tests: Restore check-qdict unit test
[qemu/armbru.git] / block / qcow2-refcount.c
blob3c539f02e5ec9e28de8737835ba9557c2e311c54
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32 #include "qemu/cutils.h"
34 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size);
35 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
36 int64_t offset, int64_t length, uint64_t addend,
37 bool decrease, enum qcow2_discard_type type);
39 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index);
40 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index);
41 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index);
42 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index);
43 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index);
44 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index);
45 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index);
47 static void set_refcount_ro0(void *refcount_array, uint64_t index,
48 uint64_t value);
49 static void set_refcount_ro1(void *refcount_array, uint64_t index,
50 uint64_t value);
51 static void set_refcount_ro2(void *refcount_array, uint64_t index,
52 uint64_t value);
53 static void set_refcount_ro3(void *refcount_array, uint64_t index,
54 uint64_t value);
55 static void set_refcount_ro4(void *refcount_array, uint64_t index,
56 uint64_t value);
57 static void set_refcount_ro5(void *refcount_array, uint64_t index,
58 uint64_t value);
59 static void set_refcount_ro6(void *refcount_array, uint64_t index,
60 uint64_t value);
63 static Qcow2GetRefcountFunc *const get_refcount_funcs[] = {
64 &get_refcount_ro0,
65 &get_refcount_ro1,
66 &get_refcount_ro2,
67 &get_refcount_ro3,
68 &get_refcount_ro4,
69 &get_refcount_ro5,
70 &get_refcount_ro6
73 static Qcow2SetRefcountFunc *const set_refcount_funcs[] = {
74 &set_refcount_ro0,
75 &set_refcount_ro1,
76 &set_refcount_ro2,
77 &set_refcount_ro3,
78 &set_refcount_ro4,
79 &set_refcount_ro5,
80 &set_refcount_ro6
84 /*********************************************************/
85 /* refcount handling */
87 static void update_max_refcount_table_index(BDRVQcow2State *s)
89 unsigned i = s->refcount_table_size - 1;
90 while (i > 0 && (s->refcount_table[i] & REFT_OFFSET_MASK) == 0) {
91 i--;
93 /* Set s->max_refcount_table_index to the index of the last used entry */
94 s->max_refcount_table_index = i;
97 int qcow2_refcount_init(BlockDriverState *bs)
99 BDRVQcow2State *s = bs->opaque;
100 unsigned int refcount_table_size2, i;
101 int ret;
103 assert(s->refcount_order >= 0 && s->refcount_order <= 6);
105 s->get_refcount = get_refcount_funcs[s->refcount_order];
106 s->set_refcount = set_refcount_funcs[s->refcount_order];
108 assert(s->refcount_table_size <= INT_MAX / sizeof(uint64_t));
109 refcount_table_size2 = s->refcount_table_size * sizeof(uint64_t);
110 s->refcount_table = g_try_malloc(refcount_table_size2);
112 if (s->refcount_table_size > 0) {
113 if (s->refcount_table == NULL) {
114 ret = -ENOMEM;
115 goto fail;
117 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_LOAD);
118 ret = bdrv_pread(bs->file, s->refcount_table_offset,
119 s->refcount_table, refcount_table_size2);
120 if (ret < 0) {
121 goto fail;
123 for(i = 0; i < s->refcount_table_size; i++)
124 be64_to_cpus(&s->refcount_table[i]);
125 update_max_refcount_table_index(s);
127 return 0;
128 fail:
129 return ret;
132 void qcow2_refcount_close(BlockDriverState *bs)
134 BDRVQcow2State *s = bs->opaque;
135 g_free(s->refcount_table);
139 static uint64_t get_refcount_ro0(const void *refcount_array, uint64_t index)
141 return (((const uint8_t *)refcount_array)[index / 8] >> (index % 8)) & 0x1;
144 static void set_refcount_ro0(void *refcount_array, uint64_t index,
145 uint64_t value)
147 assert(!(value >> 1));
148 ((uint8_t *)refcount_array)[index / 8] &= ~(0x1 << (index % 8));
149 ((uint8_t *)refcount_array)[index / 8] |= value << (index % 8);
152 static uint64_t get_refcount_ro1(const void *refcount_array, uint64_t index)
154 return (((const uint8_t *)refcount_array)[index / 4] >> (2 * (index % 4)))
155 & 0x3;
158 static void set_refcount_ro1(void *refcount_array, uint64_t index,
159 uint64_t value)
161 assert(!(value >> 2));
162 ((uint8_t *)refcount_array)[index / 4] &= ~(0x3 << (2 * (index % 4)));
163 ((uint8_t *)refcount_array)[index / 4] |= value << (2 * (index % 4));
166 static uint64_t get_refcount_ro2(const void *refcount_array, uint64_t index)
168 return (((const uint8_t *)refcount_array)[index / 2] >> (4 * (index % 2)))
169 & 0xf;
172 static void set_refcount_ro2(void *refcount_array, uint64_t index,
173 uint64_t value)
175 assert(!(value >> 4));
176 ((uint8_t *)refcount_array)[index / 2] &= ~(0xf << (4 * (index % 2)));
177 ((uint8_t *)refcount_array)[index / 2] |= value << (4 * (index % 2));
180 static uint64_t get_refcount_ro3(const void *refcount_array, uint64_t index)
182 return ((const uint8_t *)refcount_array)[index];
185 static void set_refcount_ro3(void *refcount_array, uint64_t index,
186 uint64_t value)
188 assert(!(value >> 8));
189 ((uint8_t *)refcount_array)[index] = value;
192 static uint64_t get_refcount_ro4(const void *refcount_array, uint64_t index)
194 return be16_to_cpu(((const uint16_t *)refcount_array)[index]);
197 static void set_refcount_ro4(void *refcount_array, uint64_t index,
198 uint64_t value)
200 assert(!(value >> 16));
201 ((uint16_t *)refcount_array)[index] = cpu_to_be16(value);
204 static uint64_t get_refcount_ro5(const void *refcount_array, uint64_t index)
206 return be32_to_cpu(((const uint32_t *)refcount_array)[index]);
209 static void set_refcount_ro5(void *refcount_array, uint64_t index,
210 uint64_t value)
212 assert(!(value >> 32));
213 ((uint32_t *)refcount_array)[index] = cpu_to_be32(value);
216 static uint64_t get_refcount_ro6(const void *refcount_array, uint64_t index)
218 return be64_to_cpu(((const uint64_t *)refcount_array)[index]);
221 static void set_refcount_ro6(void *refcount_array, uint64_t index,
222 uint64_t value)
224 ((uint64_t *)refcount_array)[index] = cpu_to_be64(value);
228 static int load_refcount_block(BlockDriverState *bs,
229 int64_t refcount_block_offset,
230 void **refcount_block)
232 BDRVQcow2State *s = bs->opaque;
234 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_LOAD);
235 return qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
236 refcount_block);
240 * Retrieves the refcount of the cluster given by its index and stores it in
241 * *refcount. Returns 0 on success and -errno on failure.
243 int qcow2_get_refcount(BlockDriverState *bs, int64_t cluster_index,
244 uint64_t *refcount)
246 BDRVQcow2State *s = bs->opaque;
247 uint64_t refcount_table_index, block_index;
248 int64_t refcount_block_offset;
249 int ret;
250 void *refcount_block;
252 refcount_table_index = cluster_index >> s->refcount_block_bits;
253 if (refcount_table_index >= s->refcount_table_size) {
254 *refcount = 0;
255 return 0;
257 refcount_block_offset =
258 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
259 if (!refcount_block_offset) {
260 *refcount = 0;
261 return 0;
264 if (offset_into_cluster(s, refcount_block_offset)) {
265 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#" PRIx64
266 " unaligned (reftable index: %#" PRIx64 ")",
267 refcount_block_offset, refcount_table_index);
268 return -EIO;
271 ret = qcow2_cache_get(bs, s->refcount_block_cache, refcount_block_offset,
272 &refcount_block);
273 if (ret < 0) {
274 return ret;
277 block_index = cluster_index & (s->refcount_block_size - 1);
278 *refcount = s->get_refcount(refcount_block, block_index);
280 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
282 return 0;
285 /* Checks if two offsets are described by the same refcount block */
286 static int in_same_refcount_block(BDRVQcow2State *s, uint64_t offset_a,
287 uint64_t offset_b)
289 uint64_t block_a = offset_a >> (s->cluster_bits + s->refcount_block_bits);
290 uint64_t block_b = offset_b >> (s->cluster_bits + s->refcount_block_bits);
292 return (block_a == block_b);
296 * Loads a refcount block. If it doesn't exist yet, it is allocated first
297 * (including growing the refcount table if needed).
299 * Returns 0 on success or -errno in error case
301 static int alloc_refcount_block(BlockDriverState *bs,
302 int64_t cluster_index, void **refcount_block)
304 BDRVQcow2State *s = bs->opaque;
305 unsigned int refcount_table_index;
306 int64_t ret;
308 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC);
310 /* Find the refcount block for the given cluster */
311 refcount_table_index = cluster_index >> s->refcount_block_bits;
313 if (refcount_table_index < s->refcount_table_size) {
315 uint64_t refcount_block_offset =
316 s->refcount_table[refcount_table_index] & REFT_OFFSET_MASK;
318 /* If it's already there, we're done */
319 if (refcount_block_offset) {
320 if (offset_into_cluster(s, refcount_block_offset)) {
321 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
322 PRIx64 " unaligned (reftable index: "
323 "%#x)", refcount_block_offset,
324 refcount_table_index);
325 return -EIO;
328 return load_refcount_block(bs, refcount_block_offset,
329 refcount_block);
334 * If we came here, we need to allocate something. Something is at least
335 * a cluster for the new refcount block. It may also include a new refcount
336 * table if the old refcount table is too small.
338 * Note that allocating clusters here needs some special care:
340 * - We can't use the normal qcow2_alloc_clusters(), it would try to
341 * increase the refcount and very likely we would end up with an endless
342 * recursion. Instead we must place the refcount blocks in a way that
343 * they can describe them themselves.
345 * - We need to consider that at this point we are inside update_refcounts
346 * and potentially doing an initial refcount increase. This means that
347 * some clusters have already been allocated by the caller, but their
348 * refcount isn't accurate yet. If we allocate clusters for metadata, we
349 * need to return -EAGAIN to signal the caller that it needs to restart
350 * the search for free clusters.
352 * - alloc_clusters_noref and qcow2_free_clusters may load a different
353 * refcount block into the cache
356 *refcount_block = NULL;
358 /* We write to the refcount table, so we might depend on L2 tables */
359 ret = qcow2_cache_flush(bs, s->l2_table_cache);
360 if (ret < 0) {
361 return ret;
364 /* Allocate the refcount block itself and mark it as used */
365 int64_t new_block = alloc_clusters_noref(bs, s->cluster_size);
366 if (new_block < 0) {
367 return new_block;
370 /* If we're allocating the block at offset 0 then something is wrong */
371 if (new_block == 0) {
372 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
373 "allocation of refcount block at offset 0");
374 return -EIO;
377 #ifdef DEBUG_ALLOC2
378 fprintf(stderr, "qcow2: Allocate refcount block %d for %" PRIx64
379 " at %" PRIx64 "\n",
380 refcount_table_index, cluster_index << s->cluster_bits, new_block);
381 #endif
383 if (in_same_refcount_block(s, new_block, cluster_index << s->cluster_bits)) {
384 /* Zero the new refcount block before updating it */
385 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
386 refcount_block);
387 if (ret < 0) {
388 goto fail;
391 memset(*refcount_block, 0, s->cluster_size);
393 /* The block describes itself, need to update the cache */
394 int block_index = (new_block >> s->cluster_bits) &
395 (s->refcount_block_size - 1);
396 s->set_refcount(*refcount_block, block_index, 1);
397 } else {
398 /* Described somewhere else. This can recurse at most twice before we
399 * arrive at a block that describes itself. */
400 ret = update_refcount(bs, new_block, s->cluster_size, 1, false,
401 QCOW2_DISCARD_NEVER);
402 if (ret < 0) {
403 goto fail;
406 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
407 if (ret < 0) {
408 goto fail;
411 /* Initialize the new refcount block only after updating its refcount,
412 * update_refcount uses the refcount cache itself */
413 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache, new_block,
414 refcount_block);
415 if (ret < 0) {
416 goto fail;
419 memset(*refcount_block, 0, s->cluster_size);
422 /* Now the new refcount block needs to be written to disk */
423 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE);
424 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, *refcount_block);
425 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
426 if (ret < 0) {
427 goto fail;
430 /* If the refcount table is big enough, just hook the block up there */
431 if (refcount_table_index < s->refcount_table_size) {
432 uint64_t data64 = cpu_to_be64(new_block);
433 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_HOOKUP);
434 ret = bdrv_pwrite_sync(bs->file,
435 s->refcount_table_offset + refcount_table_index * sizeof(uint64_t),
436 &data64, sizeof(data64));
437 if (ret < 0) {
438 goto fail;
441 s->refcount_table[refcount_table_index] = new_block;
442 /* If there's a hole in s->refcount_table then it can happen
443 * that refcount_table_index < s->max_refcount_table_index */
444 s->max_refcount_table_index =
445 MAX(s->max_refcount_table_index, refcount_table_index);
447 /* The new refcount block may be where the caller intended to put its
448 * data, so let it restart the search. */
449 return -EAGAIN;
452 qcow2_cache_put(s->refcount_block_cache, refcount_block);
455 * If we come here, we need to grow the refcount table. Again, a new
456 * refcount table needs some space and we can't simply allocate to avoid
457 * endless recursion.
459 * Therefore let's grab new refcount blocks at the end of the image, which
460 * will describe themselves and the new refcount table. This way we can
461 * reference them only in the new table and do the switch to the new
462 * refcount table at once without producing an inconsistent state in
463 * between.
