Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / hw / net / ftgmac100.c
blob478356ee3e108ab89228bd5e2fa273b8b3270665
1 /*
2 * Faraday FTGMAC100 Gigabit Ethernet
4 * Copyright (C) 2016-2017, IBM Corporation.
6 * Based on Coldfire Fast Ethernet Controller emulation.
8 * Copyright (c) 2007 CodeSourcery.
10 * This code is licensed under the GPL version 2 or later. See the
11 * COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include "hw/irq.h"
16 #include "hw/net/ftgmac100.h"
17 #include "sysemu/dma.h"
18 #include "qapi/error.h"
19 #include "qemu/log.h"
20 #include "qemu/module.h"
21 #include "net/checksum.h"
22 #include "net/eth.h"
23 #include "hw/net/mii.h"
24 #include "hw/qdev-properties.h"
25 #include "migration/vmstate.h"
27 #include <zlib.h> /* for crc32 */
30 * FTGMAC100 registers
32 #define FTGMAC100_ISR 0x00
33 #define FTGMAC100_IER 0x04
34 #define FTGMAC100_MAC_MADR 0x08
35 #define FTGMAC100_MAC_LADR 0x0c
36 #define FTGMAC100_MATH0 0x10
37 #define FTGMAC100_MATH1 0x14
38 #define FTGMAC100_NPTXPD 0x18
39 #define FTGMAC100_RXPD 0x1C
40 #define FTGMAC100_NPTXR_BADR 0x20
41 #define FTGMAC100_RXR_BADR 0x24
42 #define FTGMAC100_HPTXPD 0x28
43 #define FTGMAC100_HPTXR_BADR 0x2c
44 #define FTGMAC100_ITC 0x30
45 #define FTGMAC100_APTC 0x34
46 #define FTGMAC100_DBLAC 0x38
47 #define FTGMAC100_REVR 0x40
48 #define FTGMAC100_FEAR1 0x44
49 #define FTGMAC100_RBSR 0x4c
50 #define FTGMAC100_TPAFCR 0x48
52 #define FTGMAC100_MACCR 0x50
53 #define FTGMAC100_MACSR 0x54
54 #define FTGMAC100_PHYCR 0x60
55 #define FTGMAC100_PHYDATA 0x64
56 #define FTGMAC100_FCR 0x68
59 * FTGMAC100 registers high
61 * values below are offset by - FTGMAC100_REG_HIGH_OFFSET from datasheet
62 * because its memory region is start at FTGMAC100_REG_HIGH_OFFSET
64 #define FTGMAC100_NPTXR_BADR_HIGH (0x17C - FTGMAC100_REG_HIGH_OFFSET)
65 #define FTGMAC100_HPTXR_BADR_HIGH (0x184 - FTGMAC100_REG_HIGH_OFFSET)
66 #define FTGMAC100_RXR_BADR_HIGH (0x18C - FTGMAC100_REG_HIGH_OFFSET)
69 * Interrupt status register & interrupt enable register
71 #define FTGMAC100_INT_RPKT_BUF (1 << 0)
72 #define FTGMAC100_INT_RPKT_FIFO (1 << 1)
73 #define FTGMAC100_INT_NO_RXBUF (1 << 2)
74 #define FTGMAC100_INT_RPKT_LOST (1 << 3)
75 #define FTGMAC100_INT_XPKT_ETH (1 << 4)
76 #define FTGMAC100_INT_XPKT_FIFO (1 << 5)
77 #define FTGMAC100_INT_NO_NPTXBUF (1 << 6)
78 #define FTGMAC100_INT_XPKT_LOST (1 << 7)
79 #define FTGMAC100_INT_AHB_ERR (1 << 8)
80 #define FTGMAC100_INT_PHYSTS_CHG (1 << 9)
81 #define FTGMAC100_INT_NO_HPTXBUF (1 << 10)
84 * Automatic polling timer control register
86 #define FTGMAC100_APTC_RXPOLL_CNT(x) ((x) & 0xf)
87 #define FTGMAC100_APTC_RXPOLL_TIME_SEL (1 << 4)
88 #define FTGMAC100_APTC_TXPOLL_CNT(x) (((x) >> 8) & 0xf)
89 #define FTGMAC100_APTC_TXPOLL_TIME_SEL (1 << 12)
92 * DMA burst length and arbitration control register
94 #define FTGMAC100_DBLAC_RXBURST_SIZE(x) (((x) >> 8) & 0x3)
95 #define FTGMAC100_DBLAC_TXBURST_SIZE(x) (((x) >> 10) & 0x3)
96 #define FTGMAC100_DBLAC_RXDES_SIZE(x) ((((x) >> 12) & 0xf) * 8)
97 #define FTGMAC100_DBLAC_TXDES_SIZE(x) ((((x) >> 16) & 0xf) * 8)
98 #define FTGMAC100_DBLAC_IFG_CNT(x) (((x) >> 20) & 0x7)
99 #define FTGMAC100_DBLAC_IFG_INC (1 << 23)
102 * PHY control register
104 #define FTGMAC100_PHYCR_MIIRD (1 << 26)
105 #define FTGMAC100_PHYCR_MIIWR (1 << 27)
107 #define FTGMAC100_PHYCR_DEV(x) (((x) >> 16) & 0x1f)
108 #define FTGMAC100_PHYCR_REG(x) (((x) >> 21) & 0x1f)
111 * PHY data register
113 #define FTGMAC100_PHYDATA_MIIWDATA(x) ((x) & 0xffff)
114 #define FTGMAC100_PHYDATA_MIIRDATA(x) (((x) >> 16) & 0xffff)
117 * PHY control register - New MDC/MDIO interface
119 #define FTGMAC100_PHYCR_NEW_DATA(x) (((x) >> 16) & 0xffff)
120 #define FTGMAC100_PHYCR_NEW_FIRE (1 << 15)
121 #define FTGMAC100_PHYCR_NEW_ST_22 (1 << 12)
122 #define FTGMAC100_PHYCR_NEW_OP(x) (((x) >> 10) & 3)
123 #define FTGMAC100_PHYCR_NEW_OP_WRITE 0x1
124 #define FTGMAC100_PHYCR_NEW_OP_READ 0x2
125 #define FTGMAC100_PHYCR_NEW_DEV(x) (((x) >> 5) & 0x1f)
126 #define FTGMAC100_PHYCR_NEW_REG(x) ((x) & 0x1f)
129 * Feature Register
131 #define FTGMAC100_REVR_NEW_MDIO_INTERFACE (1 << 31)
134 * MAC control register
136 #define FTGMAC100_MACCR_TXDMA_EN (1 << 0)
137 #define FTGMAC100_MACCR_RXDMA_EN (1 << 1)
138 #define FTGMAC100_MACCR_TXMAC_EN (1 << 2)
139 #define FTGMAC100_MACCR_RXMAC_EN (1 << 3)
140 #define FTGMAC100_MACCR_RM_VLAN (1 << 4)
141 #define FTGMAC100_MACCR_HPTXR_EN (1 << 5)
142 #define FTGMAC100_MACCR_LOOP_EN (1 << 6)
143 #define FTGMAC100_MACCR_ENRX_IN_HALFTX (1 << 7)
