Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / hw / intc / spapr_xive.c
blob283a6b8fd24e329acb396c081d107b7434ce3286
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/reset.h"
18 #include "migration/vmstate.h"
19 #include "hw/ppc/fdt.h"
20 #include "hw/ppc/spapr.h"
21 #include "hw/ppc/spapr_cpu_core.h"
22 #include "hw/ppc/spapr_xive.h"
23 #include "hw/ppc/xive.h"
24 #include "hw/ppc/xive_regs.h"
25 #include "hw/qdev-properties.h"
26 #include "trace.h"
29 * XIVE Virtualization Controller BAR and Thread Management BAR that we
30 * use for the ESB pages and the TIMA pages
32 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
33 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
36 * The allocation of VP blocks is a complex operation in OPAL and the
37 * VP identifiers have a relation with the number of HW chips, the
38 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
39 * controller model does not have the same constraints and can use a
40 * simple mapping scheme of the CPU vcpu_id
42 * These identifiers are never returned to the OS.
45 #define SPAPR_XIVE_NVT_BASE 0x400
48 * sPAPR NVT and END indexing helpers
50 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
52 return nvt_idx - SPAPR_XIVE_NVT_BASE;
55 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
56 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
58 assert(cpu);
60 if (out_nvt_blk) {
61 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
64 if (out_nvt_blk) {
65 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
69 static int spapr_xive_target_to_nvt(uint32_t target,
70 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
72 PowerPCCPU *cpu = spapr_find_cpu(target);
74 if (!cpu) {
75 return -1;
78 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
79 return 0;
83 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
84 * priorities per CPU
86 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
87 uint32_t *out_server, uint8_t *out_prio)
90 assert(end_blk == SPAPR_XIVE_BLOCK_ID);
92 if (out_server) {
93 *out_server = end_idx >> 3;
96 if (out_prio) {
97 *out_prio = end_idx & 0x7;
99 return 0;
102 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
103 uint8_t *out_end_blk, uint32_t *out_end_idx)
105 assert(cpu);
107 if (out_end_blk) {
108 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
111 if (out_end_idx) {
112 *out_end_idx = (cpu->vcpu_id << 3) + prio;
116 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
117 uint8_t *out_end_blk, uint32_t *out_end_idx)
119 PowerPCCPU *cpu = spapr_find_cpu(target);
121 if (!cpu) {
122 return -1;
125 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
126 return 0;
130 * On sPAPR machines, use a simplified output for the XIVE END
131 * structure dumping only the information related to the OS EQ.
133 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
134 GString *buf)
136 uint64_t qaddr_base = xive_end_qaddr(end);
137 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
138 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
139 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
140 uint32_t qentries = 1 << (qsize + 10);
141 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
142 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
144 g_string_append_printf(buf, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
145 spapr_xive_nvt_to_target(0, nvt),
146 priority, qindex, qentries, qaddr_base, qgen);
148 xive_end_queue_pic_print_info(end, 6, buf);
152 * kvm_irqchip_in_kernel() will cause the compiler to turn this
153 * info a nop if CONFIG_KVM isn't defined.
155 #define spapr_xive_in_kernel(xive) \
156 (kvm_irqchip_in_kernel() && (xive)->fd != -1)
158 static void spapr_xive_pic_print_info(SpaprXive *xive, GString *buf)
160 XiveSource *xsrc = &xive->source;
161 int i;
163 if (spapr_xive_in_kernel(xive)) {
164 Error *local_err = NULL;
166 kvmppc_xive_synchronize_state(xive, &local_err);
167 if (local_err) {
168 error_report_err(local_err);
169 return;
173 g_string_append_printf(buf, " LISN PQ EISN CPU/PRIO EQ\n");
175 for (i = 0; i < xive->nr_irqs; i++) {
176 uint8_t pq = xive_source_esb_get(xsrc, i);
177 XiveEAS *eas = &xive->eat[i];
179 if (!xive_eas_is_valid(eas)) {
180 continue;
183 g_string_append_printf(buf, " %08x %s %c%c%c %s %08x ", i,
184 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
185 pq & XIVE_ESB_VAL_P ? 'P' : '-',
186 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
187 xive_source_is_asserted(xsrc, i) ? 'A' : ' ',
188 xive_eas_is_masked(eas) ? "M" : " ",
189 (int) xive_get_field64(EAS_END_DATA, eas->w));
191 if (!xive_eas_is_masked(eas)) {
192 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
193 XiveEND *end;
195 assert(end_idx < xive->nr_ends);
196 end = &xive->endt[end_idx];
198 if (xive_end_is_valid(end)) {
199 spapr_xive_end_pic_print_info(xive, end, buf);
203 g_string_append_c(buf, '\n');
207 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
209 memory_region_set_enabled(&xive->source.esb_mmio, enable);
210 memory_region_set_enabled(&xive->tm_mmio, enable);
212 /* Disable the END ESBs until a guest OS makes use of them */
213 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
216 static void spapr_xive_tm_write(void *opaque, hwaddr offset,
217 uint64_t value, unsigned size)
219 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
221 xive_tctx_tm_write(XIVE_PRESENTER(opaque), tctx, offset, value, size);
224 static uint64_t spapr_xive_tm_read(void *opaque, hwaddr offset, unsigned size)
226 XiveTCTX *tctx = spapr_cpu_state(POWERPC_CPU(current_cpu))->tctx;
228 return xive_tctx_tm_read(XIVE_PRESENTER(opaque), tctx, offset, size);
231 const MemoryRegionOps spapr_xive_tm_ops = {
232 .read = spapr_xive_tm_read,
233 .write = spapr_xive_tm_write,
234 .endianness = DEVICE_BIG_ENDIAN,
235 .valid = {
236 .min_access_size = 1,
237 .max_access_size = 8,
239 .impl = {
240 .min_access_size = 1,
241 .max_access_size = 8,
245 static void spapr_xive_end_reset(XiveEND *end)
