tests: Restore check-qdict unit test
[qemu/armbru.git] / hw / mem / memory-device.c
blob6de4f70bb4bfc340d779e5e83adb75fc0b634d3f
1 /*
2 * Memory Device Interface
4 * Copyright ProfitBricks GmbH 2012
5 * Copyright (C) 2014 Red Hat Inc
6 * Copyright (c) 2018 Red Hat Inc
8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
9 * See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include "hw/mem/memory-device.h"
14 #include "hw/qdev.h"
15 #include "qapi/error.h"
16 #include "hw/boards.h"
17 #include "qemu/range.h"
18 #include "hw/virtio/vhost.h"
19 #include "sysemu/kvm.h"
21 static gint memory_device_addr_sort(gconstpointer a, gconstpointer b)
23 const MemoryDeviceState *md_a = MEMORY_DEVICE(a);
24 const MemoryDeviceState *md_b = MEMORY_DEVICE(b);
25 const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a);
26 const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b);
27 const uint64_t addr_a = mdc_a->get_addr(md_a);
28 const uint64_t addr_b = mdc_b->get_addr(md_b);
30 if (addr_a > addr_b) {
31 return 1;
32 } else if (addr_a < addr_b) {
33 return -1;
35 return 0;
38 static int memory_device_build_list(Object *obj, void *opaque)
40 GSList **list = opaque;
42 if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
43 DeviceState *dev = DEVICE(obj);
44 if (dev->realized) { /* only realized memory devices matter */
45 *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort);
49 object_child_foreach(obj, memory_device_build_list, opaque);
50 return 0;
53 static int memory_device_used_region_size(Object *obj, void *opaque)
55 uint64_t *size = opaque;
57 if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
58 const DeviceState *dev = DEVICE(obj);
59 const MemoryDeviceState *md = MEMORY_DEVICE(obj);
60 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
62 if (dev->realized) {
63 *size += mdc->get_region_size(md);
67 object_child_foreach(obj, memory_device_used_region_size, opaque);
68 return 0;
71 static void memory_device_check_addable(MachineState *ms, uint64_t size,
72 Error **errp)
74 uint64_t used_region_size = 0;
76 /* we will need a new memory slot for kvm and vhost */
77 if (kvm_enabled() && !kvm_has_free_slot(ms)) {
78 error_setg(errp, "hypervisor has no free memory slots left");
79 return;
81 if (!vhost_has_free_slot()) {
82 error_setg(errp, "a used vhost backend has no free memory slots left");
83 return;
86 /* will we exceed the total amount of memory specified */
87 memory_device_used_region_size(OBJECT(ms), &used_region_size);
88 if (used_region_size + size > ms->maxram_size - ms->ram_size) {
89 error_setg(errp, "not enough space, currently 0x%" PRIx64
90 " in use of total hot pluggable 0x" RAM_ADDR_FMT,
91 used_region_size, ms->maxram_size - ms->ram_size);
92 return;
97 uint64_t memory_device_get_free_addr(MachineState *ms, const uint64_t *hint,
98 uint64_t align, uint64_t size,
99 Error **errp)
101 uint64_t address_space_start, address_space_end;
102 GSList *list = NULL, *item;
103 uint64_t new_addr = 0;
105 if (!ms->device_memory) {
106 error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
107 "supported by the machine");
108 return 0;
111 if (!memory_region_size(&ms->device_memory->mr)) {
112 error_setg(errp, "memory devices (e.g. for memory hotplug) are not "
113 "enabled, please specify the maxmem option");
114 return 0;
116 address_space_start = ms->device_memory->base;
117 address_space_end = address_space_start +
118 memory_region_size(&ms->device_memory->mr);
119 g_assert(address_space_end >= address_space_start);
121 /* address_space_start indicates the maximum alignment we expect */
122 if (QEMU_ALIGN_UP(address_space_start, align) != address_space_start) {
123 error_setg(errp, "the alignment (0%" PRIx64 ") is not supported",
124 align);
125 return 0;
128 memory_device_check_addable(ms, size, errp);
129 if (*errp) {
130 return 0;
