may
2244 * be a huge page for this block.
2245 * The saving stops at the boundary of the used_length of the block
2246 * if the RAMBlock isn't a multiple of the host page size.
2248 * Returns the number of pages written or negative on error
2250 * @rs: current RAM state
2251 * @ms: current migration state
2252 * @pss: data about the page we want to send
2253 * @last_stage: if we are at the completion stage
2255 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2256 bool last_stage)
2258 int tmppages, pages = 0;
2259 size_t pagesize_bits =
2260 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2262 if (!qemu_ram_is_migratable(pss->block)) {
2263 error_report("block %s should not be migrated !", pss->block->idstr);
2264 return 0;
2267 do {
2268 /* Check the pages is dirty and if it is send it */
2269 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2270 pss->page++;
2271 continue;
2274 tmppages = ram_save_target_page(rs, pss, last_stage);
2275 if (tmppages < 0) {
2276 return tmppages;
2279 pages += tmppages;
2280 if (pss->block->unsentmap) {
2281 clear_bit(pss->page, pss->block->unsentmap);
2284 pss->page++;
2285 } while ((pss->page & (pagesize_bits - 1)) &&
2286 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
2288 /* The offset we leave with is the last one we looked at */
2289 pss->page--;
2290 return pages;
2294 * ram_find_and_save_block: finds a dirty page and sends it to f
2296 * Called within an RCU critical section.
2298 * Returns the number of pages written where zero means no dirty pages
2300 * @rs: current RAM state
2301 * @last_stage: if we are at the completion stage
2303 * On systems where host-page-size > target-page-size it will send all the
2304 * pages in a host page that are dirty.
2307 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2309 PageSearchStatus pss;
2310 int pages = 0;
2311 bool again, found;
2313 /* No dirty page as there is zero RAM */
2314 if (!ram_bytes_total()) {
2315 return pages;
2318 pss.block = rs->last_seen_block;
2319 pss.page = rs->last_page;
2320 pss.complete_round = false;
2322 if (!pss.block) {
2323 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2326 do {
2327 again = true;
2328 found = get_queued_page(rs, &pss);
2330 if (!found) {
2331 /* priority queue empty, so just search for something dirty */
2332 found = find_dirty_block(rs, &pss, &again);
2335 if (found) {
2336 pages = ram_save_host_page(rs, &pss, last_stage);
2338 } while (!pages && again);
2340 rs->last_seen_block = pss.block;
2341 rs->last_page = pss.page;
2343 return pages;
2346 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2348 uint64_t pages = size / TARGET_PAGE_SIZE;
2350 if (zero) {
2351 ram_counters.duplicate += pages;
2352 } else {
2353 ram_counters.normal += pages;
2354 ram_counters.transferred += size;
2355 qemu_update_position(f, size);
2359 uint64_t ram_bytes_total(void)
2361 RAMBlock *block;
2362 uint64_t total = 0;
2364 rcu_read_lock();
2365 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2366 total += block->used_length;
2368 rcu_read_unlock();
2369 return total;
2372 static void xbzrle_load_setup(void)
2374 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2377 static void xbzrle_load_cleanup(void)
2379 g_free(XBZRLE.decoded_buf);
2380 XBZRLE.decoded_buf = NULL;
2383 static void ram_state_cleanup(RAMState **rsp)
2385 if (*rsp) {
2386 migration_page_queue_free(*rsp);
2387 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2388 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2389 g_free(*rsp);
2390 *rsp = NULL;
2394 static void xbzrle_cleanup(void)
2396 XBZRLE_cache_lock();
2397 if (XBZRLE.cache) {
2398 cache_fini(XBZRLE.cache);
2399 g_free(XBZRLE.encoded_buf);
2400 g_free(XBZRLE.current_buf);
2401 g_free(XBZRLE.zero_target_page);
2402 XBZRLE.cache = NULL;
2403 XBZRLE.encoded_buf = NULL;
2404 XBZRLE.current_buf = NULL;
2405 XBZRLE.zero_target_page = NULL;
2407 XBZRLE_cache_unlock();
2410 static void ram_save_cleanup(void *opaque)
2412 RAMState **rsp = opaque;
2413 RAMBlock *block;
2415 /* caller have hold iothread lock or is in a bh, so there is
2416 * no writing race against this migration_bitmap
2418 memory_global_dirty_log_stop();
2420 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2421 g_free(block->bmap);
2422 block->bmap = NULL;
2423 g_free(block->unsentmap);
2424 block->unsentmap = NULL;
2427 xbzrle_cleanup();
2428 compress_threads_save_cleanup();
2429 ram_state_cleanup(rsp);
2432 static void ram_state_reset(RAMState *rs)
2434 rs->last_seen_block = NULL;
2435 rs->last_sent_block = NULL;
2436 rs->last_page = 0;
2437 rs->last_version = ram_list.version;
2438 rs->ram_bulk_stage = true;
2441 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2444 * 'expected' is the value you expect the bitmap mostly to be full
2445 * of; it won't bother printing lines that are all this value.
2446 * If 'todump' is null the migration bitmap is dumped.
2448 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2449 unsigned long pages)
2451 int64_t cur;
2452 int64_t linelen = 128;
2453 char linebuf[129];
2455 for (cur = 0; cur < pages; cur += linelen) {
2456 int64_t curb;
2457 bool found = false;
2459 * Last line; catch the case where the line length
2460 * is longer than remaining ram
2462 if (cur + linelen > pages) {
2463 linelen = pages - cur;
2465 for (curb = 0; curb < linelen; curb++) {
2466 bool thisbit = test_bit(cur + curb, todump);
2467 linebuf[curb] = thisbit ? '1' : '.';
2468 found = found || (thisbit != expected);
2470 if (found) {
2471 linebuf[curb] = '\0';
2472 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2477 /* **** functions for postcopy ***** */
2479 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2481 struct RAMBlock *block;
2483 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2484 unsigned long *bitmap = block->bmap;
2485 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2486 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2488 while (run_start < range) {
2489 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2490 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
2491 (run_end - run_start) << TARGET_PAGE_BITS);
2492 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2498 * postcopy_send_discard_bm_ram: discard a RAMBlock
2500 * Returns zero on success
2502 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2503 * Note: At this point the 'unsentmap' is the processed bitmap combined
2504 * with the dirtymap; so a '1' means it's either dirty or unsent.
