4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
10 #include "qemu/osdep.h"
11 #include "qemu/datadir.h"
12 #include "qemu/error-report.h"
13 #include "qapi/error.h"
15 #include "hw/arm/boot.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/tcg.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/numa.h"
21 #include "hw/boards.h"
22 #include "sysemu/reset.h"
23 #include "hw/loader.h"
25 #include "sysemu/device_tree.h"
26 #include "qemu/config-file.h"
27 #include "qemu/option.h"
28 #include "qemu/units.h"
30 /* Kernel boot protocol is specified in the kernel docs
31 * Documentation/arm/Booting and Documentation/arm64/booting.txt
32 * They have different preferred image load offsets from system RAM base.
34 #define KERNEL_ARGS_ADDR 0x100
35 #define KERNEL_NOLOAD_ADDR 0x02000000
36 #define KERNEL_LOAD_ADDR 0x00010000
37 #define KERNEL64_LOAD_ADDR 0x00080000
39 #define ARM64_TEXT_OFFSET_OFFSET 8
40 #define ARM64_MAGIC_OFFSET 56
42 #define BOOTLOADER_MAX_SIZE (4 * KiB)
44 AddressSpace
*arm_boot_address_space(ARMCPU
*cpu
,
45 const struct arm_boot_info
*info
)
47 /* Return the address space to use for bootloader reads and writes.
48 * We prefer the secure address space if the CPU has it and we're
49 * going to boot the guest into it.
52 CPUState
*cs
= CPU(cpu
);
54 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
) && info
->secure_boot
) {
60 return cpu_get_address_space(cs
, asidx
);
63 static const ARMInsnFixup bootloader_aarch64
[] = {
64 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
65 { 0xaa1f03e1 }, /* mov x1, xzr */
66 { 0xaa1f03e2 }, /* mov x2, xzr */
67 { 0xaa1f03e3 }, /* mov x3, xzr */
68 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
69 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
70 { 0, FIXUP_ARGPTR_LO
}, /* arg: .word @DTB Lower 32-bits */
71 { 0, FIXUP_ARGPTR_HI
}, /* .word @DTB Higher 32-bits */
72 { 0, FIXUP_ENTRYPOINT_LO
}, /* entry: .word @Kernel Entry Lower 32-bits */
73 { 0, FIXUP_ENTRYPOINT_HI
}, /* .word @Kernel Entry Higher 32-bits */
74 { 0, FIXUP_TERMINATOR
}
77 /* A very small bootloader: call the board-setup code (if needed),
78 * set r0-r2, then jump to the kernel.
79 * If we're not calling boot setup code then we don't copy across
80 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
83 static const ARMInsnFixup bootloader
[] = {
84 { 0xe28fe004 }, /* add lr, pc, #4 */
85 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
86 { 0, FIXUP_BOARD_SETUP
},
87 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
88 { 0xe3a00000 }, /* mov r0, #0 */
89 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
90 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
91 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
93 { 0, FIXUP_ARGPTR_LO
},
94 { 0, FIXUP_ENTRYPOINT_LO
},
95 { 0, FIXUP_TERMINATOR
}
98 /* Handling for secondary CPU boot in a multicore system.
99 * Unlike the uniprocessor/primary CPU boot, this is platform
100 * dependent. The default code here is based on the secondary
101 * CPU boot protocol used on realview/vexpress boards, with
102 * some parameterisation to increase its flexibility.
103 * QEMU platform models for which this code is not appropriate
104 * should override write_secondary_boot and secondary_cpu_reset_hook
107 * This code enables the interrupt controllers for the secondary
108 * CPUs and then puts all the secondary CPUs into a loop waiting
109 * for an interprocessor interrupt and polling a configurable
110 * location for the kernel secondary CPU entry point.
112 #define DSB_INSN 0xf57ff04f
113 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
115 static const ARMInsnFixup smpboot
[] = {
116 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
117 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
118 { 0xe3a01001 }, /* mov r1, #1 */
119 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
120 { 0xe3a010ff }, /* mov r1, #0xff */
121 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
122 { 0, FIXUP_DSB
}, /* dsb */
123 { 0xe320f003 }, /* wfi */
124 { 0xe5901000 }, /* ldr r1, [r0] */
125 { 0xe1110001 }, /* tst r1, r1 */
126 { 0x0afffffb }, /* beq <wfi> */
127 { 0xe12fff11 }, /* bx r1 */
128 { 0, FIXUP_GIC_CPU_IF
}, /* gic_cpu_if: .word 0x.... */
129 { 0, FIXUP_BOOTREG
}, /* bootreg_addr: .word 0x.... */
130 { 0, FIXUP_TERMINATOR
}
133 void arm_write_bootloader(const char *name
,
134 AddressSpace
*as
, hwaddr addr
,
135 const ARMInsnFixup
*insns
,
136 const uint32_t *fixupcontext
)
138 /* Fix up the specified bootloader fragment and write it into
139 * guest memory using rom_add_blob_fixed(). fixupcontext is
140 * an array giving the values to write in for the fixup types
141 * which write a value into the code array.