144 #define FTGMAC100_MACCR_FULLDUP (1 << 8)
145 #define FTGMAC100_MACCR_GIGA_MODE (1 << 9)
146 #define FTGMAC100_MACCR_CRC_APD (1 << 10) /* not needed */
147 #define FTGMAC100_MACCR_RX_RUNT (1 << 12)
148 #define FTGMAC100_MACCR_JUMBO_LF (1 << 13)
149 #define FTGMAC100_MACCR_RX_ALL (1 << 14)
150 #define FTGMAC100_MACCR_HT_MULTI_EN (1 << 15)
151 #define FTGMAC100_MACCR_RX_MULTIPKT (1 << 16)
152 #define FTGMAC100_MACCR_RX_BROADPKT (1 << 17)
153 #define FTGMAC100_MACCR_DISCARD_CRCERR (1 << 18)
154 #define FTGMAC100_MACCR_FAST_MODE (1 << 19)
155 #define FTGMAC100_MACCR_SW_RST (1 << 31)
158 * Transmit descriptor
160 #define FTGMAC100_TXDES0_TXBUF_SIZE(x) ((x) & 0x3fff)
161 #define FTGMAC100_TXDES0_EDOTR (1 << 15)
162 #define FTGMAC100_TXDES0_CRC_ERR (1 << 19)
163 #define FTGMAC100_TXDES0_LTS (1 << 28)
164 #define FTGMAC100_TXDES0_FTS (1 << 29)
165 #define FTGMAC100_TXDES0_EDOTR_ASPEED (1 << 30)
166 #define FTGMAC100_TXDES0_TXDMA_OWN (1 << 31)
168 #define FTGMAC100_TXDES1_VLANTAG_CI(x) ((x) & 0xffff)
169 #define FTGMAC100_TXDES1_INS_VLANTAG (1 << 16)
170 #define FTGMAC100_TXDES1_TCP_CHKSUM (1 << 17)
171 #define FTGMAC100_TXDES1_UDP_CHKSUM (1 << 18)
172 #define FTGMAC100_TXDES1_IP_CHKSUM (1 << 19)
173 #define FTGMAC100_TXDES1_LLC (1 << 22)
174 #define FTGMAC100_TXDES1_TX2FIC (1 << 30)
175 #define FTGMAC100_TXDES1_TXIC (1 << 31)
177 #define FTGMAC100_TXDES2_TXBUF_BADR_HI(x) (((x) >> 16) & 0x7)
180 * Receive descriptor
182 #define FTGMAC100_RXDES0_VDBC 0x3fff
183 #define FTGMAC100_RXDES0_EDORR (1 << 15)
184 #define FTGMAC100_RXDES0_MULTICAST (1 << 16)
185 #define FTGMAC100_RXDES0_BROADCAST (1 << 17)
186 #define FTGMAC100_RXDES0_RX_ERR (1 << 18)
187 #define FTGMAC100_RXDES0_CRC_ERR (1 << 19)
188 #define FTGMAC100_RXDES0_FTL (1 << 20)
189 #define FTGMAC100_RXDES0_RUNT (1 << 21)
190 #define FTGMAC100_RXDES0_RX_ODD_NB (1 << 22)
191 #define FTGMAC100_RXDES0_FIFO_FULL (1 << 23)
192 #define FTGMAC100_RXDES0_PAUSE_OPCODE (1 << 24)
193 #define FTGMAC100_RXDES0_PAUSE_FRAME (1 << 25)
194 #define FTGMAC100_RXDES0_LRS (1 << 28)
195 #define FTGMAC100_RXDES0_FRS (1 << 29)
196 #define FTGMAC100_RXDES0_EDORR_ASPEED (1 << 30)
197 #define FTGMAC100_RXDES0_RXPKT_RDY (1 << 31)
199 #define FTGMAC100_RXDES1_VLANTAG_CI 0xffff
200 #define FTGMAC100_RXDES1_PROT_MASK (0x3 << 20)
201 #define FTGMAC100_RXDES1_PROT_NONIP (0x0 << 20)
202 #define FTGMAC100_RXDES1_PROT_IP (0x1 << 20)
203 #define FTGMAC100_RXDES1_PROT_TCPIP (0x2 << 20)
204 #define FTGMAC100_RXDES1_PROT_UDPIP (0x3 << 20)
205 #define FTGMAC100_RXDES1_LLC (1 << 22)
206 #define FTGMAC100_RXDES1_DF (1 << 23)
207 #define FTGMAC100_RXDES1_VLANTAG_AVAIL (1 << 24)
208 #define FTGMAC100_RXDES1_TCP_CHKSUM_ERR (1 << 25)
209 #define FTGMAC100_RXDES1_UDP_CHKSUM_ERR (1 << 26)
210 #define FTGMAC100_RXDES1_IP_CHKSUM_ERR (1 << 27)
212 #define FTGMAC100_RXDES2_RXBUF_BADR_HI(x) (((x) >> 16) & 0x7)
215 * Receive and transmit Buffer Descriptor
217 typedef struct {
218 uint32_t des0;
219 uint32_t des1;
220 uint32_t des2; /* used by HW 64 bits DMA */
221 uint32_t des3;
222 } FTGMAC100Desc;
224 #define FTGMAC100_DESC_ALIGNMENT 16
227 * Specific RTL8211E MII Registers
229 #define RTL8211E_MII_PHYCR 16 /* PHY Specific Control */
230 #define RTL8211E_MII_PHYSR 17 /* PHY Specific Status */
231 #define RTL8211E_MII_INER 18 /* Interrupt Enable */
232 #define RTL8211E_MII_INSR 19 /* Interrupt Status */
233 #define RTL8211E_MII_RXERC 24 /* Receive Error Counter */
234 #define RTL8211E_MII_LDPSR 27 /* Link Down Power Saving */
235 #define RTL8211E_MII_EPAGSR 30 /* Extension Page Select */
236 #define RTL8211E_MII_PAGSEL 31 /* Page Select */
239 * RTL8211E Interrupt Status
241 #define PHY_INT_AUTONEG_ERROR (1 << 15)
242 #define PHY_INT_PAGE_RECV (1 << 12)
243 #define PHY_INT_AUTONEG_COMPLETE (1 << 11)
244 #define PHY_INT_LINK_STATUS (1 << 10)
245 #define PHY_INT_ERROR (1 << 9)
246 #define PHY_INT_DOWN (1 << 8)
247 #define PHY_INT_JABBER (1 << 0)
250 * Max frame size for the receiving buffer
252 #define FTGMAC100_MAX_FRAME_SIZE 9220
255 * Limits depending on the type of the frame
257 * 9216 for Jumbo frames (+ 4 for VLAN)
258 * 1518 for other frames (+ 4 for VLAN)
260 static int ftgmac100_max_frame_size(FTGMAC100State *s, uint16_t proto)
262 int max = (s->maccr & FTGMAC100_MACCR_JUMBO_LF ? 9216 : 1518);
264 return max + (proto == ETH_P_VLAN ? 4 : 0);
267 static void ftgmac100_update_irq(FTGMAC100State *s)
269 qemu_set_irq(s->irq, s->isr & s->ier);
273 * The MII phy could raise a GPIO to the processor which in turn
274 * could be handled as an interrpt by the OS.