465 BLKDBG_EVENT(bs->file, BLKDBG_REFTABLE_GROW);
467 /* Calculate the number of refcount blocks needed so far; this will be the
468 * basis for calculating the index of the first cluster used for the
469 * self-describing refcount structures which we are about to create.
471 * Because we reached this point, there cannot be any refcount entries for
472 * cluster_index or higher indices yet. However, because new_block has been
473 * allocated to describe that cluster (and it will assume this role later
474 * on), we cannot use that index; also, new_block may actually have a higher
475 * cluster index than cluster_index, so it needs to be taken into account
476 * here (and 1 needs to be added to its value because that cluster is used).
478 uint64_t blocks_used = DIV_ROUND_UP(MAX(cluster_index + 1,
479 (new_block >> s->cluster_bits) + 1),
480 s->refcount_block_size);
482 /* Create the new refcount table and blocks */
483 uint64_t meta_offset = (blocks_used * s->refcount_block_size) *
484 s->cluster_size;
486 ret = qcow2_refcount_area(bs, meta_offset, 0, false,
487 refcount_table_index, new_block);
488 if (ret < 0) {
489 return ret;
492 ret = load_refcount_block(bs, new_block, refcount_block);
493 if (ret < 0) {
494 return ret;
497 /* If we were trying to do the initial refcount update for some cluster
498 * allocation, we might have used the same clusters to store newly
499 * allocated metadata. Make the caller search some new space. */
500 return -EAGAIN;
502 fail:
503 if (*refcount_block != NULL) {
504 qcow2_cache_put(s->refcount_block_cache, refcount_block);
506 return ret;
510 * Starting at @start_offset, this function creates new self-covering refcount
511 * structures: A new refcount table and refcount blocks which cover all of
512 * themselves, and a number of @additional_clusters beyond their end.
513 * @start_offset must be at the end of the image file, that is, there must be
514 * only empty space beyond it.
515 * If @exact_size is false, the refcount table will have 50 % more entries than
516 * necessary so it will not need to grow again soon.
517 * If @new_refblock_offset is not zero, it contains the offset of a refcount
518 * block that should be entered into the new refcount table at index
519 * @new_refblock_index.
521 * Returns: The offset after the new refcount structures (i.e. where the
522 * @additional_clusters may be placed) on success, -errno on error.
524 int64_t qcow2_refcount_area(BlockDriverState *bs, uint64_t start_offset,
525 uint64_t additional_clusters, bool exact_size,
526 int new_refblock_index,
527 uint64_t new_refblock_offset)
529 BDRVQcow2State *s = bs->opaque;
530 uint64_t total_refblock_count_u64, additional_refblock_count;
531 int total_refblock_count, table_size, area_reftable_index, table_clusters;
532 int i;
533 uint64_t table_offset, block_offset, end_offset;
534 int ret;
535 uint64_t *new_table;
537 assert(!(start_offset % s->cluster_size));
539 qcow2_refcount_metadata_size(start_offset / s->cluster_size +
540 additional_clusters,
541 s->cluster_size, s->refcount_order,
542 !exact_size, &total_refblock_count_u64);
543 if (total_refblock_count_u64 > QCOW_MAX_REFTABLE_SIZE) {
544 return -EFBIG;
546 total_refblock_count = total_refblock_count_u64;
548 /* Index in the refcount table of the first refcount block to cover the area
549 * of refcount structures we are about to create; we know that
550 * @total_refblock_count can cover @start_offset, so this will definitely
551 * fit into an int. */
552 area_reftable_index = (start_offset / s->cluster_size) /
553 s->refcount_block_size;
555 if (exact_size) {
556 table_size = total_refblock_count;
557 } else {
558 table_size = total_refblock_count +
559 DIV_ROUND_UP(total_refblock_count, 2);
561 /* The qcow2 file can only store the reftable size in number of clusters */
562 table_size = ROUND_UP(table_size, s->cluster_size / sizeof(uint64_t));
563 table_clusters = (table_size * sizeof(uint64_t)) / s->cluster_size;
565 if (table_size > QCOW_MAX_REFTABLE_SIZE) {
566 return -EFBIG;
569 new_table = g_try_new0(uint64_t, table_size);
571 assert(table_size > 0);
572 if (new_table == NULL) {
573 ret = -ENOMEM;
574 goto fail;
577 /* Fill the new refcount table */
578 if (table_size > s->max_refcount_table_index) {
579 /* We're actually growing the reftable */
580 memcpy(new_table, s->refcount_table,
581 (s->max_refcount_table_index + 1) * sizeof(uint64_t));
582 } else {
583 /* Improbable case: We're shrinking the reftable. However, the caller
584 * has assured us that there is only empty space beyond @start_offset,
585 * so we can simply drop all of the refblocks that won't fit into the
586 * new reftable. */
587 memcpy(new_table, s->refcount_table, table_size * sizeof(uint64_t));
590 if (new_refblock_offset) {
591 assert(new_refblock_index < total_refblock_count);
592 new_table[new_refblock_index] = new_refblock_offset;
595 /* Count how many new refblocks we have to create */
596 additional_refblock_count = 0;
597 for (i = area_reftable_index; i < total_refblock_count; i++) {
598 if (!new_table[i]) {
599 additional_refblock_count++;
603 table_offset = start_offset + additional_refblock_count * s->cluster_size;
604 end_offset = table_offset + table_clusters * s->cluster_size;
606 /* Fill the refcount blocks, and create new ones, if necessary */
607 block_offset = start_offset;
608 for (i = area_reftable_index; i < total_refblock_count; i++) {
609 void *refblock_data;
610 uint64_t first_offset_covered;
612 /* Reuse an existing refblock if possible, create a new one otherwise */
613 if (new_table[i]) {
614 ret = qcow2_cache_get(bs, s->refcount_block_cache, new_table[i],
615 &refblock_data);
616 if (ret < 0) {
617 goto fail;
619 } else {
620 ret = qcow2_cache_get_empty(bs, s->refcount_block_cache,
621 block_offset, &refblock_data);
622 if (ret < 0) {
623 goto fail;
625 memset(refblock_data, 0, s->cluster_size);
626 qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
627 refblock_data);
629 new_table[i] = block_offset;
630 block_offset += s->cluster_size;
633 /* First host offset covered by this refblock */
634 first_offset_covered = (uint64_t)i * s->refcount_block_size *
635 s->cluster_size;
636 if (first_offset_covered < end_offset) {
637 int j, end_index;
639 /* Set the refcount of all of the new refcount structures to 1 */
641 if (first_offset_covered < start_offset) {
642 assert(i == area_reftable_index);
643 j = (start_offset - first_offset_covered) / s->cluster_size;
644 assert(j < s->refcount_block_size);
645 } else {
646 j = 0;
649 end_index = MIN((end_offset - first_offset_covered) /
650 s->cluster_size,
651 s->refcount_block_size);
653 for (; j < end_index; j++) {
654 /* The caller guaranteed us this space would be empty */
655 assert(s->get_refcount(refblock_data, j) == 0);
656 s->set_refcount(refblock_data, j, 1);
659 qcow2_cache_entry_mark_dirty(s->refcount_block_cache,
660 refblock_data);
663 qcow2_cache_put(s->refcount_block_cache, &refblock_data);
666 assert(block_offset == table_offset);
668 /* Write refcount blocks to disk */
669 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS);
670 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
671 if (ret < 0) {
672 goto fail;
675 /* Write refcount table to disk */
676 for (i = 0; i < total_refblock_count; i++) {
677 cpu_to_be64s(&new_table[i]);
680 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE);
681 ret = bdrv_pwrite_sync(bs->file, table_offset, new_table,
682 table_size * sizeof(uint64_t));
683 if (ret < 0) {
684 goto fail;
687 for (i = 0; i < total_refblock_count; i++) {
688 be64_to_cpus(&new_table[i]);
691 /* Hook up the new refcount table in the qcow2 header */
692 struct QEMU_PACKED {
693 uint64_t d64;
694 uint32_t d32;
695 } data;
696 data.d64 = cpu_to_be64(table_offset);
697 data.d32 = cpu_to_be32(table_clusters);
698 BLKDBG_EVENT(bs->file, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE);
699 ret = bdrv_pwrite_sync(bs->file,
700 offsetof(QCowHeader, refcount_table_offset),
701 &data, sizeof(data));
702 if (ret < 0) {
703 goto fail;
706 /* And switch it in memory */
707 uint64_t old_table_offset = s->refcount_table_offset;
708 uint64_t old_table_size = s->refcount_table_size;
710 g_free(s->refcount_table);
711 s->refcount_table = new_table;
712 s->refcount_table_size = table_size;
713 s->refcount_table_offset = table_offset;
714 update_max_refcount_table_index(s);
716 /* Free old table. */
717 qcow2_free_clusters(bs, old_table_offset, old_table_size * sizeof(uint64_t),
718 QCOW2_DISCARD_OTHER);
720 return end_offset;
722 fail:
723 g_free(new_table);
724 return ret;
727 void qcow2_process_discards(BlockDriverState *bs, int ret)
729 BDRVQcow2State *s = bs->opaque;
730 Qcow2DiscardRegion *d, *next;
732 QTAILQ_FOREACH_SAFE(d, &s->discards, next, next) {
733 QTAILQ_REMOVE(&s->discards, d, next);
735 /* Discard is optional, ignore the return value */
736 if (ret >= 0) {
737 bdrv_pdiscard(bs->file, d->offset, d->bytes);
740 g_free(d);
744 static void update_refcount_discard(BlockDriverState *bs,
745 uint64_t offset, uint64_t length)
747 BDRVQcow2State *s = bs->opaque;
748 Qcow2DiscardRegion *d, *p, *next;
750 QTAILQ_FOREACH(d, &s->discards, next) {
751 uint64_t new_start = MIN(offset, d->offset);
752 uint64_t new_end = MAX(offset + length, d->offset + d->bytes);
754 if (new_end - new_start <= length + d->bytes) {
755 /* There can't be any overlap, areas ending up here have no
756 * references any more and therefore shouldn't get freed another
757 * time. */
758 assert(d->bytes + length == new_end - new_start);
759 d->offset = new_start;
760 d->bytes = new_end - new_start;
761 goto found;
765 d = g_malloc(sizeof(*d));
766 *d = (Qcow2DiscardRegion) {
767 .bs = bs,
768 .offset = offset,
769 .bytes = length,
771 QTAILQ_INSERT_TAIL(&s->discards, d, next);
773 found:
774 /* Merge discard requests if they are adjacent now */
775 QTAILQ_FOREACH_SAFE(p, &s->discards, next, next) {
776 if (p == d
777 || p->offset > d->offset + d->bytes
778 || d->offset > p->offset + p->bytes)
780 continue;
783 /* Still no overlap possible */
784 assert(p->offset == d->offset + d->bytes
785 || d->offset == p->offset + p->bytes);
787 QTAILQ_REMOVE(&s->discards, p, next);
788 d->offset = MIN(d->offset, p->offset);
789 d->bytes += p->bytes;
790 g_free(p);
794 /* XXX: cache several refcount block clusters ? */
795 /* @addend is the absolute value of the addend; if @decrease is set, @addend
796 * will be subtracted from the current refcount, otherwise it will be added */
797 static int QEMU_WARN_UNUSED_RESULT update_refcount(BlockDriverState *bs,
798 int64_t offset,
799 int64_t length,
800 uint64_t addend,
801 bool decrease,
802 enum qcow2_discard_type type)
804 BDRVQcow2State *s = bs->opaque;
805 int64_t start, last, cluster_offset;
806 void *refcount_block = NULL;
807 int64_t old_table_index = -1;
808 int ret;
810 #ifdef DEBUG_ALLOC2
811 fprintf(stderr, "update_refcount: offset=%" PRId64 " size=%" PRId64
812 " addend=%s%" PRIu64 "\n", offset, length, decrease ? "-" : "",
813 addend);
814 #endif
815 if (length < 0) {
816 return -EINVAL;
817 } else if (length == 0) {
818 return 0;
821 if (decrease) {
822 qcow2_cache_set_dependency(bs, s->refcount_block_cache,
823 s->l2_table_cache);
826 start = start_of_cluster(s, offset);
827 last = start_of_cluster(s, offset + length - 1);
828 for(cluster_offset = start; cluster_offset <= last;
829 cluster_offset += s->cluster_size)
831 int block_index;
832 uint64_t refcount;
833 int64_t cluster_index = cluster_offset >> s->cluster_bits;
834 int64_t table_index = cluster_index >> s->refcount_block_bits;
836 /* Load the refcount block and allocate it if needed */
837 if (table_index != old_table_index) {
838 if (refcount_block) {
839 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
841 ret = alloc_refcount_block(bs, cluster_index, &refcount_block);
842 /* If the caller needs to restart the search for free clusters,
843 * try the same ones first to see if they're still free. */
844 if (ret == -EAGAIN) {
845 if (s->free_cluster_index > (start >> s->cluster_bits)) {
846 s->free_cluster_index = (start >> s->cluster_bits);
849 if (ret < 0) {
850 goto fail;
853 old_table_index = table_index;
855 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refcount_block);
857 /* we can update the count and save it */
858 block_index = cluster_index & (s->refcount_block_size - 1);
860 refcount = s->get_refcount(refcount_block, block_index);
861 if (decrease ? (refcount - addend > refcount)
862 : (refcount + addend < refcount ||
863 refcount + addend > s->refcount_max))
865 ret = -EINVAL;
866 goto fail;
868 if (decrease) {
869 refcount -= addend;
870 } else {
871 refcount += addend;
873 if (refcount == 0 && cluster_index < s->free_cluster_index) {
874 s->free_cluster_index = cluster_index;
876 s->set_refcount(refcount_block, block_index, refcount);
878 if (refcount == 0) {
879 void *table;
881 table = qcow2_cache_is_table_offset(s->refcount_block_cache,
882 offset);
883 if (table != NULL) {
884 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
885 qcow2_cache_discard(s->refcount_block_cache, table);
888 table = qcow2_cache_is_table_offset(s->l2_table_cache, offset);
889 if (table != NULL) {
890 qcow2_cache_discard(s->l2_table_cache, table);
893 if (s->discard_passthrough[type]) {
894 update_refcount_discard(bs, cluster_offset, s->cluster_size);
899 ret = 0;
900 fail:
901 if (!s->cache_discards) {
902 qcow2_process_discards(bs, ret);
905 /* Write last changed block to disk */
906 if (refcount_block) {
907 qcow2_cache_put(s->refcount_block_cache, &refcount_block);
911 * Try do undo any updates if an error is returned (This may succeed in
912 * some cases like ENOSPC for allocating a new refcount block)
914 if (ret < 0) {
915 int dummy;
916 dummy = update_refcount(bs, offset, cluster_offset - offset, addend,
917 !decrease, QCOW2_DISCARD_NEVER);
918 (void)dummy;
921 return ret;
925 * Increases or decreases the refcount of a given cluster.
