2 * ARM Generic Interrupt Controller using KVM in-kernel support
4 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5 * Written by Pavel Fedin
6 * Based on vGICv2 code by Peter Maydell
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation, either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "qemu/error-report.h"
26 #include "qemu/module.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/runstate.h"
30 #include "gicv3_internal.h"
31 #include "vgic_common.h"
32 #include "migration/blocker.h"
33 #include "qom/object.h"
34 #include "target/arm/cpregs.h"
37 #ifdef DEBUG_GICV3_KVM
38 #define DPRINTF(fmt, ...) \
39 do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
41 #define DPRINTF(fmt, ...) \
45 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
46 typedef struct KVMARMGICv3Class KVMARMGICv3Class
;
47 /* This is reusing the GICv3State typedef from ARM_GICV3_ITS_COMMON */
48 DECLARE_OBJ_CHECKERS(GICv3State
, KVMARMGICv3Class
,
49 KVM_ARM_GICV3
, TYPE_KVM_ARM_GICV3
)
51 #define KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2) \
52 (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
53 ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
54 ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
55 ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
56 ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
59 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
60 #define ICC_BPR0_EL1 \
61 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
62 #define ICC_AP0R_EL1(n) \
63 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
64 #define ICC_AP1R_EL1(n) \
65 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
66 #define ICC_BPR1_EL1 \
67 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
68 #define ICC_CTLR_EL1 \
69 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
71 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
72 #define ICC_IGRPEN0_EL1 \
73 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
74 #define ICC_IGRPEN1_EL1 \
75 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
77 struct KVMARMGICv3Class
{
78 ARMGICv3CommonClass parent_class
;
79 DeviceRealize parent_realize
;
80 ResettablePhases parent_phases
;
83 static void kvm_arm_gicv3_set_irq(void *opaque
, int irq
, int level
)
85 GICv3State
*s
= (GICv3State
*)opaque
;
87 kvm_arm_gic_set_irq(s
->num_irq
, irq
, level
);
90 #define KVM_VGIC_ATTR(reg, typer) \
91 ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
93 static inline void kvm_gicd_access(GICv3State
*s
, int offset
,
94 uint32_t *val
, bool write
)
96 kvm_device_access(s
->dev_fd
, KVM_DEV_ARM_VGIC_GRP_DIST_REGS
,
97 KVM_VGIC_ATTR(offset
, 0),
98 val
, write
, &error_abort
);
101 static inline void kvm_gicr_access(GICv3State
*s
, int offset
, int cpu
,
102 uint32_t *val
, bool write
)
104 kvm_device_access(s
->dev_fd
, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS
,
105 KVM_VGIC_ATTR(offset
, s
->cpu
[cpu
].gicr_typer
),
106 val
, write
, &error_abort
);
109 static inline void kvm_gicc_access(GICv3State
*s
, uint64_t reg
, int cpu
,
110 uint64_t *val
, bool write
)
112 kvm_device_access(s
->dev_fd
, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS
,
113 KVM_VGIC_ATTR(reg
, s
->cpu
[cpu
].gicr_typer
),
114 val
, write
, &error_abort
);
117 static inline void kvm_gic_line_level_access(GICv3State
*s
, int irq
, int cpu
,
118 uint32_t *val
, bool write
)
120 kvm_device_access(s
->dev_fd
, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO
,
121 KVM_VGIC_ATTR(irq
, s
->cpu
[cpu
].gicr_typer
) |
122 (VGIC_LEVEL_INFO_LINE_LEVEL
<<
123 KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT
),
124 val
, write
, &error_abort
);
127 /* Loop through each distributor IRQ related register; since bits
128 * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
129 * is enabled, we skip those.
131 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
132 for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
134 static void kvm_dist_get_priority(GICv3State
*s
, uint32_t offset
, uint8_t *bmp
)
136 uint32_t reg
, *field
;
139 /* For the KVM GICv3, affinity routing is always enabled, and the first 8
140 * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
141 * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
142 * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
145 field
= (uint32_t *)(bmp
+ GIC_INTERNAL
);
146 offset
+= (GIC_INTERNAL
* 8) / 8;
147 for_each_dist_irq_reg(irq
, s
->num_irq
, 8) {
148 kvm_gicd_access(s
, offset
, ®
, false);
155 static void kvm_dist_put_priority(GICv3State
*s
, uint32_t offset
, uint8_t *bmp
)
157 uint32_t reg
, *field
;
160 /* For the KVM GICv3, affinity routing is always enabled, and the first 8
161 * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
162 * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
163 * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
166 field
= (uint32_t *)(bmp
+ GIC_INTERNAL
);
167 offset
+= (GIC_INTERNAL
* 8) / 8;
168 for_each_dist_irq_reg(irq
, s
->num_irq
, 8) {
170 kvm_gicd_access(s
, offset
, ®
, true);
176 static void kvm_dist_get_edge_trigger(GICv3State
*s
, uint32_t offset
,
182 /* For the KVM GICv3, affinity routing is always enabled, and the first 2
183 * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
184 * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
185 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
186 * This matches the for_each_dist_irq_reg() macro which also skips the
187 * first GIC_INTERNAL irqs.