247 memset(end, 0, sizeof(*end));
249 /* switch off the escalation and notification ESBs */
250 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
253 static void spapr_xive_reset(void *dev)
255 SpaprXive *xive = SPAPR_XIVE(dev);
256 int i;
259 * The XiveSource has its own reset handler, which mask off all
260 * IRQs (!P|Q)
263 /* Mask all valid EASs in the IRQ number space. */
264 for (i = 0; i < xive->nr_irqs; i++) {
265 XiveEAS *eas = &xive->eat[i];
266 if (xive_eas_is_valid(eas)) {
267 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
268 } else {
269 eas->w = 0;
273 /* Clear all ENDs */
274 for (i = 0; i < xive->nr_ends; i++) {
275 spapr_xive_end_reset(&xive->endt[i]);
279 static void spapr_xive_instance_init(Object *obj)
281 SpaprXive *xive = SPAPR_XIVE(obj);
283 object_initialize_child(obj, "source", &xive->source, TYPE_XIVE_SOURCE);
285 object_initialize_child(obj, "end_source", &xive->end_source,
286 TYPE_XIVE_END_SOURCE);
288 /* Not connected to the KVM XIVE device */
289 xive->fd = -1;
292 static void spapr_xive_realize(DeviceState *dev, Error **errp)
294 SpaprXive *xive = SPAPR_XIVE(dev);
295 SpaprXiveClass *sxc = SPAPR_XIVE_GET_CLASS(xive);
296 XiveSource *xsrc = &xive->source;
297 XiveENDSource *end_xsrc = &xive->end_source;
298 Error *local_err = NULL;
300 /* Set by spapr_irq_init() */
301 g_assert(xive->nr_irqs);
302 g_assert(xive->nr_ends);
304 sxc->parent_realize(dev, &local_err);
305 if (local_err) {
306 error_propagate(errp, local_err);
307 return;
311 * Initialize the internal sources, for IPIs and virtual devices.
313 object_property_set_int(OBJECT(xsrc), "nr-irqs", xive->nr_irqs,
314 &error_fatal);
315 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(xive), &error_abort);
316 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
317 return;
321 * Initialize the END ESB source
323 object_property_set_int(OBJECT(end_xsrc), "nr-ends", xive->nr_irqs,
324 &error_fatal);
325 object_property_set_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
326 &error_abort);
327 if (!qdev_realize(DEVICE(end_xsrc), NULL, errp)) {
328 return;
331 /* Set the mapping address of the END ESB pages after the source ESBs */
332 xive->end_base = xive->vc_base + xive_source_esb_len(xsrc);
335 * Allocate the routing tables
337 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
338 xive->endt = g_new0(XiveEND, xive->nr_ends);
340 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
341 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
343 qemu_register_reset(spapr_xive_reset, dev);
345 /* TIMA initialization */
346 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &spapr_xive_tm_ops,
347 xive, "xive.tima", 4ull << TM_SHIFT);
350 * Map all regions. These will be enabled or disabled at reset and
351 * can also be overridden by KVM memory regions if active
353 memory_region_add_subregion(get_system_memory(), xive->vc_base,
354 &xsrc->esb_mmio);
355 memory_region_add_subregion(get_system_memory(), xive->end_base,
356 &end_xsrc->esb_mmio);
357 memory_region_add_subregion(get_system_memory(), xive->tm_base,
358 &xive->tm_mmio);
361 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
362 uint32_t eas_idx, XiveEAS *eas)
364 SpaprXive *xive = SPAPR_XIVE(xrtr);
366 if (eas_idx >= xive->nr_irqs) {
367 return -1;
370 *eas = xive->eat[eas_idx];
371 return 0;
374 static int spapr_xive_get_end(XiveRouter *xrtr,
375 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
377 SpaprXive *xive = SPAPR_XIVE(xrtr);
379 if (end_idx >= xive->nr_ends) {
380 return -1;
383 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
384 return 0;
387 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
388 uint32_t end_idx, XiveEND *end,
389 uint8_t word_number)
391 SpaprXive *xive = SPAPR_XIVE(xrtr);
393 if (end_idx >= xive->nr_ends) {
394 return -1;
397 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
398 return 0;
401 static int spapr_xive_get_nvt(XiveRouter *xrtr,
402 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
404 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
405 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
407 if (!cpu) {
408 /* TODO: should we assert() if we can find a NVT ? */
409 return -1;
413 * sPAPR does not maintain a NVT table. Return that the NVT is
414 * valid if we have found a matching CPU
416 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
417 return 0;
420 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
421 uint32_t nvt_idx, XiveNVT *nvt,
422 uint8_t word_number)
425 * We don't need to write back to the NVTs because the sPAPR
426 * machine should never hit a non-scheduled NVT. It should never
427 * get called.
429 g_assert_not_reached();
432 static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
433 uint8_t nvt_blk, uint32_t nvt_idx,
434 bool cam_ignore, uint8_t priority,
435 uint32_t logic_serv, XiveTCTXMatch *match)
437 CPUState *cs;
438 int count = 0;
440 CPU_FOREACH(cs) {
441 PowerPCCPU *cpu = POWERPC_CPU(cs);
442 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
443 int ring;
446 * Skip partially initialized vCPUs. This can happen when
447 * vCPUs are hotplugged.
449 if (!tctx) {
450 continue;
454 * Check the thread context CAM lines and record matches.
456 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
457 cam_ignore, logic_serv);
459 * Save the matching thread interrupt context and follow on to
460 * check for duplicates which are invalid.
462 if (ring != -1) {
463 if (match->tctx) {
464 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
465 "context NVT %x/%x\n", nvt_blk, nvt_idx);
466 return -1;
469 match->ring = ring;
470 match->tctx = tctx;
471 count++;
475 return count;
478 static uint32_t spapr_xive_presenter_get_config(XivePresenter *xptr)
480 uint32_t cfg = 0;
483 * Let's claim GEN1 TIMA format. If running with KVM on P10, the
484 * correct answer is deep in the hardware and not accessible to
485 * us. But it shouldn't matter as it only affects the presenter
486 * as seen by a guest OS.
