tests: Restore check-qdict unit test
[qemu/armbru.git] / hw / acpi / nvdimm.c
blob27eeb6609f566e289e83c832a2e17f04f3097720
1 /*
2 * NVDIMM ACPI Implementation
4 * Copyright(C) 2015 Intel Corporation.
6 * Author:
7 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10 * and the DSM specification can be found at:
11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
13 * Currently, it only supports PMEM Virtualization.
15 * This library is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU Lesser General Public
17 * License as published by the Free Software Foundation; either
18 * version 2 of the License, or (at your option) any later version.
20 * This library is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * Lesser General Public License for more details.
25 * You should have received a copy of the GNU Lesser General Public
26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
29 #include "qemu/osdep.h"
30 #include "hw/acpi/acpi.h"
31 #include "hw/acpi/aml-build.h"
32 #include "hw/acpi/bios-linker-loader.h"
33 #include "hw/nvram/fw_cfg.h"
34 #include "hw/mem/nvdimm.h"
36 static int nvdimm_device_list(Object *obj, void *opaque)
38 GSList **list = opaque;
40 if (object_dynamic_cast(obj, TYPE_NVDIMM)) {
41 *list = g_slist_append(*list, DEVICE(obj));
44 object_child_foreach(obj, nvdimm_device_list, opaque);
45 return 0;
49 * inquire NVDIMM devices and link them into the list which is
50 * returned to the caller.
52 * Note: it is the caller's responsibility to free the list to avoid
53 * memory leak.
55 static GSList *nvdimm_get_device_list(void)
57 GSList *list = NULL;
59 object_child_foreach(qdev_get_machine(), nvdimm_device_list, &list);
60 return list;
63 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \
64 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
65 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \
66 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
69 * define Byte Addressable Persistent Memory (PM) Region according to
70 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
72 static const uint8_t nvdimm_nfit_spa_uuid[] =
73 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
74 0x18, 0xb7, 0x8c, 0xdb);
77 * NVDIMM Firmware Interface Table
78 * @signature: "NFIT"
80 * It provides information that allows OSPM to enumerate NVDIMM present in
81 * the platform and associate system physical address ranges created by the
82 * NVDIMMs.
84 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
86 struct NvdimmNfitHeader {
87 ACPI_TABLE_HEADER_DEF
88 uint32_t reserved;
89 } QEMU_PACKED;
90 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
93 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
94 * Interface Table (NFIT).
98 * System Physical Address Range Structure
100 * It describes the system physical address ranges occupied by NVDIMMs and
101 * the types of the regions.
103 struct NvdimmNfitSpa {
104 uint16_t type;
105 uint16_t length;
106 uint16_t spa_index;
107 uint16_t flags;
108 uint32_t reserved;
109 uint32_t proximity_domain;
110 uint8_t type_guid[16];
111 uint64_t spa_base;
112 uint64_t spa_length;
113 uint64_t mem_attr;
114 } QEMU_PACKED;
115 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
118 * Memory Device to System Physical Address Range Mapping Structure
120 * It enables identifying each NVDIMM region and the corresponding SPA
121 * describing the memory interleave
123 struct NvdimmNfitMemDev {
124 uint16_t type;
125 uint16_t length;
126 uint32_t nfit_handle;
127 uint16_t phys_id;
128 uint16_t region_id;
129 uint16_t spa_index;
130 uint16_t dcr_index;
131 uint64_t region_len;
132 uint64_t region_offset;
133 uint64_t region_dpa;
134 uint16_t interleave_index;
135 uint16_t interleave_ways;
136 uint16_t flags;
137 uint16_t reserved;
138 } QEMU_PACKED;
139 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
141 #define ACPI_NFIT_MEM_NOT_ARMED (1 << 3)
144 * NVDIMM Control Region Structure
146 * It describes the NVDIMM and if applicable, Block Control Window.