189 offset
+= (GIC_INTERNAL
* 2) / 8;
190 for_each_dist_irq_reg(irq
, s
->num_irq
, 2) {
191 kvm_gicd_access(s
, offset
, ®
, false);
192 reg
= half_unshuffle32(reg
>> 1);
196 *gic_bmp_ptr32(bmp
, irq
) |= reg
;
201 static void kvm_dist_put_edge_trigger(GICv3State
*s
, uint32_t offset
,
207 /* For the KVM GICv3, affinity routing is always enabled, and the first 2
208 * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
209 * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
210 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
211 * This matches the for_each_dist_irq_reg() macro which also skips the
212 * first GIC_INTERNAL irqs.
214 offset
+= (GIC_INTERNAL
* 2) / 8;
215 for_each_dist_irq_reg(irq
, s
->num_irq
, 2) {
216 reg
= *gic_bmp_ptr32(bmp
, irq
);
218 reg
= (reg
& 0xffff0000) >> 16;
222 reg
= half_shuffle32(reg
) << 1;
223 kvm_gicd_access(s
, offset
, ®
, true);
228 static void kvm_gic_get_line_level_bmp(GICv3State
*s
, uint32_t *bmp
)
233 for_each_dist_irq_reg(irq
, s
->num_irq
, 1) {
234 kvm_gic_line_level_access(s
, irq
, 0, ®
, false);
235 *gic_bmp_ptr32(bmp
, irq
) = reg
;
239 static void kvm_gic_put_line_level_bmp(GICv3State
*s
, uint32_t *bmp
)
244 for_each_dist_irq_reg(irq
, s
->num_irq
, 1) {
245 reg
= *gic_bmp_ptr32(bmp
, irq
);
246 kvm_gic_line_level_access(s
, irq
, 0, ®
, true);
250 /* Read a bitmap register group from the kernel VGIC. */
251 static void kvm_dist_getbmp(GICv3State
*s
, uint32_t offset
, uint32_t *bmp
)
256 /* For the KVM GICv3, affinity routing is always enabled, and the
257 * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
258 * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
259 * functionality is replaced by the GICR registers. It doesn't need to sync
260 * them. So it should increase the offset to skip GIC_INTERNAL irqs.
261 * This matches the for_each_dist_irq_reg() macro which also skips the
262 * first GIC_INTERNAL irqs.
264 offset
+= (GIC_INTERNAL
* 1) / 8;
265 for_each_dist_irq_reg(irq
, s
->num_irq
, 1) {
266 kvm_gicd_access(s
, offset
, ®
, false);
267 *gic_bmp_ptr32(bmp
, irq
) = reg
;
272 static void kvm_dist_putbmp(GICv3State
*s
, uint32_t offset
,
273 uint32_t clroffset
, uint32_t *bmp
)
278 /* For the KVM GICv3, affinity routing is always enabled, and the
279 * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
280 * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
281 * functionality is replaced by the GICR registers. It doesn't need to sync
282 * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
283 * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
284 * first GIC_INTERNAL irqs.