133 if (hint && QEMU_ALIGN_UP(*hint, align) != *hint) {
134 error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes",
135 align);
136 return 0;
139 if (QEMU_ALIGN_UP(size, align) != size) {
140 error_setg(errp, "backend memory size must be multiple of 0x%"
141 PRIx64, align);
142 return 0;
145 if (hint) {
146 new_addr = *hint;
147 if (new_addr < address_space_start) {
148 error_setg(errp, "can't add memory [0x%" PRIx64 ":0x%" PRIx64
149 "] at 0x%" PRIx64, new_addr, size, address_space_start);
150 return 0;
151 } else if ((new_addr + size) > address_space_end) {
152 error_setg(errp, "can't add memory [0x%" PRIx64 ":0x%" PRIx64
153 "] beyond 0x%" PRIx64, new_addr, size,
154 address_space_end);
155 return 0;
157 } else {
158 new_addr = address_space_start;
161 /* find address range that will fit new memory device */
162 object_child_foreach(OBJECT(ms), memory_device_build_list, &list);
163 for (item = list; item; item = g_slist_next(item)) {
164 const MemoryDeviceState *md = item->data;
165 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md));
166 uint64_t md_size, md_addr;
168 md_addr = mdc->get_addr(md);
169 md_size = mdc->get_region_size(md);
170 if (*errp) {
171 goto out;
174 if (ranges_overlap(md_addr, md_size, new_addr, size)) {
175 if (hint) {
176 const DeviceState *d = DEVICE(md);
177 error_setg(errp, "address range conflicts with '%s'", d->id);
178 goto out;
180 new_addr = QEMU_ALIGN_UP(md_addr + md_size, align);
184 if (new_addr + size > address_space_end) {
185 error_setg(errp, "could not find position in guest address space for "
186 "memory device - memory fragmented due to alignments");
187 goto out;
189 out:
190 g_slist_free(list);
191 return new_addr;
194 MemoryDeviceInfoList *qmp_memory_device_list(void)
196 GSList *devices = NULL, *item;
197 MemoryDeviceInfoList *list = NULL, *prev = NULL;
199 object_child_foreach(qdev_get_machine(), memory_device_build_list,
200 &devices);
202 for (item = devices; item; item = g_slist_next(item)) {
203 const MemoryDeviceState *md = MEMORY_DEVICE(item->data);
204 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data);
205 MemoryDeviceInfoList *elem = g_new0(MemoryDeviceInfoList, 1);
206 MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1);
208 mdc->fill_device_info(md, info);
210 elem->value = info;
211 elem->next = NULL;
212 if (prev) {
213 prev->next = elem;
214 } else {
215 list = elem;
217 prev = elem;
220 g_slist_free(devices);
222 return list;
225 static int memory_device_plugged_size(Object *obj, void *opaque)
227 uint64_t *size = opaque;
229 if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
230 const DeviceState *dev = DEVICE(obj);
231 const MemoryDeviceState *md = MEMORY_DEVICE(obj);
232 const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
234 if (dev->realized) {
235 *size += mdc->get_plugged_size(md);
239 object_child_foreach(obj, memory_device_plugged_size, opaque);
240 return 0;
243 uint64_t get_plugged_memory_size(void)
245 uint64_t size = 0;
247 memory_device_plugged_size(qdev_get_machine(), &size);
249 return size;
252 void memory_device_plug_region(MachineState *ms, MemoryRegion *mr,
253 uint64_t addr)
255 /* we expect a previous call to memory_device_get_free_addr() */
256 g_assert(ms->device_memory);
258 memory_region_add_subregion(&ms->device_memory->mr,
259 addr - ms->device_memory->base, mr);
262 void memory_device_unplug_region(MachineState *ms, MemoryRegion *mr)
264 /* we expect a previous call to memory_device_get_free_addr() */
265 g_assert(ms->device_memory);
267 memory_region_del_subregion(&ms->device_memory->mr, mr);
270 static const TypeInfo memory_device_info = {
271 .name = TYPE_MEMORY_DEVICE,
272 .parent = TYPE_INTERFACE,
273 .class_size = sizeof(MemoryDeviceClass),
276 static void memory_device_register_types(void)
278 type_register_static(&memory_device_info);
281 type_init(memory_device_register_types)