275 * For now we don't handle any GPIO/interrupt line, so the OS will
276 * have to poll for the PHY status.
278 static void phy_update_irq(FTGMAC100State *s)
280 ftgmac100_update_irq(s);
283 static void phy_update_link(FTGMAC100State *s)
285 /* Autonegotiation status mirrors link status. */
286 if (qemu_get_queue(s->nic)->link_down) {
287 s->phy_status &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
288 s->phy_int |= PHY_INT_DOWN;
289 } else {
290 s->phy_status |= (MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
291 s->phy_int |= PHY_INT_AUTONEG_COMPLETE;
293 phy_update_irq(s);
296 static void ftgmac100_set_link(NetClientState *nc)
298 phy_update_link(FTGMAC100(qemu_get_nic_opaque(nc)));
301 static void phy_reset(FTGMAC100State *s)
303 s->phy_status = (MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
304 MII_BMSR_10T_HD | MII_BMSR_EXTSTAT | MII_BMSR_MFPS |
305 MII_BMSR_AN_COMP | MII_BMSR_AUTONEG | MII_BMSR_LINK_ST |
306 MII_BMSR_EXTCAP);
307 s->phy_control = (MII_BMCR_AUTOEN | MII_BMCR_FD | MII_BMCR_SPEED1000);
308 s->phy_advertise = (MII_ANAR_PAUSE_ASYM | MII_ANAR_PAUSE | MII_ANAR_TXFD |
309 MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 |
310 MII_ANAR_CSMACD);
311 s->phy_int_mask = 0;
312 s->phy_int = 0;
315 static uint16_t do_phy_read(FTGMAC100State *s, uint8_t reg)
317 uint16_t val;
319 switch (reg) {
320 case MII_BMCR: /* Basic Control */
321 val = s->phy_control;
322 break;
323 case MII_BMSR: /* Basic Status */
324 val = s->phy_status;
325 break;
326 case MII_PHYID1: /* ID1 */
327 val = RTL8211E_PHYID1;
328 break;
329 case MII_PHYID2: /* ID2 */
330 val = RTL8211E_PHYID2;
331 break;
332 case MII_ANAR: /* Auto-neg advertisement */
333 val = s->phy_advertise;
334 break;
335 case MII_ANLPAR: /* Auto-neg Link Partner Ability */
336 val = (MII_ANLPAR_ACK | MII_ANLPAR_PAUSE | MII_ANLPAR_TXFD |
337 MII_ANLPAR_TX | MII_ANLPAR_10FD | MII_ANLPAR_10 |
338 MII_ANLPAR_CSMACD);
339 break;
340 case MII_ANER: /* Auto-neg Expansion */
341 val = MII_ANER_NWAY;
342 break;
343 case MII_CTRL1000: /* 1000BASE-T control */
344 val = (MII_CTRL1000_HALF | MII_CTRL1000_FULL);
345 break;
346 case MII_STAT1000: /* 1000BASE-T status */
347 val = MII_STAT1000_FULL;
348 break;
349 case RTL8211E_MII_INSR: /* Interrupt status. */
350 val = s->phy_int;
351 s->phy_int = 0;
352 phy_update_irq(s);
353 break;
354 case RTL8211E_MII_INER: /* Interrupt enable */
355 val = s->phy_int_mask;
356 break;
357 case RTL8211E_MII_PHYCR:
358 case RTL8211E_MII_PHYSR:
359 case RTL8211E_MII_RXERC:
360 case RTL8211E_MII_LDPSR:
361 case RTL8211E_MII_EPAGSR:
362 case RTL8211E_MII_PAGSEL:
363 qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n",
364 __func__, reg);
365 val = 0;
366 break;
367 default:
368 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n",
369 __func__, reg);
370 val = 0;
371 break;
374 return val;
377 #define MII_BMCR_MASK (MII_BMCR_LOOPBACK | MII_BMCR_SPEED100 | \
378 MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_PDOWN | \
379 MII_BMCR_FD | MII_BMCR_CTST)
380 #define MII_ANAR_MASK 0x2d7f
382 static void do_phy_write(FTGMAC100State *s, uint8_t reg, uint16_t val)
384 switch (reg) {
385 case MII_BMCR: /* Basic Control */
386 if (val & MII_BMCR_RESET) {
387 phy_reset(s);
388 } else {
389 s->phy_control = val & MII_BMCR_MASK;
390 /* Complete autonegotiation immediately. */
391 if (val & MII_BMCR_AUTOEN) {
392 s->phy_status |= MII_BMSR_AN_COMP;
395 break;
396 case MII_ANAR: /* Auto-neg advertisement */
397 s->phy_advertise = (val & MII_ANAR_MASK) | MII_ANAR_TX;
398 break;
399 case RTL8211E_MII_INER: /* Interrupt enable */
400 s->phy_int_mask = val & 0xff;
401 phy_update_irq(s);
402 break;
403 case RTL8211E_MII_PHYCR:
404 case RTL8211E_MII_PHYSR:
405 case RTL8211E_MII_RXERC:
406 case RTL8211E_MII_LDPSR:
407 case RTL8211E_MII_EPAGSR:
408 case RTL8211E_MII_PAGSEL:
409 qemu_log_mask(LOG_UNIMP, "%s: reg %d not implemented\n",
410 __func__, reg);
411 break;
412 default:
413 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset %d\n",
414 __func__, reg);
415 break;
419 static void do_phy_new_ctl(FTGMAC100State *s)
421 uint8_t reg;
422 uint16_t data;
424 if (!(s->phycr & FTGMAC100_PHYCR_NEW_ST_22)) {
425 qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__);
426 return;
429 /* Nothing to do */
430 if (!(s->phycr & FTGMAC100_PHYCR_NEW_FIRE)) {
431 return;
434 reg = FTGMAC100_PHYCR_NEW_REG(s->phycr);
435 data = FTGMAC100_PHYCR_NEW_DATA(s->phycr);
437 switch (FTGMAC100_PHYCR_NEW_OP(s->phycr)) {
438 case FTGMAC100_PHYCR_NEW_OP_WRITE:
439 do_phy_write(s, reg, data);
440 break;
441 case FTGMAC100_PHYCR_NEW_OP_READ:
442 s->phydata = do_phy_read(s, reg) & 0xffff;
443 break;
444 default:
445 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n",
446 __func__, s->phycr);
449 s->phycr &= ~FTGMAC100_PHYCR_NEW_FIRE;
452 static void do_phy_ctl(FTGMAC100State *s)
454 uint8_t reg = FTGMAC100_PHYCR_REG(s->phycr);
456 if (s->phycr & FTGMAC100_PHYCR_MIIWR) {
457 do_phy_write(s, reg, s->phydata & 0xffff);
458 s->phycr &= ~FTGMAC100_PHYCR_MIIWR;
459 } else if (s->phycr & FTGMAC100_PHYCR_MIIRD) {
460 s->phydata = do_phy_read(s, reg) << 16;
461 s->phycr &= ~FTGMAC100_PHYCR_MIIRD;
462 } else {
463 qemu_log_mask(LOG_GUEST_ERROR, "%s: no OP code %08x\n",