147 while (insns
[len
].fixup
!= FIXUP_TERMINATOR
) {
151 code
= g_new0(uint32_t, len
);
153 for (i
= 0; i
< len
; i
++) {
154 uint32_t insn
= insns
[i
].insn
;
155 FixupType fixup
= insns
[i
].fixup
;
161 case FIXUP_BOARD_SETUP
:
162 case FIXUP_ARGPTR_LO
:
163 case FIXUP_ARGPTR_HI
:
164 case FIXUP_ENTRYPOINT_LO
:
165 case FIXUP_ENTRYPOINT_HI
:
166 case FIXUP_GIC_CPU_IF
:
169 insn
= fixupcontext
[fixup
];
174 code
[i
] = tswap32(insn
);
177 assert((len
* sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE
);
179 rom_add_blob_fixed_as(name
, code
, len
* sizeof(uint32_t), addr
, as
);
184 static void default_write_secondary(ARMCPU
*cpu
,
185 const struct arm_boot_info
*info
)
187 uint32_t fixupcontext
[FIXUP_MAX
];
188 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
190 fixupcontext
[FIXUP_GIC_CPU_IF
] = info
->gic_cpu_if_addr
;
191 fixupcontext
[FIXUP_BOOTREG
] = info
->smp_bootreg_addr
;
192 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
193 fixupcontext
[FIXUP_DSB
] = DSB_INSN
;
195 fixupcontext
[FIXUP_DSB
] = CP15_DSB_INSN
;
198 arm_write_bootloader("smpboot", as
, info
->smp_loader_start
,
199 smpboot
, fixupcontext
);
202 void arm_write_secure_board_setup_dummy_smc(ARMCPU
*cpu
,
203 const struct arm_boot_info
*info
,
206 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
208 uint32_t mvbar_blob
[] = {
209 /* mvbar_addr: secure monitor vectors
210 * Default unimplemented and unused vectors to spin. Makes it
211 * easier to debug (as opposed to the CPU running away).
213 0xeafffffe, /* (spin) */
214 0xeafffffe, /* (spin) */
215 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
216 0xeafffffe, /* (spin) */
217 0xeafffffe, /* (spin) */
218 0xeafffffe, /* (spin) */
219 0xeafffffe, /* (spin) */
220 0xeafffffe, /* (spin) */
222 uint32_t board_setup_blob
[] = {
223 /* board setup addr */
224 0xee110f51, /* mrc p15, 0, r0, c1, c1, 2 ;read NSACR */
225 0xe3800b03, /* orr r0, #0xc00 ;set CP11, CP10 */
226 0xee010f51, /* mcr p15, 0, r0, c1, c1, 2 ;write NSACR */
227 0xe3a00e00 + (mvbar_addr
>> 4), /* mov r0, #mvbar_addr */
228 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
229 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
230 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
231 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
232 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
233 0xe1600070, /* smc #0 ;call monitor to flush SCR */
234 0xe1a0f001, /* mov pc, r1 ;return */
237 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
238 assert((mvbar_addr
& 0x1f) == 0 && (mvbar_addr
>> 4) < 0x100);
240 /* check that these blobs don't overlap */
241 assert((mvbar_addr
+ sizeof(mvbar_blob
) <= info
->board_setup_addr
)
242 || (info
->board_setup_addr
+ sizeof(board_setup_blob
) <= mvbar_addr
));
244 for (n
= 0; n
< ARRAY_SIZE(mvbar_blob
); n
++) {
245 mvbar_blob
[n
] = tswap32(mvbar_blob
[n
]);
247 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob
, sizeof(mvbar_blob
),
250 for (n
= 0; n
< ARRAY_SIZE(board_setup_blob
); n
++) {
251 board_setup_blob
[n
] = tswap32(board_setup_blob
[n
]);
253 rom_add_blob_fixed_as("board-setup", board_setup_blob
,
254 sizeof(board_setup_blob
), info
->board_setup_addr
, as
);
257 static void default_reset_secondary(ARMCPU
*cpu
,
258 const struct arm_boot_info
*info
)
260 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
261 CPUState
*cs
= CPU(cpu
);
263 address_space_stl_notdirty(as
, info
->smp_bootreg_addr
,
264 0, MEMTXATTRS_UNSPECIFIED
, NULL
);
265 cpu_set_pc(cs
, info
->smp_loader_start
);
268 static inline bool have_dtb(const struct arm_boot_info
*info
)
270 return info
->dtb_filename
|| info
->get_dtb
;
273 #define WRITE_WORD(p, value) do { \
274 address_space_stl_notdirty(as, p, value, \
275 MEMTXATTRS_UNSPECIFIED, NULL); \
279 static void set_kernel_args(const struct arm_boot_info
*info
, AddressSpace
*as
)
281 int initrd_size
= info
->initrd_size
;
282 hwaddr base
= info
->loader_start
;
285 p
= base
+ KERNEL_ARGS_ADDR
;
288 WRITE_WORD(p
, 0x54410001);
290 WRITE_WORD(p
, 0x1000);
293 /* TODO: handle multiple chips on one ATAG list */
295 WRITE_WORD(p
, 0x54410002);
296 WRITE_WORD(p
, info
->ram_size
);
297 WRITE_WORD(p
, info
->loader_start
);
301 WRITE_WORD(p
, 0x54420005);
302 WRITE_WORD(p
, info
->initrd_start
);
303 WRITE_WORD(p
, initrd_size
);
305 if (info
->kernel_cmdline
&& *info
->kernel_cmdline
) {
309 cmdline_size
= strlen(info
->kernel_cmdline
);
310 address_space_write(as
, p
+ 8, MEMTXATTRS_UNSPECIFIED
,
311 info
->kernel_cmdline
, cmdline_size
+ 1);
312 cmdline_size
= (cmdline_size
>> 2) + 1;
313 WRITE_WORD(p
, cmdline_size
+ 2);
314 WRITE_WORD(p
, 0x54410009);
315 p
+= cmdline_size
* 4;
317 if (info
->atag_board
) {
320 uint8_t atag_board_buf
[0x1000];
322 atag_board_len
= (info
->atag_board(info
, atag_board_buf
) + 3) & ~3;
