4 * Copyright (c) 2013 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
24 #include "qemu/module.h"
25 #if !defined(CONFIG_USER_ONLY)
26 #include "hw/loader.h"
28 #include "sysemu/kvm.h"
30 #include "qapi/visitor.h"
32 #ifndef CONFIG_USER_ONLY
33 static uint64_t a57_a53_l2ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
35 ARMCPU
*cpu
= env_archcpu(env
);
37 /* Number of cores is in [25:24]; otherwise we RAZ */
38 return (cpu
->core_count
- 1) << 24;
42 static const ARMCPRegInfo cortex_a72_a57_a53_cp_reginfo
[] = {
43 #ifndef CONFIG_USER_ONLY
44 { .name
= "L2CTLR_EL1", .state
= ARM_CP_STATE_AA64
,
45 .opc0
= 3, .opc1
= 1, .crn
= 11, .crm
= 0, .opc2
= 2,
46 .access
= PL1_RW
, .readfn
= a57_a53_l2ctlr_read
,
47 .writefn
= arm_cp_write_ignore
},
49 .cp
= 15, .opc1
= 1, .crn
= 9, .crm
= 0, .opc2
= 2,
50 .access
= PL1_RW
, .readfn
= a57_a53_l2ctlr_read
,
51 .writefn
= arm_cp_write_ignore
},
53 { .name
= "L2ECTLR_EL1", .state
= ARM_CP_STATE_AA64
,
54 .opc0
= 3, .opc1
= 1, .crn
= 11, .crm
= 0, .opc2
= 3,
55 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
57 .cp
= 15, .opc1
= 1, .crn
= 9, .crm
= 0, .opc2
= 3,
58 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
59 { .name
= "L2ACTLR", .state
= ARM_CP_STATE_BOTH
,
60 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 0, .opc2
= 0,
61 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
62 { .name
= "CPUACTLR_EL1", .state
= ARM_CP_STATE_AA64
,
63 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 0,
64 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
66 .cp
= 15, .opc1
= 0, .crm
= 15,
67 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
68 { .name
= "CPUECTLR_EL1", .state
= ARM_CP_STATE_AA64
,
69 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 1,
70 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
72 .cp
= 15, .opc1
= 1, .crm
= 15,
73 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
74 { .name
= "CPUMERRSR_EL1", .state
= ARM_CP_STATE_AA64
,
75 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 2,
76 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
77 { .name
= "CPUMERRSR",
78 .cp
= 15, .opc1
= 2, .crm
= 15,
79 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
80 { .name
= "L2MERRSR_EL1", .state
= ARM_CP_STATE_AA64
,
81 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 2, .opc2
= 3,
82 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
84 .cp
= 15, .opc1
= 3, .crm
= 15,
85 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
89 static void aarch64_a57_initfn(Object
*obj
)
91 ARMCPU
*cpu
= ARM_CPU(obj
);
93 cpu
->dtb_compatible
= "arm,cortex-a57";
94 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
95 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
96 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
97 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
98 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
99 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
100 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
101 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
102 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A57
;
103 cpu
->midr
= 0x411fd070;
104 cpu
->revidr
= 0x00000000;
105 cpu
->reset_fpsid
= 0x41034070;
106 cpu
->isar
.mvfr0
= 0x10110222;
107 cpu
->isar
.mvfr1
= 0x12111111;
108 cpu
->isar
.mvfr2
= 0x00000043;
109 cpu
->ctr
= 0x8444c004;
110 cpu
->reset_sctlr
= 0x00c50838;
111 cpu
->id_pfr0
= 0x00000131;
112 cpu
->id_pfr1
= 0x00011011;
113 cpu
->isar
.id_dfr0
= 0x03010066;
114 cpu
->id_afr0
= 0x00000000;
115 cpu
->isar
.id_mmfr0