488 cfg |= XIVE_PRESENTER_GEN1_TIMA_OS;
490 return cfg;
493 static uint8_t spapr_xive_get_block_id(XiveRouter *xrtr)
495 return SPAPR_XIVE_BLOCK_ID;
498 static int spapr_xive_get_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
499 uint8_t *pq)
501 SpaprXive *xive = SPAPR_XIVE(xrtr);
503 assert(SPAPR_XIVE_BLOCK_ID == blk);
505 *pq = xive_source_esb_get(&xive->source, idx);
506 return 0;
509 static int spapr_xive_set_pq(XiveRouter *xrtr, uint8_t blk, uint32_t idx,
510 uint8_t *pq)
512 SpaprXive *xive = SPAPR_XIVE(xrtr);
514 assert(SPAPR_XIVE_BLOCK_ID == blk);
516 *pq = xive_source_esb_set(&xive->source, idx, *pq);
517 return 0;
521 static const VMStateDescription vmstate_spapr_xive_end = {
522 .name = TYPE_SPAPR_XIVE "/end",
523 .version_id = 1,
524 .minimum_version_id = 1,
525 .fields = (const VMStateField []) {
526 VMSTATE_UINT32(w0, XiveEND),
527 VMSTATE_UINT32(w1, XiveEND),
528 VMSTATE_UINT32(w2, XiveEND),
529 VMSTATE_UINT32(w3, XiveEND),
530 VMSTATE_UINT32(w4, XiveEND),
531 VMSTATE_UINT32(w5, XiveEND),
532 VMSTATE_UINT32(w6, XiveEND),
533 VMSTATE_UINT32(w7, XiveEND),
534 VMSTATE_END_OF_LIST()
538 static const VMStateDescription vmstate_spapr_xive_eas = {
539 .name = TYPE_SPAPR_XIVE "/eas",
540 .version_id = 1,
541 .minimum_version_id = 1,
542 .fields = (const VMStateField []) {
543 VMSTATE_UINT64(w, XiveEAS),
544 VMSTATE_END_OF_LIST()
548 static int vmstate_spapr_xive_pre_save(void *opaque)
550 SpaprXive *xive = SPAPR_XIVE(opaque);
552 if (spapr_xive_in_kernel(xive)) {
553 return kvmppc_xive_pre_save(xive);
556 return 0;
560 * Called by the sPAPR IRQ backend 'post_load' method at the machine
561 * level.
563 static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
565 SpaprXive *xive = SPAPR_XIVE(intc);
567 if (spapr_xive_in_kernel(xive)) {
568 return kvmppc_xive_post_load(xive, version_id);
571 return 0;
574 static const VMStateDescription vmstate_spapr_xive = {
575 .name = TYPE_SPAPR_XIVE,
576 .version_id = 1,
577 .minimum_version_id = 1,
578 .pre_save = vmstate_spapr_xive_pre_save,
579 .post_load = NULL, /* handled at the machine level */
580 .fields = (const VMStateField[]) {
581 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
582 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
583 vmstate_spapr_xive_eas, XiveEAS),
584 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
585 vmstate_spapr_xive_end, XiveEND),
586 VMSTATE_END_OF_LIST()
590 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
591 bool lsi, Error **errp)
593 SpaprXive *xive = SPAPR_XIVE(intc);
594 XiveSource *xsrc = &xive->source;
596 assert(lisn < xive->nr_irqs);
598 trace_spapr_xive_claim_irq(lisn, lsi);
600 if (xive_eas_is_valid(&xive->eat[lisn])) {
601 error_setg(errp, "IRQ %d is not free", lisn);
602 return -EBUSY;
606 * Set default values when allocating an IRQ number
608 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
609 if (lsi) {
610 xive_source_irq_set_lsi(xsrc, lisn);
613 if (spapr_xive_in_kernel(xive)) {
614 return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
617 return 0;
620 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
622 SpaprXive *xive = SPAPR_XIVE(intc);
623 assert(lisn < xive->nr_irqs);
625 trace_spapr_xive_free_irq(lisn);
627 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
630 static Property spapr_xive_properties[] = {
631 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
632 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
633 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
634 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
635 DEFINE_PROP_UINT8("hv-prio", SpaprXive, hv_prio, 7),
636 DEFINE_PROP_END_OF_LIST(),
639 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
640 PowerPCCPU *cpu, Error **errp)
642 SpaprXive *xive = SPAPR_XIVE(intc);
643 Object *obj;
644 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
646 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(xive), errp);
647 if (!obj) {
648 return -1;
651 spapr_cpu->tctx = XIVE_TCTX(obj);
652 return 0;
655 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
657 uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
658 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
661 static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
662 PowerPCCPU *cpu)
664 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
665 uint8_t nvt_blk;
666 uint32_t nvt_idx;
668 xive_tctx_reset(tctx);
671 * When a Virtual Processor is scheduled to run on a HW thread,
672 * the hypervisor pushes its identifier in the OS CAM line.
673 * Emulate the same behavior under QEMU.
675 spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
677 xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
680 static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
681 PowerPCCPU *cpu)
683 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
685 xive_tctx_destroy(spapr_cpu->tctx);
686 spapr_cpu->tctx = NULL;
689 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
691 SpaprXive *xive = SPAPR_XIVE(intc);
693 trace_spapr_xive_set_irq(irq, val);
695 if (spapr_xive_in_kernel(xive)) {
696 kvmppc_xive_source_set_irq(&xive->source, irq, val);
697 } else {
698 xive_source_set_irq(&xive->source, irq, val);
702 static void spapr_xive_print_info(SpaprInterruptController *intc, GString *buf)
704 SpaprXive *xive = SPAPR_XIVE(intc);
705 CPUState *cs;
707 CPU_FOREACH(cs) {
708 PowerPCCPU *cpu = POWERPC_CPU(cs);
710 xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, buf);
712 spapr_xive_pic_print_info(xive, buf);
715 static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
716 void *fdt, uint32_t phandle)
718 SpaprXive *xive = SPAPR_XIVE(intc);
719 int node;
720 uint64_t timas[2 * 2];
721 /* Interrupt number ranges for the IPIs */
722 uint32_t lisn_ranges[] = {
723 cpu_to_be32(SPAPR_IRQ_IPI),
724 cpu_to_be32(SPAPR_IRQ_IPI + nr_servers),
727 * EQ size - the sizes of pages supported by the system 4K, 64K,
728 * 2M, 16M. We only advertise 64K for the moment.