323 WRITE_WORD(p
, (atag_board_len
+ 8) >> 2);
324 WRITE_WORD(p
, 0x414f4d50);
325 address_space_write(as
, p
, MEMTXATTRS_UNSPECIFIED
,
326 atag_board_buf
, atag_board_len
);
334 static void set_kernel_args_old(const struct arm_boot_info
*info
,
339 int initrd_size
= info
->initrd_size
;
340 hwaddr base
= info
->loader_start
;
342 /* see linux/include/asm-arm/setup.h */
343 p
= base
+ KERNEL_ARGS_ADDR
;
347 WRITE_WORD(p
, info
->ram_size
/ 4096);
350 #define FLAG_READONLY 1
351 #define FLAG_RDLOAD 4
352 #define FLAG_RDPROMPT 8
354 WRITE_WORD(p
, FLAG_READONLY
| FLAG_RDLOAD
| FLAG_RDPROMPT
);
356 WRITE_WORD(p
, (31 << 8) | 0); /* /dev/mtdblock0 */
365 /* memc_control_reg */
367 /* unsigned char sounddefault */
368 /* unsigned char adfsdrives */
369 /* unsigned char bytes_per_char_h */
370 /* unsigned char bytes_per_char_v */
372 /* pages_in_bank[4] */
381 WRITE_WORD(p
, info
->initrd_start
);
386 WRITE_WORD(p
, initrd_size
);
391 /* system_serial_low */
393 /* system_serial_high */
397 /* zero unused fields */
398 while (p
< base
+ KERNEL_ARGS_ADDR
+ 256 + 1024) {
401 s
= info
->kernel_cmdline
;
403 address_space_write(as
, p
, MEMTXATTRS_UNSPECIFIED
, s
, strlen(s
) + 1);
409 static int fdt_add_memory_node(void *fdt
, uint32_t acells
, hwaddr mem_base
,
410 uint32_t scells
, hwaddr mem_len
,
416 nodename
= g_strdup_printf("/memory@%" PRIx64
, mem_base
);
417 qemu_fdt_add_subnode(fdt
, nodename
);
418 qemu_fdt_setprop_string(fdt
, nodename
, "device_type", "memory");
419 ret
= qemu_fdt_setprop_sized_cells(fdt
, nodename
, "reg", acells
, mem_base
,
425 /* only set the NUMA ID if it is specified */
426 if (numa_node_id
>= 0) {
427 ret
= qemu_fdt_setprop_cell(fdt
, nodename
,
428 "numa-node-id", numa_node_id
);
435 static void fdt_add_psci_node(void *fdt
)
437 uint32_t cpu_suspend_fn
;
441 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
442 const char *psci_method
;
443 int64_t psci_conduit
;
446 psci_conduit
= object_property_get_int(OBJECT(armcpu
),
449 switch (psci_conduit
) {
450 case QEMU_PSCI_CONDUIT_DISABLED
:
452 case QEMU_PSCI_CONDUIT_HVC
:
455 case QEMU_PSCI_CONDUIT_SMC
:
459 g_assert_not_reached();
463 * A pre-existing /psci node might specify function ID values
464 * that don't match QEMU's PSCI implementation. Delete the whole
465 * node and put our own in instead.
467 rc
= fdt_path_offset(fdt
, "/psci");
469 qemu_fdt_nop_node(fdt
, "/psci");
472 qemu_fdt_add_subnode(fdt
, "/psci");
473 if (armcpu
->psci_version
>= QEMU_PSCI_VERSION_0_2
) {
474 if (armcpu
->psci_version
< QEMU_PSCI_VERSION_1_0
) {
475 const char comp
[] = "arm,psci-0.2\0arm,psci";
476 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
478 const char comp
[] = "arm,psci-1.0\0arm,psci-0.2\0arm,psci";
479 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
482 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
483 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
484 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
485 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
486 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
488 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
489 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
490 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
493 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
495 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
496 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
497 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
498 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
501 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
502 * to the instruction that should be used to invoke PSCI functions.
503 * However, the device tree binding uses 'method' instead, so that is
504 * what we should use here.
506 qemu_fdt_setprop_string(fdt
, "/psci", "method", psci_method
);
508 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
509 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
510 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
511 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
514 int arm_load_dtb(hwaddr addr
, const struct arm_boot_info
*binfo
,
515 hwaddr addr_limit
, AddressSpace
*as
, MachineState
*ms
)
519 uint32_t acells
, scells
;
521 hwaddr mem_base
, mem_len
;
525 if (binfo
->dtb_filename
) {
527 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, binfo
->dtb_filename
);
529 fprintf(stderr
, "Couldn't open dtb file %s\n", binfo
->dtb_filename
);
533 fdt
= load_device_tree(filename
, &size
);
535 fprintf(stderr
, "Couldn't open dtb file %s\n", filename
);
541 fdt
= binfo
->get_dtb(binfo
, &size
);
543 fprintf(stderr
, "Board was unable to create a dtb blob\n");
548 if (addr_limit
> addr
&& size
> (addr_limit
- addr
)) {
549 /* Installing the device tree blob at addr would exceed addr_limit.