2506 * @ms: current migration state
2507 * @pds: state for postcopy
2508 * @start: RAMBlock starting page
2509 * @length: RAMBlock size
2511 static int postcopy_send_discard_bm_ram(MigrationState *ms,
2512 PostcopyDiscardState *pds,
2513 RAMBlock *block)
2515 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2516 unsigned long current;
2517 unsigned long *unsentmap = block->unsentmap;
2519 for (current = 0; current < end; ) {
2520 unsigned long one = find_next_bit(unsentmap, end, current);
2522 if (one <= end) {
2523 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2524 unsigned long discard_length;
2526 if (zero >= end) {
2527 discard_length = end - one;
2528 } else {
2529 discard_length = zero - one;
2531 if (discard_length) {
2532 postcopy_discard_send_range(ms, pds, one, discard_length);
2534 current = one + discard_length;
2535 } else {
2536 current = one;
2540 return 0;
2544 * postcopy_each_ram_send_discard: discard all RAMBlocks
2546 * Returns 0 for success or negative for error
2548 * Utility for the outgoing postcopy code.
2549 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2550 * passing it bitmap indexes and name.
2551 * (qemu_ram_foreach_block ends up passing unscaled lengths
2552 * which would mean postcopy code would have to deal with target page)
2554 * @ms: current migration state
2556 static int postcopy_each_ram_send_discard(MigrationState *ms)
2558 struct RAMBlock *block;
2559 int ret;
2561 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2562 PostcopyDiscardState *pds =
2563 postcopy_discard_send_init(ms, block->idstr);
2566 * Postcopy sends chunks of bitmap over the wire, but it
2567 * just needs indexes at this point, avoids it having
2568 * target page specific code.
2570 ret = postcopy_send_discard_bm_ram(ms, pds, block);
2571 postcopy_discard_send_finish(ms, pds);
2572 if (ret) {
2573 return ret;
2577 return 0;
2581 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2583 * Helper for postcopy_chunk_hostpages; it's called twice to
2584 * canonicalize the two bitmaps, that are similar, but one is
2585 * inverted.
2587 * Postcopy requires that all target pages in a hostpage are dirty or
2588 * clean, not a mix. This function canonicalizes the bitmaps.
2590 * @ms: current migration state
2591 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2592 * otherwise we need to canonicalize partially dirty host pages
2593 * @block: block that contains the page we want to canonicalize
2594 * @pds: state for postcopy
2596 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2597 RAMBlock *block,
2598 PostcopyDiscardState *pds)
2600 RAMState *rs = ram_state;
2601 unsigned long *bitmap = block->bmap;
2602 unsigned long *unsentmap = block->unsentmap;
2603 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2604 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2605 unsigned long run_start;
2607 if (block->page_size == TARGET_PAGE_SIZE) {
2608 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2609 return;
2612 if (unsent_pass) {
2613 /* Find a sent page */
2614 run_start = find_next_zero_bit(unsentmap, pages, 0);
2615 } else {
2616 /* Find a dirty page */
2617 run_start = find_next_bit(bitmap, pages, 0);
2620 while (run_start < pages) {
2621 bool do_fixup = false;
2622 unsigned long fixup_start_addr;
2623 unsigned long host_offset;
2626 * If the start of this run of pages is in the middle of a host
2627 * page, then we need to fixup this host page.
2629 host_offset = run_start % host_ratio;
2630 if (host_offset) {
2631 do_fixup = true;
2632 run_start -= host_offset;
2633 fixup_start_addr = run_start;
2634 /* For the next pass */
2635 run_start = run_start + host_ratio;
2636 } else {
2637 /* Find the end of this run */
2638 unsigned long run_end;
2639 if (unsent_pass) {
2640 run_end = find_next_bit(unsentmap, pages, run_start + 1);
2641 } else {
2642 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
2645 * If the end isn't at the start of a host page, then the
2646 * run doesn't finish at the end of a host page
2647 * and we need to discard.
2649 host_offset = run_end % host_ratio;
2650 if (host_offset) {
2651 do_fixup = true;
2652 fixup_start_addr = run_end - host_offset;
2654 * This host page has gone, the next loop iteration starts
2655 * from after the fixup
2657 run_start = fixup_start_addr + host_ratio;
2658 } else {
2660 * No discards on this iteration, next loop starts from
2661 * next sent/dirty page
2663 run_start = run_end + 1;
2667 if (do_fixup) {
2668 unsigned long page;
2670 /* Tell the destination to discard this page */
2671 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2672 /* For the unsent_pass we:
2673 * discard partially sent pages
2674 * For the !unsent_pass (dirty) we:
2675 * discard partially dirty pages that were sent
2676 * (any partially sent pages were already discarded
2677 * by the previous unsent_pass)
2679 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2680 host_ratio);
2683 /* Clean up the bitmap */
2684 for (page = fixup_start_addr;
2685 page < fixup_start_addr + host_ratio; page++) {
2686 /* All pages in this host page are now not sent */
2687 set_bit(page, unsentmap);
2690 * Remark them as dirty, updating the count for any pages
2691 * that weren't previously dirty.
2693 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2697 if (unsent_pass) {
2698 /* Find the next sent page for the next iteration */
2699 run_start = find_next_zero_bit(unsentmap, pages, run_start);
2700 } else {
2701 /* Find the next dirty page for the next iteration */
2702 run_start = find_next_bit(bitmap, pages, run_start);
2708 * postcopy_chuck_hostpages: discrad any partially sent host page
2710 * Utility for the outgoing postcopy code.