148 struct NvdimmNfitControlRegion {
149 uint16_t type;
150 uint16_t length;
151 uint16_t dcr_index;
152 uint16_t vendor_id;
153 uint16_t device_id;
154 uint16_t revision_id;
155 uint16_t sub_vendor_id;
156 uint16_t sub_device_id;
157 uint16_t sub_revision_id;
158 uint8_t reserved[6];
159 uint32_t serial_number;
160 uint16_t fic;
161 uint16_t num_bcw;
162 uint64_t bcw_size;
163 uint64_t cmd_offset;
164 uint64_t cmd_size;
165 uint64_t status_offset;
166 uint64_t status_size;
167 uint16_t flags;
168 uint8_t reserved2[6];
169 } QEMU_PACKED;
170 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
173 * NVDIMM Platform Capabilities Structure
175 * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
177 struct NvdimmNfitPlatformCaps {
178 uint16_t type;
179 uint16_t length;
180 uint8_t highest_cap;
181 uint8_t reserved[3];
182 uint32_t capabilities;
183 uint8_t reserved2[4];
184 } QEMU_PACKED;
185 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
188 * Module serial number is a unique number for each device. We use the
189 * slot id of NVDIMM device to generate this number so that each device
190 * associates with a different number.
192 * 0x123456 is a magic number we arbitrarily chose.
194 static uint32_t nvdimm_slot_to_sn(int slot)
196 return 0x123456 + slot;
200 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
201 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
202 * by ACPI device _ADR method.
204 * We generate the handle with the slot id of NVDIMM device and reserve
205 * 0 for NVDIMM root device.
207 static uint32_t nvdimm_slot_to_handle(int slot)
209 return slot + 1;
213 * index uniquely identifies the structure, 0 is reserved which indicates
214 * that the structure is not valid or the associated structure is not
215 * present.
217 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
218 * nfit_dc which are generated by the slot id of NVDIMM device.
220 static uint16_t nvdimm_slot_to_spa_index(int slot)
222 return (slot + 1) << 1;
225 /* See the comments of nvdimm_slot_to_spa_index(). */
226 static uint32_t nvdimm_slot_to_dcr_index(int slot)
228 return nvdimm_slot_to_spa_index(slot) + 1;
231 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
233 NVDIMMDevice *nvdimm = NULL;
234 GSList *list, *device_list = nvdimm_get_device_list();
236 for (list = device_list; list; list = list->next) {
237 NVDIMMDevice *nvd = list->data;
238 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
239 NULL);
241 if (nvdimm_slot_to_handle(slot) == handle) {
242 nvdimm = nvd;
243 break;
247 g_slist_free(device_list);
248 return nvdimm;
251 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
252 static void
253 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
255 NvdimmNfitSpa *nfit_spa;
256 uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
257 NULL);
258 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
259 NULL);
260 uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
261 NULL);
262 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
263 NULL);
265 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
267 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
268 Structure */);
269 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
270 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
273 * Control region is strict as all the device info, such as SN, index,
274 * is associated with slot id.
276 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
277 management during hot add/online
278 operation */ |
279 2 /* Data in Proximity Domain field is
280 valid*/);
282 /* NUMA node. */
283 nfit_spa->proximity_domain = cpu_to_le32(node);
284 /* the region reported as PMEM. */
285 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
286 sizeof(nvdimm_nfit_spa_uuid));
288 nfit_spa->spa_base = cpu_to_le64(addr);
289 nfit_spa->spa_length = cpu_to_le64(size);
291 /* It is the PMEM and can be cached as writeback. */
292 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
293 0x8000ULL /* EFI_MEMORY_NV */);
297 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
298 * Structure
300 static void
301 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
303 NvdimmNfitMemDev *nfit_memdev;
304 NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
305 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
306 NULL);
307 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
308 NULL);
309 uint32_t handle = nvdimm_slot_to_handle(slot);
311 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
313 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
314 Range Map Structure*/);
315 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
316 nfit_memdev->nfit_handle = cpu_to_le32(handle);
319 * associate memory device with System Physical Address Range
320 * Structure.
322 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
323 /* associate memory device with Control Region Structure. */
324 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
326 /* The memory region on the device. */
327 nfit_memdev->region_len = cpu_to_le64(size);
328 /* The device address starts from 0. */
329 nfit_memdev->region_dpa = cpu_to_le64(0);
331 /* Only one interleave for PMEM. */
332 nfit_memdev->interleave_ways = cpu_to_le16(1);
334 if (nvdimm->unarmed) {
335 nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
340 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
342 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
344 NvdimmNfitControlRegion *nfit_dcr;
345 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
346 NULL);
347 uint32_t sn = nvdimm_slot_to_sn(slot);
349 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
351 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
352 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
353 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
355 /* vendor: Intel. */
356 nfit_dcr->vendor_id = cpu_to_le16(0x8086);
357 nfit_dcr->device_id = cpu_to_le16(1);
359 /* The _DSM method is following Intel's DSM specification. */
360 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
361 in ACPI 6.0 is 1. */);
362 nfit_dcr->serial_number = cpu_to_le32(sn);