730 uint32_t eq_sizes[] = {
731 cpu_to_be32(16), /* 64K */
734 * QEMU/KVM only needs to define a single range to reserve the
735 * escalation priority. A priority bitmask would have been more
736 * appropriate.
738 uint32_t plat_res_int_priorities[] = {
739 cpu_to_be32(xive->hv_prio), /* start */
740 cpu_to_be32(0xff - xive->hv_prio), /* count */
743 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
744 timas[0] = cpu_to_be64(xive->tm_base +
745 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
746 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
747 timas[2] = cpu_to_be64(xive->tm_base +
748 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
749 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
751 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
753 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
754 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
756 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
757 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
758 sizeof(eq_sizes)));
759 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
760 sizeof(lisn_ranges)));
762 /* For Linux to link the LSIs to the interrupt controller. */
763 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
764 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
766 /* For SLOF */
767 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
768 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
771 * The "ibm,plat-res-int-priorities" property defines the priority
772 * ranges reserved by the hypervisor
774 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
775 plat_res_int_priorities, sizeof(plat_res_int_priorities)));
778 static int spapr_xive_activate(SpaprInterruptController *intc,
779 uint32_t nr_servers, Error **errp)
781 SpaprXive *xive = SPAPR_XIVE(intc);
783 if (kvm_enabled()) {
784 int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
785 errp);
786 if (rc < 0) {
787 return rc;
791 /* Activate the XIVE MMIOs */
792 spapr_xive_mmio_set_enabled(xive, true);
794 return 0;
797 static void spapr_xive_deactivate(SpaprInterruptController *intc)
799 SpaprXive *xive = SPAPR_XIVE(intc);
801 spapr_xive_mmio_set_enabled(xive, false);
803 if (spapr_xive_in_kernel(xive)) {
804 kvmppc_xive_disconnect(intc);
808 static bool spapr_xive_in_kernel_xptr(const XivePresenter *xptr)
810 return spapr_xive_in_kernel(SPAPR_XIVE(xptr));
813 static void spapr_xive_class_init(ObjectClass *klass, void *data)
815 DeviceClass *dc = DEVICE_CLASS(klass);
816 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
817 SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
818 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
819 SpaprXiveClass *sxc = SPAPR_XIVE_CLASS(klass);
821 dc->desc = "sPAPR XIVE Interrupt Controller";
822 device_class_set_props(dc, spapr_xive_properties);
823 device_class_set_parent_realize(dc, spapr_xive_realize,
824 &sxc->parent_realize);
825 dc->vmsd = &vmstate_spapr_xive;
827 xrc->get_eas = spapr_xive_get_eas;
828 xrc->get_pq = spapr_xive_get_pq;
829 xrc->set_pq = spapr_xive_set_pq;
830 xrc->get_end = spapr_xive_get_end;
831 xrc->write_end = spapr_xive_write_end;
832 xrc->get_nvt = spapr_xive_get_nvt;
833 xrc->write_nvt = spapr_xive_write_nvt;
834 xrc->get_block_id = spapr_xive_get_block_id;
836 sicc->activate = spapr_xive_activate;
837 sicc->deactivate = spapr_xive_deactivate;
838 sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
839 sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
840 sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
841 sicc->claim_irq = spapr_xive_claim_irq;
842 sicc->free_irq = spapr_xive_free_irq;
843 sicc->set_irq = spapr_xive_set_irq;
844 sicc->print_info = spapr_xive_print_info;
845 sicc->dt = spapr_xive_dt;
846 sicc->post_load = spapr_xive_post_load;
848 xpc->match_nvt = spapr_xive_match_nvt;
849 xpc->get_config = spapr_xive_presenter_get_config;
850 xpc->in_kernel = spapr_xive_in_kernel_xptr;
853 static const TypeInfo spapr_xive_info = {
854 .name = TYPE_SPAPR_XIVE,
855 .parent = TYPE_XIVE_ROUTER,
856 .instance_init = spapr_xive_instance_init,
857 .instance_size = sizeof(SpaprXive),
858 .class_init = spapr_xive_class_init,
859 .class_size = sizeof(SpaprXiveClass),
860 .interfaces = (InterfaceInfo[]) {
861 { TYPE_SPAPR_INTC },
866 static void spapr_xive_register_types(void)
868 type_register_static(&spapr_xive_info);
871 type_init(spapr_xive_register_types)
874 * XIVE hcalls
876 * The terminology used by the XIVE hcalls is the following :
878 * TARGET vCPU number
879 * EQ Event Queue assigned by OS to receive event data
880 * ESB page for source interrupt management
881 * LISN Logical Interrupt Source Number identifying a source in the
882 * machine
883 * EISN Effective Interrupt Source Number used by guest OS to
884 * identify source in the guest
886 * The EAS, END, NVT structures are not exposed.
890 * On POWER9, the KVM XIVE device uses priority 7 for the escalation
891 * interrupts. So we only allow the guest to use priorities [0..6].
893 static bool spapr_xive_priority_is_reserved(SpaprXive *xive, uint8_t priority)
895 return priority >= xive->hv_prio;
899 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
900 * real address of the MMIO page through which the Event State Buffer
901 * entry associated with the value of the "lisn" parameter is managed.