286 offset
+= (GIC_INTERNAL
* 1) / 8;
287 if (clroffset
!= 0) {
288 clroffset
+= (GIC_INTERNAL
* 1) / 8;
291 for_each_dist_irq_reg(irq
, s
->num_irq
, 1) {
292 /* If this bitmap is a set/clear register pair, first write to the
293 * clear-reg to clear all bits before using the set-reg to write
296 if (clroffset
!= 0) {
298 kvm_gicd_access(s
, clroffset
, ®
, true);
301 reg
= *gic_bmp_ptr32(bmp
, irq
);
302 kvm_gicd_access(s
, offset
, ®
, true);
307 static void kvm_arm_gicv3_check(GICv3State
*s
)
312 /* Sanity checking s->num_irq */
313 kvm_gicd_access(s
, GICD_TYPER
, ®
, false);
314 num_irq
= ((reg
& 0x1f) + 1) * 32;
316 if (num_irq
< s
->num_irq
) {
317 error_report("Model requests %u IRQs, but kernel supports max %u",
318 s
->num_irq
, num_irq
);
323 static void kvm_arm_gicv3_put(GICv3State
*s
)
325 uint32_t regl
, regh
, reg
;
326 uint64_t reg64
, redist_typer
;
329 kvm_arm_gicv3_check(s
);
331 kvm_gicr_access(s
, GICR_TYPER
, 0, ®l
, false);
332 kvm_gicr_access(s
, GICR_TYPER
+ 4, 0, ®h
, false);
333 redist_typer
= ((uint64_t)regh
<< 32) | regl
;
336 kvm_gicd_access(s
, GICD_CTLR
, ®
, true);
338 if (redist_typer
& GICR_TYPER_PLPIS
) {
340 * Restore base addresses before LPIs are potentially enabled by
343 for (ncpu
= 0; ncpu
< s
->num_cpu
; ncpu
++) {
344 GICv3CPUState
*c
= &s
->cpu
[ncpu
];
346 reg64
= c
->gicr_propbaser
;
347 regl
= (uint32_t)reg64
;
348 kvm_gicr_access(s
, GICR_PROPBASER
, ncpu
, ®l
, true);
349 regh
= (uint32_t)(reg64
>> 32);
350 kvm_gicr_access(s
, GICR_PROPBASER
+ 4, ncpu
, ®h
, true);
352 reg64
= c
->gicr_pendbaser
;
353 regl
= (uint32_t)reg64
;
354 kvm_gicr_access(s
, GICR_PENDBASER
, ncpu
, ®l
, true);
355 regh
= (uint32_t)(reg64
>> 32);
356 kvm_gicr_access(s
, GICR_PENDBASER
+ 4, ncpu
, ®h
, true);
360 /* Redistributor state (one per CPU) */
362 for (ncpu
= 0; ncpu
< s
->num_cpu
; ncpu
++) {
363 GICv3CPUState
*c
= &s
->cpu
[ncpu
];
366 kvm_gicr_access(s
, GICR_CTLR
, ncpu
, ®
, true);
368 reg
= c
->gicr_statusr
[GICV3_NS
];
369 kvm_gicr_access(s
, GICR_STATUSR
, ncpu
, ®
, true);
372 kvm_gicr_access(s
, GICR_WAKER
, ncpu
, ®
, true);
374 reg
= c
->gicr_igroupr0
;
375 kvm_gicr_access(s
, GICR_IGROUPR0
, ncpu
, ®
, true);
378 kvm_gicr_access(s
, GICR_ICENABLER0
, ncpu
, ®
, true);
379 reg
= c
->gicr_ienabler0
;
380 kvm_gicr_access(s
, GICR_ISENABLER0
, ncpu
, ®
, true);
382 /* Restore config before pending so we treat level/edge correctly */
383 reg
= half_shuffle32(c
->edge_trigger
>> 16) << 1;
384 kvm_gicr_access(s
, GICR_ICFGR1
, ncpu
, ®
, true);
387 kvm_gic_line_level_access(s
, 0, ncpu
, ®
, true);
390 kvm_gicr_access(s
, GICR_ICPENDR0
, ncpu
, ®
, true);
391 reg
= c
->gicr_ipendr0
;
392 kvm_gicr_access(s
, GICR_ISPENDR0
, ncpu
, ®
, true);
395 kvm_gicr_access(s
, GICR_ICACTIVER0
, ncpu
, ®
, true);
396 reg
= c
->gicr_iactiver0
;
397 kvm_gicr_access(s
, GICR_ISACTIVER0
, ncpu
, ®
, true);
399 for (i
= 0; i
< GIC_INTERNAL
; i
+= 4) {
400 reg
= c
->gicr_ipriorityr
[i
] |
401 (c
->gicr_ipriorityr
[i
+ 1] << 8) |
402 (c
->gicr_ipriorityr
[i
+ 2] << 16) |
403 (c
->gicr_ipriorityr
[i
+ 3] << 24);
404 kvm_gicr_access(s
, GICR_IPRIORITYR
+ i
, ncpu
, ®
, true);