= 0x10101105;
116 cpu
->isar
.id_mmfr1
= 0x40000000;
117 cpu
->isar
.id_mmfr2
= 0x01260000;
118 cpu
->isar
.id_mmfr3
= 0x02102211;
119 cpu
->isar
.id_isar0
= 0x02101110;
120 cpu
->isar
.id_isar1
= 0x13112111;
121 cpu
->isar
.id_isar2
= 0x21232042;
122 cpu
->isar
.id_isar3
= 0x01112131;
123 cpu
->isar
.id_isar4
= 0x00011142;
124 cpu
->isar
.id_isar5
= 0x00011121;
125 cpu
->isar
.id_isar6
= 0;
126 cpu
->isar
.id_aa64pfr0
= 0x00002222;
127 cpu
->isar
.id_aa64dfr0
= 0x10305106;
128 cpu
->isar
.id_aa64isar0
= 0x00011120;
129 cpu
->isar
.id_aa64mmfr0
= 0x00001124;
130 cpu
->isar
.dbgdidr
= 0x3516d000;
131 cpu
->clidr
= 0x0a200023;
132 cpu
->ccsidr
[0] = 0x701fe00a; /* 32KB L1 dcache */
133 cpu
->ccsidr
[1] = 0x201fe012; /* 48KB L1 icache */
134 cpu
->ccsidr
[2] = 0x70ffe07a; /* 2048KB L2 cache */
135 cpu
->dcz_blocksize
= 4; /* 64 bytes */
136 cpu
->gic_num_lrs
= 4;
137 cpu
->gic_vpribits
= 5;
138 cpu
->gic_vprebits
= 5;
139 define_arm_cp_regs(cpu
, cortex_a72_a57_a53_cp_reginfo
);
142 static void aarch64_a53_initfn(Object
*obj
)
144 ARMCPU
*cpu
= ARM_CPU(obj
);
146 cpu
->dtb_compatible
= "arm,cortex-a53";
147 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
148 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
149 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
150 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
151 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
152 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
153 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
154 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
155 cpu
->kvm_target
= QEMU_KVM_ARM_TARGET_CORTEX_A53
;
156 cpu
->midr
= 0x410fd034;
157 cpu
->revidr
= 0x00000000;
158 cpu
->reset_fpsid
= 0x41034070;
159 cpu
->isar
.mvfr0
= 0x10110222;
160 cpu
->isar
.mvfr1
= 0x12111111;
161 cpu
->isar
.mvfr2
= 0x00000043;
162 cpu
->ctr
= 0x84448004; /* L1Ip = VIPT */
163 cpu
->reset_sctlr
= 0x00c50838;
164 cpu
->id_pfr0
= 0x00000131;
165 cpu
->id_pfr1
= 0x00011011;
166 cpu
->isar
.id_dfr0
= 0x03010066;
167 cpu
->id_afr0
= 0x00000000;
168 cpu
->isar
.id_mmfr0
= 0x10101105;
169 cpu
->isar
.id_mmfr1
= 0x40000000;
170 cpu
->isar
.id_mmfr2
= 0x01260000;
171 cpu
->isar
.id_mmfr3
= 0x02102211;
172 cpu
->isar
.id_isar0
= 0x02101110;
173 cpu
->isar
.id_isar1
= 0x13112111;
174 cpu
->isar
.id_isar2
= 0x21232042;
175 cpu
->isar
.id_isar3
= 0x01112131;
176 cpu
->isar
.id_isar4
= 0x00011142;
177 cpu
->isar
.id_isar5
= 0x00011121;
178 cpu
->isar
.id_isar6
= 0;
179 cpu
->isar
.id_aa64pfr0
= 0x00002222;
180 cpu
->isar
.id_aa64dfr0
= 0x10305106;
181 cpu
->isar
.id_aa64isar0
= 0x00011120;
182 cpu
->isar
.id_aa64mmfr0
= 0x00001122; /* 40 bit physical addr */
183 cpu
->isar
.dbgdidr
= 0x3516d000;
184 cpu
->clidr
= 0x0a200023;
185 cpu
->ccsidr
[0] = 0x700fe01a; /* 32KB L1 dcache */
186 cpu
->ccsidr
[1] = 0x201fe00a; /* 32KB L1 icache */
187 cpu
->ccsidr
[2] = 0x707fe07a; /* 1024KB L2 cache */
188 cpu
->dcz_blocksize
= 4; /* 64 bytes */
189 cpu
->gic_num_lrs
= 4;
190 cpu
->gic_vpribits
= 5;
191 cpu
->gic_vprebits
= 5;
192 define_arm_cp_regs(cpu
, cortex_a72_a57_a53_cp_reginfo
);
195 static void aarch64_a72_initfn(Object
*obj
)
197 ARMCPU
*cpu
= ARM_CPU(obj
);
199 cpu
->dtb_compatible
= "arm,cortex-a72";
200 set_feature(&cpu
->env
, ARM_FEATURE_V8
);
201 set_feature(&cpu
->env
, ARM_FEATURE_NEON
);
202 set_feature(&cpu
->env
, ARM_FEATURE_GENERIC_TIMER
);
203 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
204 set_feature(&cpu
->env
, ARM_FEATURE_CBAR_RO
);
205 set_feature(&cpu
->env
, ARM_FEATURE_EL2
);
206 set_feature(&cpu