550 * Whether this constitutes failure is up to the caller to decide,
551 * so just return 0 as size, i.e., no error.
557 acells
= qemu_fdt_getprop_cell(fdt
, "/", "#address-cells",
559 scells
= qemu_fdt_getprop_cell(fdt
, "/", "#size-cells",
561 if (acells
== 0 || scells
== 0) {
562 fprintf(stderr
, "dtb file invalid (#address-cells or #size-cells 0)\n");
566 if (scells
< 2 && binfo
->ram_size
>= 4 * GiB
) {
567 /* This is user error so deserves a friendlier error message
568 * than the failure of setprop_sized_cells would provide
570 fprintf(stderr
, "qemu: dtb file not compatible with "
575 /* nop all root nodes matching /memory or /memory@unit-address */
576 node_path
= qemu_fdt_node_unit_path(fdt
, "memory", &err
);
578 error_report_err(err
);
581 while (node_path
[n
]) {
582 if (g_str_has_prefix(node_path
[n
], "/memory")) {
583 qemu_fdt_nop_node(fdt
, node_path
[n
]);
587 g_strfreev(node_path
);
590 * We drop all the memory nodes which correspond to empty NUMA nodes
591 * from the device tree, because the Linux NUMA binding document
592 * states they should not be generated. Linux will get the NUMA node
593 * IDs of the empty NUMA nodes from the distance map if they are needed.
594 * This means QEMU users may be obliged to provide command lines which
595 * configure distance maps when the empty NUMA node IDs are needed and
596 * Linux's default distance map isn't sufficient.
598 if (ms
->numa_state
!= NULL
&& ms
->numa_state
->num_nodes
> 0) {
599 mem_base
= binfo
->loader_start
;
600 for (i
= 0; i
< ms
->numa_state
->num_nodes
; i
++) {
601 mem_len
= ms
->numa_state
->nodes
[i
].node_mem
;
606 rc
= fdt_add_memory_node(fdt
, acells
, mem_base
,
609 fprintf(stderr
, "couldn't add /memory@%"PRIx64
" node\n",
617 rc
= fdt_add_memory_node(fdt
, acells
, binfo
->loader_start
,
618 scells
, binfo
->ram_size
, -1);
620 fprintf(stderr
, "couldn't add /memory@%"PRIx64
" node\n",
621 binfo
->loader_start
);
626 rc
= fdt_path_offset(fdt
, "/chosen");
628 qemu_fdt_add_subnode(fdt
, "/chosen");
631 if (ms
->kernel_cmdline
&& *ms
->kernel_cmdline
) {
632 rc
= qemu_fdt_setprop_string(fdt
, "/chosen", "bootargs",
635 fprintf(stderr
, "couldn't set /chosen/bootargs\n");
640 if (binfo
->initrd_size
) {
641 rc
= qemu_fdt_setprop_sized_cells(fdt
, "/chosen", "linux,initrd-start",
642 acells
, binfo
->initrd_start
);
644 fprintf(stderr
, "couldn't set /chosen/linux,initrd-start\n");
648 rc
= qemu_fdt_setprop_sized_cells(fdt
, "/chosen", "linux,initrd-end",
650 binfo
->initrd_start
+
653 fprintf(stderr
, "couldn't set /chosen/linux,initrd-end\n");
658 fdt_add_psci_node(fdt
);
660 if (binfo
->modify_dtb
) {
661 binfo
->modify_dtb(binfo
, fdt
);
664 qemu_fdt_dumpdtb(fdt
, size
);
666 /* Put the DTB into the memory map as a ROM image: this will ensure
667 * the DTB is copied again upon reset, even if addr points into RAM.
669 rom_add_blob_fixed_as("dtb", fdt
, size
, addr
, as
);
670 qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds
,
671 rom_ptr_for_as(as
, addr
, size
));
673 if (fdt
!= ms
->fdt
) {
685 static void do_cpu_reset(void *opaque
)
687 ARMCPU
*cpu
= opaque
;
688 CPUState
*cs
= CPU(cpu
);
689 CPUARMState
*env
= &cpu
->env
;
690 const struct arm_boot_info
*info
= env
->boot_info
;
694 if (!info
->is_linux
) {
696 /* Jump to the entry point. */
697 uint64_t entry
= info
->entry
;
699 switch (info
->endianness
) {
700 case ARM_ENDIANNESS_LE
:
701 env
->cp15
.sctlr_el
[1] &= ~SCTLR_E0E
;
702 for (i
= 1; i
< 4; ++i
) {
703 env
->cp15
.sctlr_el
[i
] &= ~SCTLR_EE
;
705 env
->uncached_cpsr
&= ~CPSR_E
;
707 case ARM_ENDIANNESS_BE8
:
708 env
->cp15
.sctlr_el
[1] |= SCTLR_E0E
;
709 for (i
= 1; i
< 4; ++i
) {
710 env
->cp15
.sctlr_el
[i
] |= SCTLR_EE
;
712 env
->uncached_cpsr
|= CPSR_E
;
714 case ARM_ENDIANNESS_BE32
:
715 env
->cp15
.sctlr_el
[1] |= SCTLR_B
;
717 case ARM_ENDIANNESS_UNKNOWN
:
718 break; /* Board's decision */
720 g_assert_not_reached();
723 cpu_set_pc(cs
, entry
);
726 * If we are booting Linux then we might need to do so at:
727 * - AArch64 NS EL2 or NS EL1
728 * - AArch32 Secure SVC (EL3)
729 * - AArch32 NS Hyp (EL2)
730 * - AArch32 NS SVC (EL1)
731 * Configure the CPU in the way boot firmware would do to
732 * drop us down to the appropriate level.