2712 * Discard any partially sent host-page size chunks, mark any partially
2713 * dirty host-page size chunks as all dirty. In this case the host-page
2714 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
2716 * Returns zero on success
2718 * @ms: current migration state
2719 * @block: block we want to work with
2721 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
2723 PostcopyDiscardState *pds =
2724 postcopy_discard_send_init(ms, block->idstr);
2726 /* First pass: Discard all partially sent host pages */
2727 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2729 * Second pass: Ensure that all partially dirty host pages are made
2730 * fully dirty.
2732 postcopy_chunk_hostpages_pass(ms, false, block, pds);
2734 postcopy_discard_send_finish(ms, pds);
2735 return 0;
2739 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2741 * Returns zero on success
2743 * Transmit the set of pages to be discarded after precopy to the target
2744 * these are pages that:
2745 * a) Have been previously transmitted but are now dirty again
2746 * b) Pages that have never been transmitted, this ensures that
2747 * any pages on the destination that have been mapped by background
2748 * tasks get discarded (transparent huge pages is the specific concern)
2749 * Hopefully this is pretty sparse
2751 * @ms: current migration state
2753 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
2755 RAMState *rs = ram_state;
2756 RAMBlock *block;
2757 int ret;
2759 rcu_read_lock();
2761 /* This should be our last sync, the src is now paused */
2762 migration_bitmap_sync(rs);
2764 /* Easiest way to make sure we don't resume in the middle of a host-page */
2765 rs->last_seen_block = NULL;
2766 rs->last_sent_block = NULL;
2767 rs->last_page = 0;
2769 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2770 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2771 unsigned long *bitmap = block->bmap;
2772 unsigned long *unsentmap = block->unsentmap;
2774 if (!unsentmap) {
2775 /* We don't have a safe way to resize the sentmap, so
2776 * if the bitmap was resized it will be NULL at this
2777 * point.
2779 error_report("migration ram resized during precopy phase");
2780 rcu_read_unlock();
2781 return -EINVAL;
2783 /* Deal with TPS != HPS and huge pages */
2784 ret = postcopy_chunk_hostpages(ms, block);
2785 if (ret) {
2786 rcu_read_unlock();
2787 return ret;
2791 * Update the unsentmap to be unsentmap = unsentmap | dirty
2793 bitmap_or(unsentmap, unsentmap, bitmap, pages);
2794 #ifdef DEBUG_POSTCOPY
2795 ram_debug_dump_bitmap(unsentmap, true, pages);
2796 #endif
2798 trace_ram_postcopy_send_discard_bitmap();
2800 ret = postcopy_each_ram_send_discard(ms);
2801 rcu_read_unlock();
2803 return ret;
2807 * ram_discard_range: discard dirtied pages at the beginning of postcopy
2809 * Returns zero on success
2811 * @rbname: name of the RAMBlock of the request. NULL means the
2812 * same that last one.
2813 * @start: RAMBlock starting page
2814 * @length: RAMBlock size
2816 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2818 int ret = -1;
2820 trace_ram_discard_range(rbname, start, length);
2822 rcu_read_lock();
2823 RAMBlock *rb = qemu_ram_block_by_name(rbname);
2825 if (!rb) {
2826 error_report("ram_discard_range: Failed to find block '%s'", rbname);
2827 goto err;
2830 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2831 length >> qemu_target_page_bits());
2832 ret = ram_block_discard_range(rb, start, length);
2834 err:
2835 rcu_read_unlock();
2837 return ret;
2841 * For every allocation, we will try not to crash the VM if the
2842 * allocation failed.
2844 static int xbzrle_init(void)
2846 Error *local_err = NULL;
2848 if (!migrate_use_xbzrle()) {
2849 return 0;
2852 XBZRLE_cache_lock();
2854 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2855 if (!XBZRLE.zero_target_page) {
2856 error_report("%s: Error allocating zero page", __func__);
2857 goto err_out;
2860 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2861 TARGET_PAGE_SIZE, &local_err);
2862 if (!XBZRLE.cache) {
2863 error_report_err(local_err);
2864 goto free_zero_page;
2867 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2868 if (!XBZRLE.encoded_buf) {
2869 error_report("%s: Error allocating encoded_buf", __func__);
2870 goto free_cache;
2873 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2874 if (!XBZRLE.current_buf) {
2875 error_report("%s: Error allocating current_buf", __func__);
2876 goto free_encoded_buf;
2879 /* We are all good */
2880 XBZRLE_cache_unlock();
2881 return 0;
2883 free_encoded_buf:
2884 g_free(XBZRLE.encoded_buf);
2885 XBZRLE.encoded_buf = NULL;
2886 free_cache:
2887 cache_fini(XBZRLE.cache);
2888 XBZRLE.cache = NULL;
2889 free_zero_page:
2890 g_free(XBZRLE.zero_target_page);
2891 XBZRLE.zero_target_page = NULL;
2892 err_out:
2893 XBZRLE_cache_unlock();
2894 return -ENOMEM;
2897 static int ram_state_init(RAMState **rsp)
2899 *rsp = g_try_new0(RAMState, 1);
2901 if (!*rsp) {
2902 error_report("%s: Init ramstate fail", __func__);
2903 return -1;
2906 qemu_mutex_init(&(*rsp)->bitmap_mutex);
2907 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2908 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2911 * Count the total number of pages used by ram blocks not including any
2912 * gaps due to alignment or unplugs.