927 * @addend is the absolute value of the addend; if @decrease is set, @addend
928 * will be subtracted from the current refcount, otherwise it will be added.
930 * On success 0 is returned; on failure -errno is returned.
932 int qcow2_update_cluster_refcount(BlockDriverState *bs,
933 int64_t cluster_index,
934 uint64_t addend, bool decrease,
935 enum qcow2_discard_type type)
937 BDRVQcow2State *s = bs->opaque;
938 int ret;
940 ret = update_refcount(bs, cluster_index << s->cluster_bits, 1, addend,
941 decrease, type);
942 if (ret < 0) {
943 return ret;
946 return 0;
951 /*********************************************************/
952 /* cluster allocation functions */
956 /* return < 0 if error */
957 static int64_t alloc_clusters_noref(BlockDriverState *bs, uint64_t size)
959 BDRVQcow2State *s = bs->opaque;
960 uint64_t i, nb_clusters, refcount;
961 int ret;
963 /* We can't allocate clusters if they may still be queued for discard. */
964 if (s->cache_discards) {
965 qcow2_process_discards(bs, 0);
968 nb_clusters = size_to_clusters(s, size);
969 retry:
970 for(i = 0; i < nb_clusters; i++) {
971 uint64_t next_cluster_index = s->free_cluster_index++;
972 ret = qcow2_get_refcount(bs, next_cluster_index, &refcount);
974 if (ret < 0) {
975 return ret;
976 } else if (refcount != 0) {
977 goto retry;
981 /* Make sure that all offsets in the "allocated" range are representable
982 * in an int64_t */
983 if (s->free_cluster_index > 0 &&
984 s->free_cluster_index - 1 > (INT64_MAX >> s->cluster_bits))
986 return -EFBIG;
989 #ifdef DEBUG_ALLOC2
990 fprintf(stderr, "alloc_clusters: size=%" PRId64 " -> %" PRId64 "\n",
991 size,
992 (s->free_cluster_index - nb_clusters) << s->cluster_bits);
993 #endif
994 return (s->free_cluster_index - nb_clusters) << s->cluster_bits;
997 int64_t qcow2_alloc_clusters(BlockDriverState *bs, uint64_t size)
999 int64_t offset;
1000 int ret;
1002 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC);
1003 do {
1004 offset = alloc_clusters_noref(bs, size);
1005 if (offset < 0) {
1006 return offset;
1009 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1010 } while (ret == -EAGAIN);
1012 if (ret < 0) {
1013 return ret;
1016 return offset;
1019 int64_t qcow2_alloc_clusters_at(BlockDriverState *bs, uint64_t offset,
1020 int64_t nb_clusters)
1022 BDRVQcow2State *s = bs->opaque;
1023 uint64_t cluster_index, refcount;
1024 uint64_t i;
1025 int ret;
1027 assert(nb_clusters >= 0);
1028 if (nb_clusters == 0) {
1029 return 0;
1032 do {
1033 /* Check how many clusters there are free */
1034 cluster_index = offset >> s->cluster_bits;
1035 for(i = 0; i < nb_clusters; i++) {
1036 ret = qcow2_get_refcount(bs, cluster_index++, &refcount);
1037 if (ret < 0) {
1038 return ret;
1039 } else if (refcount != 0) {
1040 break;
1044 /* And then allocate them */
1045 ret = update_refcount(bs, offset, i << s->cluster_bits, 1, false,
1046 QCOW2_DISCARD_NEVER);
1047 } while (ret == -EAGAIN);
1049 if (ret < 0) {
1050 return ret;
1053 return i;
1056 /* only used to allocate compressed sectors. We try to allocate
1057 contiguous sectors. size must be <= cluster_size */
1058 int64_t qcow2_alloc_bytes(BlockDriverState *bs, int size)
1060 BDRVQcow2State *s = bs->opaque;
1061 int64_t offset;
1062 size_t free_in_cluster;
1063 int ret;
1065 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_ALLOC_BYTES);
1066 assert(size > 0 && size <= s->cluster_size);
1067 assert(!s->free_byte_offset || offset_into_cluster(s, s->free_byte_offset));
1069 offset = s->free_byte_offset;
1071 if (offset) {
1072 uint64_t refcount;
1073 ret = qcow2_get_refcount(bs, offset >> s->cluster_bits, &refcount);
1074 if (ret < 0) {
1075 return ret;
1078 if (refcount == s->refcount_max) {
1079 offset = 0;
1083 free_in_cluster = s->cluster_size - offset_into_cluster(s, offset);
1084 do {
1085 if (!offset || free_in_cluster < size) {
1086 int64_t new_cluster = alloc_clusters_noref(bs, s->cluster_size);
1087 if (new_cluster < 0) {
1088 return new_cluster;
1091 if (new_cluster == 0) {
1092 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
1093 "allocation of compressed cluster "
1094 "at offset 0");
1095 return -EIO;
1098 if (!offset || ROUND_UP(offset, s->cluster_size) != new_cluster) {
1099 offset = new_cluster;
1100 free_in_cluster = s->cluster_size;
1101 } else {
1102 free_in_cluster += s->cluster_size;
1106 assert(offset);
1107 ret = update_refcount(bs, offset, size, 1, false, QCOW2_DISCARD_NEVER);
1108 if (ret < 0) {
1109 offset = 0;
1111 } while (ret == -EAGAIN);
1112 if (ret < 0) {
1113 return ret;
1116 /* The cluster refcount was incremented; refcount blocks must be flushed
1117 * before the caller's L2 table updates. */
1118 qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
1120 s->free_byte_offset = offset + size;
1121 if (!offset_into_cluster(s, s->free_byte_offset)) {
1122 s->free_byte_offset = 0;
1125 return offset;
1128 void qcow2_free_clusters(BlockDriverState *bs,
1129 int64_t offset, int64_t size,
1130 enum qcow2_discard_type type)
1132 int ret;
1134 BLKDBG_EVENT(bs->file, BLKDBG_CLUSTER_FREE);
1135 ret = update_refcount(bs, offset, size, 1, true, type);
1136 if (ret < 0) {
1137 fprintf(stderr, "qcow2_free_clusters failed: %s\n", strerror(-ret));
1138 /* TODO Remember the clusters to free them later and avoid leaking */
1143 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1144 * normal cluster, compressed cluster, etc.)
1146 void qcow2_free_any_clusters(BlockDriverState *bs, uint64_t l2_entry,
1147 int nb_clusters, enum qcow2_discard_type type)
1149 BDRVQcow2State *s = bs->opaque;
1151 switch (qcow2_get_cluster_type(l2_entry)) {
1152 case QCOW2_CLUSTER_COMPRESSED:
1154 int nb_csectors;
1155 nb_csectors = ((l2_entry >> s->csize_shift) &
1156 s->csize_mask) + 1;
1157 qcow2_free_clusters(bs,
1158 (l2_entry & s->cluster_offset_mask) & ~511,
1159 nb_csectors * 512, type);
1161 break;
1162 case QCOW2_CLUSTER_NORMAL:
1163 case QCOW2_CLUSTER_ZERO_ALLOC:
1164 if (offset_into_cluster(s, l2_entry & L2E_OFFSET_MASK)) {
1165 qcow2_signal_corruption(bs, false, -1, -1,
1166 "Cannot free unaligned cluster %#llx",
1167 l2_entry & L2E_OFFSET_MASK);
1168 } else {
1169 qcow2_free_clusters(bs, l2_entry & L2E_OFFSET_MASK,
1170 nb_clusters << s->cluster_bits, type);
1172 break;
1173 case QCOW2_CLUSTER_ZERO_PLAIN:
1174 case QCOW2_CLUSTER_UNALLOCATED:
1175 break;
1176 default:
1177 abort();
1181 int coroutine_fn qcow2_write_caches(BlockDriverState *bs)
1183 BDRVQcow2State *s = bs->opaque;
1184 int ret;
1186 ret = qcow2_cache_write(bs, s->l2_table_cache);
1187 if (ret < 0) {
1188 return ret;
1191 if (qcow2_need_accurate_refcounts(s)) {
1192 ret = qcow2_cache_write(bs, s->refcount_block_cache);
1193 if (ret < 0) {
1194 return ret;
1198 return 0;
1201 int coroutine_fn qcow2_flush_caches(BlockDriverState *bs)
1203 int ret = qcow2_write_caches(bs);
1204 if (ret < 0) {
1205 return ret;
1208 return bdrv_flush(bs->file->bs);
1211 /*********************************************************/
1212 /* snapshots and image creation */
1216 /* update the refcounts of snapshots and the copied flag */
1217 int qcow2_update_snapshot_refcount(BlockDriverState *bs,
1218 int64_t l1_table_offset, int l1_size, int addend)
1220 BDRVQcow2State *s = bs->opaque;
1221 uint64_t *l1_table, *l2_slice, l2_offset, entry, l1_size2, refcount;
1222 bool l1_allocated = false;
1223 int64_t old_entry, old_l2_offset;
1224 unsigned slice, slice_size2, n_slices;
1225 int i, j, l1_modified = 0, nb_csectors;
1226 int ret;
1228 assert(addend >= -1 && addend <= 1);
1230 l2_slice = NULL;
1231 l1_table = NULL;
1232 l1_size2 = l1_size * sizeof(uint64_t);
1233 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1234 n_slices = s->cluster_size / slice_size2;
1236 s->cache_discards = true;
1238 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1239 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1240 * when changing this! */
1241 if (l1_table_offset != s->l1_table_offset) {
1242 l1_table = g_try_malloc0(ROUND_UP(l1_size2, 512));
1243 if (l1_size2 && l1_table == NULL) {
1244 ret = -ENOMEM;
1245 goto fail;
1247 l1_allocated = true;
1249 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1250 if (ret < 0) {
1251 goto fail;
1254 for (i = 0; i < l1_size; i++) {
1255 be64_to_cpus(&l1_table[i]);
1257 } else {
1258 assert(l1_size == s->l1_size);
1259 l1_table = s->l1_table;
1260 l1_allocated = false;
1263 for (i = 0; i < l1_size; i++) {
1264 l2_offset = l1_table[i];
1265 if (l2_offset) {
1266 old_l2_offset = l2_offset;
1267 l2_offset &= L1E_OFFSET_MASK;
1269 if (offset_into_cluster(s, l2_offset)) {
1270 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1271 PRIx64 " unaligned (L1 index: %#x)",
1272 l2_offset, i);
1273 ret = -EIO;
1274 goto fail;
1277 for (slice = 0; slice < n_slices; slice++) {
1278 ret = qcow2_cache_get(bs, s->l2_table_cache,
1279 l2_offset + slice * slice_size2,
1280 (void **) &l2_slice);
1281 if (ret < 0) {
1282 goto fail;
1285 for (j = 0; j < s->l2_slice_size; j++) {
1286 uint64_t cluster_index;
1287 uint64_t offset;
1289 entry = be64_to_cpu(l2_slice[j]);
1290 old_entry = entry;
1291 entry &= ~QCOW_OFLAG_COPIED;
1292 offset = entry & L2E_OFFSET_MASK;
1294 switch (qcow2_get_cluster_type(entry)) {
1295 case QCOW2_CLUSTER_COMPRESSED:
1296 nb_csectors = ((entry >> s->csize_shift) &
1297 s->csize_mask) + 1;
1298 if (addend != 0) {
1299 ret = update_refcount(
1300 bs, (entry & s->cluster_offset_mask) & ~511,
1301 nb_csectors * 512, abs(addend), addend < 0,
1302 QCOW2_DISCARD_SNAPSHOT);
1303 if (ret < 0) {
1304 goto fail;
1307 /* compressed clusters are never modified */
1308 refcount = 2;
1309 break;
1311 case QCOW2_CLUSTER_NORMAL:
1312 case QCOW2_CLUSTER_ZERO_ALLOC:
1313 if (offset_into_cluster(s, offset)) {
1314 /* Here l2_index means table (not slice) index */
1315 int l2_index = slice * s->l2_slice_size + j;
1316 qcow2_signal_corruption(
1317 bs, true, -1, -1, "Cluster "
1318 "allocation offset %#" PRIx64
1319 " unaligned (L2 offset: %#"
1320 PRIx64 ", L2 index: %#x)",
1321 offset, l2_offset, l2_index);
1322 ret = -EIO;
1323 goto fail;
1326 cluster_index = offset >> s->cluster_bits;
1327 assert(cluster_index);
1328 if (addend != 0) {
1329 ret = qcow2_update_cluster_refcount(
1330 bs, cluster_index, abs(addend), addend < 0,
1331 QCOW2_DISCARD_SNAPSHOT);
1332 if (ret < 0) {
1333 goto fail;
1337 ret = qcow2_get_refcount(bs, cluster_index, &refcount);
1338 if (ret < 0) {
1339 goto fail;
1341 break;
1343 case QCOW2_CLUSTER_ZERO_PLAIN:
1344 case QCOW2_CLUSTER_UNALLOCATED:
1345 refcount = 0;
1346 break;
1348 default:
1349 abort();
1352 if (refcount == 1) {
1353 entry |= QCOW_OFLAG_COPIED;
1355 if (entry != old_entry) {
1356 if (addend > 0) {
1357 qcow2_cache_set_dependency(bs, s->l2_table_cache,
1358 s->refcount_block_cache);
1360 l2_slice[j] = cpu_to_be64(entry);
1361 qcow2_cache_entry_mark_dirty(s->l2_table_cache,
1362 l2_slice);
1366 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1369 if (addend != 0) {
1370 ret = qcow2_update_cluster_refcount(bs, l2_offset >>
1371 s->cluster_bits,
1372 abs(addend), addend < 0,
1373 QCOW2_DISCARD_SNAPSHOT);
1374 if (ret < 0) {
1375 goto fail;
1378 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1379 &refcount);
1380 if (ret < 0) {
1381 goto fail;
1382 } else if (refcount == 1) {
1383 l2_offset |= QCOW_OFLAG_COPIED;
1385 if (l2_offset != old_l2_offset) {
1386 l1_table[i] = l2_offset;
1387 l1_modified = 1;
1392 ret = bdrv_flush(bs);
1393 fail:
1394 if (l2_slice) {
1395 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1398 s->cache_discards = false;
1399 qcow2_process_discards(bs, ret);
1401 /* Update L1 only if it isn't deleted anyway (addend = -1) */
1402 if (ret == 0 && addend >= 0 && l1_modified) {
1403 for (i = 0; i < l1_size; i++) {
1404 cpu_to_be64s(&l1_table[i]);
1407 ret = bdrv_pwrite_sync(bs->file, l1_table_offset,
1408 l1_table, l1_size2);
1410 for (i = 0; i < l1_size; i++) {
1411 be64_to_cpus(&l1_table[i]);
1414 if (l1_allocated)
1415 g_free(l1_table);
1416 return ret;
1422 /*********************************************************/
1423 /* refcount checking functions */
1426 static uint64_t refcount_array_byte_size(BDRVQcow2State *s, uint64_t entries)
1428 /* This assertion holds because there is no way we can address more than
1429 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1430 * offsets have to be representable in bytes); due to every cluster
1431 * corresponding to one refcount entry, we are well below that limit */
1432 assert(entries < (UINT64_C(1) << (64 - 9)));
1434 /* Thanks to the assertion this will not overflow, because
1435 * s->refcount_order < 7.
