tests: Restore check-qdict unit test
[qemu/armbru.git] / target / i386 / hvf / x86hvf.c
blobdf8e946fbcded1ea853fdfcd18ab2a2b8d84950d
1 /*
2 * Copyright (c) 2003-2008 Fabrice Bellard
3 * Copyright (C) 2016 Veertu Inc,
4 * Copyright (C) 2017 Google Inc,
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "qemu-common.h"
23 #include "x86hvf.h"
24 #include "vmx.h"
25 #include "vmcs.h"
26 #include "cpu.h"
27 #include "x86_descr.h"
28 #include "x86_decode.h"
30 #include "hw/i386/apic_internal.h"
32 #include <Hypervisor/hv.h>
33 #include <Hypervisor/hv_vmx.h>
35 void hvf_set_segment(struct CPUState *cpu, struct vmx_segment *vmx_seg,
36 SegmentCache *qseg, bool is_tr)
38 vmx_seg->sel = qseg->selector;
39 vmx_seg->base = qseg->base;
40 vmx_seg->limit = qseg->limit;
42 if (!qseg->selector && !x86_is_real(cpu) && !is_tr) {
43 /* the TR register is usable after processor reset despite
44 * having a null selector */
45 vmx_seg->ar = 1 << 16;
46 return;
48 vmx_seg->ar = (qseg->flags >> DESC_TYPE_SHIFT) & 0xf;
49 vmx_seg->ar |= ((qseg->flags >> DESC_G_SHIFT) & 1) << 15;
50 vmx_seg->ar |= ((qseg->flags >> DESC_B_SHIFT) & 1) << 14;
51 vmx_seg->ar |= ((qseg->flags >> DESC_L_SHIFT) & 1) << 13;
52 vmx_seg->ar |= ((qseg->flags >> DESC_AVL_SHIFT) & 1) << 12;
53 vmx_seg->ar |= ((qseg->flags >> DESC_P_SHIFT) & 1) << 7;
54 vmx_seg->ar |= ((qseg->flags >> DESC_DPL_SHIFT) & 3) << 5;
55 vmx_seg->ar |= ((qseg->flags >> DESC_S_SHIFT) & 1) << 4;
58 void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg)
60 qseg->limit = vmx_seg->limit;
61 qseg->base = vmx_seg->base;
62 qseg->selector = vmx_seg->sel;
63 qseg->flags = ((vmx_seg->ar & 0xf) << DESC_TYPE_SHIFT) |
64 (((vmx_seg->ar >> 4) & 1) << DESC_S_SHIFT) |
65 (((vmx_seg->ar >> 5) & 3) << DESC_DPL_SHIFT) |
66 (((vmx_seg->ar >> 7) & 1) << DESC_P_SHIFT) |
67 (((vmx_seg->ar >> 12) & 1) << DESC_AVL_SHIFT) |
68 (((vmx_seg->ar >> 13) & 1) << DESC_L_SHIFT) |
69 (((vmx_seg->ar >> 14) & 1) << DESC_B_SHIFT) |
70 (((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT);
73 void hvf_put_xsave(CPUState *cpu_state)
76 struct X86XSaveArea *xsave;
78 xsave = X86_CPU(cpu_state)->env.xsave_buf;
80 x86_cpu_xsave_all_areas(X86_CPU(cpu_state), xsave);
82 if (hv_vcpu_write_fpstate(cpu_state->hvf_fd, (void*)xsave, 4096)) {
83 abort();
87 void hvf_put_segments(CPUState *cpu_state)
89 CPUX86State *env = &X86_CPU(cpu_state)->env;
90 struct vmx_segment seg;
92 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit);
93 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_BASE, env->idt.base);
95 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit);
96 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_BASE, env->gdt.base);
98 /* wvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR2, env->cr[2]); */
99 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR3, env->cr[3]);
100 vmx_update_tpr(cpu_state);
101 wvmcs(cpu_state->hvf_fd, VMCS_GUEST_IA32_EFER, env->efer);
103 macvm_set_cr4(cpu_state->hvf_fd, env->cr[4]);
104 macvm_set_cr0(cpu_state->hvf_fd, env->cr[0]);
106 hvf_set_segment(cpu_state, &seg, &env->segs[R_CS], false);