363 nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
364 Byte addressable, no energy backed.
365 See ACPI 6.2, sect 5.2.25.6 and
366 JEDEC Annex L Release 3. */);
370 * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
372 static void
373 nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
375 NvdimmNfitPlatformCaps *nfit_caps;
377 nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
379 nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
380 nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
381 nfit_caps->highest_cap = 31 - clz32(capabilities);
382 nfit_caps->capabilities = cpu_to_le32(capabilities);
385 static GArray *nvdimm_build_device_structure(AcpiNVDIMMState *state)
387 GSList *device_list = nvdimm_get_device_list();
388 GArray *structures = g_array_new(false, true /* clear */, 1);
390 for (; device_list; device_list = device_list->next) {
391 DeviceState *dev = device_list->data;
393 /* build System Physical Address Range Structure. */
394 nvdimm_build_structure_spa(structures, dev);
397 * build Memory Device to System Physical Address Range Mapping
398 * Structure.
400 nvdimm_build_structure_memdev(structures, dev);
402 /* build NVDIMM Control Region Structure. */
403 nvdimm_build_structure_dcr(structures, dev);
405 g_slist_free(device_list);
407 if (state->persistence) {
408 nvdimm_build_structure_caps(structures, state->persistence);
411 return structures;
414 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
416 fit_buf->fit = g_array_new(false, true /* clear */, 1);
419 static void nvdimm_build_fit_buffer(AcpiNVDIMMState *state)
421 NvdimmFitBuffer *fit_buf = &state->fit_buf;
423 g_array_free(fit_buf->fit, true);
424 fit_buf->fit = nvdimm_build_device_structure(state);
425 fit_buf->dirty = true;
428 void nvdimm_plug(AcpiNVDIMMState *state)
430 nvdimm_build_fit_buffer(state);
433 static void nvdimm_build_nfit(AcpiNVDIMMState *state, GArray *table_offsets,
434 GArray *table_data, BIOSLinker *linker)
436 NvdimmFitBuffer *fit_buf = &state->fit_buf;
437 unsigned int header;
439 acpi_add_table(table_offsets, table_data);
441 /* NFIT header. */
442 header = table_data->len;
443 acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
444 /* NVDIMM device structures. */
445 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
447 build_header(linker, table_data,
448 (void *)(table_data->data + header), "NFIT",
449 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL);
452 #define NVDIMM_DSM_MEMORY_SIZE 4096
454 struct NvdimmDsmIn {
455 uint32_t handle;
456 uint32_t revision;
457 uint32_t function;
458 /* the remaining size in the page is used by arg3. */
459 union {
460 uint8_t arg3[4084];
462 } QEMU_PACKED;
463 typedef struct NvdimmDsmIn NvdimmDsmIn;
464 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
466 struct NvdimmDsmOut {
467 /* the size of buffer filled by QEMU. */
468 uint32_t len;
469 uint8_t data[4092];
470 } QEMU_PACKED;
471 typedef struct NvdimmDsmOut NvdimmDsmOut;
472 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
474 struct NvdimmDsmFunc0Out {
475 /* the size of buffer filled by QEMU. */
476 uint32_t len;
477 uint32_t supported_func;
478 } QEMU_PACKED;
479 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
481 struct NvdimmDsmFuncNoPayloadOut {
482 /* the size of buffer filled by QEMU. */
483 uint32_t len;
484 uint32_t func_ret_status;
485 } QEMU_PACKED;
486 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
488 struct NvdimmFuncGetLabelSizeOut {
489 /* the size of buffer filled by QEMU. */
490 uint32_t len;
491 uint32_t func_ret_status; /* return status code. */
492 uint32_t label_size; /* the size of label data area. */
494 * Maximum size of the namespace label data length supported by
495 * the platform in Get/Set Namespace Label Data functions.