464 __func__, s->phycr);
468 static int ftgmac100_read_bd(FTGMAC100Desc *bd, dma_addr_t addr)
470 if (dma_memory_read(&address_space_memory, addr,
471 bd, sizeof(*bd), MEMTXATTRS_UNSPECIFIED)) {
472 qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read descriptor @ 0x%"
473 HWADDR_PRIx "\n", __func__, addr);
474 return -1;
476 bd->des0 = le32_to_cpu(bd->des0);
477 bd->des1 = le32_to_cpu(bd->des1);
478 bd->des2 = le32_to_cpu(bd->des2);
479 bd->des3 = le32_to_cpu(bd->des3);
480 return 0;
483 static int ftgmac100_write_bd(FTGMAC100Desc *bd, dma_addr_t addr)
485 FTGMAC100Desc lebd;
487 lebd.des0 = cpu_to_le32(bd->des0);
488 lebd.des1 = cpu_to_le32(bd->des1);
489 lebd.des2 = cpu_to_le32(bd->des2);
490 lebd.des3 = cpu_to_le32(bd->des3);
491 if (dma_memory_write(&address_space_memory, addr,
492 &lebd, sizeof(lebd), MEMTXATTRS_UNSPECIFIED)) {
493 qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to write descriptor @ 0x%"
494 HWADDR_PRIx "\n", __func__, addr);
495 return -1;
497 return 0;
500 static int ftgmac100_insert_vlan(FTGMAC100State *s, int frame_size,
501 uint8_t vlan_tci)
503 uint8_t *vlan_hdr = s->frame + (ETH_ALEN * 2);
504 uint8_t *payload = vlan_hdr + sizeof(struct vlan_header);
506 if (frame_size < sizeof(struct eth_header)) {
507 qemu_log_mask(LOG_GUEST_ERROR,
508 "%s: frame too small for VLAN insertion : %d bytes\n",
509 __func__, frame_size);
510 s->isr |= FTGMAC100_INT_XPKT_LOST;
511 goto out;
514 if (frame_size + sizeof(struct vlan_header) > sizeof(s->frame)) {
515 qemu_log_mask(LOG_GUEST_ERROR,
516 "%s: frame too big : %d bytes\n",
517 __func__, frame_size);
518 s->isr |= FTGMAC100_INT_XPKT_LOST;
519 frame_size -= sizeof(struct vlan_header);
522 memmove(payload, vlan_hdr, frame_size - (ETH_ALEN * 2));
523 stw_be_p(vlan_hdr, ETH_P_VLAN);
524 stw_be_p(vlan_hdr + 2, vlan_tci);
525 frame_size += sizeof(struct vlan_header);
527 out:
528 return frame_size;
531 static void ftgmac100_do_tx(FTGMAC100State *s, uint64_t tx_ring,
532 uint64_t tx_descriptor)
534 int frame_size = 0;
535 uint8_t *ptr = s->frame;
536 uint64_t addr = tx_descriptor;
537 uint64_t buf_addr = 0;
538 uint32_t flags = 0;
540 while (1) {
541 FTGMAC100Desc bd;
542 int len;
544 if (ftgmac100_read_bd(&bd, addr) ||
545 ((bd.des0 & FTGMAC100_TXDES0_TXDMA_OWN) == 0)) {
546 /* Run out of descriptors to transmit. */
547 s->isr |= FTGMAC100_INT_NO_NPTXBUF;
548 break;
552 * record transmit flags as they are valid only on the first
553 * segment
555 if (bd.des0 & FTGMAC100_TXDES0_FTS) {
556 flags = bd.des1;
559 len = FTGMAC100_TXDES0_TXBUF_SIZE(bd.des0);
560 if (!len) {
562 * 0 is an invalid size, however the HW does not raise any
563 * interrupt. Flag an error because the guest is buggy.
565 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid segment size\n",
566 __func__);
569 if (frame_size + len > sizeof(s->frame)) {
570 qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %d bytes\n",
571 __func__, len);
572 s->isr |= FTGMAC100_INT_XPKT_LOST;
573 len = sizeof(s->frame) - frame_size;
576 buf_addr = bd.des3;
577 if (s->dma64) {
578 buf_addr = deposit64(buf_addr, 32, 32,
579 FTGMAC100_TXDES2_TXBUF_BADR_HI(bd.des2));
581 if (dma_memory_read(&address_space_memory, buf_addr,
582 ptr, len, MEMTXATTRS_UNSPECIFIED)) {
583 qemu_log_mask(LOG_GUEST_ERROR, "%s: failed to read packet @ 0x%x\n",
584 __func__, bd.des3);
585 s->isr |= FTGMAC100_INT_AHB_ERR;
586 break;
589 ptr += len;
590 frame_size += len;
591 if (bd.des0 & FTGMAC100_TXDES0_LTS) {
592 int csum = 0;
594 /* Check for VLAN */
595 if (flags & FTGMAC100_TXDES1_INS_VLANTAG &&
596 be16_to_cpu(PKT_GET_ETH_HDR(s->frame)->h_proto) != ETH_P_VLAN) {
597 frame_size = ftgmac100_insert_vlan(s, frame_size,
598 FTGMAC100_TXDES1_VLANTAG_CI(flags));
601 if (flags & FTGMAC100_TXDES1_IP_CHKSUM) {
602 csum |= CSUM_IP;
604 if (flags & FTGMAC100_TXDES1_TCP_CHKSUM) {
605 csum |= CSUM_TCP;
607 if (flags & FTGMAC100_TXDES1_UDP_CHKSUM) {
608 csum |= CSUM_UDP;
610 if (csum) {
611 net_checksum_calculate(s->frame, frame_size, csum);
614 /* Last buffer in frame. */
615 qemu_send_packet(qemu_get_queue(s->nic), s->frame, frame_size);
616 ptr = s->frame;
617 frame_size = 0;
618 s->isr |= FTGMAC100_INT_XPKT_ETH;
621 if (flags & FTGMAC100_TXDES1_TX2FIC) {
622 s->isr |= FTGMAC100_INT_XPKT_FIFO;
624 bd.des0 &= ~FTGMAC100_TXDES0_TXDMA_OWN;
626 /* Write back the modified descriptor. */
627 ftgmac100_write_bd(&bd, addr);
628 /* Advance to the next descriptor. */
629 if (bd.des0 & s->txdes0_edotr) {
630 addr = tx_ring;
631 } else {
632 addr += FTGMAC100_DBLAC_TXDES_SIZE(s->dblac);
636 s->tx_descriptor = addr;
638 ftgmac100_update_irq(s);
641 static bool ftgmac100_can_receive(NetClientState *nc)
643 FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
644 FTGMAC100Desc bd;
646 if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN))
647 != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) {
648 return false;
651 if (ftgmac100_read_bd(&bd, s->rx_descriptor)) {
652 return false;
654 return !(bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY);
658 * This is purely informative. The HW can poll the RW (and RX) ring
659 * buffers for available descriptors but we don't need to trigger a
660 * timer for that in qemu.