408 /* Distributor state (shared between all CPUs */
409 reg
= s
->gicd_statusr
[GICV3_NS
];
410 kvm_gicd_access(s
, GICD_STATUSR
, ®
, true);
412 /* s->enable bitmap -> GICD_ISENABLERn */
413 kvm_dist_putbmp(s
, GICD_ISENABLER
, GICD_ICENABLER
, s
->enabled
);
415 /* s->group bitmap -> GICD_IGROUPRn */
416 kvm_dist_putbmp(s
, GICD_IGROUPR
, 0, s
->group
);
418 /* Restore targets before pending to ensure the pending state is set on
419 * the appropriate CPU interfaces in the kernel
422 /* s->gicd_irouter[irq] -> GICD_IROUTERn
423 * We can't use kvm_dist_put() here because the registers are 64-bit
425 for (i
= GIC_INTERNAL
; i
< s
->num_irq
; i
++) {
428 offset
= GICD_IROUTER
+ (sizeof(uint32_t) * i
);
429 reg
= (uint32_t)s
->gicd_irouter
[i
];
430 kvm_gicd_access(s
, offset
, ®
, true);
432 offset
= GICD_IROUTER
+ (sizeof(uint32_t) * i
) + 4;
433 reg
= (uint32_t)(s
->gicd_irouter
[i
] >> 32);
434 kvm_gicd_access(s
, offset
, ®
, true);
437 /* s->trigger bitmap -> GICD_ICFGRn
438 * (restore configuration registers before pending IRQs so we treat
439 * level/edge correctly)
441 kvm_dist_put_edge_trigger(s
, GICD_ICFGR
, s
->edge_trigger
);
443 /* s->level bitmap -> line_level */
444 kvm_gic_put_line_level_bmp(s
, s
->level
);
446 /* s->pending bitmap -> GICD_ISPENDRn */
447 kvm_dist_putbmp(s
, GICD_ISPENDR
, GICD_ICPENDR
, s
->pending
);
449 /* s->active bitmap -> GICD_ISACTIVERn */
450 kvm_dist_putbmp(s
, GICD_ISACTIVER
, GICD_ICACTIVER
, s
->active
);
452 /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
453 kvm_dist_put_priority(s
, GICD_IPRIORITYR
, s
->gicd_ipriority
);
455 /* CPU Interface state (one per CPU) */
457 for (ncpu
= 0; ncpu
< s
->num_cpu
; ncpu
++) {
458 GICv3CPUState
*c
= &s
->cpu
[ncpu
];
461 kvm_gicc_access(s
, ICC_SRE_EL1
, ncpu
, &c
->icc_sre_el1
, true);
462 kvm_gicc_access(s
, ICC_CTLR_EL1
, ncpu
,
463 &c
->icc_ctlr_el1
[GICV3_NS
], true);
464 kvm_gicc_access(s
, ICC_IGRPEN0_EL1
, ncpu
,
465 &c
->icc_igrpen
[GICV3_G0
], true);
466 kvm_gicc_access(s
, ICC_IGRPEN1_EL1
, ncpu
,
467 &c
->icc_igrpen
[GICV3_G1NS
], true);
468 kvm_gicc_access(s
, ICC_PMR_EL1
, ncpu
, &c
->icc_pmr_el1
, true);
469 kvm_gicc_access(s
, ICC_BPR0_EL1
, ncpu
, &c
->icc_bpr
[GICV3_G0
], true);
470 kvm_gicc_access(s
, ICC_BPR1_EL1
, ncpu
, &c
->icc_bpr
[GICV3_G1NS
], true);
472 num_pri_bits
= ((c
->icc_ctlr_el1
[GICV3_NS
] &
473 ICC_CTLR_EL1_PRIBITS_MASK
) >>
474 ICC_CTLR_EL1_PRIBITS_SHIFT
) + 1;
476 switch (num_pri_bits
) {
478 reg64
= c
->icc_apr
[GICV3_G0
][3];
479 kvm_gicc_access(s
, ICC_AP0R_EL1(3), ncpu
, ®64
, true);
480 reg64
= c
->icc_apr
[GICV3_G0
][2];
481 kvm_gicc_access(s
, ICC_AP0R_EL1(2), ncpu
, ®64
, true);
484 reg64
= c
->icc_apr
[GICV3_G0
][1];
485 kvm_gicc_access(s
, ICC_AP0R_EL1(1), ncpu
, ®64
, true);
488 reg64
= c
->icc_apr
[GICV3_G0
][0];
489 kvm_gicc_access(s
, ICC_AP0R_EL1(0), ncpu
, ®64
, true);
492 switch (num_pri_bits
) {
494 reg64
= c
->icc_apr
[GICV3_G1NS
][3];
495 kvm_gicc_access(s
, ICC_AP1R_EL1(3), ncpu
, ®64
, true);
496 reg64
= c
->icc_apr
[GICV3_G1NS
][2];
497 kvm_gicc_access(s
, ICC_AP1R_EL1(2), ncpu
, ®64
, true);
500 reg64
= c
->icc_apr
[GICV3_G1NS
][1];