497 uint32_t max_xfer;
498 } QEMU_PACKED;
499 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
500 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
502 struct NvdimmFuncGetLabelDataIn {
503 uint32_t offset; /* the offset in the namespace label data area. */
504 uint32_t length; /* the size of data is to be read via the function. */
505 } QEMU_PACKED;
506 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
507 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
508 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
510 struct NvdimmFuncGetLabelDataOut {
511 /* the size of buffer filled by QEMU. */
512 uint32_t len;
513 uint32_t func_ret_status; /* return status code. */
514 uint8_t out_buf[0]; /* the data got via Get Namesapce Label function. */
515 } QEMU_PACKED;
516 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
517 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
519 struct NvdimmFuncSetLabelDataIn {
520 uint32_t offset; /* the offset in the namespace label data area. */
521 uint32_t length; /* the size of data is to be written via the function. */
522 uint8_t in_buf[0]; /* the data written to label data area. */
523 } QEMU_PACKED;
524 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
525 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
526 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
528 struct NvdimmFuncReadFITIn {
529 uint32_t offset; /* the offset into FIT buffer. */
530 } QEMU_PACKED;
531 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
532 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
533 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
535 struct NvdimmFuncReadFITOut {
536 /* the size of buffer filled by QEMU. */
537 uint32_t len;
538 uint32_t func_ret_status; /* return status code. */
539 uint8_t fit[0]; /* the FIT data. */
540 } QEMU_PACKED;
541 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
542 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
544 static void
545 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
547 NvdimmDsmFunc0Out func0 = {
548 .len = cpu_to_le32(sizeof(func0)),
549 .supported_func = cpu_to_le32(supported_func),
551 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
554 static void
555 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
557 NvdimmDsmFuncNoPayloadOut out = {
558 .len = cpu_to_le32(sizeof(out)),
559 .func_ret_status = cpu_to_le32(func_ret_status),
561 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
564 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */
565 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */
566 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */
567 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */
568 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */
570 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000
572 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
573 static void nvdimm_dsm_func_read_fit(AcpiNVDIMMState *state, NvdimmDsmIn *in,
574 hwaddr dsm_mem_addr)
576 NvdimmFitBuffer *fit_buf = &state->fit_buf;
577 NvdimmFuncReadFITIn *read_fit;
578 NvdimmFuncReadFITOut *read_fit_out;
579 GArray *fit;
580 uint32_t read_len = 0, func_ret_status;
581 int size;
583 read_fit = (NvdimmFuncReadFITIn *)in->arg3;
584 le32_to_cpus(&read_fit->offset);
586 fit = fit_buf->fit;
588 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n",
589 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
591 if (read_fit->offset > fit->len) {
592 func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
593 goto exit;
596 /* It is the first time to read FIT. */
597 if (!read_fit->offset) {
598 fit_buf->dirty = false;
599 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
600 func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
601 goto exit;
604 func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
605 read_len = MIN(fit->len - read_fit->offset,
606 NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
608 exit:
609 size = sizeof(NvdimmFuncReadFITOut) + read_len;
610 read_fit_out = g_malloc(size);
612 read_fit_out->len = cpu_to_le32(size);
613 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
614 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
616 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
618 g_free(read_fit_out);
621 static void
622 nvdimm_dsm_handle_reserved_root_method(AcpiNVDIMMState *state,
623 NvdimmDsmIn *in, hwaddr dsm_mem_addr)
625 switch (in->function) {
626 case 0x0:
627 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
628 return;
629 case 0x1 /* Read FIT */:
630 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
631 return;
634 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
637 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
640 * function 0 is called to inquire which functions are supported by
641 * OSPM
643 if (!in->function) {
644 nvdimm_dsm_function0(0 /* No function supported other than
645 function 0 */, dsm_mem_addr);
646 return;
649 /* No function except function 0 is supported yet. */
650 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
654 * the max transfer size is the max size transferred by both a
655 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
656 * function.
658 static uint32_t nvdimm_get_max_xfer_label_size(void)
660 uint32_t max_get_size, max_set_size, dsm_memory_size;
662 dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
665 * the max data ACPI can read one time which is transferred by
666 * the response of 'Get Namespace Label Data' function.
668 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
671 * the max data ACPI can write one time which is transferred by
672 * 'Set Namespace Label Data' function.
674 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
675 sizeof(NvdimmFuncSetLabelDataIn);
677 return MIN(max_get_size, max_set_size);
681 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
683 * It gets the size of Namespace Label data area and the max data size
684 * that Get/Set Namespace Label Data functions can transfer.