->env
, ARM_FEATURE_EL3
);
207 set_feature(&cpu
->env
, ARM_FEATURE_PMU
);
208 cpu
->midr
= 0x410fd083;
209 cpu
->revidr
= 0x00000000;
210 cpu
->reset_fpsid
= 0x41034080;
211 cpu
->isar
.mvfr0
= 0x10110222;
212 cpu
->isar
.mvfr1
= 0x12111111;
213 cpu
->isar
.mvfr2
= 0x00000043;
214 cpu
->ctr
= 0x8444c004;
215 cpu
->reset_sctlr
= 0x00c50838;
216 cpu
->id_pfr0
= 0x00000131;
217 cpu
->id_pfr1
= 0x00011011;
218 cpu
->isar
.id_dfr0
= 0x03010066;
219 cpu
->id_afr0
= 0x00000000;
220 cpu
->isar
.id_mmfr0
= 0x10201105;
221 cpu
->isar
.id_mmfr1
= 0x40000000;
222 cpu
->isar
.id_mmfr2
= 0x01260000;
223 cpu
->isar
.id_mmfr3
= 0x02102211;
224 cpu
->isar
.id_isar0
= 0x02101110;
225 cpu
->isar
.id_isar1
= 0x13112111;
226 cpu
->isar
.id_isar2
= 0x21232042;
227 cpu
->isar
.id_isar3
= 0x01112131;
228 cpu
->isar
.id_isar4
= 0x00011142;
229 cpu
->isar
.id_isar5
= 0x00011121;
230 cpu
->isar
.id_aa64pfr0
= 0x00002222;
231 cpu
->isar
.id_aa64dfr0
= 0x10305106;
232 cpu
->isar
.id_aa64isar0
= 0x00011120;
233 cpu
->isar
.id_aa64mmfr0
= 0x00001124;
234 cpu
->isar
.dbgdidr
= 0x3516d000;
235 cpu
->clidr
= 0x0a200023;
236 cpu
->ccsidr
[0] = 0x701fe00a; /* 32KB L1 dcache */
237 cpu
->ccsidr
[1] = 0x201fe012; /* 48KB L1 icache */
238 cpu
->ccsidr
[2] = 0x707fe07a; /* 1MB L2 cache */
239 cpu
->dcz_blocksize
= 4; /* 64 bytes */
240 cpu
->gic_num_lrs
= 4;
241 cpu
->gic_vpribits
= 5;
242 cpu
->gic_vprebits
= 5;
243 define_arm_cp_regs(cpu
, cortex_a72_a57_a53_cp_reginfo
);
246 void arm_cpu_sve_finalize(ARMCPU
*cpu
, Error
**errp
)
249 * If any vector lengths are explicitly enabled with sve<N> properties,
250 * then all other lengths are implicitly disabled. If sve-max-vq is
251 * specified then it is the same as explicitly enabling all lengths
252 * up to and including the specified maximum, which means all larger
253 * lengths will be implicitly disabled. If no sve<N> properties
254 * are enabled and sve-max-vq is not specified, then all lengths not
255 * explicitly disabled will be enabled. Additionally, all power-of-two
256 * vector lengths less than the maximum enabled length will be
257 * automatically enabled and all vector lengths larger than the largest
258 * disabled power-of-two vector length will be automatically disabled.
259 * Errors are generated if the user provided input that interferes with
260 * any of the above. Finally, if SVE is not disabled, then at least one
261 * vector length must be enabled.
263 DECLARE_BITMAP(kvm_supported
, ARM_MAX_VQ
);
264 DECLARE_BITMAP(tmp
, ARM_MAX_VQ
);
265 uint32_t vq
, max_vq
= 0;
267 /* Collect the set of vector lengths supported by KVM. */
268 bitmap_zero(kvm_supported
, ARM_MAX_VQ
);
269 if (kvm_enabled() && kvm_arm_sve_supported()) {
270 kvm_arm_sve_get_vls(CPU(cpu
), kvm_supported
);
271 } else if (kvm_enabled()) {
272 assert(!cpu_isar_feature(aa64_sve
, cpu
));
276 * Process explicit sve<N> properties.
277 * From the properties, sve_vq_map<N> implies sve_vq_init<N>.
278 * Check first for any sve<N> enabled.
280 if (!bitmap_empty(cpu
->sve_vq_map
, ARM_MAX_VQ
)) {
281 max_vq
= find_last_bit(cpu
->sve_vq_map
, ARM_MAX_VQ
) + 1;
283 if (cpu
->sve_max_vq
&& max_vq
> cpu
->sve_max_vq
) {
284 error_setg(errp
, "cannot enable sve%d", max_vq
* 128);
285 error_append_hint(errp
, "sve%d is larger than the maximum vector "
286 "length, sve-max-vq=%d (%d bits)\n",
287 max_vq
* 128, cpu
->sve_max_vq
,
288 cpu
->sve_max_vq
* 128);
294 * For KVM we have to automatically enable all supported unitialized
295 * lengths, even when the smaller lengths are not all powers-of-two.
