migration/rdma: Plug memory leaks in qemu_rdma_registration_stop()
[qemu/armbru.git] / target / hppa / cpu.h
blob801a4fb1baebf22032b74a48149bc531d0fb70f6
1 /*
2 * PA-RISC emulation cpu definitions for qemu.
4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #ifndef HPPA_CPU_H
21 #define HPPA_CPU_H
23 #include "cpu-qom.h"
24 #include "exec/cpu-defs.h"
25 #include "exec/memory.h"
27 /* PA-RISC 1.x processors have a strong memory model. */
28 /* ??? While we do not yet implement PA-RISC 2.0, those processors have
29 a weak memory model, but with TLB bits that force ordering on a per-page
30 basis. It's probably easier to fall back to a strong memory model. */
31 #define TCG_GUEST_DEFAULT_MO TCG_MO_ALL
33 #define MMU_KERNEL_IDX 0
34 #define MMU_USER_IDX 3
35 #define MMU_PHYS_IDX 4
36 #define TARGET_INSN_START_EXTRA_WORDS 1
38 /* Hardware exceptions, interupts, faults, and traps. */
39 #define EXCP_HPMC 1 /* high priority machine check */
40 #define EXCP_POWER_FAIL 2
41 #define EXCP_RC 3 /* recovery counter */
42 #define EXCP_EXT_INTERRUPT 4 /* external interrupt */
43 #define EXCP_LPMC 5 /* low priority machine check */
44 #define EXCP_ITLB_MISS 6 /* itlb miss / instruction page fault */
45 #define EXCP_IMP 7 /* instruction memory protection trap */
46 #define EXCP_ILL 8 /* illegal instruction trap */
47 #define EXCP_BREAK 9 /* break instruction */
48 #define EXCP_PRIV_OPR 10 /* privileged operation trap */
49 #define EXCP_PRIV_REG 11 /* privileged register trap */
50 #define EXCP_OVERFLOW 12 /* signed overflow trap */
51 #define EXCP_COND 13 /* trap-on-condition */
52 #define EXCP_ASSIST 14 /* assist exception trap */
53 #define EXCP_DTLB_MISS 15 /* dtlb miss / data page fault */
54 #define EXCP_NA_ITLB_MISS 16 /* non-access itlb miss */
55 #define EXCP_NA_DTLB_MISS 17 /* non-access dtlb miss */
56 #define EXCP_DMP 18 /* data memory protection trap */
57 #define EXCP_DMB 19 /* data memory break trap */
58 #define EXCP_TLB_DIRTY 20 /* tlb dirty bit trap */
59 #define EXCP_PAGE_REF 21 /* page reference trap */
60 #define EXCP_ASSIST_EMU 22 /* assist emulation trap */
61 #define EXCP_HPT 23 /* high-privilege transfer trap */
62 #define EXCP_LPT 24 /* low-privilege transfer trap */
63 #define EXCP_TB 25 /* taken branch trap */
64 #define EXCP_DMAR 26 /* data memory access rights trap */
65 #define EXCP_DMPI 27 /* data memory protection id trap */
66 #define EXCP_UNALIGN 28 /* unaligned data reference trap */
67 #define EXCP_PER_INTERRUPT 29 /* performance monitor interrupt */
69 /* Exceptions for linux-user emulation. */
70 #define EXCP_SYSCALL 30
71 #define EXCP_SYSCALL_LWS 31
73 /* Taken from Linux kernel: arch/parisc/include/asm/psw.h */
74 #define PSW_I 0x00000001
75 #define PSW_D 0x00000002
76 #define PSW_P 0x00000004
77 #define PSW_Q 0x00000008
78 #define PSW_R 0x00000010
79 #define PSW_F 0x00000020
80 #define PSW_G 0x00000040 /* PA1.x only */
81 #define PSW_O 0x00000080 /* PA2.0 only */
82 #define PSW_CB 0x0000ff00
83 #define PSW_M 0x00010000
84 #define PSW_V 0x00020000
85 #define PSW_C 0x00040000
86 #define PSW_B 0x00080000
87 #define PSW_X 0x00100000
88 #define PSW_N 0x00200000
89 #define PSW_L 0x00400000
90 #define PSW_H 0x00800000
91 #define PSW_T 0x01000000
92 #define PSW_S 0x02000000
93 #define PSW_E 0x04000000
94 #ifdef TARGET_HPPA64
95 #define PSW_W 0x08000000 /* PA2.0 only */