2914 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2916 ram_state_reset(*rsp);
2918 return 0;
2921 static void ram_list_init_bitmaps(void)
2923 RAMBlock *block;
2924 unsigned long pages;
2926 /* Skip setting bitmap if there is no RAM */
2927 if (ram_bytes_total()) {
2928 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2929 pages = block->max_length >> TARGET_PAGE_BITS;
2930 block->bmap = bitmap_new(pages);
2931 bitmap_set(block->bmap, 0, pages);
2932 if (migrate_postcopy_ram()) {
2933 block->unsentmap = bitmap_new(pages);
2934 bitmap_set(block->unsentmap, 0, pages);
2940 static void ram_init_bitmaps(RAMState *rs)
2942 /* For memory_global_dirty_log_start below. */
2943 qemu_mutex_lock_iothread();
2944 qemu_mutex_lock_ramlist();
2945 rcu_read_lock();
2947 ram_list_init_bitmaps();
2948 memory_global_dirty_log_start();
2949 migration_bitmap_sync(rs);
2951 rcu_read_unlock();
2952 qemu_mutex_unlock_ramlist();
2953 qemu_mutex_unlock_iothread();
2956 static int ram_init_all(RAMState **rsp)
2958 if (ram_state_init(rsp)) {
2959 return -1;
2962 if (xbzrle_init()) {
2963 ram_state_cleanup(rsp);
2964 return -1;
2967 ram_init_bitmaps(*rsp);
2969 return 0;
2972 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2974 RAMBlock *block;
2975 uint64_t pages = 0;
2978 * Postcopy is not using xbzrle/compression, so no need for that.
2979 * Also, since source are already halted, we don't need to care
2980 * about dirty page logging as well.
2983 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2984 pages += bitmap_count_one(block->bmap,
2985 block->used_length >> TARGET_PAGE_BITS);
2988 /* This may not be aligned with current bitmaps. Recalculate. */
2989 rs->migration_dirty_pages = pages;
2991 rs->last_seen_block = NULL;
2992 rs->last_sent_block = NULL;
2993 rs->last_page = 0;
2994 rs->last_version = ram_list.version;
2996 * Disable the bulk stage, otherwise we'll resend the whole RAM no
2997 * matter what we have sent.
2999 rs->ram_bulk_stage = false;
3001 /* Update RAMState cache of output QEMUFile */
3002 rs->f = out;
3004 trace_ram_state_resume_prepare(pages);
3008 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3009 * long-running RCU critical section. When rcu-reclaims in the code
3010 * start to become numerous it will be necessary to reduce the
3011 * granularity of these critical sections.
3015 * ram_save_setup: Setup RAM for migration
3017 * Returns zero to indicate success and negative for error
3019 * @f: QEMUFile where to send the data
3020 * @opaque: RAMState pointer
3022 static int ram_save_setup(QEMUFile *f, void *opaque)
3024 RAMState **rsp = opaque;
3025 RAMBlock *block;
3027 if (compress_threads_save_setup()) {
3028 return -1;
3031 /* migration has already setup the bitmap, reuse it. */
3032 if (!migration_in_colo_state()) {
3033 if (ram_init_all(rsp) != 0) {
3034 compress_threads_save_cleanup();
3035 return -1;
3038 (*rsp)->f = f;
3040 rcu_read_lock();
3042 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
3044 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3045 qemu_put_byte(f, strlen(block->idstr));
3046 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3047 qemu_put_be64(f, block->used_length);
3048 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3049 qemu_put_be64(f, block->page_size);
3053 rcu_read_unlock();
3055 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3056 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3058 multifd_send_sync_main();
3059 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3060 qemu_fflush(f);
3062 return 0;
3066 * ram_save_iterate: iterative stage for migration
3068 * Returns zero to indicate success and negative for error
3070 * @f: QEMUFile where to send the data
3071 * @opaque: RAMState pointer
3073 static int ram_save_iterate(QEMUFile *f, void *opaque)
3075 RAMState **temp = opaque;
3076 RAMState *rs = *temp;
3077 int ret;
3078 int i;
3079 int64_t t0;
3080 int done = 0;
3082 if (blk_mig_bulk_active()) {
3083 /* Avoid transferring ram during bulk phase of block migration as
3084 * the bulk phase will usually take a long time and transferring
3085 * ram updates during that time is pointless. */
3086 goto out;
3089 rcu_read_lock();
3090 if (ram_list.version != rs->last_version) {
3091 ram_state_reset(rs);
3094 /* Read version before ram_list.blocks */
3095 smp_rmb();
3097 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3099 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3100 i = 0;
3101 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3102 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3103 int pages;
3105 if (qemu_file_get_error(f)) {
3106 break;
3109 pages = ram_find_and_save_block(rs, false);
3110 /* no more pages to sent */
3111 if (pages == 0) {
3112 done = 1;
3113 break;
3115 rs->iterations++;
3117 /* we want to check in the 1st loop, just in case it was the 1st time
3118 and we had to sync the dirty bitmap.
3119 qemu_get_clock_ns() is a bit expensive, so we only check each some
3120 iterations
3122 if ((i & 63) == 0) {
3123 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3124 if (t1 > MAX_WAIT) {
3125 trace_ram_save_iterate_big_wait(t1, i);
3126 break;
3129 i++;
3131 flush_compressed_data(rs);
3132 rcu_read_unlock();
3135 * Must occur before EOS (or any QEMUFile operation)
3136 * because of RDMA protocol.