1436 * (note: x << s->refcount_order == x * s->refcount_bits) */
1437 return DIV_ROUND_UP(entries << s->refcount_order, 8);
1441 * Reallocates *array so that it can hold new_size entries. *size must contain
1442 * the current number of entries in *array. If the reallocation fails, *array
1443 * and *size will not be modified and -errno will be returned. If the
1444 * reallocation is successful, *array will be set to the new buffer, *size
1445 * will be set to new_size and 0 will be returned. The size of the reallocated
1446 * refcount array buffer will be aligned to a cluster boundary, and the newly
1447 * allocated area will be zeroed.
1449 static int realloc_refcount_array(BDRVQcow2State *s, void **array,
1450 int64_t *size, int64_t new_size)
1452 int64_t old_byte_size, new_byte_size;
1453 void *new_ptr;
1455 /* Round to clusters so the array can be directly written to disk */
1456 old_byte_size = size_to_clusters(s, refcount_array_byte_size(s, *size))
1457 * s->cluster_size;
1458 new_byte_size = size_to_clusters(s, refcount_array_byte_size(s, new_size))
1459 * s->cluster_size;
1461 if (new_byte_size == old_byte_size) {
1462 *size = new_size;
1463 return 0;
1466 assert(new_byte_size > 0);
1468 if (new_byte_size > SIZE_MAX) {
1469 return -ENOMEM;
1472 new_ptr = g_try_realloc(*array, new_byte_size);
1473 if (!new_ptr) {
1474 return -ENOMEM;
1477 if (new_byte_size > old_byte_size) {
1478 memset((char *)new_ptr + old_byte_size, 0,
1479 new_byte_size - old_byte_size);
1482 *array = new_ptr;
1483 *size = new_size;
1485 return 0;
1489 * Increases the refcount for a range of clusters in a given refcount table.
1490 * This is used to construct a temporary refcount table out of L1 and L2 tables
1491 * which can be compared to the refcount table saved in the image.
1493 * Modifies the number of errors in res.
1495 int qcow2_inc_refcounts_imrt(BlockDriverState *bs, BdrvCheckResult *res,
1496 void **refcount_table,
1497 int64_t *refcount_table_size,
1498 int64_t offset, int64_t size)
1500 BDRVQcow2State *s = bs->opaque;
1501 uint64_t start, last, cluster_offset, k, refcount;
1502 int ret;
1504 if (size <= 0) {
1505 return 0;
1508 start = start_of_cluster(s, offset);
1509 last = start_of_cluster(s, offset + size - 1);
1510 for(cluster_offset = start; cluster_offset <= last;
1511 cluster_offset += s->cluster_size) {
1512 k = cluster_offset >> s->cluster_bits;
1513 if (k >= *refcount_table_size) {
1514 ret = realloc_refcount_array(s, refcount_table,
1515 refcount_table_size, k + 1);
1516 if (ret < 0) {
1517 res->check_errors++;
1518 return ret;
1522 refcount = s->get_refcount(*refcount_table, k);
1523 if (refcount == s->refcount_max) {
1524 fprintf(stderr, "ERROR: overflow cluster offset=0x%" PRIx64
1525 "\n", cluster_offset);
1526 fprintf(stderr, "Use qemu-img amend to increase the refcount entry "
1527 "width or qemu-img convert to create a clean copy if the "
1528 "image cannot be opened for writing\n");
1529 res->corruptions++;
1530 continue;
1532 s->set_refcount(*refcount_table, k, refcount + 1);
1535 return 0;
1538 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1539 enum {
1540 CHECK_FRAG_INFO = 0x2, /* update BlockFragInfo counters */
1544 * Increases the refcount in the given refcount table for the all clusters
1545 * referenced in the L2 table. While doing so, performs some checks on L2
1546 * entries.
1548 * Returns the number of errors found by the checks or -errno if an internal
1549 * error occurred.
1551 static int check_refcounts_l2(BlockDriverState *bs, BdrvCheckResult *res,
1552 void **refcount_table,
1553 int64_t *refcount_table_size, int64_t l2_offset,
1554 int flags, BdrvCheckMode fix)
1556 BDRVQcow2State *s = bs->opaque;
1557 uint64_t *l2_table, l2_entry;
1558 uint64_t next_contiguous_offset = 0;
1559 int i, l2_size, nb_csectors, ret;
1561 /* Read L2 table from disk */
1562 l2_size = s->l2_size * sizeof(uint64_t);
1563 l2_table = g_malloc(l2_size);
1565 ret = bdrv_pread(bs->file, l2_offset, l2_table, l2_size);
1566 if (ret < 0) {
1567 fprintf(stderr, "ERROR: I/O error in check_refcounts_l2\n");
1568 res->check_errors++;
1569 goto fail;
1572 /* Do the actual checks */
1573 for(i = 0; i < s->l2_size; i++) {
1574 l2_entry = be64_to_cpu(l2_table[i]);
1576 switch (qcow2_get_cluster_type(l2_entry)) {
1577 case QCOW2_CLUSTER_COMPRESSED:
1578 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1579 if (l2_entry & QCOW_OFLAG_COPIED) {
1580 fprintf(stderr, "ERROR: coffset=0x%" PRIx64 ": "
1581 "copied flag must never be set for compressed "
1582 "clusters\n", l2_entry & s->cluster_offset_mask);
1583 l2_entry &= ~QCOW_OFLAG_COPIED;
1584 res->corruptions++;
1587 /* Mark cluster as used */
1588 nb_csectors = ((l2_entry >> s->csize_shift) &
1589 s->csize_mask) + 1;
1590 l2_entry &= s->cluster_offset_mask;
1591 ret = qcow2_inc_refcounts_imrt(bs, res,
1592 refcount_table, refcount_table_size,
1593 l2_entry & ~511, nb_csectors * 512);
1594 if (ret < 0) {
1595 goto fail;
1598 if (flags & CHECK_FRAG_INFO) {
1599 res->bfi.allocated_clusters++;
1600 res->bfi.compressed_clusters++;
1602 /* Compressed clusters are fragmented by nature. Since they
1603 * take up sub-sector space but we only have sector granularity
1604 * I/O we need to re-read the same sectors even for adjacent
1605 * compressed clusters.
1607 res->bfi.fragmented_clusters++;
1609 break;
1611 case QCOW2_CLUSTER_ZERO_ALLOC:
1612 case QCOW2_CLUSTER_NORMAL:
1614 uint64_t offset = l2_entry & L2E_OFFSET_MASK;
1616 if (flags & CHECK_FRAG_INFO) {
1617 res->bfi.allocated_clusters++;
1618 if (next_contiguous_offset &&
1619 offset != next_contiguous_offset) {
1620 res->bfi.fragmented_clusters++;
1622 next_contiguous_offset = offset + s->cluster_size;
1625 /* Correct offsets are cluster aligned */
1626 if (offset_into_cluster(s, offset)) {
1627 if (qcow2_get_cluster_type(l2_entry) ==
1628 QCOW2_CLUSTER_ZERO_ALLOC)
1630 fprintf(stderr, "%s offset=%" PRIx64 ": Preallocated zero "
1631 "cluster is not properly aligned; L2 entry "
1632 "corrupted.\n",
1633 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR",
1634 offset);
1635 if (fix & BDRV_FIX_ERRORS) {
1636 uint64_t l2e_offset =
1637 l2_offset + (uint64_t)i * sizeof(uint64_t);
1639 l2_entry = QCOW_OFLAG_ZERO;
1640 l2_table[i] = cpu_to_be64(l2_entry);
1641 ret = qcow2_pre_write_overlap_check(bs,
1642 QCOW2_OL_ACTIVE_L2 | QCOW2_OL_INACTIVE_L2,
1643 l2e_offset, sizeof(uint64_t));
1644 if (ret < 0) {
1645 fprintf(stderr, "ERROR: Overlap check failed\n");
1646 res->check_errors++;
1647 /* Something is seriously wrong, so abort checking
1648 * this L2 table */
1649 goto fail;
1652 ret = bdrv_pwrite_sync(bs->file, l2e_offset,
1653 &l2_table[i], sizeof(uint64_t));
1654 if (ret < 0) {
1655 fprintf(stderr, "ERROR: Failed to overwrite L2 "
1656 "table entry: %s\n", strerror(-ret));
1657 res->check_errors++;
1658 /* Do not abort, continue checking the rest of this
1659 * L2 table's entries */
1660 } else {
1661 res->corruptions_fixed++;
1662 /* Skip marking the cluster as used
1663 * (it is unused now) */
1664 continue;
1666 } else {
1667 res->corruptions++;
1669 } else {
1670 fprintf(stderr, "ERROR offset=%" PRIx64 ": Data cluster is "
1671 "not properly aligned; L2 entry corrupted.\n", offset);
1672 res->corruptions++;
1676 /* Mark cluster as used */
1677 ret = qcow2_inc_refcounts_imrt(bs, res,
1678 refcount_table, refcount_table_size,
1679 offset, s->cluster_size);
1680 if (ret < 0) {
1681 goto fail;
1683 break;
1686 case QCOW2_CLUSTER_ZERO_PLAIN:
1687 case QCOW2_CLUSTER_UNALLOCATED:
1688 break;
1690 default:
1691 abort();
1695 g_free(l2_table);
1696 return 0;
1698 fail:
1699 g_free(l2_table);
1700 return ret;
1704 * Increases the refcount for the L1 table, its L2 tables and all referenced
1705 * clusters in the given refcount table. While doing so, performs some checks
1706 * on L1 and L2 entries.
1708 * Returns the number of errors found by the checks or -errno if an internal
1709 * error occurred.
1711 static int check_refcounts_l1(BlockDriverState *bs,
1712 BdrvCheckResult *res,
1713 void **refcount_table,
1714 int64_t *refcount_table_size,
1715 int64_t l1_table_offset, int l1_size,
1716 int flags, BdrvCheckMode fix)
1718 BDRVQcow2State *s = bs->opaque;
1719 uint64_t *l1_table = NULL, l2_offset, l1_size2;
1720 int i, ret;
1722 l1_size2 = l1_size * sizeof(uint64_t);
1724 /* Mark L1 table as used */
1725 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, refcount_table_size,
1726 l1_table_offset, l1_size2);
1727 if (ret < 0) {
1728 goto fail;
1731 /* Read L1 table entries from disk */
1732 if (l1_size2 > 0) {
1733 l1_table = g_try_malloc(l1_size2);
1734 if (l1_table == NULL) {
1735 ret = -ENOMEM;
1736 res->check_errors++;
1737 goto fail;
1739 ret = bdrv_pread(bs->file, l1_table_offset, l1_table, l1_size2);
1740 if (ret < 0) {
1741 fprintf(stderr, "ERROR: I/O error in check_refcounts_l1\n");
1742 res->check_errors++;
1743 goto fail;
1745 for(i = 0;i < l1_size; i++)
1746 be64_to_cpus(&l1_table[i]);
1749 /* Do the actual checks */
1750 for(i = 0; i < l1_size; i++) {
1751 l2_offset = l1_table[i];
1752 if (l2_offset) {
1753 /* Mark L2 table as used */
1754 l2_offset &= L1E_OFFSET_MASK;
1755 ret = qcow2_inc_refcounts_imrt(bs, res,
1756 refcount_table, refcount_table_size,
1757 l2_offset, s->cluster_size);
1758 if (ret < 0) {
1759 goto fail;
1762 /* L2 tables are cluster aligned */
1763 if (offset_into_cluster(s, l2_offset)) {
1764 fprintf(stderr, "ERROR l2_offset=%" PRIx64 ": Table is not "
1765 "cluster aligned; L1 entry corrupted\n", l2_offset);
1766 res->corruptions++;
1769 /* Process and check L2 entries */
1770 ret = check_refcounts_l2(bs, res, refcount_table,
1771 refcount_table_size, l2_offset, flags,
1772 fix);
1773 if (ret < 0) {
1774 goto fail;
1778 g_free(l1_table);
1779 return 0;
1781 fail:
1782 g_free(l1_table);
1783 return ret;
1787 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1789 * This function does not print an error message nor does it increment
1790 * check_errors if qcow2_get_refcount fails (this is because such an error will
1791 * have been already detected and sufficiently signaled by the calling function
1792 * (qcow2_check_refcounts) by the time this function is called).