662 static uint32_t ftgmac100_rxpoll(FTGMAC100State *s)
665 * Polling times :
667 * Speed TIME_SEL=0 TIME_SEL=1
669 * 10 51.2 ms 819.2 ms
670 * 100 5.12 ms 81.92 ms
671 * 1000 1.024 ms 16.384 ms
673 static const int div[] = { 20, 200, 1000 };
675 uint32_t cnt = 1024 * FTGMAC100_APTC_RXPOLL_CNT(s->aptcr);
676 uint32_t speed = (s->maccr & FTGMAC100_MACCR_FAST_MODE) ? 1 : 0;
678 if (s->aptcr & FTGMAC100_APTC_RXPOLL_TIME_SEL) {
679 cnt <<= 4;
682 if (s->maccr & FTGMAC100_MACCR_GIGA_MODE) {
683 speed = 2;
686 return cnt / div[speed];
689 static void ftgmac100_do_reset(FTGMAC100State *s, bool sw_reset)
691 /* Reset the FTGMAC100 */
692 s->isr = 0;
693 s->ier = 0;
694 s->rx_enabled = 0;
695 s->rx_ring = 0;
696 s->rbsr = 0x640;
697 s->rx_descriptor = 0;
698 s->tx_ring = 0;
699 s->tx_descriptor = 0;
700 s->math[0] = 0;
701 s->math[1] = 0;
702 s->itc = 0;
703 s->aptcr = 1;
704 s->dblac = 0x00022f00;
705 s->revr = 0;
706 s->fear1 = 0;
707 s->tpafcr = 0xf1;
709 if (sw_reset) {
710 s->maccr &= FTGMAC100_MACCR_GIGA_MODE | FTGMAC100_MACCR_FAST_MODE;
711 } else {
712 s->maccr = 0;
715 s->phycr = 0;
716 s->phydata = 0;
717 s->fcr = 0x400;
719 /* and the PHY */
720 phy_reset(s);
723 static void ftgmac100_reset(DeviceState *d)
725 ftgmac100_do_reset(FTGMAC100(d), false);
728 static uint64_t ftgmac100_read(void *opaque, hwaddr addr, unsigned size)
730 FTGMAC100State *s = FTGMAC100(opaque);
732 switch (addr & 0xff) {
733 case FTGMAC100_ISR:
734 return s->isr;
735 case FTGMAC100_IER:
736 return s->ier;
737 case FTGMAC100_MAC_MADR:
738 return (s->conf.macaddr.a[0] << 8) | s->conf.macaddr.a[1];
739 case FTGMAC100_MAC_LADR:
740 return ((uint32_t) s->conf.macaddr.a[2] << 24) |
741 (s->conf.macaddr.a[3] << 16) | (s->conf.macaddr.a[4] << 8) |
742 s->conf.macaddr.a[5];
743 case FTGMAC100_MATH0:
744 return s->math[0];
745 case FTGMAC100_MATH1:
746 return s->math[1];
747 case FTGMAC100_RXR_BADR:
748 return extract64(s->rx_ring, 0, 32);
749 case FTGMAC100_NPTXR_BADR:
750 return extract64(s->tx_ring, 0, 32);
751 case FTGMAC100_ITC:
752 return s->itc;
753 case FTGMAC100_DBLAC:
754 return s->dblac;
755 case FTGMAC100_REVR:
756 return s->revr;
757 case FTGMAC100_FEAR1:
758 return s->fear1;
759 case FTGMAC100_TPAFCR:
760 return s->tpafcr;
761 case FTGMAC100_FCR:
762 return s->fcr;
763 case FTGMAC100_MACCR:
764 return s->maccr;
765 case FTGMAC100_PHYCR:
766 return s->phycr;
767 case FTGMAC100_PHYDATA:
768 return s->phydata;
770 /* We might want to support these one day */
771 case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */
772 case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */
773 case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */
774 qemu_log_mask(LOG_UNIMP, "%s: read to unimplemented register 0x%"
775 HWADDR_PRIx "\n", __func__, addr);
776 return 0;
777 default:
778 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
779 HWADDR_PRIx "\n", __func__, addr);
780 return 0;
784 static void ftgmac100_write(void *opaque, hwaddr addr,
785 uint64_t value, unsigned size)
787 FTGMAC100State *s = FTGMAC100(opaque);
789 switch (addr & 0xff) {
790 case FTGMAC100_ISR: /* Interrupt status */
791 s->isr &= ~value;
792 break;
793 case FTGMAC100_IER: /* Interrupt control */
794 s->ier = value;
795 break;
796 case FTGMAC100_MAC_MADR: /* MAC */
797 s->conf.macaddr.a[0] = value >> 8;
798 s->conf.macaddr.a[1] = value;
799 break;
800 case FTGMAC100_MAC_LADR:
801 s->conf.macaddr.a[2] = value >> 24;
802 s->conf.macaddr.a[3] = value >> 16;
803 s->conf.macaddr.a[4] = value >> 8;
804 s->conf.macaddr.a[5] = value;
805 break;
806 case FTGMAC100_MATH0: /* Multicast Address Hash Table 0 */
807 s->math[0] = value;
808 break;
809 case FTGMAC100_MATH1: /* Multicast Address Hash Table 1 */
810 s->math[1] = value;
811 break;
812 case FTGMAC100_ITC: /* TODO: Interrupt Timer Control */
813 s->itc = value;
814 break;
815 case FTGMAC100_RXR_BADR: /* Ring buffer address */
816 if (!QEMU_IS_ALIGNED(value, FTGMAC100_DESC_ALIGNMENT)) {
817 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad RX buffer alignment 0x%"
818 HWADDR_PRIx "\n", __func__, value);
819 return;
821 s->rx_ring = deposit64(s->rx_ring, 0, 32, value);
822 s->rx_descriptor = deposit64(s->rx_descriptor, 0, 32, value);
823 break;
825 case FTGMAC100_RBSR: /* DMA buffer size */
826 s->rbsr = value;
827 break;
829 case FTGMAC100_NPTXR_BADR: /* Transmit buffer address */
830 if (!QEMU_IS_ALIGNED(value, FTGMAC100_DESC_ALIGNMENT)) {
831 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad TX buffer alignment 0x%"
832 HWADDR_PRIx "\n", __func__, value);
833 return;
835 s->tx_ring = deposit64(s->tx_ring, 0, 32, value);
836 s->tx_descriptor = deposit64(s->tx_descriptor, 0, 32, value);
837 break;
839 case FTGMAC100_NPTXPD: /* Trigger transmit */
840 if ((s->maccr & (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN))