501 kvm_gicc_access(s
, ICC_AP1R_EL1(1), ncpu
, ®64
, true);
504 reg64
= c
->icc_apr
[GICV3_G1NS
][0];
505 kvm_gicc_access(s
, ICC_AP1R_EL1(0), ncpu
, ®64
, true);
510 static void kvm_arm_gicv3_get(GICv3State
*s
)
512 uint32_t regl
, regh
, reg
;
513 uint64_t reg64
, redist_typer
;
516 kvm_arm_gicv3_check(s
);
518 kvm_gicr_access(s
, GICR_TYPER
, 0, ®l
, false);
519 kvm_gicr_access(s
, GICR_TYPER
+ 4, 0, ®h
, false);
520 redist_typer
= ((uint64_t)regh
<< 32) | regl
;
522 kvm_gicd_access(s
, GICD_CTLR
, ®
, false);
525 /* Redistributor state (one per CPU) */
527 for (ncpu
= 0; ncpu
< s
->num_cpu
; ncpu
++) {
528 GICv3CPUState
*c
= &s
->cpu
[ncpu
];
530 kvm_gicr_access(s
, GICR_CTLR
, ncpu
, ®
, false);
533 kvm_gicr_access(s
, GICR_STATUSR
, ncpu
, ®
, false);
534 c
->gicr_statusr
[GICV3_NS
] = reg
;
536 kvm_gicr_access(s
, GICR_WAKER
, ncpu
, ®
, false);
539 kvm_gicr_access(s
, GICR_IGROUPR0
, ncpu
, ®
, false);
540 c
->gicr_igroupr0
= reg
;
541 kvm_gicr_access(s
, GICR_ISENABLER0
, ncpu
, ®
, false);
542 c
->gicr_ienabler0
= reg
;
543 kvm_gicr_access(s
, GICR_ICFGR1
, ncpu
, ®
, false);
544 c
->edge_trigger
= half_unshuffle32(reg
>> 1) << 16;
545 kvm_gic_line_level_access(s
, 0, ncpu
, ®
, false);
547 kvm_gicr_access(s
, GICR_ISPENDR0
, ncpu
, ®
, false);
548 c
->gicr_ipendr0
= reg
;
549 kvm_gicr_access(s
, GICR_ISACTIVER0
, ncpu
, ®
, false);
550 c
->gicr_iactiver0
= reg
;
552 for (i
= 0; i
< GIC_INTERNAL
; i
+= 4) {
553 kvm_gicr_access(s
, GICR_IPRIORITYR
+ i
, ncpu
, ®
, false);
554 c
->gicr_ipriorityr
[i
] = extract32(reg
, 0, 8);
555 c
->gicr_ipriorityr
[i
+ 1] = extract32(reg
, 8, 8);
556 c
->gicr_ipriorityr
[i
+ 2] = extract32(reg
, 16, 8);
557 c
->gicr_ipriorityr
[i
+ 3] = extract32(reg
, 24, 8);
561 if (redist_typer
& GICR_TYPER_PLPIS
) {
562 for (ncpu
= 0; ncpu
< s
->num_cpu
; ncpu
++) {
563 GICv3CPUState
*c
= &s
->cpu
[ncpu
];
565 kvm_gicr_access(s
, GICR_PROPBASER
, ncpu
, ®l
, false);
566 kvm_gicr_access(s
, GICR_PROPBASER
+ 4, ncpu
, ®h
, false);
567 c
->gicr_propbaser
= ((uint64_t)regh
<< 32) | regl
;
569 kvm_gicr_access(s
, GICR_PENDBASER
, ncpu
, ®l
, false);
570 kvm_gicr_access(s
, GICR_PENDBASER
+ 4, ncpu
, ®h
, false);
571 c
->gicr_pendbaser
= ((uint64_t)regh
<< 32) | regl
;
575 /* Distributor state (shared between all CPUs */
577 kvm_gicd_access(s
, GICD_STATUSR
, ®
, false);
578 s
->gicd_statusr
[GICV3_NS
] = reg
;
580 /* GICD_IGROUPRn -> s->group bitmap */
581 kvm_dist_getbmp(s
, GICD_IGROUPR
, s
->group
);
583 /* GICD_ISENABLERn -> s->enabled bitmap */
584 kvm_dist_getbmp(s
, GICD_ISENABLER
, s
->enabled
);
586 /* Line level of irq */
587 kvm_gic_get_line_level_bmp(s
, s
->level
);
588 /* GICD_ISPENDRn -> s->pending bitmap */
589 kvm_dist_getbmp(s
, GICD_ISPENDR
, s
->pending
);
591 /* GICD_ISACTIVERn -> s->active bitmap */
592 kvm_dist_getbmp(s
, GICD_ISACTIVER
, s
->active
);
594 /* GICD_ICFGRn -> s->trigger bitmap */
595 kvm_dist_get_edge_trigger(s
, GICD_ICFGR
, s
->edge_trigger
);
597 /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
598 kvm_dist_get_priority(s
, GICD_IPRIORITYR
, s
->gicd_ipriority
);
600 /* GICD_IROUTERn -> s->gicd_irouter[irq] */
601 for (i