1794 static int check_oflag_copied(BlockDriverState *bs, BdrvCheckResult *res,
1795 BdrvCheckMode fix)
1797 BDRVQcow2State *s = bs->opaque;
1798 uint64_t *l2_table = qemu_blockalign(bs, s->cluster_size);
1799 int ret;
1800 uint64_t refcount;
1801 int i, j;
1802 bool repair;
1804 if (fix & BDRV_FIX_ERRORS) {
1805 /* Always repair */
1806 repair = true;
1807 } else if (fix & BDRV_FIX_LEAKS) {
1808 /* Repair only if that seems safe: This function is always
1809 * called after the refcounts have been fixed, so the refcount
1810 * is accurate if that repair was successful */
1811 repair = !res->check_errors && !res->corruptions && !res->leaks;
1812 } else {
1813 repair = false;
1816 for (i = 0; i < s->l1_size; i++) {
1817 uint64_t l1_entry = s->l1_table[i];
1818 uint64_t l2_offset = l1_entry & L1E_OFFSET_MASK;
1819 bool l2_dirty = false;
1821 if (!l2_offset) {
1822 continue;
1825 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1826 &refcount);
1827 if (ret < 0) {
1828 /* don't print message nor increment check_errors */
1829 continue;
1831 if ((refcount == 1) != ((l1_entry & QCOW_OFLAG_COPIED) != 0)) {
1832 fprintf(stderr, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1833 "l1_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1834 repair ? "Repairing" : "ERROR", i, l1_entry, refcount);
1835 if (repair) {
1836 s->l1_table[i] = refcount == 1
1837 ? l1_entry | QCOW_OFLAG_COPIED
1838 : l1_entry & ~QCOW_OFLAG_COPIED;
1839 ret = qcow2_write_l1_entry(bs, i);
1840 if (ret < 0) {
1841 res->check_errors++;
1842 goto fail;
1844 res->corruptions_fixed++;
1845 } else {
1846 res->corruptions++;
1850 ret = bdrv_pread(bs->file, l2_offset, l2_table,
1851 s->l2_size * sizeof(uint64_t));
1852 if (ret < 0) {
1853 fprintf(stderr, "ERROR: Could not read L2 table: %s\n",
1854 strerror(-ret));
1855 res->check_errors++;
1856 goto fail;
1859 for (j = 0; j < s->l2_size; j++) {
1860 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1861 uint64_t data_offset = l2_entry & L2E_OFFSET_MASK;
1862 QCow2ClusterType cluster_type = qcow2_get_cluster_type(l2_entry);
1864 if (cluster_type == QCOW2_CLUSTER_NORMAL ||
1865 cluster_type == QCOW2_CLUSTER_ZERO_ALLOC) {
1866 ret = qcow2_get_refcount(bs,
1867 data_offset >> s->cluster_bits,
1868 &refcount);
1869 if (ret < 0) {
1870 /* don't print message nor increment check_errors */
1871 continue;
1873 if ((refcount == 1) != ((l2_entry & QCOW_OFLAG_COPIED) != 0)) {
1874 fprintf(stderr, "%s OFLAG_COPIED data cluster: "
1875 "l2_entry=%" PRIx64 " refcount=%" PRIu64 "\n",
1876 repair ? "Repairing" : "ERROR", l2_entry, refcount);
1877 if (repair) {
1878 l2_table[j] = cpu_to_be64(refcount == 1
1879 ? l2_entry | QCOW_OFLAG_COPIED
1880 : l2_entry & ~QCOW_OFLAG_COPIED);
1881 l2_dirty = true;
1882 res->corruptions_fixed++;
1883 } else {
1884 res->corruptions++;
1890 if (l2_dirty) {
1891 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L2,
1892 l2_offset, s->cluster_size);
1893 if (ret < 0) {
1894 fprintf(stderr, "ERROR: Could not write L2 table; metadata "
1895 "overlap check failed: %s\n", strerror(-ret));
1896 res->check_errors++;
1897 goto fail;
1900 ret = bdrv_pwrite(bs->file, l2_offset, l2_table,
1901 s->cluster_size);
1902 if (ret < 0) {
1903 fprintf(stderr, "ERROR: Could not write L2 table: %s\n",
1904 strerror(-ret));
1905 res->check_errors++;
1906 goto fail;
1911 ret = 0;
1913 fail:
1914 qemu_vfree(l2_table);
1915 return ret;
1919 * Checks consistency of refblocks and accounts for each refblock in
1920 * *refcount_table.
1922 static int check_refblocks(BlockDriverState *bs, BdrvCheckResult *res,
1923 BdrvCheckMode fix, bool *rebuild,
1924 void **refcount_table, int64_t *nb_clusters)
1926 BDRVQcow2State *s = bs->opaque;
1927 int64_t i, size;
1928 int ret;
1930 for(i = 0; i < s->refcount_table_size; i++) {
1931 uint64_t offset, cluster;
1932 offset = s->refcount_table[i];
1933 cluster = offset >> s->cluster_bits;
1935 /* Refcount blocks are cluster aligned */
1936 if (offset_into_cluster(s, offset)) {
1937 fprintf(stderr, "ERROR refcount block %" PRId64 " is not "
1938 "cluster aligned; refcount table entry corrupted\n", i);
1939 res->corruptions++;
1940 *rebuild = true;
1941 continue;
1944 if (cluster >= *nb_clusters) {
1945 fprintf(stderr, "%s refcount block %" PRId64 " is outside image\n",
1946 fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i);
1948 if (fix & BDRV_FIX_ERRORS) {
1949 int64_t new_nb_clusters;
1950 Error *local_err = NULL;
1952 if (offset > INT64_MAX - s->cluster_size) {
1953 ret = -EINVAL;
1954 goto resize_fail;
1957 ret = bdrv_truncate(bs->file, offset + s->cluster_size,
1958 PREALLOC_MODE_OFF, &local_err);
1959 if (ret < 0) {
1960 error_report_err(local_err);
1961 goto resize_fail;
1963 size = bdrv_getlength(bs->file->bs);
1964 if (size < 0) {
1965 ret = size;
1966 goto resize_fail;
1969 new_nb_clusters = size_to_clusters(s, size);
1970 assert(new_nb_clusters >= *nb_clusters);
1972 ret = realloc_refcount_array(s, refcount_table,
1973 nb_clusters, new_nb_clusters);
1974 if (ret < 0) {
1975 res->check_errors++;
1976 return ret;
1979 if (cluster >= *nb_clusters) {
1980 ret = -EINVAL;
1981 goto resize_fail;
1984 res->corruptions_fixed++;
1985 ret = qcow2_inc_refcounts_imrt(bs, res,
1986 refcount_table, nb_clusters,
1987 offset, s->cluster_size);
1988 if (ret < 0) {
1989 return ret;
1991 /* No need to check whether the refcount is now greater than 1:
1992 * This area was just allocated and zeroed, so it can only be
1993 * exactly 1 after qcow2_inc_refcounts_imrt() */
1994 continue;
1996 resize_fail:
1997 res->corruptions++;
1998 *rebuild = true;
1999 fprintf(stderr, "ERROR could not resize image: %s\n",
2000 strerror(-ret));
2001 } else {
2002 res->corruptions++;
2004 continue;
2007 if (offset != 0) {
2008 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2009 offset, s->cluster_size);
2010 if (ret < 0) {
2011 return ret;
2013 if (s->get_refcount(*refcount_table, cluster) != 1) {
2014 fprintf(stderr, "ERROR refcount block %" PRId64
2015 " refcount=%" PRIu64 "\n", i,
2016 s->get_refcount(*refcount_table, cluster));
2017 res->corruptions++;
2018 *rebuild = true;
2023 return 0;
2027 * Calculates an in-memory refcount table.
2029 static int calculate_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2030 BdrvCheckMode fix, bool *rebuild,
2031 void **refcount_table, int64_t *nb_clusters)
2033 BDRVQcow2State *s = bs->opaque;
2034 int64_t i;
2035 QCowSnapshot *sn;
2036 int ret;
2038 if (!*refcount_table) {
2039 int64_t old_size = 0;
2040 ret = realloc_refcount_array(s, refcount_table,
2041 &old_size, *nb_clusters);
2042 if (ret < 0) {
2043 res->check_errors++;
2044 return ret;
2048 /* header */
2049 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2050 0, s->cluster_size);
2051 if (ret < 0) {
2052 return ret;
2055 /* current L1 table */
2056 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2057 s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO,
2058 fix);
2059 if (ret < 0) {
2060 return ret;
2063 /* snapshots */
2064 for (i = 0; i < s->nb_snapshots; i++) {
2065 sn = s->snapshots + i;
2066 if (offset_into_cluster(s, sn->l1_table_offset)) {
2067 fprintf(stderr, "ERROR snapshot %s (%s) l1_offset=%#" PRIx64 ": "
2068 "L1 table is not cluster aligned; snapshot table entry "
2069 "corrupted\n", sn->id_str, sn->name, sn->l1_table_offset);
2070 res->corruptions++;
2071 continue;
2073 if (sn->l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
2074 fprintf(stderr, "ERROR snapshot %s (%s) l1_size=%#" PRIx32 ": "
2075 "L1 table is too large; snapshot table entry corrupted\n",
2076 sn->id_str, sn->name, sn->l1_size);
2077 res->corruptions++;
2078 continue;
2080 ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters,
2081 sn->l1_table_offset, sn->l1_size, 0, fix);
2082 if (ret < 0) {
2083 return ret;
2086 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2087 s->snapshots_offset, s->snapshots_size);
2088 if (ret < 0) {
2089 return ret;
2092 /* refcount data */
2093 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2094 s->refcount_table_offset,
2095 s->refcount_table_size * sizeof(uint64_t));
2096 if (ret < 0) {
2097 return ret;
2100 /* encryption */
2101 if (s->crypto_header.length) {
2102 ret = qcow2_inc_refcounts_imrt(bs, res, refcount_table, nb_clusters,
2103 s->crypto_header.offset,
2104 s->crypto_header.length);
2105 if (ret < 0) {
2106 return ret;
2110 /* bitmaps */
2111 ret = qcow2_check_bitmaps_refcounts(bs, res, refcount_table, nb_clusters);
2112 if (ret < 0) {
2113 return ret;
2116 return check_refblocks(bs, res, fix, rebuild, refcount_table, nb_clusters);
2120 * Compares the actual reference count for each cluster in the image against the
2121 * refcount as reported by the refcount structures on-disk.
2123 static void compare_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2124 BdrvCheckMode fix, bool *rebuild,
2125 int64_t *highest_cluster,
2126 void *refcount_table, int64_t nb_clusters)
2128 BDRVQcow2State *s = bs->opaque;
2129 int64_t i;
2130 uint64_t refcount1, refcount2;
2131 int ret;
2133 for (i = 0, *highest_cluster = 0; i < nb_clusters; i++) {
2134 ret = qcow2_get_refcount(bs, i, &refcount1);
2135 if (ret < 0) {
2136 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
2137 i, strerror(-ret));
2138 res->check_errors++;
2139 continue;
2142 refcount2 = s->get_refcount(refcount_table, i);
2144 if (refcount1 > 0 || refcount2 > 0) {
2145 *highest_cluster = i;
2148 if (refcount1 != refcount2) {
2149 /* Check if we're allowed to fix the mismatch */
2150 int *num_fixed = NULL;
2151 if (refcount1 == 0) {
2152 *rebuild = true;
2153 } else if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) {
2154 num_fixed = &res->leaks_fixed;
2155 } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) {
2156 num_fixed = &res->corruptions_fixed;
2159 fprintf(stderr, "%s cluster %" PRId64 " refcount=%" PRIu64
2160 " reference=%" PRIu64 "\n",
2161 num_fixed != NULL ? "Repairing" :
2162 refcount1 < refcount2 ? "ERROR" :
2163 "Leaked",
2164 i, refcount1, refcount2);
2166 if (num_fixed) {
2167 ret = update_refcount(bs, i << s->cluster_bits, 1,
2168 refcount_diff(refcount1, refcount2),
2169 refcount1 > refcount2,
2170 QCOW2_DISCARD_ALWAYS);
2171 if (ret >= 0) {
2172 (*num_fixed)++;
2173 continue;
2177 /* And if we couldn't, print an error */
2178 if (refcount1 < refcount2) {
2179 res->corruptions++;
2180 } else {
2181 res->leaks++;
2188 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2189 * the on-disk refcount structures.
2191 * On input, *first_free_cluster tells where to start looking, and need not
2192 * actually be a free cluster; the returned offset will not be before that
2193 * cluster. On output, *first_free_cluster points to the first gap found, even
2194 * if that gap was too small to be used as the returned offset.
2196 * Note that *first_free_cluster is a cluster index whereas the return value is
2197 * an offset.