841 == (FTGMAC100_MACCR_TXDMA_EN | FTGMAC100_MACCR_TXMAC_EN)) {
842 /* TODO: high priority tx ring */
843 ftgmac100_do_tx(s, s->tx_ring, s->tx_descriptor);
845 if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
846 qemu_flush_queued_packets(qemu_get_queue(s->nic));
848 break;
850 case FTGMAC100_RXPD: /* Receive Poll Demand Register */
851 if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
852 qemu_flush_queued_packets(qemu_get_queue(s->nic));
854 break;
856 case FTGMAC100_APTC: /* Automatic polling */
857 s->aptcr = value;
859 if (FTGMAC100_APTC_RXPOLL_CNT(s->aptcr)) {
860 ftgmac100_rxpoll(s);
863 if (FTGMAC100_APTC_TXPOLL_CNT(s->aptcr)) {
864 qemu_log_mask(LOG_UNIMP, "%s: no transmit polling\n", __func__);
866 break;
868 case FTGMAC100_MACCR: /* MAC Device control */
869 s->maccr = value;
870 if (value & FTGMAC100_MACCR_SW_RST) {
871 ftgmac100_do_reset(s, true);
874 if (ftgmac100_can_receive(qemu_get_queue(s->nic))) {
875 qemu_flush_queued_packets(qemu_get_queue(s->nic));
877 break;
879 case FTGMAC100_PHYCR: /* PHY Device control */
880 s->phycr = value;
881 if (s->revr & FTGMAC100_REVR_NEW_MDIO_INTERFACE) {
882 do_phy_new_ctl(s);
883 } else {
884 do_phy_ctl(s);
886 break;
887 case FTGMAC100_PHYDATA:
888 s->phydata = value & 0xffff;
889 break;
890 case FTGMAC100_DBLAC: /* DMA Burst Length and Arbitration Control */
891 if (FTGMAC100_DBLAC_TXDES_SIZE(value) < sizeof(FTGMAC100Desc)) {
892 qemu_log_mask(LOG_GUEST_ERROR,
893 "%s: transmit descriptor too small: %" PRIx64
894 " bytes\n", __func__,
895 FTGMAC100_DBLAC_TXDES_SIZE(value));
896 break;
898 if (FTGMAC100_DBLAC_RXDES_SIZE(value) < sizeof(FTGMAC100Desc)) {
899 qemu_log_mask(LOG_GUEST_ERROR,
900 "%s: receive descriptor too small : %" PRIx64
901 " bytes\n", __func__,
902 FTGMAC100_DBLAC_RXDES_SIZE(value));
903 break;
905 s->dblac = value;
906 break;
907 case FTGMAC100_REVR: /* Feature Register */
908 s->revr = value;
909 break;
910 case FTGMAC100_FEAR1: /* Feature Register 1 */
911 s->fear1 = value;
912 break;
913 case FTGMAC100_TPAFCR: /* Transmit Priority Arbitration and FIFO Control */
914 s->tpafcr = value;
915 break;
916 case FTGMAC100_FCR: /* Flow Control */
917 s->fcr = value;
918 break;
920 case FTGMAC100_HPTXPD: /* High Priority Transmit Poll Demand */
921 case FTGMAC100_HPTXR_BADR: /* High Priority Transmit Ring Base Address */
922 case FTGMAC100_MACSR: /* MAC Status Register (MACSR) */
923 qemu_log_mask(LOG_UNIMP, "%s: write to unimplemented register 0x%"
924 HWADDR_PRIx "\n", __func__, addr);
925 break;
926 default:
927 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
928 HWADDR_PRIx "\n", __func__, addr);
929 break;
932 ftgmac100_update_irq(s);
935 static uint64_t ftgmac100_high_read(void *opaque, hwaddr addr, unsigned size)
937 FTGMAC100State *s = FTGMAC100(opaque);
938 uint64_t val = 0;
940 switch (addr) {
941 case FTGMAC100_NPTXR_BADR_HIGH:
942 val = extract64(s->tx_ring, 32, 32);
943 break;
944 case FTGMAC100_HPTXR_BADR_HIGH:
945 /* High Priority Transmit Ring Base High Address */
946 qemu_log_mask(LOG_UNIMP, "%s: read to unimplemented register 0x%"
947 HWADDR_PRIx "\n", __func__, addr);
948 break;
949 case FTGMAC100_RXR_BADR_HIGH:
950 val = extract64(s->rx_ring, 32, 32);
951 break;
952 default:
953 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
954 HWADDR_PRIx "\n", __func__, addr);
955 break;
958 return val;
961 static void ftgmac100_high_write(void *opaque, hwaddr addr,
962 uint64_t value, unsigned size)
964 FTGMAC100State *s = FTGMAC100(opaque);
966 switch (addr) {
967 case FTGMAC100_NPTXR_BADR_HIGH:
968 s->tx_ring = deposit64(s->tx_ring, 32, 32, value);
969 s->tx_descriptor = deposit64(s->tx_descriptor, 32, 32, value);
970 break;
971 case FTGMAC100_HPTXR_BADR_HIGH:
972 /* High Priority Transmit Ring Base High Address */
973 qemu_log_mask(LOG_UNIMP, "%s: write to unimplemented register 0x%"
974 HWADDR_PRIx "\n", __func__, addr);
975 break;
976 case FTGMAC100_RXR_BADR_HIGH:
977 s->rx_ring = deposit64(s->rx_ring, 32, 32, value);
978 s->rx_descriptor = deposit64(s->rx_descriptor, 32, 32, value);
979 break;
980 default:
981 qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad address at offset 0x%"
982 HWADDR_PRIx "\n", __func__, addr);
983 break;
986 ftgmac100_update_irq(s);
989 static int ftgmac100_filter(FTGMAC100State *s, const uint8_t *buf, size_t len)
991 unsigned mcast_idx;
993 if (s->maccr & FTGMAC100_MACCR_RX_ALL) {
994 return 1;
997 switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) {
998 case ETH_PKT_BCAST:
999 if (!(s->maccr & FTGMAC100_MACCR_RX_BROADPKT)) {
1000 return 0;
1002 break;
1003 case ETH_PKT_MCAST:
1004 if (!(s->maccr & FTGMAC100_MACCR_RX_MULTIPKT)) {
1005 if (!(s->maccr & FTGMAC100_MACCR_HT_MULTI_EN)) {
1006 return 0;