297 bitmap_andnot(tmp
, kvm_supported
, cpu
->sve_vq_init
, max_vq
);
298 bitmap_or(cpu
->sve_vq_map
, cpu
->sve_vq_map
, tmp
, max_vq
);
300 /* Propagate enabled bits down through required powers-of-two. */
301 for (vq
= pow2floor(max_vq
); vq
>= 1; vq
>>= 1) {
302 if (!test_bit(vq
- 1, cpu
->sve_vq_init
)) {
303 set_bit(vq
- 1, cpu
->sve_vq_map
);
307 } else if (cpu
->sve_max_vq
== 0) {
309 * No explicit bits enabled, and no implicit bits from sve-max-vq.
311 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
312 /* SVE is disabled and so are all vector lengths. Good. */
317 /* Disabling a supported length disables all larger lengths. */
318 for (vq
= 1; vq
<= ARM_MAX_VQ
; ++vq
) {
319 if (test_bit(vq
- 1, cpu
->sve_vq_init
) &&
320 test_bit(vq
- 1, kvm_supported
)) {
324 max_vq
= vq
<= ARM_MAX_VQ
? vq
- 1 : ARM_MAX_VQ
;
325 bitmap_andnot(cpu
->sve_vq_map
, kvm_supported
,
326 cpu
->sve_vq_init
, max_vq
);
327 if (max_vq
== 0 || bitmap_empty(cpu
->sve_vq_map
, max_vq
)) {
328 error_setg(errp
, "cannot disable sve%d", vq
* 128);
329 error_append_hint(errp
, "Disabling sve%d results in all "
330 "vector lengths being disabled.\n",
332 error_append_hint(errp
, "With SVE enabled, at least one "
333 "vector length must be enabled.\n");
337 /* Disabling a power-of-two disables all larger lengths. */
338 if (test_bit(0, cpu
->sve_vq_init
)) {
339 error_setg(errp
, "cannot disable sve128");
340 error_append_hint(errp
, "Disabling sve128 results in all "
341 "vector lengths being disabled.\n");
342 error_append_hint(errp
, "With SVE enabled, at least one "
343 "vector length must be enabled.\n");
346 for (vq
= 2; vq
<= ARM_MAX_VQ
; vq
<<= 1) {
347 if (test_bit(vq
- 1, cpu
->sve_vq_init
)) {
351 max_vq
= vq
<= ARM_MAX_VQ
? vq
- 1 : ARM_MAX_VQ
;
352 bitmap_complement(cpu
->sve_vq_map
, cpu
->sve_vq_init
, max_vq
);
355 max_vq
= find_last_bit(cpu
->sve_vq_map
, max_vq
) + 1;
359 * Process the sve-max-vq property.
360 * Note that we know from the above that no bit above
361 * sve-max-vq is currently set.
363 if (cpu
->sve_max_vq
!= 0) {
364 max_vq
= cpu
->sve_max_vq
;
366 if (!test_bit(max_vq
- 1, cpu
->sve_vq_map
) &&
367 test_bit(max_vq
- 1, cpu
->sve_vq_init
)) {
368 error_setg(errp
, "cannot disable sve%d", max_vq
* 128);
369 error_append_hint(errp
, "The maximum vector length must be "
370 "enabled, sve-max-vq=%d (%d bits)\n",
371 max_vq
, max_vq
* 128);
375 /* Set all bits not explicitly set within sve-max-vq. */
376 bitmap_complement(tmp
, cpu
->sve_vq_init
, max_vq
);
377 bitmap_or(cpu
->sve_vq_map
, cpu
->sve_vq_map
, tmp
, max_vq
);
381 * We should know what max-vq is now. Also, as we're done
382 * manipulating sve-vq-map, we ensure any bits above max-vq
383 * are clear, just in case anybody looks.
386 bitmap_clear(cpu
->sve_vq_map
, max_vq
, ARM_MAX_VQ
- max_vq
);
389 /* Ensure the set of lengths matches what KVM supports. */
390 bitmap_xor(tmp
, cpu
->sve_vq_map
, kvm_supported
, max_vq
);
391 if (!bitmap_empty(tmp
, max_vq
)) {
392 vq
= find_last_bit(tmp
, max_vq
) + 1;
393 if (test_bit(vq
- 1, cpu
->sve_vq_map
)) {
394 if (cpu
->sve_max_vq
) {
395 error_setg(errp
, "cannot set sve-max-vq=%d",
397 error_append_hint(errp
, "This KVM host does not support "
398 "the vector length %d-bits.\n",
400 error_append_hint(errp
, "It may not be possible to use "
401 "sve-max-vq with this KVM host. Try "
402 "using only sve<N> properties.\n");
404 error_setg(errp
, "cannot enable sve%d", vq
* 128);
405 error_append_hint(errp
, "This KVM host does not support "
406 "the vector length %d-bits.\n",
410 error_setg(errp
, "cannot disable sve%d", vq
* 128);
411 error_append_hint(errp
, "The KVM host requires all "
412 "supported vector lengths smaller "
413 "than %d bits to also be enabled.\n",
419 /* Ensure all required powers-of-two are enabled. */
420 for (vq
= pow2floor(max_vq
); vq
>= 1; vq
>>= 1) {
421 if (!test_bit(vq
- 1, cpu
->sve_vq_map
)) {
422 error_setg(errp
, "cannot disable sve%d", vq
* 128);
423 error_append_hint(errp
, "sve%d is required as it "
424 "is a power-of-two length smaller than "
425 "the maximum, sve%d\n",
426 vq
* 128, max_vq
* 128);
433 * Now that we validated all our vector lengths, the only question
434 * left to answer is if we even want SVE at all.