107 vmx_write_segment_descriptor(cpu_state, &seg, R_CS);
109 hvf_set_segment(cpu_state, &seg, &env->segs[R_DS], false);
110 vmx_write_segment_descriptor(cpu_state, &seg, R_DS);
112 hvf_set_segment(cpu_state, &seg, &env->segs[R_ES], false);
113 vmx_write_segment_descriptor(cpu_state, &seg, R_ES);
115 hvf_set_segment(cpu_state, &seg, &env->segs[R_SS], false);
116 vmx_write_segment_descriptor(cpu_state, &seg, R_SS);
118 hvf_set_segment(cpu_state, &seg, &env->segs[R_FS], false);
119 vmx_write_segment_descriptor(cpu_state, &seg, R_FS);
121 hvf_set_segment(cpu_state, &seg, &env->segs[R_GS], false);
122 vmx_write_segment_descriptor(cpu_state, &seg, R_GS);
124 hvf_set_segment(cpu_state, &seg, &env->tr, true);
125 vmx_write_segment_descriptor(cpu_state, &seg, R_TR);
127 hvf_set_segment(cpu_state, &seg, &env->ldt, false);
128 vmx_write_segment_descriptor(cpu_state, &seg, R_LDTR);
130 hv_vcpu_flush(cpu_state->hvf_fd);
133 void hvf_put_msrs(CPUState *cpu_state)
135 CPUX86State *env = &X86_CPU(cpu_state)->env;
137 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_CS,
138 env->sysenter_cs);
139 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_ESP,
140 env->sysenter_esp);
141 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_EIP,
142 env->sysenter_eip);
144 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_STAR, env->star);
146 #ifdef TARGET_X86_64
147 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_CSTAR, env->cstar);
148 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_KERNELGSBASE, env->kernelgsbase);
149 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_FMASK, env->fmask);
150 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_LSTAR, env->lstar);
151 #endif
153 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_GSBASE, env->segs[R_GS].base);
154 hv_vcpu_write_msr(cpu_state->hvf_fd, MSR_FSBASE, env->segs[R_FS].base);
156 /* if (!osx_is_sierra())
157 wvmcs(cpu_state->hvf_fd, VMCS_TSC_OFFSET, env->tsc - rdtscp());*/
158 hv_vm_sync_tsc(env->tsc);
162 void hvf_get_xsave(CPUState *cpu_state)
164 struct X86XSaveArea *xsave;
166 xsave = X86_CPU(cpu_state)->env.xsave_buf;
168 if (hv_vcpu_read_fpstate(cpu_state->hvf_fd, (void*)xsave, 4096)) {
169 abort();
172 x86_cpu_xrstor_all_areas(X86_CPU(cpu_state), xsave);
175 void hvf_get_segments(CPUState *cpu_state)
177 CPUX86State *env = &X86_CPU(cpu_state)->env;
179 struct vmx_segment seg;
181 env->interrupt_injected = -1;
183 vmx_read_segment_descriptor(cpu_state, &seg, R_CS);
184 hvf_get_segment(&env->segs[R_CS], &seg);
186 vmx_read_segment_descriptor(cpu_state, &seg, R_DS);
187 hvf_get_segment(&env->segs[R_DS], &seg);
189 vmx_read_segment_descriptor(cpu_state, &seg, R_ES);
190 hvf_get_segment(&env->segs[R_ES], &seg);
192 vmx_read_segment_descriptor(cpu_state, &seg, R_FS);
193 hvf_get_segment(&env->segs[R_FS], &seg);
195 vmx_read_segment_descriptor(cpu_state, &seg, R_GS);
196 hvf_get_segment(&env->segs[R_GS], &seg);
198 vmx_read_segment_descriptor(cpu_state, &seg, R_SS);
199 hvf_get_segment(&env->segs[R_SS], &seg);
201 vmx_read_segment_descriptor(cpu_state, &seg, R_TR);
202 hvf_get_segment(&env->tr, &seg);