734 int target_el
= arm_feature(env
, ARM_FEATURE_EL2
) ? 2 : 1;
738 * AArch64 kernels never boot in secure mode, and we don't
739 * support the secure_board_setup hook for AArch64.
741 assert(!info
->secure_boot
);
742 assert(!info
->secure_board_setup
);
744 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
745 (info
->secure_boot
||
746 (info
->secure_board_setup
&& cs
== first_cpu
))) {
747 /* Start this CPU in Secure SVC */
752 arm_emulate_firmware_reset(cs
, target_el
);
754 if (cs
== first_cpu
) {
755 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
757 cpu_set_pc(cs
, info
->loader_start
);
759 if (!have_dtb(info
)) {
761 set_kernel_args_old(info
, as
);
763 set_kernel_args(info
, as
);
766 } else if (info
->secondary_cpu_reset_hook
) {
767 info
->secondary_cpu_reset_hook(cpu
, info
);
772 arm_rebuild_hflags(env
);
777 static int do_arm_linux_init(Object
*obj
, void *opaque
)
779 if (object_dynamic_cast(obj
, TYPE_ARM_LINUX_BOOT_IF
)) {
780 ARMLinuxBootIf
*albif
= ARM_LINUX_BOOT_IF(obj
);
781 ARMLinuxBootIfClass
*albifc
= ARM_LINUX_BOOT_IF_GET_CLASS(obj
);
782 struct arm_boot_info
*info
= opaque
;
784 if (albifc
->arm_linux_init
) {
785 albifc
->arm_linux_init(albif
, info
->secure_boot
);
791 static ssize_t
arm_load_elf(struct arm_boot_info
*info
, uint64_t *pentry
,
792 uint64_t *lowaddr
, uint64_t *highaddr
,
793 int elf_machine
, AddressSpace
*as
)
806 load_elf_hdr(info
->kernel_filename
, &elf_header
, &elf_is64
, &err
);
809 * If the file is not an ELF file we silently return.
810 * The caller will fall back to try other formats.
817 big_endian
= elf_header
.h64
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
818 info
->endianness
= big_endian
? ARM_ENDIANNESS_BE8
821 big_endian
= elf_header
.h32
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
823 if (bswap32(elf_header
.h32
.e_flags
) & EF_ARM_BE8
) {
824 info
->endianness
= ARM_ENDIANNESS_BE8
;
826 info
->endianness
= ARM_ENDIANNESS_BE32
;
827 /* In BE32, the CPU has a different view of the per-byte
828 * address map than the rest of the system. BE32 ELF files
829 * are organised such that they can be programmed through
830 * the CPU's per-word byte-reversed view of the world. QEMU
831 * however loads ELF files independently of the CPU. So
832 * tell the ELF loader to byte reverse the data for us.
837 info
->endianness
= ARM_ENDIANNESS_LE
;
841 ret
= load_elf_as(info
->kernel_filename
, NULL
, NULL
, NULL
,
842 pentry
, lowaddr
, highaddr
, NULL
, big_endian
, elf_machine
,
845 /* The header loaded but the image didn't */
846 error_report("Couldn't load elf '%s': %s",
847 info
->kernel_filename
, load_elf_strerror(ret
));
854 static uint64_t load_aarch64_image(const char *filename
, hwaddr mem_base
,
855 hwaddr
*entry
, AddressSpace
*as
)
857 hwaddr kernel_load_offset
= KERNEL64_LOAD_ADDR
;
858 uint64_t kernel_size
= 0;
862 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
863 size
= load_image_gzipped_buffer(filename
, LOAD_IMAGE_MAX_GUNZIP_BYTES
,
869 /* Load as raw file otherwise */
870 if (!g_file_get_contents(filename
, (char **)&buffer
, &len
, NULL
)) {
875 /* Unpack the image if it is a EFI zboot image */
876 if (unpack_efi_zboot_image(&buffer
, &size
) < 0) {
882 /* check the arm64 magic header value -- very old kernels may not have it */
883 if (size
> ARM64_MAGIC_OFFSET
+ 4 &&
884 memcmp(buffer
+ ARM64_MAGIC_OFFSET
, "ARM\x64", 4) == 0) {
887 /* The arm64 Image header has text_offset and image_size fields at 8 and
888 * 16 bytes into the Image header, respectively. The text_offset field
889 * is only valid if the image_size is non-zero.