3138 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3140 multifd_send_sync_main();
3141 out:
3142 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3143 qemu_fflush(f);
3144 ram_counters.transferred += 8;
3146 ret = qemu_file_get_error(f);
3147 if (ret < 0) {
3148 return ret;
3151 return done;
3155 * ram_save_complete: function called to send the remaining amount of ram
3157 * Returns zero to indicate success
3159 * Called with iothread lock
3161 * @f: QEMUFile where to send the data
3162 * @opaque: RAMState pointer
3164 static int ram_save_complete(QEMUFile *f, void *opaque)
3166 RAMState **temp = opaque;
3167 RAMState *rs = *temp;
3169 rcu_read_lock();
3171 if (!migration_in_postcopy()) {
3172 migration_bitmap_sync(rs);
3175 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3177 /* try transferring iterative blocks of memory */
3179 /* flush all remaining blocks regardless of rate limiting */
3180 while (true) {
3181 int pages;
3183 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3184 /* no more blocks to sent */
3185 if (pages == 0) {
3186 break;
3190 flush_compressed_data(rs);
3191 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3193 rcu_read_unlock();
3195 multifd_send_sync_main();
3196 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3197 qemu_fflush(f);
3199 return 0;
3202 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3203 uint64_t *res_precopy_only,
3204 uint64_t *res_compatible,
3205 uint64_t *res_postcopy_only)
3207 RAMState **temp = opaque;
3208 RAMState *rs = *temp;
3209 uint64_t remaining_size;
3211 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3213 if (!migration_in_postcopy() &&
3214 remaining_size < max_size) {
3215 qemu_mutex_lock_iothread();
3216 rcu_read_lock();
3217 migration_bitmap_sync(rs);
3218 rcu_read_unlock();
3219 qemu_mutex_unlock_iothread();
3220 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3223 if (migrate_postcopy_ram()) {
3224 /* We can do postcopy, and all the data is postcopiable */
3225 *res_compatible += remaining_size;
3226 } else {
3227 *res_precopy_only += remaining_size;
3231 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3233 unsigned int xh_len;
3234 int xh_flags;
3235 uint8_t *loaded_data;
3237 /* extract RLE header */
3238 xh_flags = qemu_get_byte(f);
3239 xh_len = qemu_get_be16(f);
3241 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3242 error_report("Failed to load XBZRLE page - wrong compression!");
3243 return -1;
3246 if (xh_len > TARGET_PAGE_SIZE) {
3247 error_report("Failed to load XBZRLE page - len overflow!");
3248 return -1;
3250 loaded_data = XBZRLE.decoded_buf;
3251 /* load data and decode */
3252 /* it can change loaded_data to point to an internal buffer */
3253 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3255 /* decode RLE */
3256 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3257 TARGET_PAGE_SIZE) == -1) {
3258 error_report("Failed to load XBZRLE page - decode error!");
3259 return -1;
3262 return 0;
3266 * ram_block_from_stream: read a RAMBlock id from the migration stream
3268 * Must be called from within a rcu critical section.
3270 * Returns a pointer from within the RCU-protected ram_list.
3272 * @f: QEMUFile where to read the data from
3273 * @flags: Page flags (mostly to see if it's a continuation of previous block)
3275 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3277 static RAMBlock *block = NULL;
3278 char id[256];
3279 uint8_t len;
3281 if (flags & RAM_SAVE_FLAG_CONTINUE) {
3282 if (!block) {
3283 error_report("Ack, bad migration stream!");
3284 return NULL;
3286 return block;
3289 len = qemu_get_byte(f);
3290 qemu_get_buffer(f, (uint8_t *)id, len);
3291 id[len] = 0;
3293 block = qemu_ram_block_by_name(id);
3294 if (!block) {
3295 error_report("Can't find block %s", id);
3296 return NULL;
3299 if (!qemu_ram_is_migratable(block)) {
3300 error_report("block %s should not be migrated !", id);
3301 return NULL;
3304 return block;
3307 static inline void *host_from_ram_block_offset(RAMBlock *block,
3308 ram_addr_t offset)
3310 if (!offset_in_ramblock(block, offset)) {
3311 return NULL;
3314 return block->host + offset;
3318 * ram_handle_compressed: handle the zero page case
3320 * If a page (or a whole RDMA chunk) has been
3321 * determined to be zero, then zap it.
3323 * @host: host address for the zero page
3324 * @ch: what the page is filled from. We only support zero
3325 * @size: size of the zero page
3327 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3329 if (ch != 0 || !is_zero_range(host, size)) {
3330 memset(host, ch, size);
3334 /* return the size after decompression, or negative value on error */
3335 static int
3336 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3337 const uint8_t *source, size_t source_len)
3339 int err;
3341 err = inflateReset(stream);
3342 if (err != Z_OK) {
3343 return -1;
3346 stream->avail_in = source_len;
3347 stream->next_in = (uint8_t *)source;
3348 stream->avail_out = dest_len;
3349 stream->next_out = dest;
3351 err = inflate(stream, Z_NO_FLUSH);
3352 if (err != Z_STREAM_END) {
3353 return -1;
3356 return stream->total_out;
3359 static void *do_data_decompress(void *opaque)
3361 DecompressParam *param = opaque;
3362 unsigned long pagesize;
3363 uint8_t *des;
3364 int len, ret;
3366 qemu_mutex_lock(&param->mutex);
3367 while (!param->quit) {
3368 if (param->des) {
3369 des = param->des;
3370 len = param->len;
3371 param->des = 0;
3372 qemu_mutex_unlock(&param->mutex);
3374 pagesize = TARGET_PAGE_SIZE;
3376 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3377 param->compbuf, len);
3378 if (ret < 0 && migrate_get_current()->decompress_error_check) {
3379 error_report("decompress data failed");
3380 qemu_file_set_error(decomp_file, ret);
3383 qemu_mutex_lock(&decomp_done_lock);
3384 param->done = true;
3385 qemu_cond_signal(&decomp_done_cond);
3386 qemu_mutex_unlock(&decomp_done_lock);
3388 qemu_mutex_lock(&param->mutex);
3389 } else {
3390 qemu_cond_wait(&param->cond, &param->mutex);
3393 qemu_mutex_unlock(&param->mutex);