204 vmx_read_segment_descriptor(cpu_state, &seg, R_LDTR);
205 hvf_get_segment(&env->ldt, &seg);
207 env->idt.limit = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_LIMIT);
208 env->idt.base = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IDTR_BASE);
209 env->gdt.limit = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_LIMIT);
210 env->gdt.base = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_GDTR_BASE);
212 env->cr[0] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR0);
213 env->cr[2] = 0;
214 env->cr[3] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR3);
215 env->cr[4] = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_CR4);
217 env->efer = rvmcs(cpu_state->hvf_fd, VMCS_GUEST_IA32_EFER);
220 void hvf_get_msrs(CPUState *cpu_state)
222 CPUX86State *env = &X86_CPU(cpu_state)->env;
223 uint64_t tmp;
225 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_CS, &tmp);
226 env->sysenter_cs = tmp;
228 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_ESP, &tmp);
229 env->sysenter_esp = tmp;
231 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_SYSENTER_EIP, &tmp);
232 env->sysenter_eip = tmp;
234 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_STAR, &env->star);
236 #ifdef TARGET_X86_64
237 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_CSTAR, &env->cstar);
238 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_KERNELGSBASE, &env->kernelgsbase);
239 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_FMASK, &env->fmask);
240 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_LSTAR, &env->lstar);
241 #endif
243 hv_vcpu_read_msr(cpu_state->hvf_fd, MSR_IA32_APICBASE, &tmp);
245 env->tsc = rdtscp() + rvmcs(cpu_state->hvf_fd, VMCS_TSC_OFFSET);
248 int hvf_put_registers(CPUState *cpu_state)
250 X86CPU *x86cpu = X86_CPU(cpu_state);
251 CPUX86State *env = &x86cpu->env;
253 wreg(cpu_state->hvf_fd, HV_X86_RAX, env->regs[R_EAX]);
254 wreg(cpu_state->hvf_fd, HV_X86_RBX, env->regs[R_EBX]);
255 wreg(cpu_state->hvf_fd, HV_X86_RCX, env->regs[R_ECX]);
256 wreg(cpu_state->hvf_fd, HV_X86_RDX, env->regs[R_EDX]);
257 wreg(cpu_state->hvf_fd, HV_X86_RBP, env->regs[R_EBP]);
258 wreg(cpu_state->hvf_fd, HV_X86_RSP, env->regs[R_ESP]);
259 wreg(cpu_state->hvf_fd, HV_X86_RSI, env->regs[R_ESI]);
260 wreg(cpu_state->hvf_fd, HV_X86_RDI, env->regs[R_EDI]);
261 wreg(cpu_state->hvf_fd, HV_X86_R8, env->regs[8]);
262 wreg(cpu_state->hvf_fd, HV_X86_R9, env->regs[9]);
263 wreg(cpu_state->hvf_fd, HV_X86_R10, env->regs[10]);
264 wreg(cpu_state->hvf_fd, HV_X86_R11, env->regs[11]);
265 wreg(cpu_state->hvf_fd, HV_X86_R12, env->regs[12]);
266 wreg(cpu_state->hvf_fd, HV_X86_R13, env->regs[13]);
267 wreg(cpu_state->hvf_fd, HV_X86_R14, env->regs[14]);
268 wreg(cpu_state->hvf_fd, HV_X86_R15, env->regs[15]);
269 wreg(cpu_state->hvf_fd, HV_X86_RFLAGS, env->eflags);
270 wreg(cpu_state->hvf_fd, HV_X86_RIP, env->eip);
272 wreg(cpu_state->hvf_fd, HV_X86_XCR0, env->xcr0);
274 hvf_put_xsave(cpu_state);
276 hvf_put_segments(cpu_state);
278 hvf_put_msrs(cpu_state);
280 wreg(cpu_state->hvf_fd, HV_X86_DR0, env->dr[0]);