686 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
688 NvdimmFuncGetLabelSizeOut label_size_out = {
689 .len = cpu_to_le32(sizeof(label_size_out)),
691 uint32_t label_size, mxfer;
693 label_size = nvdimm->label_size;
694 mxfer = nvdimm_get_max_xfer_label_size();
696 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
698 label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
699 label_size_out.label_size = cpu_to_le32(label_size);
700 label_size_out.max_xfer = cpu_to_le32(mxfer);
702 cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
703 sizeof(label_size_out));
706 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
707 uint32_t offset, uint32_t length)
709 uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
711 if (offset + length < offset) {
712 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
713 length);
714 return ret;
717 if (nvdimm->label_size < offset + length) {
718 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
719 offset + length, nvdimm->label_size);
720 return ret;
723 if (length > nvdimm_get_max_xfer_label_size()) {
724 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
725 length, nvdimm_get_max_xfer_label_size());
726 return ret;
729 return NVDIMM_DSM_RET_STATUS_SUCCESS;
733 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
735 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
736 hwaddr dsm_mem_addr)
738 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
739 NvdimmFuncGetLabelDataIn *get_label_data;
740 NvdimmFuncGetLabelDataOut *get_label_data_out;
741 uint32_t status;
742 int size;
744 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
745 le32_to_cpus(&get_label_data->offset);
746 le32_to_cpus(&get_label_data->length);
748 nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
749 get_label_data->offset, get_label_data->length);
751 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
752 get_label_data->length);
753 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
754 nvdimm_dsm_no_payload(status, dsm_mem_addr);
755 return;
758 size = sizeof(*get_label_data_out) + get_label_data->length;
759 assert(size <= NVDIMM_DSM_MEMORY_SIZE);
760 get_label_data_out = g_malloc(size);
762 get_label_data_out->len = cpu_to_le32(size);
763 get_label_data_out->func_ret_status =
764 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
765 nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
766 get_label_data->length, get_label_data->offset);
768 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
769 g_free(get_label_data_out);
773 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
775 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
776 hwaddr dsm_mem_addr)
778 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
779 NvdimmFuncSetLabelDataIn *set_label_data;
780 uint32_t status;
782 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
784 le32_to_cpus(&set_label_data->offset);
785 le32_to_cpus(&set_label_data->length);
787 nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
788 set_label_data->offset, set_label_data->length);
790 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
791 set_label_data->length);
792 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
793 nvdimm_dsm_no_payload(status, dsm_mem_addr);
794 return;
797 assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
798 set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
800 nvc->write_label_data(nvdimm, set_label_data->in_buf,
801 set_label_data->length, set_label_data->offset);
802 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
805 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
807 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
809 /* See the comments in nvdimm_dsm_root(). */
810 if (!in->function) {
811 uint32_t supported_func = 0;
813 if (nvdimm && nvdimm->label_size) {
814 supported_func |= 0x1 /* Bit 0 indicates whether there is
815 support for any functions other
816 than function 0. */ |
817 1 << 4 /* Get Namespace Label Size */ |
818 1 << 5 /* Get Namespace Label Data */ |
819 1 << 6 /* Set Namespace Label Data */;
821 nvdimm_dsm_function0(supported_func, dsm_mem_addr);
822 return;
825 if (!nvdimm) {
826 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
827 dsm_mem_addr);
828 return;
831 /* Encode DSM function according to DSM Spec Rev1. */
832 switch (in->function) {
833 case 4 /* Get Namespace Label Size */:
834 if (nvdimm->label_size) {
835 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
836 return;
838 break;
839 case 5 /* Get Namespace Label Data */:
840 if (nvdimm->label_size) {
841 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
842 return;
844 break;
845 case 0x6 /* Set Namespace Label Data */:
846 if (nvdimm->label_size) {
847 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
848 return;
850 break;
853 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
856 static uint64_t
857 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
859 nvdimm_debug("BUG: we never read _DSM IO Port.\n");
860 return 0;
863 static void
864 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
866 AcpiNVDIMMState *state = opaque;
867 NvdimmDsmIn *in;
868 hwaddr dsm_mem_addr = val;
870 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
873 * The DSM memory is mapped to guest address space so an evil guest
874 * can change its content while we are doing DSM emulation. Avoid
875 * this by copying DSM memory to QEMU local memory.