903 * Parameters:
904 * Input
905 * - R4: "flags"
906 * Bits 0-63 reserved
907 * - R5: "lisn" is per "interrupts", "interrupt-map", or
908 * "ibm,xive-lisn-ranges" properties, or as returned by the
909 * ibm,query-interrupt-source-number RTAS call, or as returned
910 * by the H_ALLOCATE_VAS_WINDOW hcall
912 * Output
913 * - R4: "flags"
914 * Bits 0-59: Reserved
915 * Bit 60: H_INT_ESB must be used for Event State Buffer
916 * management
917 * Bit 61: 1 == LSI 0 == MSI
918 * Bit 62: the full function page supports trigger
919 * Bit 63: Store EOI Supported
920 * - R5: Logical Real address of full function Event State Buffer
921 * management page, -1 if H_INT_ESB hcall flag is set to 1.
922 * - R6: Logical Real Address of trigger only Event State Buffer
923 * management page or -1.
924 * - R7: Power of 2 page size for the ESB management pages returned in
925 * R5 and R6.
928 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
929 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
930 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
931 on same page */
932 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
934 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
935 SpaprMachineState *spapr,
936 target_ulong opcode,
937 target_ulong *args)
939 SpaprXive *xive = spapr->xive;
940 XiveSource *xsrc = &xive->source;
941 target_ulong flags = args[0];
942 target_ulong lisn = args[1];
944 trace_spapr_xive_get_source_info(flags, lisn);
946 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
947 return H_FUNCTION;
950 if (flags) {
951 return H_PARAMETER;
954 if (lisn >= xive->nr_irqs) {
955 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
956 lisn);
957 return H_P2;
960 if (!xive_eas_is_valid(&xive->eat[lisn])) {
961 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
962 lisn);
963 return H_P2;
967 * All sources are emulated under the main XIVE object and share
968 * the same characteristics.
970 args[0] = 0;
971 if (!xive_source_esb_has_2page(xsrc)) {
972 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
974 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
975 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
979 * Force the use of the H_INT_ESB hcall in case of an LSI
980 * interrupt. This is necessary under KVM to re-trigger the
981 * interrupt if the level is still asserted
983 if (xive_source_irq_is_lsi(xsrc, lisn)) {
984 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
987 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
988 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
989 } else {
990 args[1] = -1;
993 if (xive_source_esb_has_2page(xsrc) &&
994 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
995 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
996 } else {
997 args[2] = -1;
1000 if (xive_source_esb_has_2page(xsrc)) {
1001 args[3] = xsrc->esb_shift - 1;
1002 } else {
1003 args[3] = xsrc->esb_shift;
1006 return H_SUCCESS;
1010 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
1011 * Interrupt Source to a target. The Logical Interrupt Source is
1012 * designated with the "lisn" parameter and the target is designated
1013 * with the "target" and "priority" parameters. Upon return from the
1014 * hcall(), no additional interrupts will be directed to the old EQ.
1016 * Parameters:
1017 * Input:
1018 * - R4: "flags"
1019 * Bits 0-61: Reserved
1020 * Bit 62: set the "eisn" in the EAS
1021 * Bit 63: masks the interrupt source in the hardware interrupt
1022 * control structure. An interrupt masked by this mechanism will
1023 * be dropped, but it's source state bits will still be
1024 * set. There is no race-free way of unmasking and restoring the
1025 * source. Thus this should only be used in interrupts that are
1026 * also masked at the source, and only in cases where the
1027 * interrupt is not meant to be used for a large amount of time
1028 * because no valid target exists for it for example
1029 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1030 * "ibm,xive-lisn-ranges" properties, or as returned by the
1031 * ibm,query-interrupt-source-number RTAS call, or as returned by
1032 * the H_ALLOCATE_VAS_WINDOW hcall
1033 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
1034 * "ibm,ppc-interrupt-gserver#s"
1035 * - R7: "priority" is a valid priority not in
1036 * "ibm,plat-res-int-priorities"
1037 * - R8: "eisn" is the guest EISN associated with the "lisn"
1039 * Output:
1040 * - None
1043 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
1044 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
1046 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
1047 SpaprMachineState *spapr,
1048 target_ulong opcode,
1049 target_ulong *args)
1051 SpaprXive *xive = spapr->xive;
1052 XiveEAS eas, new_eas;
1053 target_ulong flags = args[0];
1054 target_ulong lisn = args[1];
1055 target_ulong target = args[2];
1056 target_ulong priority = args[3];
1057 target_ulong eisn = args[4];
1058 uint8_t end_blk;
1059 uint32_t end_idx;
1061 trace_spapr_xive_set_source_config(flags, lisn, target, priority, eisn);
1063 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1064 return H_FUNCTION;
1067 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
1068 return H_PARAMETER;
1071 if (lisn >= xive->nr_irqs) {
1072 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1073 lisn);
1074 return H_P2;
1077 eas = xive->eat[lisn];
1078 if (!xive_eas_is_valid(&eas)) {
1079 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1080 lisn);
1081 return H_P2;
1084 /* priority 0xff is used to reset the EAS */
1085 if (priority == 0xff) {
1086 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
1087 goto out;
1090 if (flags & SPAPR_XIVE_SRC_MASK) {
1091 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
1092 } else {
1093 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
1096 if (spapr_xive_priority_is_reserved(xive, priority)) {
1097 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1098 " is reserved\n", priority);
1099 return H_P4;
1103 * Validate that "target" is part of the list of threads allocated
1104 * to the partition. For that, find the END corresponding to the
1105 * target.
1107 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1108 return H_P3;
1111 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
1112 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
1114 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
1115 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
1118 if (spapr_xive_in_kernel(xive)) {
1119 Error *local_err = NULL;
1121 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
1122 if (local_err) {
1123 error_report_err(local_err);
1124 return H_HARDWARE;
1128 out:
1129 xive->eat[lisn] = new_eas;
1130 return H_SUCCESS;
1134 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1135 * target/priority pair is assigned to the specified Logical Interrupt
1136 * Source.