436 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
437 error_setg(errp
, "cannot enable sve%d", max_vq
* 128);
438 error_append_hint(errp
, "SVE must be enabled to enable vector "
440 error_append_hint(errp
, "Add sve=on to the CPU property list.\n");
444 /* From now on sve_max_vq is the actual maximum supported length. */
445 cpu
->sve_max_vq
= max_vq
;
448 static void cpu_max_get_sve_max_vq(Object
*obj
, Visitor
*v
, const char *name
,
449 void *opaque
, Error
**errp
)
451 ARMCPU
*cpu
= ARM_CPU(obj
);
454 /* All vector lengths are disabled when SVE is off. */
455 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
458 value
= cpu
->sve_max_vq
;
460 visit_type_uint32(v
, name
, &value
, errp
);
463 static void cpu_max_set_sve_max_vq(Object
*obj
, Visitor
*v
, const char *name
,
464 void *opaque
, Error
**errp
)
466 ARMCPU
*cpu
= ARM_CPU(obj
);
470 visit_type_uint32(v
, name
, &max_vq
, &err
);
472 error_propagate(errp
, err
);
476 if (kvm_enabled() && !kvm_arm_sve_supported()) {
477 error_setg(errp
, "cannot set sve-max-vq");
478 error_append_hint(errp
, "SVE not supported by KVM on this host\n");
482 if (max_vq
== 0 || max_vq
> ARM_MAX_VQ
) {
483 error_setg(errp
, "unsupported SVE vector length");
484 error_append_hint(errp
, "Valid sve-max-vq in range [1-%d]\n",
489 cpu
->sve_max_vq
= max_vq
;
492 static void cpu_arm_get_sve_vq(Object
*obj
, Visitor
*v
, const char *name
,
493 void *opaque
, Error
**errp
)
495 ARMCPU
*cpu
= ARM_CPU(obj
);
496 uint32_t vq
= atoi(&name
[3]) / 128;
499 /* All vector lengths are disabled when SVE is off. */
500 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
503 value
= test_bit(vq
- 1, cpu
->sve_vq_map
);
505 visit_type_bool(v
, name
, &value
, errp
);
508 static void cpu_arm_set_sve_vq(Object
*obj
, Visitor
*v
, const char *name
,
509 void *opaque
, Error
**errp
)
511 ARMCPU
*cpu
= ARM_CPU(obj
);
512 uint32_t vq
= atoi(&name
[3]) / 128;
516 visit_type_bool(v
, name
, &value
, &err
);
518 error_propagate(errp
, err
);
522 if (value
&& kvm_enabled() && !kvm_arm_sve_supported()) {
523 error_setg(errp
, "cannot enable %s", name
);
524 error_append_hint(errp
, "SVE not supported by KVM on this host\n");
529 set_bit(vq
- 1, cpu
->sve_vq_map
);
531 clear_bit(vq
- 1, cpu
->sve_vq_map
);
533 set_bit(vq
- 1, cpu
->sve_vq_init
);
536 static void cpu_arm_get_sve(Object
*obj
, Visitor
*v
, const char *name
,
537 void *opaque
, Error
**errp
)
539 ARMCPU
*cpu
= ARM_CPU(obj
);
540 bool value
= cpu_isar_feature(aa64_sve
, cpu
);
542 visit_type_bool(v
, name
, &value
, errp
);
545 static void cpu_arm_set_sve(Object
*obj
, Visitor
*v
, const char *name
,
546 void *opaque
, Error
**errp
)
548 ARMCPU
*cpu
= ARM_CPU(obj
);
553 visit_type_bool(v
, name
, &value
, &err
);
555 error_propagate(errp
, err
);
559 if (value
&& kvm_enabled() && !kvm_arm_sve_supported()) {
560 error_setg(errp
, "'sve' feature not supported by KVM on this host");
564 t
= cpu
->isar
.id_aa64pfr0
;
565 t
= FIELD_DP64(t
, ID_AA64PFR0
, SVE
, value
);
566 cpu
->isar
.id_aa64pfr0
= t
;
569 void aarch64_add_sve_properties(Object
*obj
)
573 object_property_add(obj
, "sve", "bool", cpu_arm_get_sve
,
574 cpu_arm_set_sve
, NULL
, NULL
);
576 for (vq
= 1; vq
<= ARM_MAX_VQ
; ++vq
) {
578 sprintf(name
, "sve%d", vq
* 128);
579 object_property_add(obj
, name
, "bool", cpu_arm_get_sve_vq
,
580 cpu_arm_set_sve_vq
, NULL
, NULL
);
584 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
585 * otherwise, a CPU with as many features enabled as our emulation supports.