2199 static int64_t alloc_clusters_imrt(BlockDriverState *bs,
2200 int cluster_count,
2201 void **refcount_table,
2202 int64_t *imrt_nb_clusters,
2203 int64_t *first_free_cluster)
2205 BDRVQcow2State *s = bs->opaque;
2206 int64_t cluster = *first_free_cluster, i;
2207 bool first_gap = true;
2208 int contiguous_free_clusters;
2209 int ret;
2211 /* Starting at *first_free_cluster, find a range of at least cluster_count
2212 * continuously free clusters */
2213 for (contiguous_free_clusters = 0;
2214 cluster < *imrt_nb_clusters &&
2215 contiguous_free_clusters < cluster_count;
2216 cluster++)
2218 if (!s->get_refcount(*refcount_table, cluster)) {
2219 contiguous_free_clusters++;
2220 if (first_gap) {
2221 /* If this is the first free cluster found, update
2222 * *first_free_cluster accordingly */
2223 *first_free_cluster = cluster;
2224 first_gap = false;
2226 } else if (contiguous_free_clusters) {
2227 contiguous_free_clusters = 0;
2231 /* If contiguous_free_clusters is greater than zero, it contains the number
2232 * of continuously free clusters until the current cluster; the first free
2233 * cluster in the current "gap" is therefore
2234 * cluster - contiguous_free_clusters */
2236 /* If no such range could be found, grow the in-memory refcount table
2237 * accordingly to append free clusters at the end of the image */
2238 if (contiguous_free_clusters < cluster_count) {
2239 /* contiguous_free_clusters clusters are already empty at the image end;
2240 * we need cluster_count clusters; therefore, we have to allocate
2241 * cluster_count - contiguous_free_clusters new clusters at the end of
2242 * the image (which is the current value of cluster; note that cluster
2243 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2244 * the image end) */
2245 ret = realloc_refcount_array(s, refcount_table, imrt_nb_clusters,
2246 cluster + cluster_count
2247 - contiguous_free_clusters);
2248 if (ret < 0) {
2249 return ret;
2253 /* Go back to the first free cluster */
2254 cluster -= contiguous_free_clusters;
2255 for (i = 0; i < cluster_count; i++) {
2256 s->set_refcount(*refcount_table, cluster + i, 1);
2259 return cluster << s->cluster_bits;
2263 * Creates a new refcount structure based solely on the in-memory information
2264 * given through *refcount_table. All necessary allocations will be reflected
2265 * in that array.
2267 * On success, the old refcount structure is leaked (it will be covered by the
2268 * new refcount structure).
2270 static int rebuild_refcount_structure(BlockDriverState *bs,
2271 BdrvCheckResult *res,
2272 void **refcount_table,
2273 int64_t *nb_clusters)
2275 BDRVQcow2State *s = bs->opaque;
2276 int64_t first_free_cluster = 0, reftable_offset = -1, cluster = 0;
2277 int64_t refblock_offset, refblock_start, refblock_index;
2278 uint32_t reftable_size = 0;
2279 uint64_t *on_disk_reftable = NULL;
2280 void *on_disk_refblock;
2281 int ret = 0;
2282 struct {
2283 uint64_t reftable_offset;
2284 uint32_t reftable_clusters;
2285 } QEMU_PACKED reftable_offset_and_clusters;
2287 qcow2_cache_empty(bs, s->refcount_block_cache);
2289 write_refblocks:
2290 for (; cluster < *nb_clusters; cluster++) {
2291 if (!s->get_refcount(*refcount_table, cluster)) {
2292 continue;
2295 refblock_index = cluster >> s->refcount_block_bits;
2296 refblock_start = refblock_index << s->refcount_block_bits;
2298 /* Don't allocate a cluster in a refblock already written to disk */
2299 if (first_free_cluster < refblock_start) {
2300 first_free_cluster = refblock_start;
2302 refblock_offset = alloc_clusters_imrt(bs, 1, refcount_table,
2303 nb_clusters, &first_free_cluster);
2304 if (refblock_offset < 0) {
2305 fprintf(stderr, "ERROR allocating refblock: %s\n",
2306 strerror(-refblock_offset));
2307 res->check_errors++;
2308 ret = refblock_offset;
2309 goto fail;
2312 if (reftable_size <= refblock_index) {
2313 uint32_t old_reftable_size = reftable_size;
2314 uint64_t *new_on_disk_reftable;
2316 reftable_size = ROUND_UP((refblock_index + 1) * sizeof(uint64_t),
2317 s->cluster_size) / sizeof(uint64_t);
2318 new_on_disk_reftable = g_try_realloc(on_disk_reftable,
2319 reftable_size *
2320 sizeof(uint64_t));
2321 if (!new_on_disk_reftable) {
2322 res->check_errors++;
2323 ret = -ENOMEM;
2324 goto fail;
2326 on_disk_reftable = new_on_disk_reftable;
2328 memset(on_disk_reftable + old_reftable_size, 0,
2329 (reftable_size - old_reftable_size) * sizeof(uint64_t));
2331 /* The offset we have for the reftable is now no longer valid;
2332 * this will leak that range, but we can easily fix that by running
2333 * a leak-fixing check after this rebuild operation */
2334 reftable_offset = -1;
2335 } else {
2336 assert(on_disk_reftable);
2338 on_disk_reftable[refblock_index] = refblock_offset;
2340 /* If this is apparently the last refblock (for now), try to squeeze the
2341 * reftable in */
2342 if (refblock_index == (*nb_clusters - 1) >> s->refcount_block_bits &&
2343 reftable_offset < 0)
2345 uint64_t reftable_clusters = size_to_clusters(s, reftable_size *
2346 sizeof(uint64_t));
2347 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2348 refcount_table, nb_clusters,
2349 &first_free_cluster);
2350 if (reftable_offset < 0) {
2351 fprintf(stderr, "ERROR allocating reftable: %s\n",
2352 strerror(-reftable_offset));
2353 res->check_errors++;
2354 ret = reftable_offset;
2355 goto fail;
2359 ret = qcow2_pre_write_overlap_check(bs, 0, refblock_offset,
2360 s->cluster_size);
2361 if (ret < 0) {
2362 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2363 goto fail;
2366 /* The size of *refcount_table is always cluster-aligned, therefore the
2367 * write operation will not overflow */
2368 on_disk_refblock = (void *)((char *) *refcount_table +
2369 refblock_index * s->cluster_size);
2371 ret = bdrv_write(bs->file, refblock_offset / BDRV_SECTOR_SIZE,
2372 on_disk_refblock, s->cluster_sectors);
2373 if (ret < 0) {
2374 fprintf(stderr, "ERROR writing refblock: %s\n", strerror(-ret));
2375 goto fail;
2378 /* Go to the end of this refblock */
2379 cluster = refblock_start + s->refcount_block_size - 1;
2382 if (reftable_offset < 0) {
2383 uint64_t post_refblock_start, reftable_clusters;
2385 post_refblock_start = ROUND_UP(*nb_clusters, s->refcount_block_size);
2386 reftable_clusters = size_to_clusters(s,
2387 reftable_size * sizeof(uint64_t));
2388 /* Not pretty but simple */
2389 if (first_free_cluster < post_refblock_start) {
2390 first_free_cluster = post_refblock_start;
2392 reftable_offset = alloc_clusters_imrt(bs, reftable_clusters,
2393 refcount_table, nb_clusters,
2394 &first_free_cluster);
2395 if (reftable_offset < 0) {
2396 fprintf(stderr, "ERROR allocating reftable: %s\n",
2397 strerror(-reftable_offset));
2398 res->check_errors++;
2399 ret = reftable_offset;
2400 goto fail;
2403 goto write_refblocks;
2406 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2407 cpu_to_be64s(&on_disk_reftable[refblock_index]);
2410 ret = qcow2_pre_write_overlap_check(bs, 0, reftable_offset,
2411 reftable_size * sizeof(uint64_t));
2412 if (ret < 0) {
2413 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2414 goto fail;
2417 assert(reftable_size < INT_MAX / sizeof(uint64_t));
2418 ret = bdrv_pwrite(bs->file, reftable_offset, on_disk_reftable,
2419 reftable_size * sizeof(uint64_t));
2420 if (ret < 0) {
2421 fprintf(stderr, "ERROR writing reftable: %s\n", strerror(-ret));
2422 goto fail;
2425 /* Enter new reftable into the image header */
2426 reftable_offset_and_clusters.reftable_offset = cpu_to_be64(reftable_offset);
2427 reftable_offset_and_clusters.reftable_clusters =
2428 cpu_to_be32(size_to_clusters(s, reftable_size * sizeof(uint64_t)));
2429 ret = bdrv_pwrite_sync(bs->file,
2430 offsetof(QCowHeader, refcount_table_offset),
2431 &reftable_offset_and_clusters,
2432 sizeof(reftable_offset_and_clusters));
2433 if (ret < 0) {
2434 fprintf(stderr, "ERROR setting reftable: %s\n", strerror(-ret));
2435 goto fail;
2438 for (refblock_index = 0; refblock_index < reftable_size; refblock_index++) {
2439 be64_to_cpus(&on_disk_reftable[refblock_index]);
2441 s->refcount_table = on_disk_reftable;
2442 s->refcount_table_offset = reftable_offset;
2443 s->refcount_table_size = reftable_size;
2444 update_max_refcount_table_index(s);
2446 return 0;
2448 fail:
2449 g_free(on_disk_reftable);
2450 return ret;
2454 * Checks an image for refcount consistency.
2456 * Returns 0 if no errors are found, the number of errors in case the image is
2457 * detected as corrupted, and -errno when an internal error occurred.
2459 int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res,
2460 BdrvCheckMode fix)
2462 BDRVQcow2State *s = bs->opaque;
2463 BdrvCheckResult pre_compare_res;
2464 int64_t size, highest_cluster, nb_clusters;
2465 void *refcount_table = NULL;
2466 bool rebuild = false;
2467 int ret;
2469 size = bdrv_getlength(bs->file->bs);
2470 if (size < 0) {
2471 res->check_errors++;
2472 return size;
2475 nb_clusters = size_to_clusters(s, size);
2476 if (nb_clusters > INT_MAX) {
2477 res->check_errors++;
2478 return -EFBIG;
2481 res->bfi.total_clusters =
2482 size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE);
2484 ret = calculate_refcounts(bs, res, fix, &rebuild, &refcount_table,
2485 &nb_clusters);
2486 if (ret < 0) {
2487 goto fail;
2490 /* In case we don't need to rebuild the refcount structure (but want to fix
2491 * something), this function is immediately called again, in which case the
2492 * result should be ignored */
2493 pre_compare_res = *res;
2494 compare_refcounts(bs, res, 0, &rebuild, &highest_cluster, refcount_table,
2495 nb_clusters);
2497 if (rebuild && (fix & BDRV_FIX_ERRORS)) {
2498 BdrvCheckResult old_res = *res;
2499 int fresh_leaks = 0;
2501 fprintf(stderr, "Rebuilding refcount structure\n");
2502 ret = rebuild_refcount_structure(bs, res, &refcount_table,
2503 &nb_clusters);
2504 if (ret < 0) {
2505 goto fail;
2508 res->corruptions = 0;
2509 res->leaks = 0;
2511 /* Because the old reftable has been exchanged for a new one the
2512 * references have to be recalculated */
2513 rebuild = false;
2514 memset(refcount_table, 0, refcount_array_byte_size(s, nb_clusters));
2515 ret = calculate_refcounts(bs, res, 0, &rebuild, &refcount_table,
2516 &nb_clusters);
2517 if (ret < 0) {
2518 goto fail;
2521 if (fix & BDRV_FIX_LEAKS) {
2522 /* The old refcount structures are now leaked, fix it; the result
2523 * can be ignored, aside from leaks which were introduced by
2524 * rebuild_refcount_structure() that could not be fixed */
2525 BdrvCheckResult saved_res = *res;
2526 *res = (BdrvCheckResult){ 0 };
2528 compare_refcounts(bs, res, BDRV_FIX_LEAKS, &rebuild,
2529 &highest_cluster, refcount_table, nb_clusters);
2530 if (rebuild) {
2531 fprintf(stderr, "ERROR rebuilt refcount structure is still "
2532 "broken\n");
2535 /* Any leaks accounted for here were introduced by
2536 * rebuild_refcount_structure() because that function has created a
2537 * new refcount structure from scratch */
2538 fresh_leaks = res->leaks;
2539 *res = saved_res;
2542 if (res->corruptions < old_res.corruptions) {
2543 res->corruptions_fixed += old_res.corruptions - res->corruptions;
2545 if (res->leaks < old_res.leaks) {
2546 res->leaks_fixed += old_res.leaks - res->leaks;
2548 res->leaks += fresh_leaks;
2549 } else if (fix) {
2550 if (rebuild) {
2551 fprintf(stderr, "ERROR need to rebuild refcount structures\n");
2552 res->check_errors++;
2553 ret = -EIO;
2554 goto fail;
2557 if (res->leaks || res->corruptions) {
2558 *res = pre_compare_res;
2559 compare_refcounts(bs, res, fix, &rebuild, &highest_cluster,
2560 refcount_table, nb_clusters);
2564 /* check OFLAG_COPIED */
2565 ret = check_oflag_copied(bs, res, fix);
2566 if (ret < 0) {
2567 goto fail;
2570 res->image_end_offset = (highest_cluster + 1) * s->cluster_size;
2571 ret = 0;
2573 fail:
2574 g_free(refcount_table);
2576 return ret;
2579 #define overlaps_with(ofs, sz) \
2580 ranges_overlap(offset, size, ofs, sz)
2583 * Checks if the given offset into the image file is actually free to use by
2584 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2585 * i.e. a sanity check without relying on the refcount tables.
2587 * The ign parameter specifies what checks not to perform (being a bitmask of
2588 * QCow2MetadataOverlap values), i.e., what sections to ignore.