1138 * Parameters:
1139 * Input:
1140 * - R4: "flags"
1141 * Bits 0-63 Reserved
1142 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1143 * "ibm,xive-lisn-ranges" properties, or as returned by the
1144 * ibm,query-interrupt-source-number RTAS call, or as
1145 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1147 * Output:
1148 * - R4: Target to which the specified Logical Interrupt Source is
1149 * assigned
1150 * - R5: Priority to which the specified Logical Interrupt Source is
1151 * assigned
1152 * - R6: EISN for the specified Logical Interrupt Source (this will be
1153 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1155 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1156 SpaprMachineState *spapr,
1157 target_ulong opcode,
1158 target_ulong *args)
1160 SpaprXive *xive = spapr->xive;
1161 target_ulong flags = args[0];
1162 target_ulong lisn = args[1];
1163 XiveEAS eas;
1164 XiveEND *end;
1165 uint8_t nvt_blk;
1166 uint32_t end_idx, nvt_idx;
1168 trace_spapr_xive_get_source_config(flags, lisn);
1170 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1171 return H_FUNCTION;
1174 if (flags) {
1175 return H_PARAMETER;
1178 if (lisn >= xive->nr_irqs) {
1179 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1180 lisn);
1181 return H_P2;
1184 eas = xive->eat[lisn];
1185 if (!xive_eas_is_valid(&eas)) {
1186 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1187 lisn);
1188 return H_P2;
1191 /* EAS_END_BLOCK is unused on sPAPR */
1192 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1194 assert(end_idx < xive->nr_ends);
1195 end = &xive->endt[end_idx];
1197 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1198 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1199 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1201 if (xive_eas_is_masked(&eas)) {
1202 args[1] = 0xff;
1203 } else {
1204 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1207 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1209 return H_SUCCESS;
1213 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1214 * address of the notification management page associated with the
1215 * specified target and priority.
1217 * Parameters:
1218 * Input:
1219 * - R4: "flags"
1220 * Bits 0-63 Reserved
1221 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1222 * "ibm,ppc-interrupt-gserver#s"
1223 * - R6: "priority" is a valid priority not in
1224 * "ibm,plat-res-int-priorities"
1226 * Output:
1227 * - R4: Logical real address of notification page
1228 * - R5: Power of 2 page size of the notification page
1230 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1231 SpaprMachineState *spapr,
1232 target_ulong opcode,
1233 target_ulong *args)
1235 SpaprXive *xive = spapr->xive;
1236 XiveENDSource *end_xsrc = &xive->end_source;
1237 target_ulong flags = args[0];
1238 target_ulong target = args[1];
1239 target_ulong priority = args[2];
1240 XiveEND *end;
1241 uint8_t end_blk;
1242 uint32_t end_idx;
1244 trace_spapr_xive_get_queue_info(flags, target, priority);
1246 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1247 return H_FUNCTION;
1250 if (flags) {
1251 return H_PARAMETER;
1255 * H_STATE should be returned if a H_INT_RESET is in progress.
1256 * This is not needed when running the emulation under QEMU
1259 if (spapr_xive_priority_is_reserved(xive, priority)) {
1260 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1261 " is reserved\n", priority);
1262 return H_P3;
1266 * Validate that "target" is part of the list of threads allocated
1267 * to the partition. For that, find the END corresponding to the
1268 * target.
1270 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1271 return H_P2;
1274 assert(end_idx < xive->nr_ends);
1275 end = &xive->endt[end_idx];
1277 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1278 if (xive_end_is_enqueue(end)) {
1279 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1280 } else {
1281 args[1] = 0;
1284 return H_SUCCESS;
1288 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1289 * a given "target" and "priority". It is also used to set the
1290 * notification config associated with the EQ. An EQ size of 0 is
1291 * used to reset the EQ config for a given target and priority. If
1292 * resetting the EQ config, the END associated with the given "target"
1293 * and "priority" will be changed to disable queueing.
1295 * Upon return from the hcall(), no additional interrupts will be
1296 * directed to the old EQ (if one was set). The old EQ (if one was
1297 * set) should be investigated for interrupts that occurred prior to
1298 * or during the hcall().
1300 * Parameters:
1301 * Input:
1302 * - R4: "flags"
1303 * Bits 0-62: Reserved
1304 * Bit 63: Unconditional Notify (n) per the XIVE spec
1305 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1306 * "ibm,ppc-interrupt-gserver#s"
1307 * - R6: "priority" is a valid priority not in
1308 * "ibm,plat-res-int-priorities"
1309 * - R7: "eventQueue": The logical real address of the start of the EQ
1310 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1312 * Output:
1313 * - None
1316 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1318 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1319 SpaprMachineState *spapr,
1320 target_ulong opcode,
1321 target_ulong *args)
1323 SpaprXive *xive = spapr->xive;
1324 target_ulong flags = args[0];
1325 target_ulong target = args[1];
1326 target_ulong priority = args[2];
1327 target_ulong qpage = args[3];
1328 target_ulong qsize = args[4];
1329 XiveEND end;
1330 uint8_t end_blk, nvt_blk;
1331 uint32_t end_idx, nvt_idx;
1333 trace_spapr_xive_set_queue_config(flags, target, priority, qpage, qsize);
1335 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1336 return H_FUNCTION;
1339 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1340 return H_PARAMETER;
1344 * H_STATE should be returned if a H_INT_RESET is in progress.
1345 * This is not needed when running the emulation under QEMU
1348 if (spapr_xive_priority_is_reserved(xive, priority)) {
1349 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1350 " is reserved\n", priority);
1351 return H_P3;
1355 * Validate that "target" is part of the list of threads allocated
1356 * to the partition. For that, find the END corresponding to the
1357 * target.