281 wreg(cpu_state->hvf_fd, HV_X86_DR1, env->dr[1]);
282 wreg(cpu_state->hvf_fd, HV_X86_DR2, env->dr[2]);
283 wreg(cpu_state->hvf_fd, HV_X86_DR3, env->dr[3]);
284 wreg(cpu_state->hvf_fd, HV_X86_DR4, env->dr[4]);
285 wreg(cpu_state->hvf_fd, HV_X86_DR5, env->dr[5]);
286 wreg(cpu_state->hvf_fd, HV_X86_DR6, env->dr[6]);
287 wreg(cpu_state->hvf_fd, HV_X86_DR7, env->dr[7]);
289 return 0;
292 int hvf_get_registers(CPUState *cpu_state)
294 X86CPU *x86cpu = X86_CPU(cpu_state);
295 CPUX86State *env = &x86cpu->env;
297 env->regs[R_EAX] = rreg(cpu_state->hvf_fd, HV_X86_RAX);
298 env->regs[R_EBX] = rreg(cpu_state->hvf_fd, HV_X86_RBX);
299 env->regs[R_ECX] = rreg(cpu_state->hvf_fd, HV_X86_RCX);
300 env->regs[R_EDX] = rreg(cpu_state->hvf_fd, HV_X86_RDX);
301 env->regs[R_EBP] = rreg(cpu_state->hvf_fd, HV_X86_RBP);
302 env->regs[R_ESP] = rreg(cpu_state->hvf_fd, HV_X86_RSP);
303 env->regs[R_ESI] = rreg(cpu_state->hvf_fd, HV_X86_RSI);
304 env->regs[R_EDI] = rreg(cpu_state->hvf_fd, HV_X86_RDI);
305 env->regs[8] = rreg(cpu_state->hvf_fd, HV_X86_R8);
306 env->regs[9] = rreg(cpu_state->hvf_fd, HV_X86_R9);
307 env->regs[10] = rreg(cpu_state->hvf_fd, HV_X86_R10);
308 env->regs[11] = rreg(cpu_state->hvf_fd, HV_X86_R11);
309 env->regs[12] = rreg(cpu_state->hvf_fd, HV_X86_R12);
310 env->regs[13] = rreg(cpu_state->hvf_fd, HV_X86_R13);
311 env->regs[14] = rreg(cpu_state->hvf_fd, HV_X86_R14);
312 env->regs[15] = rreg(cpu_state->hvf_fd, HV_X86_R15);
314 env->eflags = rreg(cpu_state->hvf_fd, HV_X86_RFLAGS);
315 env->eip = rreg(cpu_state->hvf_fd, HV_X86_RIP);
317 hvf_get_xsave(cpu_state);
318 env->xcr0 = rreg(cpu_state->hvf_fd, HV_X86_XCR0);
320 hvf_get_segments(cpu_state);
321 hvf_get_msrs(cpu_state);
323 env->dr[0] = rreg(cpu_state->hvf_fd, HV_X86_DR0);
324 env->dr[1] = rreg(cpu_state->hvf_fd, HV_X86_DR1);
325 env->dr[2] = rreg(cpu_state->hvf_fd, HV_X86_DR2);
326 env->dr[3] = rreg(cpu_state->hvf_fd, HV_X86_DR3);
327 env->dr[4] = rreg(cpu_state->hvf_fd, HV_X86_DR4);
328 env->dr[5] = rreg(cpu_state->hvf_fd, HV_X86_DR5);
329 env->dr[6] = rreg(cpu_state->hvf_fd, HV_X86_DR6);
330 env->dr[7] = rreg(cpu_state->hvf_fd, HV_X86_DR7);
332 x86_update_hflags(env);
333 return 0;
336 static void vmx_set_int_window_exiting(CPUState *cpu)
338 uint64_t val;
339 val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS);
340 wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val |
341 VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
344 void vmx_clear_int_window_exiting(CPUState *cpu)
346 uint64_t val;
347 val = rvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS);
348 wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS, val &
349 ~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
352 #define NMI_VEC 2
354 bool hvf_inject_interrupts(CPUState *cpu_state)
356 X86CPU *x86cpu = X86_CPU(cpu_state);
357 CPUX86State *env = &x86cpu->env;
359 uint8_t vector;
360 uint64_t intr_type;
361 bool have_event = true;
362 if (env->interrupt_injected != -1) {
363 vector = env->interrupt_injected;
364 intr_type = VMCS_INTR_T_SWINTR;
365 } else if (env->exception_injected != -1) {
366 vector = env->exception_injected;