3395 return NULL;
3398 static int wait_for_decompress_done(void)
3400 int idx, thread_count;
3402 if (!migrate_use_compression()) {
3403 return 0;
3406 thread_count = migrate_decompress_threads();
3407 qemu_mutex_lock(&decomp_done_lock);
3408 for (idx = 0; idx < thread_count; idx++) {
3409 while (!decomp_param[idx].done) {
3410 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3413 qemu_mutex_unlock(&decomp_done_lock);
3414 return qemu_file_get_error(decomp_file);
3417 static void compress_threads_load_cleanup(void)
3419 int i, thread_count;
3421 if (!migrate_use_compression()) {
3422 return;
3424 thread_count = migrate_decompress_threads();
3425 for (i = 0; i < thread_count; i++) {
3427 * we use it as a indicator which shows if the thread is
3428 * properly init'd or not
3430 if (!decomp_param[i].compbuf) {
3431 break;
3434 qemu_mutex_lock(&decomp_param[i].mutex);
3435 decomp_param[i].quit = true;
3436 qemu_cond_signal(&decomp_param[i].cond);
3437 qemu_mutex_unlock(&decomp_param[i].mutex);
3439 for (i = 0; i < thread_count; i++) {
3440 if (!decomp_param[i].compbuf) {
3441 break;
3444 qemu_thread_join(decompress_threads + i);
3445 qemu_mutex_destroy(&decomp_param[i].mutex);
3446 qemu_cond_destroy(&decomp_param[i].cond);
3447 inflateEnd(&decomp_param[i].stream);
3448 g_free(decomp_param[i].compbuf);
3449 decomp_param[i].compbuf = NULL;
3451 g_free(decompress_threads);
3452 g_free(decomp_param);
3453 decompress_threads = NULL;
3454 decomp_param = NULL;
3455 decomp_file = NULL;
3458 static int compress_threads_load_setup(QEMUFile *f)
3460 int i, thread_count;
3462 if (!migrate_use_compression()) {
3463 return 0;
3466 thread_count = migrate_decompress_threads();
3467 decompress_threads = g_new0(QemuThread, thread_count);
3468 decomp_param = g_new0(DecompressParam, thread_count);
3469 qemu_mutex_init(&decomp_done_lock);
3470 qemu_cond_init(&decomp_done_cond);
3471 decomp_file = f;
3472 for (i = 0; i < thread_count; i++) {
3473 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3474 goto exit;
3477 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3478 qemu_mutex_init(&decomp_param[i].mutex);
3479 qemu_cond_init(&decomp_param[i].cond);
3480 decomp_param[i].done = true;
3481 decomp_param[i].quit = false;
3482 qemu_thread_create(decompress_threads + i, "decompress",
3483 do_data_decompress, decomp_param + i,
3484 QEMU_THREAD_JOINABLE);
3486 return 0;
3487 exit:
3488 compress_threads_load_cleanup();
3489 return -1;
3492 static void decompress_data_with_multi_threads(QEMUFile *f,
3493 void *host, int len)
3495 int idx, thread_count;
3497 thread_count = migrate_decompress_threads();
3498 qemu_mutex_lock(&decomp_done_lock);
3499 while (true) {
3500 for (idx = 0; idx < thread_count; idx++) {
3501 if (decomp_param[idx].done) {
3502 decomp_param[idx].done = false;
3503 qemu_mutex_lock(&decomp_param[idx].mutex);
3504 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3505 decomp_param[idx].des = host;
3506 decomp_param[idx].len = len;
3507 qemu_cond_signal(&decomp_param[idx].cond);
3508 qemu_mutex_unlock(&decomp_param[idx].mutex);
3509 break;
3512 if (idx < thread_count) {
3513 break;
3514 } else {
3515 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3518 qemu_mutex_unlock(&decomp_done_lock);
3522 * ram_load_setup: Setup RAM for migration incoming side
3524 * Returns zero to indicate success and negative for error
3526 * @f: QEMUFile where to receive the data
3527 * @opaque: RAMState pointer
3529 static int ram_load_setup(QEMUFile *f, void *opaque)
3531 if (compress_threads_load_setup(f)) {
3532 return -1;
3535 xbzrle_load_setup();
3536 ramblock_recv_map_init();
3537 return 0;
3540 static int ram_load_cleanup(void *opaque)
3542 RAMBlock *rb;
3543 xbzrle_load_cleanup();
3544 compress_threads_load_cleanup();
3546 RAMBLOCK_FOREACH_MIGRATABLE(rb) {
3547 g_free(rb->receivedmap);
3548 rb->receivedmap = NULL;
3550 return 0;
3554 * ram_postcopy_incoming_init: allocate postcopy data structures
3556 * Returns 0 for success and negative if there was one error
3558 * @mis: current migration incoming state
3560 * Allocate data structures etc needed by incoming migration with
3561 * postcopy-ram. postcopy-ram's similarly names
3562 * postcopy_ram_incoming_init does the work.
3564 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3566 return postcopy_ram_incoming_init(mis);
3570 * ram_load_postcopy: load a page in postcopy case
3572 * Returns 0 for success or -errno in case of error
3574 * Called in postcopy mode by ram_load().
3575 * rcu_read_lock is taken prior to this being called.
3577 * @f: QEMUFile where to send the data
3579 static int ram_load_postcopy(QEMUFile *f)
3581 int flags = 0, ret = 0;
3582 bool place_needed = false;
3583 bool matches_target_page_size = false;
3584 MigrationIncomingState *mis = migration_incoming_get_current();
3585 /* Temporary page that is later 'placed' */
3586 void *postcopy_host_page = postcopy_get_tmp_page(mis);
3587 void *last_host = NULL;
3588 bool all_zero = false;
3590 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3591 ram_addr_t addr;
3592 void *host = NULL;
3593 void *page_buffer = NULL;
3594 void *place_source = NULL;
3595 RAMBlock *block = NULL;
3596 uint8_t ch;
3598 addr = qemu_get_be64(f);
3601 * If qemu file error, we should stop here, and then "addr"
3602 * may be invalid
3604 ret = qemu_file_get_error(f);
3605 if (ret) {
3606 break;
3609 flags = addr & ~TARGET_PAGE_MASK;
3610 addr &= TARGET_PAGE_MASK;
3612 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
3613 place_needed = false;
3614 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
3615 block = ram_block_from_stream(f, flags);
3617 host = host_from_ram_block_offset(block, addr);
3618 if (!host) {
3619 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3620 ret = -EINVAL;
3621 break;
3623 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3625 * Postcopy requires that we place whole host pages atomically;
3626 * these may be huge pages for RAMBlocks that are backed by
3627 * hugetlbfs.