1360 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1361 return H_P2;
1364 assert(end_idx < xive->nr_ends);
1365 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1367 switch (qsize) {
1368 case 12:
1369 case 16:
1370 case 21:
1371 case 24:
1372 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1373 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1374 " is not naturally aligned with %" HWADDR_PRIx "\n",
1375 qpage, (hwaddr)1 << qsize);
1376 return H_P4;
1378 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1379 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1380 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1381 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1382 break;
1383 case 0:
1384 /* reset queue and disable queueing */
1385 spapr_xive_end_reset(&end);
1386 goto out;
1388 default:
1389 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1390 qsize);
1391 return H_P5;
1394 if (qsize) {
1395 hwaddr plen = 1 << qsize;
1396 void *eq;
1399 * Validate the guest EQ. We should also check that the queue
1400 * has been zeroed by the OS.
1402 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1403 MEMTXATTRS_UNSPECIFIED);
1404 if (plen != 1 << qsize) {
1405 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1406 HWADDR_PRIx "\n", qpage);
1407 return H_P4;
1409 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1412 /* "target" should have been validated above */
1413 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1414 g_assert_not_reached();
1418 * Ensure the priority and target are correctly set (they will not
1419 * be right after allocation)
1421 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1422 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1423 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1425 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1426 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1427 } else {
1428 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1432 * The generation bit for the END starts at 1 and The END page
1433 * offset counter starts at 0.
1435 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1436 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1437 end.w0 |= cpu_to_be32(END_W0_VALID);
1440 * TODO: issue syncs required to ensure all in-flight interrupts
1441 * are complete on the old END
1444 out:
1445 if (spapr_xive_in_kernel(xive)) {
1446 Error *local_err = NULL;
1448 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1449 if (local_err) {
1450 error_report_err(local_err);
1451 return H_HARDWARE;
1455 /* Update END */
1456 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1457 return H_SUCCESS;
1461 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1462 * target and priority.
1464 * Parameters:
1465 * Input:
1466 * - R4: "flags"
1467 * Bits 0-62: Reserved
1468 * Bit 63: Debug: Return debug data
1469 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1470 * "ibm,ppc-interrupt-gserver#s"
1471 * - R6: "priority" is a valid priority not in
1472 * "ibm,plat-res-int-priorities"
1474 * Output:
1475 * - R4: "flags":
1476 * Bits 0-61: Reserved
1477 * Bit 62: The value of Event Queue Generation Number (g) per
1478 * the XIVE spec if "Debug" = 1
1479 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1480 * - R5: The logical real address of the start of the EQ
1481 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1482 * - R7: The value of Event Queue Offset Counter per XIVE spec
1483 * if "Debug" = 1, else 0
1487 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1489 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1490 SpaprMachineState *spapr,
1491 target_ulong opcode,
1492 target_ulong *args)
1494 SpaprXive *xive = spapr->xive;
1495 target_ulong flags = args[0];
1496 target_ulong target = args[1];
1497 target_ulong priority = args[2];
1498 XiveEND *end;
1499 uint8_t end_blk;
1500 uint32_t end_idx;
1502 trace_spapr_xive_get_queue_config(flags, target, priority);
1504 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1505 return H_FUNCTION;
1508 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1509 return H_PARAMETER;
1513 * H_STATE should be returned if a H_INT_RESET is in progress.
1514 * This is not needed when running the emulation under QEMU
1517 if (spapr_xive_priority_is_reserved(xive, priority)) {
1518 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1519 " is reserved\n", priority);
1520 return H_P3;
1524 * Validate that "target" is part of the list of threads allocated
1525 * to the partition. For that, find the END corresponding to the
1526 * target.
1528 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1529 return H_P2;
1532 assert(end_idx < xive->nr_ends);
1533 end = &xive->endt[end_idx];
1535 args[0] = 0;
1536 if (xive_end_is_notify(end)) {
1537 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1540 if (xive_end_is_enqueue(end)) {
1541 args[1] = xive_end_qaddr(end);
1542 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1543 } else {
1544 args[1] = 0;
1545 args[2] = 0;
1548 if (spapr_xive_in_kernel(xive)) {
1549 Error *local_err = NULL;
1551 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1552 if (local_err) {
1553 error_report_err(local_err);
1554 return H_HARDWARE;
1558 /* TODO: do we need any locking on the END ? */
1559 if (flags & SPAPR_XIVE_END_DEBUG) {
1560 /* Load the event queue generation number into the return flags */
1561 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1563 /* Load R7 with the event queue offset counter */
1564 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1565 } else {
1566 args[3] = 0;
1569 return H_SUCCESS;
1573 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1574 * reporting cache line pair for the calling thread. The reporting
1575 * cache lines will contain the OS interrupt context when the OS
1576 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1577 * interrupt. The reporting cache lines can be reset by inputting -1
1578 * in "reportingLine". Issuing the CI store byte without reporting
1579 * cache lines registered will result in the data not being accessible
1580 * to the OS.
1582 * Parameters:
1583 * Input:
1584 * - R4: "flags"
1585 * Bits 0-63: Reserved
1586 * - R5: "reportingLine": The logical real address of the reporting cache
1587 * line pair
1589 * Output:
1590 * - None
1592 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1593 SpaprMachineState *spapr,
1594 target_ulong opcode,
1595 target_ulong *args)
1597 target_ulong flags = args[0];
1599 trace_spapr_xive_set_os_reporting_line(flags);
1601 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1602 return H_FUNCTION;
1606 * H_STATE should be returned if a H_INT_RESET is in progress.
1607 * This is not needed when running the emulation under QEMU
1610 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1611 return H_FUNCTION;
1615 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1616 * real address of the reporting cache line pair set for the input
1617 * "target". If no reporting cache line pair has been set, -1 is
1618 * returned.