1009 mcast_idx = net_crc32_le(buf, ETH_ALEN);
1010 mcast_idx = (~(mcast_idx >> 2)) & 0x3f;
1011 if (!(s->math[mcast_idx / 32] & (1 << (mcast_idx % 32)))) {
1012 return 0;
1015 break;
1016 case ETH_PKT_UCAST:
1017 if (memcmp(s->conf.macaddr.a, buf, 6)) {
1018 return 0;
1020 break;
1023 return 1;
1026 static ssize_t ftgmac100_receive(NetClientState *nc, const uint8_t *buf,
1027 size_t len)
1029 FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
1030 FTGMAC100Desc bd;
1031 uint32_t flags = 0;
1032 uint64_t addr;
1033 uint32_t crc;
1034 uint64_t buf_addr = 0;
1035 uint8_t *crc_ptr;
1036 uint32_t buf_len;
1037 size_t size = len;
1038 uint32_t first = FTGMAC100_RXDES0_FRS;
1039 uint16_t proto = be16_to_cpu(PKT_GET_ETH_HDR(buf)->h_proto);
1040 int max_frame_size = ftgmac100_max_frame_size(s, proto);
1042 if ((s->maccr & (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN))
1043 != (FTGMAC100_MACCR_RXDMA_EN | FTGMAC100_MACCR_RXMAC_EN)) {
1044 return -1;
1047 if (!ftgmac100_filter(s, buf, size)) {
1048 return size;
1051 crc = cpu_to_be32(crc32(~0, buf, size));
1052 /* Increase size by 4, loop below reads the last 4 bytes from crc_ptr. */
1053 size += 4;
1054 crc_ptr = (uint8_t *) &crc;
1056 /* Huge frames are truncated. */
1057 if (size > max_frame_size) {
1058 qemu_log_mask(LOG_GUEST_ERROR, "%s: frame too big : %zd bytes\n",
1059 __func__, size);
1060 size = max_frame_size;
1061 flags |= FTGMAC100_RXDES0_FTL;
1064 switch (get_eth_packet_type(PKT_GET_ETH_HDR(buf))) {
1065 case ETH_PKT_BCAST:
1066 flags |= FTGMAC100_RXDES0_BROADCAST;
1067 break;
1068 case ETH_PKT_MCAST:
1069 flags |= FTGMAC100_RXDES0_MULTICAST;
1070 break;
1071 case ETH_PKT_UCAST:
1072 break;
1075 s->isr |= FTGMAC100_INT_RPKT_FIFO;
1076 addr = s->rx_descriptor;
1077 while (size > 0) {
1078 if (!ftgmac100_can_receive(nc)) {
1079 qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected packet\n", __func__);
1080 return -1;
1083 if (ftgmac100_read_bd(&bd, addr) ||
1084 (bd.des0 & FTGMAC100_RXDES0_RXPKT_RDY)) {
1085 /* No descriptors available. Bail out. */
1086 qemu_log_mask(LOG_GUEST_ERROR, "%s: Lost end of frame\n",
1087 __func__);
1088 s->isr |= FTGMAC100_INT_NO_RXBUF;
1089 break;
1091 buf_len = (size <= s->rbsr) ? size : s->rbsr;
1092 bd.des0 |= buf_len & 0x3fff;
1093 size -= buf_len;
1095 /* The last 4 bytes are the CRC. */
1096 if (size < 4) {
1097 buf_len += size - 4;
1100 buf_addr = bd.des3;
1101 if (s->dma64) {
1102 buf_addr = deposit64(buf_addr, 32, 32,
1103 FTGMAC100_RXDES2_RXBUF_BADR_HI(bd.des2));
1105 if (first && proto == ETH_P_VLAN && buf_len >= 18) {
1106 bd.des1 = lduw_be_p(buf + 14) | FTGMAC100_RXDES1_VLANTAG_AVAIL;
1108 if (s->maccr & FTGMAC100_MACCR_RM_VLAN) {
1109 dma_memory_write(&address_space_memory, buf_addr, buf, 12,
1110 MEMTXATTRS_UNSPECIFIED);
1111 dma_memory_write(&address_space_memory, buf_addr + 12,
1112 buf + 16, buf_len - 16,
1113 MEMTXATTRS_UNSPECIFIED);
1114 } else {
1115 dma_memory_write(&address_space_memory, buf_addr, buf,
1116 buf_len, MEMTXATTRS_UNSPECIFIED);
1118 } else {
1119 bd.des1 = 0;
1120 dma_memory_write(&address_space_memory, buf_addr, buf, buf_len,
1121 MEMTXATTRS_UNSPECIFIED);
1123 buf += buf_len;
1124 if (size < 4) {
1125 dma_memory_write(&address_space_memory, buf_addr + buf_len,
1126 crc_ptr, 4 - size, MEMTXATTRS_UNSPECIFIED);
1127 crc_ptr += 4 - size;
1130 bd.des0 |= first | FTGMAC100_RXDES0_RXPKT_RDY;
1131 first = 0;
1132 if (size == 0) {
1133 /* Last buffer in frame. */
1134 bd.des0 |= flags | FTGMAC100_RXDES0_LRS;
1135 s->isr |= FTGMAC100_INT_RPKT_BUF;
1137 ftgmac100_write_bd(&bd, addr);
1138 if (bd.des0 & s->rxdes0_edorr) {
1139 addr = s->rx_ring;
1140 } else {
1141 addr += FTGMAC100_DBLAC_RXDES_SIZE(s->dblac);
1144 s->rx_descriptor = addr;
1146 ftgmac100_update_irq(s);
1147 return len;
1150 static const MemoryRegionOps ftgmac100_ops = {
1151 .read = ftgmac100_read,
1152 .write = ftgmac100_write,
1153 .valid.min_access_size = 4,
1154 .valid.max_access_size = 4,
1155 .endianness = DEVICE_LITTLE_ENDIAN,
1158 static const MemoryRegionOps ftgmac100_high_ops = {
1159 .read = ftgmac100_high_read,
1160 .write = ftgmac100_high_write,
1161 .valid.min_access_size = 4,
1162 .valid.max_access_size = 4,
1163 .endianness = DEVICE_LITTLE_ENDIAN,
1166 static void ftgmac100_cleanup(NetClientState *nc)
1168 FTGMAC100State *s = FTGMAC100(qemu_get_nic_opaque(nc));
1170 s->nic = NULL;
1173 static NetClientInfo net_ftgmac100_info = {
1174 .type = NET_CLIENT_DRIVER_NIC,
1175 .size = sizeof(NICState),
1176 .can_receive = ftgmac100_can_receive,
1177 .receive = ftgmac100_receive,
1178 .cleanup = ftgmac100_cleanup,
1179 .link_status_changed = ftgmac100_set_link,
1182 static void ftgmac100_realize(DeviceState *dev, Error **errp)
1184 FTGMAC100State *s = FTGMAC100(dev);
1185 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1187 if (s->aspeed) {