877 in = g_new(NvdimmDsmIn, 1);
878 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
880 le32_to_cpus(&in->revision);
881 le32_to_cpus(&in->function);
882 le32_to_cpus(&in->handle);
884 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
885 in->handle, in->function);
887 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
888 nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
889 in->revision, 0x1);
890 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
891 goto exit;
894 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
895 nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
896 goto exit;
899 /* Handle 0 is reserved for NVDIMM Root Device. */
900 if (!in->handle) {
901 nvdimm_dsm_root(in, dsm_mem_addr);
902 goto exit;
905 nvdimm_dsm_device(in, dsm_mem_addr);
907 exit:
908 g_free(in);
911 static const MemoryRegionOps nvdimm_dsm_ops = {
912 .read = nvdimm_dsm_read,
913 .write = nvdimm_dsm_write,
914 .endianness = DEVICE_LITTLE_ENDIAN,
915 .valid = {
916 .min_access_size = 4,
917 .max_access_size = 4,
921 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
923 if (dev->hotplugged) {
924 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
928 void nvdimm_init_acpi_state(AcpiNVDIMMState *state, MemoryRegion *io,
929 FWCfgState *fw_cfg, Object *owner)
931 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
932 "nvdimm-acpi-io", NVDIMM_ACPI_IO_LEN);
933 memory_region_add_subregion(io, NVDIMM_ACPI_IO_BASE, &state->io_mr);
935 state->dsm_mem = g_array_new(false, true /* clear */, 1);
936 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
937 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
938 state->dsm_mem->len);
940 nvdimm_init_fit_buffer(&state->fit_buf);
943 #define NVDIMM_COMMON_DSM "NCAL"
944 #define NVDIMM_ACPI_MEM_ADDR "MEMA"
946 #define NVDIMM_DSM_MEMORY "NRAM"
947 #define NVDIMM_DSM_IOPORT "NPIO"
949 #define NVDIMM_DSM_NOTIFY "NTFI"
950 #define NVDIMM_DSM_HANDLE "HDLE"
951 #define NVDIMM_DSM_REVISION "REVS"
952 #define NVDIMM_DSM_FUNCTION "FUNC"
953 #define NVDIMM_DSM_ARG3 "FARG"
955 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
956 #define NVDIMM_DSM_OUT_BUF "ODAT"
958 #define NVDIMM_DSM_RFIT_STATUS "RSTA"
960 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
962 static void nvdimm_build_common_dsm(Aml *dev)
964 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
965 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
966 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
967 uint8_t byte_list[1];
969 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
970 uuid = aml_arg(0);
971 function = aml_arg(2);
972 handle = aml_arg(4);
973 dsm_mem = aml_local(6);
974 dsm_out_buf = aml_local(7);
976 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
978 /* map DSM memory and IO into ACPI namespace. */
979 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, AML_SYSTEM_IO,
980 aml_int(NVDIMM_ACPI_IO_BASE), NVDIMM_ACPI_IO_LEN));
981 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
982 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
985 * DSM notifier:
986 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
987 * emulate the access.
989 * It is the IO port so that accessing them will cause VM-exit, the
990 * control will be transferred to QEMU.
992 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
993 AML_PRESERVE);
994 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
995 sizeof(uint32_t) * BITS_PER_BYTE));
996 aml_append(method, field);
999 * DSM input:
1000 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
1001 * happens on NVDIMM Root Device.
1002 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
1003 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
1004 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
1005 * containing function-specific arguments.
1007 * They are RAM mapping on host so that these accesses never cause
1008 * VM-EXIT.
1010 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
1011 AML_PRESERVE);
1012 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
1013 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
1014 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
1015 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
1016 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
1017 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
1018 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
1019 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
1020 aml_append(method, field);
1023 * DSM output:
1024 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
1025 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1027 * Since the page is reused by both input and out, the input data
1028 * will be lost after storing new result into ODAT so we should fetch
1029 * all the input data before writing the result.
1031 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
1032 AML_PRESERVE);
1033 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
1034 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
1035 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
1036 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1037 aml_append(method, field);
1040 * do not support any method if DSM memory address has not been
1041 * patched.