586 * The version of '-cpu max' for qemu-system-arm is defined in cpu.c;
587 * this only needs to handle 64 bits.
589 static void aarch64_max_initfn(Object
*obj
)
591 ARMCPU
*cpu
= ARM_CPU(obj
);
594 kvm_arm_set_cpu_features_from_host(cpu
);
598 aarch64_a57_initfn(obj
);
601 * Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
602 * one and try to apply errata workarounds or use impdef features we
604 * An IMPLEMENTER field of 0 means "reserved for software use";
605 * ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
606 * to see which features are present";
607 * the VARIANT, PARTNUM and REVISION fields are all implementation
608 * defined and we choose to define PARTNUM just in case guest
609 * code needs to distinguish this QEMU CPU from other software
610 * implementations, though this shouldn't be needed.
612 t
= FIELD_DP64(0, MIDR_EL1
, IMPLEMENTER
, 0);
613 t
= FIELD_DP64(t
, MIDR_EL1
, ARCHITECTURE
, 0xf);
614 t
= FIELD_DP64(t
, MIDR_EL1
, PARTNUM
, 'Q');
615 t
= FIELD_DP64(t
, MIDR_EL1
, VARIANT
, 0);
616 t
= FIELD_DP64(t
, MIDR_EL1
, REVISION
, 0);
619 t
= cpu
->isar
.id_aa64isar0
;
620 t
= FIELD_DP64(t
, ID_AA64ISAR0
, AES
, 2); /* AES + PMULL */
621 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA1
, 1);
622 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA2
, 2); /* SHA512 */
623 t
= FIELD_DP64(t
, ID_AA64ISAR0
, CRC32
, 1);
624 t
= FIELD_DP64(t
, ID_AA64ISAR0
, ATOMIC
, 2);
625 t
= FIELD_DP64(t
, ID_AA64ISAR0
, RDM
, 1);
626 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SHA3
, 1);
627 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SM3
, 1);
628 t
= FIELD_DP64(t
, ID_AA64ISAR0
, SM4
, 1);
629 t
= FIELD_DP64(t
, ID_AA64ISAR0
, DP
, 1);
630 t
= FIELD_DP64(t
, ID_AA64ISAR0
, FHM
, 1);
631 t
= FIELD_DP64(t
, ID_AA64ISAR0
, TS
, 2); /* v8.5-CondM */
632 t
= FIELD_DP64(t
, ID_AA64ISAR0
, RNDR
, 1);
633 cpu
->isar
.id_aa64isar0
= t
;
635 t
= cpu
->isar
.id_aa64isar1
;
636 t
= FIELD_DP64(t
, ID_AA64ISAR1
, DPB
, 2);
637 t
= FIELD_DP64(t
, ID_AA64ISAR1
, JSCVT
, 1);
638 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FCMA
, 1);
639 t
= FIELD_DP64(t
, ID_AA64ISAR1
, APA
, 1); /* PAuth, architected only */
640 t
= FIELD_DP64(t
, ID_AA64ISAR1
, API
, 0);
641 t
= FIELD_DP64(t
, ID_AA64ISAR1
, GPA
, 1);
642 t
= FIELD_DP64(t
, ID_AA64ISAR1
, GPI
, 0);
643 t
= FIELD_DP64(t
, ID_AA64ISAR1
, SB
, 1);
644 t
= FIELD_DP64(t
, ID_AA64ISAR1
, SPECRES
, 1);
645 t
= FIELD_DP64(t
, ID_AA64ISAR1
, FRINTTS
, 1);
646 t
= FIELD_DP64(t
, ID_AA64ISAR1
, LRCPC
, 2); /* ARMv8.4-RCPC */
647 cpu
->isar
.id_aa64isar1
= t
;
649 t
= cpu
->isar
.id_aa64pfr0
;
650 t
= FIELD_DP64(t
, ID_AA64PFR0
, SVE
, 1);
651 t
= FIELD_DP64(t
, ID_AA64PFR0
, FP
, 1);
652 t
= FIELD_DP64(t
, ID_AA64PFR0
, ADVSIMD
, 1);
653 cpu
->isar
.id_aa64pfr0
= t
;
655 t
= cpu
->isar
.id_aa64pfr1
;
656 t
= FIELD_DP64(t
, ID_AA64PFR1
, BT
, 1);
658 * Begin with full support for MTE; will be downgraded to MTE=1
659 * during realize if the board provides no tag memory.