2590 * Returns:
2591 * - 0 if writing to this offset will not affect the mentioned metadata
2592 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2593 * - a negative value (-errno) indicating an error while performing a check,
2594 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2596 int qcow2_check_metadata_overlap(BlockDriverState *bs, int ign, int64_t offset,
2597 int64_t size)
2599 BDRVQcow2State *s = bs->opaque;
2600 int chk = s->overlap_check & ~ign;
2601 int i, j;
2603 if (!size) {
2604 return 0;
2607 if (chk & QCOW2_OL_MAIN_HEADER) {
2608 if (offset < s->cluster_size) {
2609 return QCOW2_OL_MAIN_HEADER;
2613 /* align range to test to cluster boundaries */
2614 size = ROUND_UP(offset_into_cluster(s, offset) + size, s->cluster_size);
2615 offset = start_of_cluster(s, offset);
2617 if ((chk & QCOW2_OL_ACTIVE_L1) && s->l1_size) {
2618 if (overlaps_with(s->l1_table_offset, s->l1_size * sizeof(uint64_t))) {
2619 return QCOW2_OL_ACTIVE_L1;
2623 if ((chk & QCOW2_OL_REFCOUNT_TABLE) && s->refcount_table_size) {
2624 if (overlaps_with(s->refcount_table_offset,
2625 s->refcount_table_size * sizeof(uint64_t))) {
2626 return QCOW2_OL_REFCOUNT_TABLE;
2630 if ((chk & QCOW2_OL_SNAPSHOT_TABLE) && s->snapshots_size) {
2631 if (overlaps_with(s->snapshots_offset, s->snapshots_size)) {
2632 return QCOW2_OL_SNAPSHOT_TABLE;
2636 if ((chk & QCOW2_OL_INACTIVE_L1) && s->snapshots) {
2637 for (i = 0; i < s->nb_snapshots; i++) {
2638 if (s->snapshots[i].l1_size &&
2639 overlaps_with(s->snapshots[i].l1_table_offset,
2640 s->snapshots[i].l1_size * sizeof(uint64_t))) {
2641 return QCOW2_OL_INACTIVE_L1;
2646 if ((chk & QCOW2_OL_ACTIVE_L2) && s->l1_table) {
2647 for (i = 0; i < s->l1_size; i++) {
2648 if ((s->l1_table[i] & L1E_OFFSET_MASK) &&
2649 overlaps_with(s->l1_table[i] & L1E_OFFSET_MASK,
2650 s->cluster_size)) {
2651 return QCOW2_OL_ACTIVE_L2;
2656 if ((chk & QCOW2_OL_REFCOUNT_BLOCK) && s->refcount_table) {
2657 unsigned last_entry = s->max_refcount_table_index;
2658 assert(last_entry < s->refcount_table_size);
2659 assert(last_entry + 1 == s->refcount_table_size ||
2660 (s->refcount_table[last_entry + 1] & REFT_OFFSET_MASK) == 0);
2661 for (i = 0; i <= last_entry; i++) {
2662 if ((s->refcount_table[i] & REFT_OFFSET_MASK) &&
2663 overlaps_with(s->refcount_table[i] & REFT_OFFSET_MASK,
2664 s->cluster_size)) {
2665 return QCOW2_OL_REFCOUNT_BLOCK;
2670 if ((chk & QCOW2_OL_INACTIVE_L2) && s->snapshots) {
2671 for (i = 0; i < s->nb_snapshots; i++) {
2672 uint64_t l1_ofs = s->snapshots[i].l1_table_offset;
2673 uint32_t l1_sz = s->snapshots[i].l1_size;
2674 uint64_t l1_sz2 = l1_sz * sizeof(uint64_t);
2675 uint64_t *l1;
2676 int ret;
2678 ret = qcow2_validate_table(bs, l1_ofs, l1_sz, sizeof(uint64_t),
2679 QCOW_MAX_L1_SIZE, "", NULL);
2680 if (ret < 0) {
2681 return ret;
2684 l1 = g_try_malloc(l1_sz2);
2686 if (l1_sz2 && l1 == NULL) {
2687 return -ENOMEM;
2690 ret = bdrv_pread(bs->file, l1_ofs, l1, l1_sz2);
2691 if (ret < 0) {
2692 g_free(l1);
2693 return ret;
2696 for (j = 0; j < l1_sz; j++) {
2697 uint64_t l2_ofs = be64_to_cpu(l1[j]) & L1E_OFFSET_MASK;
2698 if (l2_ofs && overlaps_with(l2_ofs, s->cluster_size)) {
2699 g_free(l1);
2700 return QCOW2_OL_INACTIVE_L2;
2704 g_free(l1);
2708 if ((chk & QCOW2_OL_BITMAP_DIRECTORY) &&
2709 (s->autoclear_features & QCOW2_AUTOCLEAR_BITMAPS))
2711 if (overlaps_with(s->bitmap_directory_offset,
2712 s->bitmap_directory_size))
2714 return QCOW2_OL_BITMAP_DIRECTORY;
2718 return 0;
2721 static const char *metadata_ol_names[] = {
2722 [QCOW2_OL_MAIN_HEADER_BITNR] = "qcow2_header",
2723 [QCOW2_OL_ACTIVE_L1_BITNR] = "active L1 table",
2724 [QCOW2_OL_ACTIVE_L2_BITNR] = "active L2 table",
2725 [QCOW2_OL_REFCOUNT_TABLE_BITNR] = "refcount table",
2726 [QCOW2_OL_REFCOUNT_BLOCK_BITNR] = "refcount block",
2727 [QCOW2_OL_SNAPSHOT_TABLE_BITNR] = "snapshot table",
2728 [QCOW2_OL_INACTIVE_L1_BITNR] = "inactive L1 table",
2729 [QCOW2_OL_INACTIVE_L2_BITNR] = "inactive L2 table",
2733 * First performs a check for metadata overlaps (through
2734 * qcow2_check_metadata_overlap); if that fails with a negative value (error
2735 * while performing a check), that value is returned. If an impending overlap
2736 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2737 * and -EIO returned.
2739 * Returns 0 if there were neither overlaps nor errors while checking for
2740 * overlaps; or a negative value (-errno) on error.
2742 int qcow2_pre_write_overlap_check(BlockDriverState *bs, int ign, int64_t offset,
2743 int64_t size)
2745 int ret = qcow2_check_metadata_overlap(bs, ign, offset, size);
2747 if (ret < 0) {
2748 return ret;
2749 } else if (ret > 0) {
2750 int metadata_ol_bitnr = ctz32(ret);
2751 assert(metadata_ol_bitnr < QCOW2_OL_MAX_BITNR);
2753 qcow2_signal_corruption(bs, true, offset, size, "Preventing invalid "
2754 "write on metadata (overlaps with %s)",
2755 metadata_ol_names[metadata_ol_bitnr]);
2756 return -EIO;
2759 return 0;
2762 /* A pointer to a function of this type is given to walk_over_reftable(). That
2763 * function will create refblocks and pass them to a RefblockFinishOp once they
2764 * are completed (@refblock). @refblock_empty is set if the refblock is
2765 * completely empty.
2767 * Along with the refblock, a corresponding reftable entry is passed, in the
2768 * reftable @reftable (which may be reallocated) at @reftable_index.
2770 * @allocated should be set to true if a new cluster has been allocated.
2772 typedef int (RefblockFinishOp)(BlockDriverState *bs, uint64_t **reftable,
2773 uint64_t reftable_index, uint64_t *reftable_size,
2774 void *refblock, bool refblock_empty,
2775 bool *allocated, Error **errp);
2778 * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2779 * it is not empty) and inserts its offset into the new reftable. The size of
2780 * this new reftable is increased as required.
2782 static int alloc_refblock(BlockDriverState *bs, uint64_t **reftable,
2783 uint64_t reftable_index, uint64_t *reftable_size,
2784 void *refblock, bool refblock_empty, bool *allocated,
2785 Error **errp)
2787 BDRVQcow2State *s = bs->opaque;
2788 int64_t offset;
2790 if (!refblock_empty && reftable_index >= *reftable_size) {
2791 uint64_t *new_reftable;
2792 uint64_t new_reftable_size;
2794 new_reftable_size = ROUND_UP(reftable_index + 1,
2795 s->cluster_size / sizeof(uint64_t));
2796 if (new_reftable_size > QCOW_MAX_REFTABLE_SIZE / sizeof(uint64_t)) {
2797 error_setg(errp,
2798 "This operation would make the refcount table grow "
2799 "beyond the maximum size supported by QEMU, aborting");
2800 return -ENOTSUP;
2803 new_reftable = g_try_realloc(*reftable, new_reftable_size *
2804 sizeof(uint64_t));
2805 if (!new_reftable) {
2806 error_setg(errp, "Failed to increase reftable buffer size");
2807 return -ENOMEM;
2810 memset(new_reftable + *reftable_size, 0,
2811 (new_reftable_size - *reftable_size) * sizeof(uint64_t));
2813 *reftable = new_reftable;
2814 *reftable_size = new_reftable_size;
2817 if (!refblock_empty && !(*reftable)[reftable_index]) {
2818 offset = qcow2_alloc_clusters(bs, s->cluster_size);
2819 if (offset < 0) {
2820 error_setg_errno(errp, -offset, "Failed to allocate refblock");
2821 return offset;
2823 (*reftable)[reftable_index] = offset;
2824 *allocated = true;
2827 return 0;
2831 * This "operation" for walk_over_reftable() writes the refblock to disk at the
2832 * offset specified by the new reftable's entry. It does not modify the new
2833 * reftable or change any refcounts.
2835 static int flush_refblock(BlockDriverState *bs, uint64_t **reftable,
2836 uint64_t reftable_index, uint64_t *reftable_size,
2837 void *refblock, bool refblock_empty, bool *allocated,
2838 Error **errp)
2840 BDRVQcow2State *s = bs->opaque;
2841 int64_t offset;
2842 int ret;
2844 if (reftable_index < *reftable_size && (*reftable)[reftable_index]) {
2845 offset = (*reftable)[reftable_index];
2847 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
2848 if (ret < 0) {
2849 error_setg_errno(errp, -ret, "Overlap check failed");
2850 return ret;
2853 ret = bdrv_pwrite(bs->file, offset, refblock, s->cluster_size);
2854 if (ret < 0) {
2855 error_setg_errno(errp, -ret, "Failed to write refblock");
2856 return ret;
2858 } else {
2859 assert(refblock_empty);
2862 return 0;
2866 * This function walks over the existing reftable and every referenced refblock;
2867 * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2868 * create an equal new entry in the passed @new_refblock. Once that
2869 * @new_refblock is completely filled, @operation will be called.
2871 * @status_cb and @cb_opaque are used for the amend operation's status callback.
2872 * @index is the index of the walk_over_reftable() calls and @total is the total
2873 * number of walk_over_reftable() calls per amend operation. Both are used for
2874 * calculating the parameters for the status callback.
2876 * @allocated is set to true if a new cluster has been allocated.