1043 unpatched = aml_equal(dsm_mem, aml_int(0x0));
1045 expected_uuid = aml_local(0);
1047 ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1048 aml_append(ifctx, aml_store(
1049 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1050 /* UUID for NVDIMM Root Device */, expected_uuid));
1051 aml_append(method, ifctx);
1052 elsectx = aml_else();
1053 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1054 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1055 /* UUID for QEMU internal use */), expected_uuid));
1056 aml_append(elsectx, ifctx);
1057 elsectx2 = aml_else();
1058 aml_append(elsectx2, aml_store(
1059 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1060 /* UUID for NVDIMM Devices */, expected_uuid));
1061 aml_append(elsectx, elsectx2);
1062 aml_append(method, elsectx);
1064 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1066 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1069 * function 0 is called to inquire what functions are supported by
1070 * OSPM
1072 ifctx = aml_if(aml_equal(function, aml_int(0)));
1073 byte_list[0] = 0 /* No function Supported */;
1074 aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1075 aml_append(unsupport, ifctx);
1077 /* No function is supported yet. */
1078 byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1079 aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1080 aml_append(method, unsupport);
1083 * The HDLE indicates the DSM function is issued from which device,
1084 * it reserves 0 for root device and is the handle for NVDIMM devices.
1085 * See the comments in nvdimm_slot_to_handle().
1087 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1088 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1089 aml_append(method, aml_store(aml_arg(2), aml_name(NVDIMM_DSM_FUNCTION)));
1092 * The fourth parameter (Arg3) of _DSM is a package which contains
1093 * a buffer, the layout of the buffer is specified by UUID (Arg0),
1094 * Revision ID (Arg1) and Function Index (Arg2) which are documented
1095 * in the DSM Spec.
1097 pckg = aml_arg(3);
1098 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1099 aml_int(4 /* Package */)) /* It is a Package? */,
1100 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1101 NULL));
1103 pckg_index = aml_local(2);
1104 pckg_buf = aml_local(3);
1105 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1106 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1107 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1108 aml_append(method, ifctx);
1111 * tell QEMU about the real address of DSM memory, then QEMU
1112 * gets the control and fills the result in DSM memory.
1114 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1116 dsm_out_buf_size = aml_local(1);
1117 /* RLEN is not included in the payload returned to guest. */
1118 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1119 aml_int(4), dsm_out_buf_size));
1120 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1121 dsm_out_buf_size));
1122 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1123 aml_int(0), dsm_out_buf_size, "OBUF"));
1124 aml_append(method, aml_concatenate(aml_buffer(0, NULL), aml_name("OBUF"),
1125 dsm_out_buf));
1126 aml_append(method, aml_return(dsm_out_buf));
1127 aml_append(dev, method);
1130 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1132 Aml *method;
1134 method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1135 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1136 aml_arg(1), aml_arg(2), aml_arg(3),
1137 aml_int(handle))));
1138 aml_append(dev, method);
1141 static void nvdimm_build_fit(Aml *dev)
1143 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1144 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1146 buf = aml_local(0);
1147 buf_size = aml_local(1);
1148 fit = aml_local(2);
1150 aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1152 /* build helper function, RFIT. */
1153 method = aml_method("RFIT", 1, AML_SERIALIZED);
1154 aml_append(method, aml_name_decl("OFST", aml_int(0)));
1156 /* prepare input package. */
1157 pkg = aml_package(1);
1158 aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1159 aml_append(pkg, aml_name("OFST"));
1161 /* call Read_FIT function. */
1162 call_result = aml_call5(NVDIMM_COMMON_DSM,
1163 aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1164 aml_int(1) /* Revision 1 */,
1165 aml_int(0x1) /* Read FIT */,
1166 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1167 aml_append(method, aml_store(call_result, buf));
1169 /* handle _DSM result. */
1170 aml_append(method, aml_create_dword_field(buf,
1171 aml_int(0) /* offset at byte 0 */, "STAU"));
1173 aml_append(method, aml_store(aml_name("STAU"),
1174 aml_name(NVDIMM_DSM_RFIT_STATUS)));
1176 /* if something is wrong during _DSM. */
1177 ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1178 aml_name("STAU"));
1179 ifctx = aml_if(aml_lnot(ifcond));
1180 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1181 aml_append(method, ifctx);
1183 aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1184 aml_append(method, aml_subtract(buf_size,
1185 aml_int(4) /* the size of "STAU" */,
1186 buf_size));
1188 /* if we read the end of fit. */
1189 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1190 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1191 aml_append(method, ifctx);
1193 aml_append(method, aml_create_field(buf,
1194 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1195 aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1196 aml_append(method, aml_return(aml_name("BUFF")));
1197 aml_append(dev, method);
1199 /* build _FIT. */
1200 method = aml_method("_FIT", 0, AML_SERIALIZED);
1201 offset = aml_local(3);
1203 aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1204 aml_append(method, aml_store(aml_int(0), offset));
1206 whilectx = aml_while(aml_int(1));
1207 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1208 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1211 * if fit buffer was changed during RFIT, read from the beginning
1212 * again.