3628 * To make it atomic, the data is read into a temporary page
3629 * that's moved into place later.
3630 * The migration protocol uses, possibly smaller, target-pages
3631 * however the source ensures it always sends all the components
3632 * of a host page in order.
3634 page_buffer = postcopy_host_page +
3635 ((uintptr_t)host & (block->page_size - 1));
3636 /* If all TP are zero then we can optimise the place */
3637 if (!((uintptr_t)host & (block->page_size - 1))) {
3638 all_zero = true;
3639 } else {
3640 /* not the 1st TP within the HP */
3641 if (host != (last_host + TARGET_PAGE_SIZE)) {
3642 error_report("Non-sequential target page %p/%p",
3643 host, last_host);
3644 ret = -EINVAL;
3645 break;
3651 * If it's the last part of a host page then we place the host
3652 * page
3654 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
3655 (block->page_size - 1)) == 0;
3656 place_source = postcopy_host_page;
3658 last_host = host;
3660 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3661 case RAM_SAVE_FLAG_ZERO:
3662 ch = qemu_get_byte(f);
3663 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3664 if (ch) {
3665 all_zero = false;
3667 break;
3669 case RAM_SAVE_FLAG_PAGE:
3670 all_zero = false;
3671 if (!matches_target_page_size) {
3672 /* For huge pages, we always use temporary buffer */
3673 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3674 } else {
3676 * For small pages that matches target page size, we
3677 * avoid the qemu_file copy. Instead we directly use
3678 * the buffer of QEMUFile to place the page. Note: we
3679 * cannot do any QEMUFile operation before using that
3680 * buffer to make sure the buffer is valid when
3681 * placing the page.
3683 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3684 TARGET_PAGE_SIZE);
3686 break;
3687 case RAM_SAVE_FLAG_EOS:
3688 /* normal exit */
3689 multifd_recv_sync_main();
3690 break;
3691 default:
3692 error_report("Unknown combination of migration flags: %#x"
3693 " (postcopy mode)", flags);
3694 ret = -EINVAL;
3695 break;
3698 /* Detect for any possible file errors */
3699 if (!ret && qemu_file_get_error(f)) {
3700 ret = qemu_file_get_error(f);
3703 if (!ret && place_needed) {
3704 /* This gets called at the last target page in the host page */
3705 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
3707 if (all_zero) {
3708 ret = postcopy_place_page_zero(mis, place_dest,
3709 block);
3710 } else {
3711 ret = postcopy_place_page(mis, place_dest,
3712 place_source, block);
3717 return ret;
3720 static bool postcopy_is_advised(void)
3722 PostcopyState ps = postcopy_state_get();
3723 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
3726 static bool postcopy_is_running(void)
3728 PostcopyState ps = postcopy_state_get();
3729 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3732 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3734 int flags = 0, ret = 0, invalid_flags = 0;
3735 static uint64_t seq_iter;
3736 int len = 0;
3738 * If system is running in postcopy mode, page inserts to host memory must
3739 * be atomic
3741 bool postcopy_running = postcopy_is_running();
3742 /* ADVISE is earlier, it shows the source has the postcopy capability on */
3743 bool postcopy_advised = postcopy_is_advised();
3745 seq_iter++;
3747 if (version_id != 4) {
3748 ret = -EINVAL;
3751 if (!migrate_use_compression()) {
3752 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3754 /* This RCU critical section can be very long running.
3755 * When RCU reclaims in the code start to become numerous,
3756 * it will be necessary to reduce the granularity of this
3757 * critical section.
3759 rcu_read_lock();
3761 if (postcopy_running) {
3762 ret = ram_load_postcopy(f);
3765 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3766 ram_addr_t addr, total_ram_bytes;
3767 void *host = NULL;
3768 uint8_t ch;
3770 addr = qemu_get_be64(f);
3771 flags = addr & ~TARGET_PAGE_MASK;
3772 addr &= TARGET_PAGE_MASK;
3774 if (flags & invalid_flags) {
3775 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3776 error_report("Received an unexpected compressed page");
3779 ret = -EINVAL;
3780 break;
3783 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3784 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3785 RAMBlock *block = ram_block_from_stream(f, flags);
3787 host = host_from_ram_block_offset(block, addr);
3788 if (!host) {
3789 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3790 ret = -EINVAL;
3791 break;
3793 ramblock_recv_bitmap_set(block, host);
3794 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3797 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3798 case RAM_SAVE_FLAG_MEM_SIZE:
3799 /* Synchronize RAM block list */
3800 total_ram_bytes = addr;
3801 while (!ret && total_ram_bytes) {
3802 RAMBlock *block;
3803 char id[256];
3804 ram_addr_t length;
3806 len = qemu_get_byte(f);
3807 qemu_get_buffer(f, (uint8_t *)id, len);
3808 id[len] = 0;
3809 length = qemu_get_be64(f);
3811 block = qemu_ram_block_by_name(id);
3812 if (block && !qemu_ram_is_migratable(block)) {
3813 error_report("block %s should not be migrated !", id);
3814 ret = -EINVAL;
3815 } else if (block) {
3816 if (length != block->used_length) {
3817 Error *local_err = NULL;
3819 ret = qemu_ram_resize(block, length,
3820 &local_err);
3821 if (local_err) {
3822 error_report_err(local_err);
3825 /* For postcopy we need to check hugepage sizes match */
3826 if (postcopy_advised &&
3827 block->page_size != qemu_host_page_size) {
3828 uint64_t remote_page_size = qemu_get_be64(f);
3829 if (remote_page_size != block->page_size) {
3830 error_report("Mismatched RAM page size %s "
3831 "(local) %zd != %" PRId64,
3832 id, block->page_size,
3833 remote_page_size);