891 memcpy(&hdrvals
, buffer
+ ARM64_TEXT_OFFSET_OFFSET
, sizeof(hdrvals
));
893 kernel_size
= le64_to_cpu(hdrvals
[1]);
895 if (kernel_size
!= 0) {
896 kernel_load_offset
= le64_to_cpu(hdrvals
[0]);
899 * We write our startup "bootloader" at the very bottom of RAM,
900 * so that bit can't be used for the image. Luckily the Image
901 * format specification is that the image requests only an offset
902 * from a 2MB boundary, not an absolute load address. So if the
903 * image requests an offset that might mean it overlaps with the
904 * bootloader, we can just load it starting at 2MB+offset rather
907 if (kernel_load_offset
< BOOTLOADER_MAX_SIZE
) {
908 kernel_load_offset
+= 2 * MiB
;
914 * Kernels before v3.17 don't populate the image_size field, and
915 * raw images have no header. For those our best guess at the size
916 * is the size of the Image file itself.
918 if (kernel_size
== 0) {
922 *entry
= mem_base
+ kernel_load_offset
;
923 rom_add_blob_fixed_as(filename
, buffer
, size
, *entry
, as
);
930 static void arm_setup_direct_kernel_boot(ARMCPU
*cpu
,
931 struct arm_boot_info
*info
)
933 /* Set up for a direct boot of a kernel image file. */
935 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
940 /* Addresses of first byte used and first byte not used by the image */
941 uint64_t image_low_addr
= 0, image_high_addr
= 0;
944 static const ARMInsnFixup
*primary_loader
;
945 uint64_t ram_end
= info
->loader_start
+ info
->ram_size
;
947 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
948 primary_loader
= bootloader_aarch64
;
949 elf_machine
= EM_AARCH64
;
951 primary_loader
= bootloader
;
952 if (!info
->write_board_setup
) {
953 primary_loader
+= BOOTLOADER_NO_BOARD_SETUP_OFFSET
;
955 elf_machine
= EM_ARM
;
958 /* Assume that raw images are linux kernels, and ELF images are not. */
959 kernel_size
= arm_load_elf(info
, &elf_entry
, &image_low_addr
,
960 &image_high_addr
, elf_machine
, as
);
961 if (kernel_size
> 0 && have_dtb(info
)) {
963 * If there is still some room left at the base of RAM, try and put
964 * the DTB there like we do for images loaded with -bios or -pflash.
966 if (image_low_addr
> info
->loader_start
967 || image_high_addr
< info
->loader_start
) {
969 * Set image_low_addr as address limit for arm_load_dtb if it may be
970 * pointing into RAM, otherwise pass '0' (no limit)
972 if (image_low_addr
< info
->loader_start
) {
975 info
->dtb_start
= info
->loader_start
;
976 info
->dtb_limit
= image_low_addr
;
980 if (kernel_size
< 0) {
981 uint64_t loadaddr
= info
->loader_start
+ KERNEL_NOLOAD_ADDR
;
982 kernel_size
= load_uimage_as(info
->kernel_filename
, &entry
, &loadaddr
,
983 &is_linux
, NULL
, NULL
, as
);
984 if (kernel_size
>= 0) {
985 image_low_addr
= loadaddr
;
986 image_high_addr
= image_low_addr
+ kernel_size
;
989 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) && kernel_size
< 0) {
990 kernel_size
= load_aarch64_image(info
->kernel_filename
,
991 info
->loader_start
, &entry
, as
);
993 if (kernel_size
>= 0) {
994 image_low_addr
= entry
;
995 image_high_addr
= image_low_addr
+ kernel_size
;
997 } else if (kernel_size
< 0) {
999 entry
= info
->loader_start
+ KERNEL_LOAD_ADDR
;
1000 kernel_size
= load_image_targphys_as(info
->kernel_filename
, entry
,
1001 ram_end
- KERNEL_LOAD_ADDR
, as
);
1003 if (kernel_size
>= 0) {
1004 image_low_addr
= entry
;
1005 image_high_addr
= image_low_addr
+ kernel_size
;
1008 if (kernel_size
< 0) {
1009 error_report("could not load kernel '%s'", info
->kernel_filename
);
1013 if (kernel_size
> info
->ram_size
) {
1014 error_report("kernel '%s' is too large to fit in RAM "
1015 "(kernel size %zd, RAM size %" PRId64
")",
1016 info
->kernel_filename
, kernel_size
, info
->ram_size
);
1020 info
->entry
= entry
;
1023 * We want to put the initrd far enough into RAM that when the
1024 * kernel is uncompressed it will not clobber the initrd. However
1025 * on boards without much RAM we must ensure that we still leave
1026 * enough room for a decent sized initrd, and on boards with large
1027 * amounts of RAM we must avoid the initrd being so far up in RAM
1028 * that it is outside lowmem and inaccessible to the kernel.
1029 * So for boards with less than 256MB of RAM we put the initrd
1030 * halfway into RAM, and for boards with 256MB of RAM or more we put
1031 * the initrd at 128MB.
1032 * We also refuse to put the initrd somewhere that will definitely
1033 * overlay the kernel we just loaded, though for kernel formats which
1034 * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1035 * we might still make a bad choice here.