367 if (vector == EXCP03_INT3 || vector == EXCP04_INTO) {
368 intr_type = VMCS_INTR_T_SWEXCEPTION;
369 } else {
370 intr_type = VMCS_INTR_T_HWEXCEPTION;
372 } else if (env->nmi_injected) {
373 vector = NMI_VEC;
374 intr_type = VMCS_INTR_T_NMI;
375 } else {
376 have_event = false;
379 uint64_t info = 0;
380 if (have_event) {
381 info = vector | intr_type | VMCS_INTR_VALID;
382 uint64_t reason = rvmcs(cpu_state->hvf_fd, VMCS_EXIT_REASON);
383 if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) {
384 vmx_clear_nmi_blocking(cpu_state);
387 if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) {
388 info &= ~(1 << 12); /* clear undefined bit */
389 if (intr_type == VMCS_INTR_T_SWINTR ||
390 intr_type == VMCS_INTR_T_SWEXCEPTION) {
391 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INST_LENGTH, env->ins_len);
394 if (env->has_error_code) {
395 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_EXCEPTION_ERROR,
396 env->error_code);
398 /*printf("reinject %lx err %d\n", info, err);*/
399 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, info);
403 if (cpu_state->interrupt_request & CPU_INTERRUPT_NMI) {
404 if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) {
405 cpu_state->interrupt_request &= ~CPU_INTERRUPT_NMI;
406 info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | NMI_VEC;
407 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, info);
408 } else {
409 vmx_set_nmi_window_exiting(cpu_state);
413 if (!(env->hflags & HF_INHIBIT_IRQ_MASK) &&
414 (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
415 (EFLAGS(env) & IF_MASK) && !(info & VMCS_INTR_VALID)) {
416 int line = cpu_get_pic_interrupt(&x86cpu->env);
417 cpu_state->interrupt_request &= ~CPU_INTERRUPT_HARD;
418 if (line >= 0) {
419 wvmcs(cpu_state->hvf_fd, VMCS_ENTRY_INTR_INFO, line |
420 VMCS_INTR_VALID | VMCS_INTR_T_HWINTR);
423 if (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) {
424 vmx_set_int_window_exiting(cpu_state);
426 return (cpu_state->interrupt_request
427 & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR));
430 int hvf_process_events(CPUState *cpu_state)
432 X86CPU *cpu = X86_CPU(cpu_state);
433 CPUX86State *env = &cpu->env;
435 EFLAGS(env) = rreg(cpu_state->hvf_fd, HV_X86_RFLAGS);
437 if (cpu_state->interrupt_request & CPU_INTERRUPT_INIT) {
438 hvf_cpu_synchronize_state(cpu_state);
439 do_cpu_init(cpu);
442 if (cpu_state->interrupt_request & CPU_INTERRUPT_POLL) {
443 cpu_state->interrupt_request &= ~CPU_INTERRUPT_POLL;
444 apic_poll_irq(cpu->apic_state);
446 if (((cpu_state->interrupt_request & CPU_INTERRUPT_HARD) &&
447 (EFLAGS(env) & IF_MASK)) ||
448 (cpu_state->interrupt_request & CPU_INTERRUPT_NMI)) {
449 cpu_state->halted = 0;
451 if (cpu_state->interrupt_request & CPU_INTERRUPT_SIPI) {
452 hvf_cpu_synchronize_state(cpu_state);
453 do_cpu_sipi(cpu);
455 if (cpu_state->interrupt_request & CPU_INTERRUPT_TPR) {
456 cpu_state->interrupt_request &= ~CPU_INTERRUPT_TPR;
457 hvf_cpu_synchronize_state(cpu_state);
458 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
459 env->tpr_access_type);
461 return cpu_state->halted;