3834 ret = -EINVAL;
3837 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
3838 block->idstr);
3839 } else {
3840 error_report("Unknown ramblock \"%s\", cannot "
3841 "accept migration", id);
3842 ret = -EINVAL;
3845 total_ram_bytes -= length;
3847 break;
3849 case RAM_SAVE_FLAG_ZERO:
3850 ch = qemu_get_byte(f);
3851 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
3852 break;
3854 case RAM_SAVE_FLAG_PAGE:
3855 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
3856 break;
3858 case RAM_SAVE_FLAG_COMPRESS_PAGE:
3859 len = qemu_get_be32(f);
3860 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3861 error_report("Invalid compressed data length: %d", len);
3862 ret = -EINVAL;
3863 break;
3865 decompress_data_with_multi_threads(f, host, len);
3866 break;
3868 case RAM_SAVE_FLAG_XBZRLE:
3869 if (load_xbzrle(f, addr, host) < 0) {
3870 error_report("Failed to decompress XBZRLE page at "
3871 RAM_ADDR_FMT, addr);
3872 ret = -EINVAL;
3873 break;
3875 break;
3876 case RAM_SAVE_FLAG_EOS:
3877 /* normal exit */
3878 multifd_recv_sync_main();
3879 break;
3880 default:
3881 if (flags & RAM_SAVE_FLAG_HOOK) {
3882 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
3883 } else {
3884 error_report("Unknown combination of migration flags: %#x",
3885 flags);
3886 ret = -EINVAL;
3889 if (!ret) {
3890 ret = qemu_file_get_error(f);
3894 ret |= wait_for_decompress_done();
3895 rcu_read_unlock();
3896 trace_ram_load_complete(ret, seq_iter);
3897 return ret;
3900 static bool ram_has_postcopy(void *opaque)
3902 return migrate_postcopy_ram();
3905 /* Sync all the dirty bitmap with destination VM. */
3906 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
3908 RAMBlock *block;
3909 QEMUFile *file = s->to_dst_file;
3910 int ramblock_count = 0;
3912 trace_ram_dirty_bitmap_sync_start();
3914 RAMBLOCK_FOREACH_MIGRATABLE(block) {
3915 qemu_savevm_send_recv_bitmap(file, block->idstr);
3916 trace_ram_dirty_bitmap_request(block->idstr);
3917 ramblock_count++;
3920 trace_ram_dirty_bitmap_sync_wait();
3922 /* Wait until all the ramblocks' dirty bitmap synced */
3923 while (ramblock_count--) {
3924 qemu_sem_wait(&s->rp_state.rp_sem);
3927 trace_ram_dirty_bitmap_sync_complete();
3929 return 0;
3932 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
3934 qemu_sem_post(&s->rp_state.rp_sem);
3938 * Read the received bitmap, revert it as the initial dirty bitmap.
3939 * This is only used when the postcopy migration is paused but wants
3940 * to resume from a middle point.
3942 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
3944 int ret = -EINVAL;
3945 QEMUFile *file = s->rp_state.from_dst_file;
3946 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
3947 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
3948 uint64_t size, end_mark;
3950 trace_ram_dirty_bitmap_reload_begin(block->idstr);
3952 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
3953 error_report("%s: incorrect state %s", __func__,
3954 MigrationStatus_str(s->state));
3955 return -EINVAL;
3959 * Note: see comments in ramblock_recv_bitmap_send() on why we
3960 * need the endianess convertion, and the paddings.
3962 local_size = ROUND_UP(local_size, 8);
3964 /* Add paddings */
3965 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
3967 size = qemu_get_be64(file);
3969 /* The size of the bitmap should match with our ramblock */
3970 if (size != local_size) {
3971 error_report("%s: ramblock '%s' bitmap size mismatch "
3972 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
3973 block->idstr, size, local_size);
3974 ret = -EINVAL;
3975 goto out;
3978 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
3979 end_mark = qemu_get_be64(file);
3981 ret = qemu_file_get_error(file);
3982 if (ret || size != local_size) {
3983 error_report("%s: read bitmap failed for ramblock '%s': %d"
3984 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
3985 __func__, block->idstr, ret, local_size, size);
3986 ret = -EIO;
3987 goto out;
3990 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
3991 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
3992 __func__, block->idstr, end_mark);
3993 ret = -EINVAL;
3994 goto out;
3998 * Endianess convertion. We are during postcopy (though paused).
3999 * The dirty bitmap won't change. We can directly modify it.
4001 bitmap_from_le(block->bmap, le_bitmap, nbits);
4004 * What we received is "received bitmap". Revert it as the initial
4005 * dirty bitmap for this ramblock.
4007 bitmap_complement(block->bmap, block->bmap, nbits);
4009 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4012 * We succeeded to sync bitmap for current ramblock. If this is
4013 * the last one to sync, we need to notify the main send thread.
4015 ram_dirty_bitmap_reload_notify(s);
4017 ret = 0;
4018 out:
4019 g_free(le_bitmap);
4020 return ret;
4023 static int ram_resume_prepare(MigrationState *s, void *opaque)
4025 RAMState *rs = *(RAMState **)opaque;
4026 int ret;
4028 ret = ram_dirty_bitmap_sync_all(s, rs);
4029 if (ret) {
4030 return ret;
4033 ram_state_resume_prepare(rs, s->to_dst_file);
4035 return 0;
4038 static SaveVMHandlers savevm_ram_handlers = {
4039 .save_setup = ram_save_setup,
4040 .save_live_iterate = ram_save_iterate,
4041 .save_live_complete_postcopy = ram_save_complete,
4042 .save_live_complete_precopy = ram_save_complete,
4043 .has_postcopy = ram_has_postcopy,
4044 .save_live_pending = ram_save_pending,
4045 .load_state = ram_load,
4046 .save_cleanup = ram_save_cleanup,
4047 .load_setup = ram_load_setup,
4048 .load_cleanup = ram_load_cleanup,
4049 .resume_prepare = ram_resume_prepare,
4052 void ram_mig_init(void)
4054 qemu_mutex_init(&XBZRLE.lock);
4055 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);