96 #else
97 #define PSW_W 0
98 #endif
99 #define PSW_Z 0x40000000 /* PA1.x only */
100 #define PSW_Y 0x80000000 /* PA1.x only */
102 #define PSW_SM (PSW_W | PSW_E | PSW_O | PSW_G | PSW_F \
103 | PSW_R | PSW_Q | PSW_P | PSW_D | PSW_I)
105 /* ssm/rsm instructions number PSW_W and PSW_E differently */
106 #define PSW_SM_I PSW_I /* Enable External Interrupts */
107 #define PSW_SM_D PSW_D
108 #define PSW_SM_P PSW_P
109 #define PSW_SM_Q PSW_Q /* Enable Interrupt State Collection */
110 #define PSW_SM_R PSW_R /* Enable Recover Counter Trap */
111 #ifdef TARGET_HPPA64
112 #define PSW_SM_E 0x100
113 #define PSW_SM_W 0x200 /* PA2.0 only : Enable Wide Mode */
114 #else
115 #define PSW_SM_E 0
116 #define PSW_SM_W 0
117 #endif
119 #define CR_RC 0
120 #define CR_PID1 8
121 #define CR_PID2 9
122 #define CR_PID3 12
123 #define CR_PID4 13
124 #define CR_SCRCCR 10
125 #define CR_SAR 11
126 #define CR_IVA 14
127 #define CR_EIEM 15
128 #define CR_IT 16
129 #define CR_IIASQ 17
130 #define CR_IIAOQ 18
131 #define CR_IIR 19
132 #define CR_ISR 20
133 #define CR_IOR 21
134 #define CR_IPSW 22
135 #define CR_EIRR 23
137 typedef struct CPUHPPAState CPUHPPAState;
139 #if TARGET_REGISTER_BITS == 32
140 typedef uint32_t target_ureg;
141 typedef int32_t target_sreg;
142 #define TREG_FMT_lx "%08"PRIx32
143 #define TREG_FMT_ld "%"PRId32
144 #else
145 typedef uint64_t target_ureg;
146 typedef int64_t target_sreg;
147 #define TREG_FMT_lx "%016"PRIx64
148 #define TREG_FMT_ld "%"PRId64
149 #endif
151 typedef struct {
152 uint64_t va_b;
153 uint64_t va_e;
154 target_ureg pa;
155 unsigned u : 1;
156 unsigned t : 1;
157 unsigned d : 1;
158 unsigned b : 1;
159 unsigned page_size : 4;
160 unsigned ar_type : 3;
161 unsigned ar_pl1 : 2;
162 unsigned ar_pl2 : 2;
163 unsigned entry_valid : 1;
164 unsigned access_id : 16;
165 } hppa_tlb_entry;
167 struct CPUHPPAState {
168 target_ureg gr[32];
169 uint64_t fr[32];
170 uint64_t sr[8]; /* stored shifted into place for gva */
172 target_ureg psw; /* All psw bits except the following: */
173 target_ureg psw_n; /* boolean */
174 target_sreg psw_v; /* in most significant bit */
176 /* Splitting the carry-borrow field into the MSB and "the rest", allows
177 * for "the rest" to be deleted when it is unused, but the MSB is in use.
178 * In addition, it's easier to compute carry-in for bit B+1 than it is to
179 * compute carry-out for bit B (3 vs 4 insns for addition, assuming the
180 * host has the appropriate add-with-carry insn to compute the msb).
181 * Therefore the carry bits are stored as: cb_msb : cb & 0x11111110.
183 target_ureg psw_cb; /* in least significant bit of next nibble */
184 target_ureg psw_cb_msb; /* boolean */
186 target_ureg iaoq_f; /* front */
187 target_ureg iaoq_b; /* back, aka next instruction */
188 uint64_t iasq_f;
189 uint64_t iasq_b;
191 uint32_t fr0_shadow; /* flags, c, ca/cq, rm, d, enables */
192 float_status fp_status;
194 target_ureg cr[32]; /* control registers */
195 target_ureg cr_back[2]; /* back of cr17/cr18 */
196 target_ureg shadow[7]; /* shadow registers */
198 /* ??? The number of entries isn't specified by the architecture. */
199 /* ??? Implement a unified itlb/dtlb for the moment. */
200 /* ??? We should use a more intelligent data structure. */
201 hppa_tlb_entry tlb[256];
202 uint32_t tlb_last;
206 * HPPACPU:
207 * @env: #CPUHPPAState
209 * An HPPA CPU.