2878 static int walk_over_reftable(BlockDriverState *bs, uint64_t **new_reftable,
2879 uint64_t *new_reftable_index,
2880 uint64_t *new_reftable_size,
2881 void *new_refblock, int new_refblock_size,
2882 int new_refcount_bits,
2883 RefblockFinishOp *operation, bool *allocated,
2884 Qcow2SetRefcountFunc *new_set_refcount,
2885 BlockDriverAmendStatusCB *status_cb,
2886 void *cb_opaque, int index, int total,
2887 Error **errp)
2889 BDRVQcow2State *s = bs->opaque;
2890 uint64_t reftable_index;
2891 bool new_refblock_empty = true;
2892 int refblock_index;
2893 int new_refblock_index = 0;
2894 int ret;
2896 for (reftable_index = 0; reftable_index < s->refcount_table_size;
2897 reftable_index++)
2899 uint64_t refblock_offset = s->refcount_table[reftable_index]
2900 & REFT_OFFSET_MASK;
2902 status_cb(bs, (uint64_t)index * s->refcount_table_size + reftable_index,
2903 (uint64_t)total * s->refcount_table_size, cb_opaque);
2905 if (refblock_offset) {
2906 void *refblock;
2908 if (offset_into_cluster(s, refblock_offset)) {
2909 qcow2_signal_corruption(bs, true, -1, -1, "Refblock offset %#"
2910 PRIx64 " unaligned (reftable index: %#"
2911 PRIx64 ")", refblock_offset,
2912 reftable_index);
2913 error_setg(errp,
2914 "Image is corrupt (unaligned refblock offset)");
2915 return -EIO;
2918 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offset,
2919 &refblock);
2920 if (ret < 0) {
2921 error_setg_errno(errp, -ret, "Failed to retrieve refblock");
2922 return ret;
2925 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2926 refblock_index++)
2928 uint64_t refcount;
2930 if (new_refblock_index >= new_refblock_size) {
2931 /* new_refblock is now complete */
2932 ret = operation(bs, new_reftable, *new_reftable_index,
2933 new_reftable_size, new_refblock,
2934 new_refblock_empty, allocated, errp);
2935 if (ret < 0) {
2936 qcow2_cache_put(s->refcount_block_cache, &refblock);
2937 return ret;
2940 (*new_reftable_index)++;
2941 new_refblock_index = 0;
2942 new_refblock_empty = true;
2945 refcount = s->get_refcount(refblock, refblock_index);
2946 if (new_refcount_bits < 64 && refcount >> new_refcount_bits) {
2947 uint64_t offset;
2949 qcow2_cache_put(s->refcount_block_cache, &refblock);
2951 offset = ((reftable_index << s->refcount_block_bits)
2952 + refblock_index) << s->cluster_bits;
2954 error_setg(errp, "Cannot decrease refcount entry width to "
2955 "%i bits: Cluster at offset %#" PRIx64 " has a "
2956 "refcount of %" PRIu64, new_refcount_bits,
2957 offset, refcount);
2958 return -EINVAL;
2961 if (new_set_refcount) {
2962 new_set_refcount(new_refblock, new_refblock_index++,
2963 refcount);
2964 } else {
2965 new_refblock_index++;
2967 new_refblock_empty = new_refblock_empty && refcount == 0;
2970 qcow2_cache_put(s->refcount_block_cache, &refblock);
2971 } else {
2972 /* No refblock means every refcount is 0 */
2973 for (refblock_index = 0; refblock_index < s->refcount_block_size;
2974 refblock_index++)
2976 if (new_refblock_index >= new_refblock_size) {
2977 /* new_refblock is now complete */
2978 ret = operation(bs, new_reftable, *new_reftable_index,
2979 new_reftable_size, new_refblock,
2980 new_refblock_empty, allocated, errp);
2981 if (ret < 0) {
2982 return ret;
2985 (*new_reftable_index)++;
2986 new_refblock_index = 0;
2987 new_refblock_empty = true;
2990 if (new_set_refcount) {
2991 new_set_refcount(new_refblock, new_refblock_index++, 0);
2992 } else {
2993 new_refblock_index++;
2999 if (new_refblock_index > 0) {
3000 /* Complete the potentially existing partially filled final refblock */
3001 if (new_set_refcount) {
3002 for (; new_refblock_index < new_refblock_size;
3003 new_refblock_index++)
3005 new_set_refcount(new_refblock, new_refblock_index, 0);
3009 ret = operation(bs, new_reftable, *new_reftable_index,
3010 new_reftable_size, new_refblock, new_refblock_empty,
3011 allocated, errp);
3012 if (ret < 0) {
3013 return ret;
3016 (*new_reftable_index)++;
3019 status_cb(bs, (uint64_t)(index + 1) * s->refcount_table_size,
3020 (uint64_t)total * s->refcount_table_size, cb_opaque);
3022 return 0;
3025 int qcow2_change_refcount_order(BlockDriverState *bs, int refcount_order,
3026 BlockDriverAmendStatusCB *status_cb,
3027 void *cb_opaque, Error **errp)
3029 BDRVQcow2State *s = bs->opaque;
3030 Qcow2GetRefcountFunc *new_get_refcount;
3031 Qcow2SetRefcountFunc *new_set_refcount;
3032 void *new_refblock = qemu_blockalign(bs->file->bs, s->cluster_size);
3033 uint64_t *new_reftable = NULL, new_reftable_size = 0;
3034 uint64_t *old_reftable, old_reftable_size, old_reftable_offset;
3035 uint64_t new_reftable_index = 0;
3036 uint64_t i;
3037 int64_t new_reftable_offset = 0, allocated_reftable_size = 0;
3038 int new_refblock_size, new_refcount_bits = 1 << refcount_order;
3039 int old_refcount_order;
3040 int walk_index = 0;
3041 int ret;
3042 bool new_allocation;
3044 assert(s->qcow_version >= 3);
3045 assert(refcount_order >= 0 && refcount_order <= 6);
3047 /* see qcow2_open() */
3048 new_refblock_size = 1 << (s->cluster_bits - (refcount_order - 3));
3050 new_get_refcount = get_refcount_funcs[refcount_order];
3051 new_set_refcount = set_refcount_funcs[refcount_order];
3054 do {
3055 int total_walks;
3057 new_allocation = false;
3059 /* At least we have to do this walk and the one which writes the
3060 * refblocks; also, at least we have to do this loop here at least
3061 * twice (normally), first to do the allocations, and second to
3062 * determine that everything is correctly allocated, this then makes
3063 * three walks in total */
3064 total_walks = MAX(walk_index + 2, 3);
3066 /* First, allocate the structures so they are present in the refcount
3067 * structures */
3068 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3069 &new_reftable_size, NULL, new_refblock_size,
3070 new_refcount_bits, &alloc_refblock,
3071 &new_allocation, NULL, status_cb, cb_opaque,
3072 walk_index++, total_walks, errp);
3073 if (ret < 0) {
3074 goto done;
3077 new_reftable_index = 0;
3079 if (new_allocation) {
3080 if (new_reftable_offset) {
3081 qcow2_free_clusters(bs, new_reftable_offset,
3082 allocated_reftable_size * sizeof(uint64_t),
3083 QCOW2_DISCARD_NEVER);
3086 new_reftable_offset = qcow2_alloc_clusters(bs, new_reftable_size *
3087 sizeof(uint64_t));
3088 if (new_reftable_offset < 0) {
3089 error_setg_errno(errp, -new_reftable_offset,
3090 "Failed to allocate the new reftable");
3091 ret = new_reftable_offset;
3092 goto done;
3094 allocated_reftable_size = new_reftable_size;
3096 } while (new_allocation);
3098 /* Second, write the new refblocks */
3099 ret = walk_over_reftable(bs, &new_reftable, &new_reftable_index,
3100 &new_reftable_size, new_refblock,
3101 new_refblock_size, new_refcount_bits,
3102 &flush_refblock, &new_allocation, new_set_refcount,
3103 status_cb, cb_opaque, walk_index, walk_index + 1,
3104 errp);
3105 if (ret < 0) {
3106 goto done;
3108 assert(!new_allocation);
3111 /* Write the new reftable */
3112 ret = qcow2_pre_write_overlap_check(bs, 0, new_reftable_offset,
3113 new_reftable_size * sizeof(uint64_t));
3114 if (ret < 0) {
3115 error_setg_errno(errp, -ret, "Overlap check failed");
3116 goto done;
3119 for (i = 0; i < new_reftable_size; i++) {
3120 cpu_to_be64s(&new_reftable[i]);
3123 ret = bdrv_pwrite(bs->file, new_reftable_offset, new_reftable,
3124 new_reftable_size * sizeof(uint64_t));
3126 for (i = 0; i < new_reftable_size; i++) {
3127 be64_to_cpus(&new_reftable[i]);
3130 if (ret < 0) {
3131 error_setg_errno(errp, -ret, "Failed to write the new reftable");
3132 goto done;
3136 /* Empty the refcount cache */
3137 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
3138 if (ret < 0) {
3139 error_setg_errno(errp, -ret, "Failed to flush the refblock cache");
3140 goto done;
3143 /* Update the image header to point to the new reftable; this only updates
3144 * the fields which are relevant to qcow2_update_header(); other fields
3145 * such as s->refcount_table or s->refcount_bits stay stale for now
3146 * (because we have to restore everything if qcow2_update_header() fails) */
3147 old_refcount_order = s->refcount_order;
3148 old_reftable_size = s->refcount_table_size;
3149 old_reftable_offset = s->refcount_table_offset;
3151 s->refcount_order = refcount_order;
3152 s->refcount_table_size = new_reftable_size;
3153 s->refcount_table_offset = new_reftable_offset;
3155 ret = qcow2_update_header(bs);
3156 if (ret < 0) {
3157 s->refcount_order = old_refcount_order;
3158 s->refcount_table_size = old_reftable_size;
3159 s->refcount_table_offset = old_reftable_offset;
3160 error_setg_errno(errp, -ret, "Failed to update the qcow2 header");
3161 goto done;
3164 /* Now update the rest of the in-memory information */
3165 old_reftable = s->refcount_table;
3166 s->refcount_table = new_reftable;
3167 update_max_refcount_table_index(s);
3169 s->refcount_bits = 1 << refcount_order;
3170 s->refcount_max = UINT64_C(1) << (s->refcount_bits - 1);
3171 s->refcount_max += s->refcount_max - 1;
3173 s->refcount_block_bits = s->cluster_bits - (refcount_order - 3);
3174 s->refcount_block_size = 1 << s->refcount_block_bits;
3176 s->get_refcount = new_get_refcount;
3177 s->set_refcount = new_set_refcount;
3179 /* For cleaning up all old refblocks and the old reftable below the "done"
3180 * label */
3181 new_reftable = old_reftable;
3182 new_reftable_size = old_reftable_size;
3183 new_reftable_offset = old_reftable_offset;
3185 done:
3186 if (new_reftable) {
3187 /* On success, new_reftable actually points to the old reftable (and
3188 * new_reftable_size is the old reftable's size); but that is just
3189 * fine */
3190 for (i = 0; i < new_reftable_size; i++) {
3191 uint64_t offset = new_reftable[i] & REFT_OFFSET_MASK;
3192 if (offset) {
3193 qcow2_free_clusters(bs, offset, s->cluster_size,
3194 QCOW2_DISCARD_OTHER);
3197 g_free(new_reftable);
3199 if (new_reftable_offset > 0) {
3200 qcow2_free_clusters(bs, new_reftable_offset,
3201 new_reftable_size * sizeof(uint64_t),
3202 QCOW2_DISCARD_OTHER);
3206 qemu_vfree(new_refblock);
3207 return ret;
3210 static int64_t get_refblock_offset(BlockDriverState *bs, uint64_t offset)
3212 BDRVQcow2State *s = bs->opaque;
3213 uint32_t index = offset_to_reftable_index(s, offset);
3214 int64_t covering_refblock_offset = 0;
3216 if (index < s->refcount_table_size) {
3217 covering_refblock_offset = s->refcount_table[index] & REFT_OFFSET_MASK;
3219 if (!covering_refblock_offset) {
3220 qcow2_signal_corruption(bs, true, -1, -1, "Refblock at %#" PRIx64 " is "
3221 "not covered by the refcount structures",
3222 offset);
3223 return -EIO;
3226 return covering_refblock_offset;
3229 static int qcow2_discard_refcount_block(BlockDriverState *bs,
3230 uint64_t discard_block_offs)
3232 BDRVQcow2State *s = bs->opaque;
3233 int64_t refblock_offs;
3234 uint64_t cluster_index = discard_block_offs >> s->cluster_bits;
3235 uint32_t block_index = cluster_index & (s->refcount_block_size - 1);
3236 void *refblock;
3237 int ret;
3239 refblock_offs = get_refblock_offset(bs, discard_block_offs);
3240 if (refblock_offs < 0) {
3241 return refblock_offs;
3244 assert(discard_block_offs != 0);
3246 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3247 &refblock);
3248 if (ret < 0) {
3249 return ret;
3252 if (s->get_refcount(refblock, block_index) != 1) {
3253 qcow2_signal_corruption(bs, true, -1, -1, "Invalid refcount:"
3254 " refblock offset %#" PRIx64
3255 ", reftable index %u"
3256 ", block offset %#" PRIx64
3257 ", refcount %#" PRIx64,
3258 refblock_offs,
3259 offset_to_reftable_index(s, discard_block_offs),
3260 discard_block_offs,
3261 s->get_refcount(refblock, block_index));
3262 qcow2_cache_put(s->refcount_block_cache, &refblock);
3263 return -EINVAL;
3265 s->set_refcount(refblock, block_index, 0);
3267 qcow2_cache_entry_mark_dirty(s->refcount_block_cache, refblock);
3269 qcow2_cache_put(s->refcount_block_cache, &refblock);
3271 if (cluster_index < s->free_cluster_index) {
3272 s->free_cluster_index = cluster_index;
3275 refblock = qcow2_cache_is_table_offset(s->refcount_block_cache,
3276 discard_block_offs);
3277 if (refblock) {
3278 /* discard refblock from the cache if refblock is cached */
3279 qcow2_cache_discard(s->refcount_block_cache, refblock);
3281 update_refcount_discard(bs, discard_block_offs, s->cluster_size);
3283 return 0;
3286 int qcow2_shrink_reftable(BlockDriverState *bs)
3288 BDRVQcow2State *s = bs->opaque;
3289 uint64_t *reftable_tmp =
3290 g_malloc(s->refcount_table_size * sizeof(uint64_t));
3291 int i, ret;
3293 for (i = 0; i < s->refcount_table_size; i++) {
3294 int64_t refblock_offs = s->refcount_table[i] & REFT_OFFSET_MASK;
3295 void *refblock;
3296 bool unused_block;
3298 if (refblock_offs == 0) {
3299 reftable_tmp[i] = 0;
3300 continue;
3302 ret = qcow2_cache_get(bs, s->refcount_block_cache, refblock_offs,
3303 &refblock);
3304 if (ret < 0) {
3305 goto out;
3308 /* the refblock has own reference */
3309 if (i == offset_to_reftable_index(s, refblock_offs)) {
3310 uint64_t block_index = (refblock_offs >> s->cluster_bits) &
3311 (s->refcount_block_size - 1);
3312 uint64_t refcount = s->get_refcount(refblock, block_index);
3314 s->set_refcount(refblock, block_index, 0);
3316 unused_block = buffer_is_zero(refblock, s->cluster_size);
3318 s->set_refcount(refblock, block_index, refcount);
3319 } else {
3320 unused_block = buffer_is_zero(refblock, s->cluster_size);
3322 qcow2_cache_put(s->refcount_block_cache, &refblock);
3324 reftable_tmp[i] = unused_block ? 0 : cpu_to_be64(s->refcount_table[i]);
3327 ret = bdrv_pwrite_sync(bs->file, s->refcount_table_offset, reftable_tmp,
3328 s->refcount_table_size * sizeof(uint64_t));
3330 * If the write in the reftable failed the image may contain a partially
3331 * overwritten reftable. In this case it would be better to clear the
3332 * reftable in memory to avoid possible image corruption.
3334 for (i = 0; i < s->refcount_table_size; i++) {
3335 if (s->refcount_table[i] && !reftable_tmp[i]) {
3336 if (ret == 0) {
3337 ret = qcow2_discard_refcount_block(bs, s->refcount_table[i] &
3338 REFT_OFFSET_MASK);
3340 s->refcount_table[i] = 0;
3344 if (!s->cache_discards) {
3345 qcow2_process_discards(bs, ret);
3348 out:
3349 g_free(reftable_tmp);
3350 return ret;
3353 int64_t qcow2_get_last_cluster(BlockDriverState *bs, int64_t size)
3355 BDRVQcow2State *s = bs->opaque;
3356 int64_t i;
3358 for (i = size_to_clusters(s, size) - 1; i >= 0; i--) {
3359 uint64_t refcount;
3360 int ret = qcow2_get_refcount(bs, i, &refcount);
3361 if (ret < 0) {
3362 fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n",
3363 i, strerror(-ret));
3364 return ret;
3366 if (refcount > 0) {
3367 return i;
3370 qcow2_signal_corruption(bs, true, -1, -1,
3371 "There are no references in the refcount table.");
3372 return -EIO;