= GIC_INTERNAL
; i
< s
->num_irq
; i
++) {
604 offset
= GICD_IROUTER
+ (sizeof(uint32_t) * i
);
605 kvm_gicd_access(s
, offset
, ®l
, false);
606 offset
= GICD_IROUTER
+ (sizeof(uint32_t) * i
) + 4;
607 kvm_gicd_access(s
, offset
, ®h
, false);
608 s
->gicd_irouter
[i
] = ((uint64_t)regh
<< 32) | regl
;
611 /*****************************************************************
612 * CPU Interface(s) State
615 for (ncpu
= 0; ncpu
< s
->num_cpu
; ncpu
++) {
616 GICv3CPUState
*c
= &s
->cpu
[ncpu
];
619 kvm_gicc_access(s
, ICC_SRE_EL1
, ncpu
, &c
->icc_sre_el1
, false);
620 kvm_gicc_access(s
, ICC_CTLR_EL1
, ncpu
,
621 &c
->icc_ctlr_el1
[GICV3_NS
], false);
622 kvm_gicc_access(s
, ICC_IGRPEN0_EL1
, ncpu
,
623 &c
->icc_igrpen
[GICV3_G0
], false);
624 kvm_gicc_access(s
, ICC_IGRPEN1_EL1
, ncpu
,
625 &c
->icc_igrpen
[GICV3_G1NS
], false);
626 kvm_gicc_access(s
, ICC_PMR_EL1
, ncpu
, &c
->icc_pmr_el1
, false);
627 kvm_gicc_access(s
, ICC_BPR0_EL1
, ncpu
, &c
->icc_bpr
[GICV3_G0
], false);
628 kvm_gicc_access(s
, ICC_BPR1_EL1
, ncpu
, &c
->icc_bpr
[GICV3_G1NS
], false);
629 num_pri_bits
= ((c
->icc_ctlr_el1
[GICV3_NS
] &
630 ICC_CTLR_EL1_PRIBITS_MASK
) >>
631 ICC_CTLR_EL1_PRIBITS_SHIFT
) + 1;
633 switch (num_pri_bits
) {
635 kvm_gicc_access(s
, ICC_AP0R_EL1(3), ncpu
, ®64
, false);
636 c
->icc_apr
[GICV3_G0
][3] = reg64
;
637 kvm_gicc_access(s
, ICC_AP0R_EL1(2), ncpu
, ®64
, false);
638 c
->icc_apr
[GICV3_G0
][2] = reg64
;
641 kvm_gicc_access(s
, ICC_AP0R_EL1(1), ncpu
, ®64
, false);
642 c
->icc_apr
[GICV3_G0
][1] = reg64
;
645 kvm_gicc_access(s
, ICC_AP0R_EL1(0), ncpu
, ®64
, false);
646 c
->icc_apr
[GICV3_G0
][0] = reg64
;
649 switch (num_pri_bits
) {
651 kvm_gicc_access(s
, ICC_AP1R_EL1(3), ncpu
, ®64
, false);
652 c
->icc_apr
[GICV3_G1NS
][3] = reg64
;
653 kvm_gicc_access(s
, ICC_AP1R_EL1(2), ncpu
, ®64
, false);
654 c
->icc_apr
[GICV3_G1NS
][2] = reg64
;
657 kvm_gicc_access(s
, ICC_AP1R_EL1(1), ncpu
, ®64
, false);
658 c
->icc_apr
[GICV3_G1NS
][1] = reg64
;
661 kvm_gicc_access(s
, ICC_AP1R_EL1(0), ncpu
, ®64
, false);
662 c
->icc_apr
[GICV3_G1NS
][0] = reg64
;
667 static void arm_gicv3_icc_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
672 c
= (GICv3CPUState
*)env
->gicv3state
;
677 * Architecturally the reset value of the ICC_BPR registers
678 * is UNKNOWN. We set them all to 0 here; when the kernel
679 * uses these values to program the ICH_VMCR_EL2 fields that
680 * determine the guest-visible ICC_BPR register values, the
681 * hardware's "writing a value less than the minimum sets
682 * the field to the minimum value" behaviour will result in
683 * them effectively resetting to the correct minimum value
686 c
->icc_bpr
[GICV3_G0
] = 0;
687 c
->icc_bpr
[GICV3_G1
] = 0;
688 c
->icc_bpr
[GICV3_G1NS
] = 0;
690 c
->icc_sre_el1
= 0x7;
691 memset(c
->icc_apr
, 0, sizeof(c
->icc_apr
));
692 memset(c
->icc_igrpen
, 0, sizeof(c
->icc_igrpen
));
694 if (s
->migration_blocker
) {
698 /* Initialize to actual HW supported configuration */
699 kvm_device_access(s
->dev_fd
, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS
,
700 KVM_VGIC_ATTR(ICC_CTLR_EL1
, c
->gicr_typer
),
701 &c
->icc_ctlr_el1
[GICV3_NS