211 struct HPPACPU {
212 /*< private >*/
213 CPUState parent_obj;
214 /*< public >*/
216 CPUNegativeOffsetState neg;
217 CPUHPPAState env;
218 QEMUTimer *alarm_timer;
222 typedef CPUHPPAState CPUArchState;
223 typedef HPPACPU ArchCPU;
225 #include "exec/cpu-all.h"
227 static inline int cpu_mmu_index(CPUHPPAState *env, bool ifetch)
229 #ifdef CONFIG_USER_ONLY
230 return MMU_USER_IDX;
231 #else
232 if (env->psw & (ifetch ? PSW_C : PSW_D)) {
233 return env->iaoq_f & 3;
235 return MMU_PHYS_IDX; /* mmu disabled */
236 #endif
239 void hppa_translate_init(void);
241 #define CPU_RESOLVING_TYPE TYPE_HPPA_CPU
243 static inline target_ulong hppa_form_gva_psw(target_ureg psw, uint64_t spc,
244 target_ureg off)
246 #ifdef CONFIG_USER_ONLY
247 return off;
248 #else
249 off &= (psw & PSW_W ? 0x3fffffffffffffffull : 0xffffffffull);
250 return spc | off;
251 #endif
254 static inline target_ulong hppa_form_gva(CPUHPPAState *env, uint64_t spc,
255 target_ureg off)
257 return hppa_form_gva_psw(env->psw, spc, off);
260 /* Since PSW_{I,CB} will never need to be in tb->flags, reuse them.
261 * TB_FLAG_SR_SAME indicates that SR4 through SR7 all contain the
262 * same value.
264 #define TB_FLAG_SR_SAME PSW_I
265 #define TB_FLAG_PRIV_SHIFT 8
267 static inline void cpu_get_tb_cpu_state(CPUHPPAState *env, target_ulong *pc,
268 target_ulong *cs_base,
269 uint32_t *pflags)
271 uint32_t flags = env->psw_n * PSW_N;
273 /* TB lookup assumes that PC contains the complete virtual address.
274 If we leave space+offset separate, we'll get ITLB misses to an
275 incomplete virtual address. This also means that we must separate
276 out current cpu priviledge from the low bits of IAOQ_F. */
277 #ifdef CONFIG_USER_ONLY
278 *pc = env->iaoq_f & -4;
279 *cs_base = env->iaoq_b & -4;
280 #else
281 /* ??? E, T, H, L, B, P bits need to be here, when implemented. */
282 flags |= env->psw & (PSW_W | PSW_C | PSW_D);
283 flags |= (env->iaoq_f & 3) << TB_FLAG_PRIV_SHIFT;
285 *pc = (env->psw & PSW_C
286 ? hppa_form_gva_psw(env->psw, env->iasq_f, env->iaoq_f & -4)
287 : env->iaoq_f & -4);
288 *cs_base = env->iasq_f;
290 /* Insert a difference between IAOQ_B and IAOQ_F within the otherwise zero
291 low 32-bits of CS_BASE. This will succeed for all direct branches,
292 which is the primary case we care about -- using goto_tb within a page.
293 Failure is indicated by a zero difference. */
294 if (env->iasq_f == env->iasq_b) {
295 target_sreg diff = env->iaoq_b - env->iaoq_f;
296 if (TARGET_REGISTER_BITS == 32 || diff == (int32_t)diff) {
297 *cs_base |= (uint32_t)diff;
300 if ((env->sr[4] == env->sr[5])
301 & (env->sr[4] == env->sr[6])
302 & (env->sr[4] == env->sr[7])) {
303 flags |= TB_FLAG_SR_SAME;
305 #endif
307 *pflags = flags;
310 target_ureg cpu_hppa_get_psw(CPUHPPAState *env);
311 void cpu_hppa_put_psw(CPUHPPAState *env, target_ureg);
312 void cpu_hppa_loaded_fr0(CPUHPPAState *env);
314 #ifdef CONFIG_USER_ONLY
315 static inline void cpu_hppa_change_prot_id(CPUHPPAState *env) { }
316 #else
317 void cpu_hppa_change_prot_id(CPUHPPAState *env);
318 #endif
320 #define cpu_signal_handler cpu_hppa_signal_handler
322 int cpu_hppa_signal_handler(int host_signum, void *pinfo, void *puc);
323 hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr);
324 int hppa_cpu_gdb_read_register(CPUState *cpu, GByteArray *buf, int reg);
325 int hppa_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
326 void hppa_cpu_do_interrupt(CPUState *cpu);
327 bool hppa_cpu_exec_interrupt(CPUState *cpu, int int_req);
328 void hppa_cpu_dump_state(CPUState *cs, FILE *f, int);
329 bool hppa_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
330 MMUAccessType access_type, int mmu_idx,
331 bool probe, uintptr_t retaddr);
332 #ifndef CONFIG_USER_ONLY
333 int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
334 int type, hwaddr *pphys, int *pprot);
335 extern const MemoryRegionOps hppa_io_eir_ops;
336 extern const VMStateDescription vmstate_hppa_cpu;
337 void hppa_cpu_alarm_timer(void *);
338 int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr);
339 #endif
340 void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra);
342 #endif /* HPPA_CPU_H */