661 t
= FIELD_DP64(t
, ID_AA64PFR1
, MTE
, 2);
662 cpu
->isar
.id_aa64pfr1
= t
;
664 t
= cpu
->isar
.id_aa64mmfr1
;
665 t
= FIELD_DP64(t
, ID_AA64MMFR1
, HPDS
, 1); /* HPD */
666 t
= FIELD_DP64(t
, ID_AA64MMFR1
, LO
, 1);
667 t
= FIELD_DP64(t
, ID_AA64MMFR1
, VH
, 1);
668 t
= FIELD_DP64(t
, ID_AA64MMFR1
, PAN
, 2); /* ATS1E1 */
669 t
= FIELD_DP64(t
, ID_AA64MMFR1
, VMIDBITS
, 2); /* VMID16 */
670 t
= FIELD_DP64(t
, ID_AA64MMFR1
, XNX
, 1); /* TTS2UXN */
671 cpu
->isar
.id_aa64mmfr1
= t
;
673 t
= cpu
->isar
.id_aa64mmfr2
;
674 t
= FIELD_DP64(t
, ID_AA64MMFR2
, UAO
, 1);
675 t
= FIELD_DP64(t
, ID_AA64MMFR2
, CNP
, 1); /* TTCNP */
676 cpu
->isar
.id_aa64mmfr2
= t
;
678 /* Replicate the same data to the 32-bit id registers. */
679 u
= cpu
->isar
.id_isar5
;
680 u
= FIELD_DP32(u
, ID_ISAR5
, AES
, 2); /* AES + PMULL */
681 u
= FIELD_DP32(u
, ID_ISAR5
, SHA1
, 1);
682 u
= FIELD_DP32(u
, ID_ISAR5
, SHA2
, 1);
683 u
= FIELD_DP32(u
, ID_ISAR5
, CRC32
, 1);
684 u
= FIELD_DP32(u
, ID_ISAR5
, RDM
, 1);
685 u
= FIELD_DP32(u
, ID_ISAR5
, VCMA
, 1);
686 cpu
->isar
.id_isar5
= u
;
688 u
= cpu
->isar
.id_isar6
;
689 u
= FIELD_DP32(u
, ID_ISAR6
, JSCVT
, 1);
690 u
= FIELD_DP32(u
, ID_ISAR6
, DP
, 1);
691 u
= FIELD_DP32(u
, ID_ISAR6
, FHM
, 1);
692 u
= FIELD_DP32(u
, ID_ISAR6
, SB
, 1);
693 u
= FIELD_DP32(u
, ID_ISAR6
, SPECRES
, 1);
694 cpu
->isar
.id_isar6
= u
;
696 u
= cpu
->isar
.id_mmfr3
;
697 u
= FIELD_DP32(u
, ID_MMFR3
, PAN
, 2); /* ATS1E1 */
698 cpu
->isar
.id_mmfr3
= u
;
700 u
= cpu
->isar
.id_mmfr4
;
701 u
= FIELD_DP32(u
, ID_MMFR4
, HPDS
, 1); /* AA32HPD */
702 u
= FIELD_DP32(u
, ID_MMFR4
, AC2
, 1); /* ACTLR2, HACTLR2 */
703 u
= FIELD_DP32(u
, ID_MMFR4
, CNP
, 1); /* TTCNP */
704 u
= FIELD_DP32(u
, ID_MMFR4
, XNX
, 1); /* TTS2UXN */
705 cpu
->isar
.id_mmfr4
= u
;
707 t
= cpu
->isar
.id_aa64dfr0
;
708 t
= FIELD_DP64(t
, ID_AA64DFR0
, PMUVER
, 5); /* v8.4-PMU */
709 cpu
->isar
.id_aa64dfr0
= t
;
711 u
= cpu
->isar
.id_dfr0
;
712 u
= FIELD_DP32(u
, ID_DFR0
, PERFMON
, 5); /* v8.4-PMU */
713 cpu
->isar
.id_dfr0
= u
;
716 * FIXME: We do not yet support ARMv8.2-fp16 for AArch32 yet,
717 * so do not set MVFR1.FPHP. Strictly speaking this is not legal,
718 * but it is also not legal to enable SVE without support for FP16,
719 * and enabling SVE in system mode is more useful in the short term.