], false, &error_abort
);
703 c
->icc_ctlr_el1
[GICV3_S
] = c
->icc_ctlr_el1
[GICV3_NS
];
706 static void kvm_arm_gicv3_reset_hold(Object
*obj
, ResetType type
)
708 GICv3State
*s
= ARM_GICV3_COMMON(obj
);
709 KVMARMGICv3Class
*kgc
= KVM_ARM_GICV3_GET_CLASS(s
);
713 if (kgc
->parent_phases
.hold
) {
714 kgc
->parent_phases
.hold(obj
, type
);
717 if (s
->migration_blocker
) {
718 DPRINTF("Cannot put kernel gic state, no kernel interface\n");
722 kvm_arm_gicv3_put(s
);
726 * CPU interface registers of GIC needs to be reset on CPU reset.
727 * For the calling arm_gicv3_icc_reset() on CPU reset, we register
728 * below ARMCPRegInfo. As we reset the whole cpu interface under single
729 * register reset, we define only one register of CPU interface instead
730 * of defining all the registers.
732 static const ARMCPRegInfo gicv3_cpuif_reginfo
[] = {
733 { .name
= "ICC_CTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
734 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 4,
736 * If ARM_CP_NOP is used, resetfn is not called,
737 * So ARM_CP_NO_RAW is appropriate type.
739 .type
= ARM_CP_NO_RAW
,
741 .readfn
= arm_cp_read_zero
,
742 .writefn
= arm_cp_write_ignore
,
744 * We hang the whole cpu interface reset routine off here
745 * rather than parcelling it out into one little function
748 .resetfn
= arm_gicv3_icc_reset
,
753 * vm_change_state_handler - VM change state callback aiming at flushing
754 * RDIST pending tables into guest RAM
756 * The tables get flushed to guest RAM whenever the VM gets stopped.
758 static void vm_change_state_handler(void *opaque
, bool running
,
761 GICv3State
*s
= (GICv3State
*)opaque
;
769 ret
= kvm_device_access(s
->dev_fd
, KVM_DEV_ARM_VGIC_GRP_CTRL
,
770 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES
,
773 error_report_err(err
);
775 if (ret
< 0 && ret
!= -EFAULT
) {
781 static void kvm_arm_gicv3_realize(DeviceState
*dev
, Error
**errp
)
783 GICv3State
*s
= KVM_ARM_GICV3(dev
);
784 KVMARMGICv3Class
*kgc
= KVM_ARM_GICV3_GET_CLASS(s
);
785 bool multiple_redist_region_allowed
;
786 Error
*local_err
= NULL
;
789 DPRINTF("kvm_arm_gicv3_realize\n");
791 kgc
->parent_realize(dev
, &local_err
);
793 error_propagate(errp
, local_err
);
797 if (s
->revision
!= 3) {
798 error_setg(errp
, "unsupported GIC revision %d for in-kernel GIC",
802 if (s
->security_extn
) {
803 error_setg(errp
, "the in-kernel VGICv3 does not implement the "
804 "security extensions");
808 if (s
->nmi_support
) {
809 error_setg(errp
, "NMI is not supported with the in-kernel GIC");
813 gicv3_init_irqs_and_mmio(s
, kvm_arm_gicv3_set_irq
, NULL
);
815 for (i
= 0; i
< s
->num_cpu
; i
++) {
816 ARMCPU
*cpu
= ARM_CPU(qemu_get_cpu(i
));
818 define_arm_cp_regs(cpu
, gicv3_cpuif_reginfo
);
821 /* Try to create the device via the device control API */
822 s
->dev_fd
= kvm_create_device(kvm_state
, KVM_DEV_TYPE_ARM_VGIC_V3
, false);
824 error_setg_errno(errp
, -s
->dev_fd
, "error creating in-kernel VGIC");
828 multiple_redist_region_allowed
=
829 kvm_device_check_attr(s
->dev_fd
, KVM_DEV_ARM_VGIC_GRP_ADDR
,
830 KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION
);
832 if (!multiple_redist_region_allowed