1037 info
->initrd_start
= info
->loader_start
+
1038 MIN(info
->ram_size
/ 2, 128 * MiB
);
1039 if (image_high_addr
) {
1040 info
->initrd_start
= MAX(info
->initrd_start
, image_high_addr
);
1042 info
->initrd_start
= TARGET_PAGE_ALIGN(info
->initrd_start
);
1045 uint32_t fixupcontext
[FIXUP_MAX
];
1047 if (info
->initrd_filename
) {
1049 if (info
->initrd_start
>= ram_end
) {
1050 error_report("not enough space after kernel to load initrd");
1054 initrd_size
= load_ramdisk_as(info
->initrd_filename
,
1056 ram_end
- info
->initrd_start
, as
);
1057 if (initrd_size
< 0) {
1058 initrd_size
= load_image_targphys_as(info
->initrd_filename
,
1064 if (initrd_size
< 0) {
1065 error_report("could not load initrd '%s'",
1066 info
->initrd_filename
);
1069 if (info
->initrd_start
+ initrd_size
> ram_end
) {
1070 error_report("could not load initrd '%s': "
1071 "too big to fit into RAM after the kernel",
1072 info
->initrd_filename
);
1078 info
->initrd_size
= initrd_size
;
1080 fixupcontext
[FIXUP_BOARDID
] = info
->board_id
;
1081 fixupcontext
[FIXUP_BOARD_SETUP
] = info
->board_setup_addr
;
1084 * for device tree boot, we pass the DTB directly in r2. Otherwise
1085 * we point to the kernel args.
1087 if (have_dtb(info
)) {
1090 if (elf_machine
== EM_AARCH64
) {
1092 * Some AArch64 kernels on early bootup map the fdt region as
1094 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1096 * Let's play safe and prealign it to 2MB to give us some space.
1101 * Some 32bit kernels will trash anything in the 4K page the
1102 * initrd ends in, so make sure the DTB isn't caught up in that.
1107 /* Place the DTB after the initrd in memory with alignment. */
1108 info
->dtb_start
= QEMU_ALIGN_UP(info
->initrd_start
+ initrd_size
,
1110 if (info
->dtb_start
>= ram_end
) {
1111 error_report("Not enough space for DTB after kernel/initrd");
1114 fixupcontext
[FIXUP_ARGPTR_LO
] = info
->dtb_start
;
1115 fixupcontext
[FIXUP_ARGPTR_HI
] = info
->dtb_start
>> 32;
1117 fixupcontext
[FIXUP_ARGPTR_LO
] =
1118 info
->loader_start
+ KERNEL_ARGS_ADDR
;
1119 fixupcontext
[FIXUP_ARGPTR_HI
] =
1120 (info
->loader_start
+ KERNEL_ARGS_ADDR
) >> 32;
1121 if (info
->ram_size
>= 4 * GiB
) {
1122 error_report("RAM size must be less than 4GB to boot"
1123 " Linux kernel using ATAGS (try passing a device tree"
1128 fixupcontext
[FIXUP_ENTRYPOINT_LO
] = entry
;
1129 fixupcontext
[FIXUP_ENTRYPOINT_HI
] = entry
>> 32;
1131 arm_write_bootloader("bootloader", as
, info
->loader_start
,
1132 primary_loader
, fixupcontext
);
1134 if (info
->write_board_setup
) {
1135 info
->write_board_setup(cpu
, info
);
1139 * Notify devices which need to fake up firmware initialization
1140 * that we're doing a direct kernel boot.
1142 object_child_foreach_recursive(object_get_root(),
1143 do_arm_linux_init
, info
);
1145 info
->is_linux
= is_linux
;
1147 for (cs
= first_cpu
; cs
; cs
= CPU_NEXT(cs
)) {
1148 ARM_CPU(cs
)->env
.boot_info
= info
;
1152 static void arm_setup_firmware_boot(ARMCPU
*cpu
, struct arm_boot_info
*info
)
1154 /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1156 if (have_dtb(info
)) {
1158 * If we have a device tree blob, but no kernel to supply it to (or
1159 * the kernel is supposed to be loaded by the bootloader), copy the
1160 * DTB to the base of RAM for the bootloader to pick up.
1162 info
->dtb_start
= info
->loader_start
;
1165 if (info
->kernel_filename
) {
1167 bool try_decompressing_kernel
;
1169 fw_cfg
= fw_cfg_find();
1172 error_report("This machine type does not support loading both "
1173 "a guest firmware/BIOS image and a guest kernel at "
1174 "the same time. You should change your QEMU command "
1175 "line to specify one or the other, but not both.");
1179 try_decompressing_kernel
= arm_feature(&cpu
->env
,
1180 ARM_FEATURE_AARCH64
);
1183 * Expose the kernel, the command line, and the initrd in fw_cfg.
1184 * We don't process them here at all, it's all left to the
1187 load_image_to_fw_cfg(fw_cfg
,
1188 FW_CFG_KERNEL_SIZE
, FW_CFG_KERNEL_DATA
,
1189 info
->kernel_filename
,
1190 try_decompressing_kernel
);
1191 load_image_to_fw_cfg(fw_cfg
,
1192 FW_CFG_INITRD_SIZE
, FW_CFG_INITRD_DATA
,
1193 info
->initrd_filename
, false);
1195 if (info
->kernel_cmdline
) {
1196 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
,
1197 strlen(info
->kernel_cmdline
) + 1);
1198 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
,
1199 info
->kernel_cmdline
);
1204 * We will start from address 0 (typically a boot ROM image) in the
1205 * same way as hardware. Leave env->boot_info NULL, so that
1206 * do_cpu_reset() knows it does not need to alter the PC on reset.