1620 * Parameters:
1621 * Input:
1622 * - R4: "flags"
1623 * Bits 0-63: Reserved
1624 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1625 * "ibm,ppc-interrupt-gserver#s"
1626 * - R6: "reportingLine": The logical real address of the reporting
1627 * cache line pair
1629 * Output:
1630 * - R4: The logical real address of the reporting line if set, else -1
1632 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1633 SpaprMachineState *spapr,
1634 target_ulong opcode,
1635 target_ulong *args)
1637 target_ulong flags = args[0];
1639 trace_spapr_xive_get_os_reporting_line(flags);
1641 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1642 return H_FUNCTION;
1646 * H_STATE should be returned if a H_INT_RESET is in progress.
1647 * This is not needed when running the emulation under QEMU
1650 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1651 return H_FUNCTION;
1655 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1656 * page for the input "lisn". This hcall is only supported for LISNs
1657 * that have the ESB hcall flag set to 1 when returned from hcall()
1658 * H_INT_GET_SOURCE_INFO.
1660 * Parameters:
1661 * Input:
1662 * - R4: "flags"
1663 * Bits 0-62: Reserved
1664 * bit 63: Store: Store=1, store operation, else load operation
1665 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1666 * "ibm,xive-lisn-ranges" properties, or as returned by the
1667 * ibm,query-interrupt-source-number RTAS call, or as
1668 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1669 * - R6: "esbOffset" is the offset into the ESB page for the load or
1670 * store operation
1671 * - R7: "storeData" is the data to write for a store operation
1673 * Output:
1674 * - R4: The value of the load if load operation, else -1
1677 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1679 static target_ulong h_int_esb(PowerPCCPU *cpu,
1680 SpaprMachineState *spapr,
1681 target_ulong opcode,
1682 target_ulong *args)
1684 SpaprXive *xive = spapr->xive;
1685 XiveEAS eas;
1686 target_ulong flags = args[0];
1687 target_ulong lisn = args[1];
1688 target_ulong offset = args[2];
1689 target_ulong data = args[3];
1690 hwaddr mmio_addr;
1691 XiveSource *xsrc = &xive->source;
1693 trace_spapr_xive_esb(flags, lisn, offset, data);
1695 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1696 return H_FUNCTION;
1699 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1700 return H_PARAMETER;
1703 if (lisn >= xive->nr_irqs) {
1704 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1705 lisn);
1706 return H_P2;
1709 eas = xive->eat[lisn];
1710 if (!xive_eas_is_valid(&eas)) {
1711 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1712 lisn);
1713 return H_P2;
1716 if (offset > (1ull << xsrc->esb_shift)) {
1717 return H_P3;
1720 if (spapr_xive_in_kernel(xive)) {
1721 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1722 flags & SPAPR_XIVE_ESB_STORE);
1723 } else {
1724 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1726 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1727 (flags & SPAPR_XIVE_ESB_STORE),
1728 MEMTXATTRS_UNSPECIFIED)) {
1729 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1730 HWADDR_PRIx "\n", mmio_addr);
1731 return H_HARDWARE;
1733 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1735 return H_SUCCESS;
1739 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1740 * ensure any in flight events for the input lisn are in the event
1741 * queue.
1743 * Parameters:
1744 * Input:
1745 * - R4: "flags"
1746 * Bits 0-63: Reserved
1747 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1748 * "ibm,xive-lisn-ranges" properties, or as returned by the
1749 * ibm,query-interrupt-source-number RTAS call, or as
1750 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1752 * Output:
1753 * - None
1755 static target_ulong h_int_sync(PowerPCCPU *cpu,
1756 SpaprMachineState *spapr,
1757 target_ulong opcode,
1758 target_ulong *args)
1760 SpaprXive *xive = spapr->xive;
1761 XiveEAS eas;
1762 target_ulong flags = args[0];
1763 target_ulong lisn = args[1];
1765 trace_spapr_xive_sync(flags, lisn);
1767 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1768 return H_FUNCTION;
1771 if (flags) {
1772 return H_PARAMETER;
1775 if (lisn >= xive->nr_irqs) {
1776 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1777 lisn);
1778 return H_P2;
1781 eas = xive->eat[lisn];
1782 if (!xive_eas_is_valid(&eas)) {
1783 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1784 lisn);
1785 return H_P2;
1789 * H_STATE should be returned if a H_INT_RESET is in progress.
1790 * This is not needed when running the emulation under QEMU
1794 * This is not real hardware. Nothing to be done unless when
1795 * under KVM
1798 if (spapr_xive_in_kernel(xive)) {
1799 Error *local_err = NULL;
1801 kvmppc_xive_sync_source(xive, lisn, &local_err);
1802 if (local_err) {
1803 error_report_err(local_err);
1804 return H_HARDWARE;
1807 return H_SUCCESS;
1811 * The H_INT_RESET hcall() is used to reset all of the partition's
1812 * interrupt exploitation structures to their initial state. This
1813 * means losing all previously set interrupt state set via
1814 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1816 * Parameters:
1817 * Input:
1818 * - R4: "flags"
1819 * Bits 0-63: Reserved
1821 * Output:
1822 * - None
1824 static target_ulong h_int_reset(PowerPCCPU *cpu,
1825 SpaprMachineState *spapr,
1826 target_ulong opcode,
1827 target_ulong *args)
1829 SpaprXive *xive = spapr->xive;
1830 target_ulong flags = args[0];
1832 trace_spapr_xive_reset(flags);
1834 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1835 return H_FUNCTION;
1838 if (flags) {
1839 return H_PARAMETER;
1842 device_cold_reset(DEVICE(xive));
1844 if (spapr_xive_in_kernel(xive)) {
1845 Error *local_err = NULL;
1847 kvmppc_xive_reset(xive, &local_err);
1848 if (local_err) {
1849 error_report_err(local_err);
1850 return H_HARDWARE;
1853 return H_SUCCESS;
1856 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1858 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1859 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1860 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1861 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1862 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1863 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1864 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1865 h_int_set_os_reporting_line);
1866 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1867 h_int_get_os_reporting_line);
1868 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1869 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1870 spapr_register_hypercall(H_INT_RESET, h_int_reset);