&& s
->nb_redist_regions
> 1) {
833 error_setg(errp
, "Multiple VGICv3 redistributor regions are not "
834 "supported by this host kernel");
835 error_append_hint(errp
, "A maximum of %d VCPUs can be used",
836 s
->redist_region_count
[0]);
840 kvm_device_access(s
->dev_fd
, KVM_DEV_ARM_VGIC_GRP_NR_IRQS
,
841 0, &s
->num_irq
, true, &error_abort
);
843 /* Tell the kernel to complete VGIC initialization now */
844 kvm_device_access(s
->dev_fd
, KVM_DEV_ARM_VGIC_GRP_CTRL
,
845 KVM_DEV_ARM_VGIC_CTRL_INIT
, NULL
, true, &error_abort
);
847 kvm_arm_register_device(&s
->iomem_dist
, -1, KVM_DEV_ARM_VGIC_GRP_ADDR
,
848 KVM_VGIC_V3_ADDR_TYPE_DIST
, s
->dev_fd
, 0);
850 if (!multiple_redist_region_allowed
) {
851 kvm_arm_register_device(&s
->redist_regions
[0].iomem
, -1,
852 KVM_DEV_ARM_VGIC_GRP_ADDR
,
853 KVM_VGIC_V3_ADDR_TYPE_REDIST
, s
->dev_fd
, 0);
855 /* we register regions in reverse order as "devices" are inserted at
856 * the head of a QSLIST and the list is then popped from the head
857 * onwards by kvm_arm_machine_init_done()
859 for (i
= s
->nb_redist_regions
- 1; i
>= 0; i
--) {
860 /* Address mask made of the rdist region index and count */
861 uint64_t addr_ormask
=
862 i
| ((uint64_t)s
->redist_region_count
[i
] << 52);
864 kvm_arm_register_device(&s
->redist_regions
[i
].iomem
, -1,
865 KVM_DEV_ARM_VGIC_GRP_ADDR
,
866 KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION
,
867 s
->dev_fd
, addr_ormask
);
871 if (kvm_has_gsi_routing()) {
872 /* set up irq routing */
873 for (i
= 0; i
< s
->num_irq
- GIC_INTERNAL
; ++i
) {
874 kvm_irqchip_add_irq_route(kvm_state
, i
, 0, i
);
877 kvm_gsi_routing_allowed
= true;
879 kvm_irqchip_commit_routes(kvm_state
);
882 if (!kvm_device_check_attr(s
->dev_fd
, KVM_DEV_ARM_VGIC_GRP_DIST_REGS
,
884 error_setg(&s
->migration_blocker
, "This operating system kernel does "
885 "not support vGICv3 migration");
886 if (migrate_add_blocker(&s
->migration_blocker
, errp
) < 0) {
890 if (kvm_device_check_attr(s
->dev_fd
, KVM_DEV_ARM_VGIC_GRP_CTRL
,
891 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES
)) {
892 qemu_add_vm_change_state_handler(vm_change_state_handler
, s
);
896 static void kvm_arm_gicv3_class_init(ObjectClass
*klass
, void *data
)
898 DeviceClass
*dc
= DEVICE_CLASS(klass
);
899 ResettableClass
*rc
= RESETTABLE_CLASS(klass
);
900 ARMGICv3CommonClass
*agcc
= ARM_GICV3_COMMON_CLASS(klass
);
901 KVMARMGICv3Class
*kgc
= KVM_ARM_GICV3_CLASS(klass
);
903 agcc
->pre_save
= kvm_arm_gicv3_get
;
904 agcc
->post_load
= kvm_arm_gicv3_put
;
905 device_class_set_parent_realize(dc
, kvm_arm_gicv3_realize
,
906 &kgc
->parent_realize
);
907 resettable_class_set_parent_phases(rc
, NULL
, kvm_arm_gicv3_reset_hold
, NULL
,
908 &kgc
->parent_phases
);
911 static const TypeInfo kvm_arm_gicv3_info
= {
912 .name
= TYPE_KVM_ARM_GICV3
,
913 .parent
= TYPE_ARM_GICV3_COMMON
,
914 .instance_size
= sizeof(GICv3State
),
915 .class_init
= kvm_arm_gicv3_class_init
,
916 .class_size
= sizeof(KVMARMGICv3Class
),
919 static void kvm_arm_gicv3_register_types(void)
921 type_register_static(&kvm_arm_gicv3_info
);
924 type_init(kvm_arm_gicv3_register_types
)