1210 void arm_load_kernel(ARMCPU
*cpu
, MachineState
*ms
, struct arm_boot_info
*info
)
1213 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1215 CPUARMState
*env
= &cpu
->env
;
1219 * CPU objects (unlike devices) are not automatically reset on system
1220 * reset, so we must always register a handler to do so. If we're
1221 * actually loading a kernel, the handler is also responsible for
1222 * arranging that we start it correctly.
1224 for (cs
= first_cpu
; cs
; cs
= CPU_NEXT(cs
)) {
1225 qemu_register_reset(do_cpu_reset
, ARM_CPU(cs
));
1230 * The board code is not supposed to set secure_board_setup unless
1231 * running its code in secure mode is actually possible, and KVM
1232 * doesn't support secure.
1234 assert(!(info
->secure_board_setup
&& kvm_enabled()));
1235 info
->kernel_filename
= ms
->kernel_filename
;
1236 info
->kernel_cmdline
= ms
->kernel_cmdline
;
1237 info
->initrd_filename
= ms
->initrd_filename
;
1238 info
->dtb_filename
= ms
->dtb
;
1239 info
->dtb_limit
= 0;
1241 /* Load the kernel. */
1242 if (!info
->kernel_filename
|| info
->firmware_loaded
) {
1243 arm_setup_firmware_boot(cpu
, info
);
1245 arm_setup_direct_kernel_boot(cpu
, info
);
1249 * Disable the PSCI conduit if it is set up to target the same
1250 * or a lower EL than the one we're going to start the guest code in.
1251 * This logic needs to agree with the code in do_cpu_reset() which
1252 * decides whether we're going to boot the guest in the highest
1253 * supported exception level or in a lower one.
1257 * If PSCI is enabled, then SMC calls all go to the PSCI handler and
1258 * are never emulated to trap into guest code. It therefore does not
1259 * make sense for the board to have a setup code fragment that runs
1260 * in Secure, because this will probably need to itself issue an SMC of some
1261 * kind as part of its operation.
1263 assert(info
->psci_conduit
== QEMU_PSCI_CONDUIT_DISABLED
||
1264 !info
->secure_board_setup
);
1266 /* Boot into highest supported EL ... */
1267 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
1269 } else if (arm_feature(env
, ARM_FEATURE_EL2
)) {
1274 /* ...except that if we're booting Linux we adjust the EL we boot into */
1275 if (info
->is_linux
&& !info
->secure_boot
) {
1276 boot_el
= arm_feature(env
, ARM_FEATURE_EL2
) ? 2 : 1;
1279 if ((info
->psci_conduit
== QEMU_PSCI_CONDUIT_HVC
&& boot_el
>= 2) ||
1280 (info
->psci_conduit
== QEMU_PSCI_CONDUIT_SMC
&& boot_el
== 3)) {
1281 info
->psci_conduit
= QEMU_PSCI_CONDUIT_DISABLED
;
1284 if (info
->psci_conduit
!= QEMU_PSCI_CONDUIT_DISABLED
) {
1285 for (cs
= first_cpu
; cs
; cs
= CPU_NEXT(cs
)) {
1286 Object
*cpuobj
= OBJECT(cs
);
1288 object_property_set_int(cpuobj
, "psci-conduit", info
->psci_conduit
,
1291 * Secondary CPUs start in PSCI powered-down state. Like the
1292 * code in do_cpu_reset(), we assume first_cpu is the primary
1295 if (cs
!= first_cpu
) {
1296 object_property_set_bool(cpuobj
, "start-powered-off", true,
1302 if (info
->psci_conduit
== QEMU_PSCI_CONDUIT_DISABLED
&&
1303 info
->is_linux
&& nb_cpus
> 1) {
1305 * We're booting Linux but not using PSCI, so for SMP we need
1306 * to write a custom secondary CPU boot loader stub, and arrange
1307 * for the secondary CPU reset to make the accompanying initialization.
1309 if (!info
->secondary_cpu_reset_hook
) {
1310 info
->secondary_cpu_reset_hook
= default_reset_secondary
;
1312 if (!info
->write_secondary_boot
) {
1313 info
->write_secondary_boot
= default_write_secondary
;
1315 info
->write_secondary_boot(cpu
, info
);
1318 * No secondary boot stub; don't use the reset hook that would
1319 * have set the CPU up to call it
1321 info
->write_secondary_boot
= NULL
;
1322 info
->secondary_cpu_reset_hook
= NULL
;
1326 * arm_load_dtb() may add a PSCI node so it must be called after we have
1327 * decided whether to enable PSCI and set the psci-conduit CPU properties.
1329 if (!info
->skip_dtb_autoload
&& have_dtb(info
)) {
1330 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
, ms
) < 0) {
1336 static const TypeInfo arm_linux_boot_if_info
= {
1337 .name
= TYPE_ARM_LINUX_BOOT_IF
,
1338 .parent
= TYPE_INTERFACE
,
1339 .class_size
= sizeof(ARMLinuxBootIfClass
),
1342 static void arm_linux_boot_register_types(void)
1344 type_register_static(&arm_linux_boot_if_info
);
1347 type_init(arm_linux_boot_register_types
)