722 #ifdef CONFIG_USER_ONLY
723 /* For usermode -cpu max we can use a larger and more efficient DCZ
724 * blocksize since we don't have to follow what the hardware does.
726 cpu
->ctr
= 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
727 cpu
->dcz_blocksize
= 7; /* 512 bytes */
731 aarch64_add_sve_properties(obj
);
732 object_property_add(obj
, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq
,
733 cpu_max_set_sve_max_vq
, NULL
, NULL
);
736 static const ARMCPUInfo aarch64_cpus
[] = {
737 { .name
= "cortex-a57", .initfn
= aarch64_a57_initfn
},
738 { .name
= "cortex-a53", .initfn
= aarch64_a53_initfn
},
739 { .name
= "cortex-a72", .initfn
= aarch64_a72_initfn
},
740 { .name
= "max", .initfn
= aarch64_max_initfn
},
743 static bool aarch64_cpu_get_aarch64(Object
*obj
, Error
**errp
)
745 ARMCPU
*cpu
= ARM_CPU(obj
);
747 return arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
750 static void aarch64_cpu_set_aarch64(Object
*obj
, bool value
, Error
**errp
)
752 ARMCPU
*cpu
= ARM_CPU(obj
);
754 /* At this time, this property is only allowed if KVM is enabled. This
755 * restriction allows us to avoid fixing up functionality that assumes a
756 * uniform execution state like do_interrupt.
758 if (value
== false) {
759 if (!kvm_enabled() || !kvm_arm_aarch32_supported()) {
760 error_setg(errp
, "'aarch64' feature cannot be disabled "
761 "unless KVM is enabled and 32-bit EL1 "
765 unset_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
767 set_feature(&cpu
->env
, ARM_FEATURE_AARCH64
);
771 static void aarch64_cpu_initfn(Object
*obj
)
773 object_property_add_bool(obj
, "aarch64", aarch64_cpu_get_aarch64
,
774 aarch64_cpu_set_aarch64
);
775 object_property_set_description(obj
, "aarch64",
776 "Set on/off to enable/disable aarch64 "
780 static void aarch64_cpu_finalizefn(Object
*obj
)
784 static gchar
*aarch64_gdb_arch_name(CPUState
*cs
)
786 return g_strdup("aarch64");
789 static void aarch64_cpu_class_init(ObjectClass
*oc
, void *data
)
791 CPUClass
*cc
= CPU_CLASS(oc
);
793 cc
->cpu_exec_interrupt
= arm_cpu_exec_interrupt
;
794 cc
->gdb_read_register
= aarch64_cpu_gdb_read_register
;
795 cc
->gdb_write_register
= aarch64_cpu_gdb_write_register
;
796 cc
->gdb_num_core_regs
= 34;
797 cc
->gdb_core_xml_file
= "aarch64-core.xml";
798 cc
->gdb_arch_name
= aarch64_gdb_arch_name
;
801 static void aarch64_cpu_instance_init(Object
*obj
)
803 ARMCPUClass
*acc
= ARM_CPU_GET_CLASS(obj
);
805 acc
->info
->initfn(obj
);
806 arm_cpu_post_init(obj
);
809 static void cpu_register_class_init(ObjectClass
*oc
, void *data
)
811 ARMCPUClass
*acc
= ARM_CPU_CLASS(oc
);
816 void aarch64_cpu_register(const ARMCPUInfo
*info
)
818 TypeInfo type_info
= {
819 .parent
= TYPE_AARCH64_CPU
,
820 .instance_size
= sizeof(ARMCPU
),
821 .instance_init
= aarch64_cpu_instance_init
,
822 .class_size
= sizeof(ARMCPUClass
),
823 .class_init
= info
->class_init
?: cpu_register_class_init
,
824 .class_data
= (void *)info
,
827 type_info
.name
= g_strdup_printf("%s-" TYPE_ARM_CPU
, info
->name
);
828 type_register(&type_info
);
829 g_free((void *)type_info
.name
);
832 static const TypeInfo aarch64_cpu_type_info
= {
833 .name
= TYPE_AARCH64_CPU
,
834 .parent
= TYPE_ARM_CPU
,
835 .instance_size
= sizeof(ARMCPU
),
836 .instance_init
= aarch64_cpu_initfn
,
837 .instance_finalize
= aarch64_cpu_finalizefn
,
839 .class_size
= sizeof(AArch64CPUClass
),
840 .class_init
= aarch64_cpu_class_init
,
843 static void aarch64_cpu_register_types(void)
847 type_register_static(&aarch64_cpu_type_info
);
849 for (i
= 0; i
< ARRAY_SIZE(aarch64_cpus
); ++i
) {
850 aarch64_cpu_register(&aarch64_cpus
[i
]);
854 type_init(aarch64_cpu_register_types
)