1214 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1215 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1216 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1217 aml_append(ifctx, aml_store(aml_int(0), offset));
1218 aml_append(whilectx, ifctx);
1220 elsectx = aml_else();
1222 /* finish fit read if no data is read out. */
1223 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1224 aml_append(ifctx, aml_return(fit));
1225 aml_append(elsectx, ifctx);
1227 /* update the offset. */
1228 aml_append(elsectx, aml_add(offset, buf_size, offset));
1229 /* append the data we read out to the fit buffer. */
1230 aml_append(elsectx, aml_concatenate(fit, buf, fit));
1231 aml_append(whilectx, elsectx);
1232 aml_append(method, whilectx);
1234 aml_append(dev, method);
1237 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1239 uint32_t slot;
1241 for (slot = 0; slot < ram_slots; slot++) {
1242 uint32_t handle = nvdimm_slot_to_handle(slot);
1243 Aml *nvdimm_dev;
1245 nvdimm_dev = aml_device("NV%02X", slot);
1248 * ACPI 6.0: 9.20 NVDIMM Devices:
1250 * _ADR object that is used to supply OSPM with unique address
1251 * of the NVDIMM device. This is done by returning the NFIT Device
1252 * handle that is used to identify the associated entries in ACPI
1253 * table NFIT or _FIT.
1255 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1257 nvdimm_build_device_dsm(nvdimm_dev, handle);
1258 aml_append(root_dev, nvdimm_dev);
1262 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1263 BIOSLinker *linker, GArray *dsm_dma_arrea,
1264 uint32_t ram_slots)
1266 Aml *ssdt, *sb_scope, *dev;
1267 int mem_addr_offset, nvdimm_ssdt;
1269 acpi_add_table(table_offsets, table_data);
1271 ssdt = init_aml_allocator();
1272 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1274 sb_scope = aml_scope("\\_SB");
1276 dev = aml_device("NVDR");
1279 * ACPI 6.0: 9.20 NVDIMM Devices:
1281 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1282 * NVDIMM interface device. Platform firmware is required to contain one
1283 * such device in _SB scope if NVDIMMs support is exposed by platform to
1284 * OSPM.
1285 * For each NVDIMM present or intended to be supported by platform,
1286 * platform firmware also exposes an ACPI Namespace Device under the
1287 * root device.
1289 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1291 nvdimm_build_common_dsm(dev);
1293 /* 0 is reserved for root device. */
1294 nvdimm_build_device_dsm(dev, 0);
1295 nvdimm_build_fit(dev);
1297 nvdimm_build_nvdimm_devices(dev, ram_slots);
1299 aml_append(sb_scope, dev);
1300 aml_append(ssdt, sb_scope);
1302 nvdimm_ssdt = table_data->len;
1304 /* copy AML table into ACPI tables blob and patch header there */
1305 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1306 mem_addr_offset = build_append_named_dword(table_data,
1307 NVDIMM_ACPI_MEM_ADDR);
1309 bios_linker_loader_alloc(linker,
1310 NVDIMM_DSM_MEM_FILE, dsm_dma_arrea,
1311 sizeof(NvdimmDsmIn), false /* high memory */);
1312 bios_linker_loader_add_pointer(linker,
1313 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1314 NVDIMM_DSM_MEM_FILE, 0);
1315 build_header(linker, table_data,
1316 (void *)(table_data->data + nvdimm_ssdt),
1317 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1318 free_aml_allocator();
1321 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1322 BIOSLinker *linker, AcpiNVDIMMState *state,
1323 uint32_t ram_slots)
1325 GSList *device_list;
1327 /* no nvdimm device can be plugged. */
1328 if (!ram_slots) {
1329 return;
1332 nvdimm_build_ssdt(table_offsets, table_data, linker, state->dsm_mem,
1333 ram_slots);
1335 device_list = nvdimm_get_device_list();
1336 /* no NVDIMM device is plugged. */
1337 if (!device_list) {
1338 return;
1341 nvdimm_build_nfit(state, table_offsets, table_data, linker);
1342 g_slist_free(device_list);