1188 s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR_ASPEED;
1189 s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR_ASPEED;
1190 } else {
1191 s->txdes0_edotr = FTGMAC100_TXDES0_EDOTR;
1192 s->rxdes0_edorr = FTGMAC100_RXDES0_EDORR;
1195 memory_region_init(&s->iomem_container, OBJECT(s),
1196 TYPE_FTGMAC100 ".container", FTGMAC100_MEM_SIZE);
1197 sysbus_init_mmio(sbd, &s->iomem_container);
1199 memory_region_init_io(&s->iomem, OBJECT(s), &ftgmac100_ops, s,
1200 TYPE_FTGMAC100 ".regs", FTGMAC100_REG_MEM_SIZE);
1201 memory_region_add_subregion(&s->iomem_container, 0x0, &s->iomem);
1203 if (s->dma64) {
1204 memory_region_init_io(&s->iomem_high, OBJECT(s), &ftgmac100_high_ops,
1205 s, TYPE_FTGMAC100 ".regs.high",
1206 FTGMAC100_REG_HIGH_MEM_SIZE);
1207 memory_region_add_subregion(&s->iomem_container,
1208 FTGMAC100_REG_HIGH_OFFSET,
1209 &s->iomem_high);
1212 sysbus_init_irq(sbd, &s->irq);
1213 qemu_macaddr_default_if_unset(&s->conf.macaddr);
1215 s->nic = qemu_new_nic(&net_ftgmac100_info, &s->conf,
1216 object_get_typename(OBJECT(dev)), dev->id,
1217 &dev->mem_reentrancy_guard, s);
1218 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
1221 static const VMStateDescription vmstate_ftgmac100 = {
1222 .name = TYPE_FTGMAC100,
1223 .version_id = 2,
1224 .minimum_version_id = 2,
1225 .fields = (const VMStateField[]) {
1226 VMSTATE_UINT32(irq_state, FTGMAC100State),
1227 VMSTATE_UINT32(isr, FTGMAC100State),
1228 VMSTATE_UINT32(ier, FTGMAC100State),
1229 VMSTATE_UINT32(rx_enabled, FTGMAC100State),
1230 VMSTATE_UINT32(rbsr, FTGMAC100State),
1231 VMSTATE_UINT32_ARRAY(math, FTGMAC100State, 2),
1232 VMSTATE_UINT32(itc, FTGMAC100State),
1233 VMSTATE_UINT32(aptcr, FTGMAC100State),
1234 VMSTATE_UINT32(dblac, FTGMAC100State),
1235 VMSTATE_UINT32(revr, FTGMAC100State),
1236 VMSTATE_UINT32(fear1, FTGMAC100State),
1237 VMSTATE_UINT32(tpafcr, FTGMAC100State),
1238 VMSTATE_UINT32(maccr, FTGMAC100State),
1239 VMSTATE_UINT32(phycr, FTGMAC100State),
1240 VMSTATE_UINT32(phydata, FTGMAC100State),
1241 VMSTATE_UINT32(fcr, FTGMAC100State),
1242 VMSTATE_UINT32(phy_status, FTGMAC100State),
1243 VMSTATE_UINT32(phy_control, FTGMAC100State),
1244 VMSTATE_UINT32(phy_advertise, FTGMAC100State),
1245 VMSTATE_UINT32(phy_int, FTGMAC100State),
1246 VMSTATE_UINT32(phy_int_mask, FTGMAC100State),
1247 VMSTATE_UINT32(txdes0_edotr, FTGMAC100State),
1248 VMSTATE_UINT32(rxdes0_edorr, FTGMAC100State),
1249 VMSTATE_UINT64(rx_ring, FTGMAC100State),
1250 VMSTATE_UINT64(tx_ring, FTGMAC100State),
1251 VMSTATE_UINT64(rx_descriptor, FTGMAC100State),
1252 VMSTATE_UINT64(tx_descriptor, FTGMAC100State),
1253 VMSTATE_END_OF_LIST()
1257 static Property ftgmac100_properties[] = {
1258 DEFINE_PROP_BOOL("aspeed", FTGMAC100State, aspeed, false),
1259 DEFINE_NIC_PROPERTIES(FTGMAC100State, conf),
1260 DEFINE_PROP_BOOL("dma64", FTGMAC100State, dma64, false),
1261 DEFINE_PROP_END_OF_LIST(),
1264 static void ftgmac100_class_init(ObjectClass *klass, void *data)
1266 DeviceClass *dc = DEVICE_CLASS(klass);
1268 dc->vmsd = &vmstate_ftgmac100;
1269 device_class_set_legacy_reset(dc, ftgmac100_reset);
1270 device_class_set_props(dc, ftgmac100_properties);
1271 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
1272 dc->realize = ftgmac100_realize;
1273 dc->desc = "Faraday FTGMAC100 Gigabit Ethernet emulation";
1276 static const TypeInfo ftgmac100_info = {
1277 .name = TYPE_FTGMAC100,
1278 .parent = TYPE_SYS_BUS_DEVICE,
1279 .instance_size = sizeof(FTGMAC100State),
1280 .class_init = ftgmac100_class_init,
1284 * AST2600 MII controller
1286 #define ASPEED_MII_PHYCR_FIRE BIT(31)
1287 #define ASPEED_MII_PHYCR_ST_22 BIT(28)
1288 #define ASPEED_MII_PHYCR_OP(x) ((x) & (ASPEED_MII_PHYCR_OP_WRITE | \
1289 ASPEED_MII_PHYCR_OP_READ))
1290 #define ASPEED_MII_PHYCR_OP_WRITE BIT(26)
1291 #define ASPEED_MII_PHYCR_OP_READ BIT(27)
1292 #define ASPEED_MII_PHYCR_DATA(x) (x & 0xffff)
1293 #define ASPEED_MII_PHYCR_PHY(x) (((x) >> 21) & 0x1f)
1294 #define ASPEED_MII_PHYCR_REG(x) (((x) >> 16) & 0x1f)
1296 #define ASPEED_MII_PHYDATA_IDLE BIT(16)
1298 static void aspeed_mii_transition(AspeedMiiState *s, bool fire)
1300 if (fire) {
1301 s->phycr |= ASPEED_MII_PHYCR_FIRE;
1302 s->phydata &= ~ASPEED_MII_PHYDATA_IDLE;
1303 } else {
1304 s->phycr &= ~ASPEED_MII_PHYCR_FIRE;
1305 s->phydata |= ASPEED_MII_PHYDATA_IDLE;
1309 static void aspeed_mii_do_phy_ctl(AspeedMiiState *s)
1311 uint8_t reg;
1312 uint16_t data;
1314 if (!(s->phycr & ASPEED_MII_PHYCR_ST_22)) {
1315 aspeed_mii_transition(s, !ASPEED_MII_PHYCR_FIRE);
1316 qemu_log_mask(LOG_UNIMP, "%s: unsupported ST code\n", __func__);
1317 return;
1320 /* Nothing to do */
1321 if (!(s->phycr & ASPEED_MII_PHYCR_FIRE)) {
1322 return;
1325 reg = ASPEED_MII_PHYCR_REG(s->phycr);
1326 data = ASPEED_MII_PHYCR_DATA(s->phycr);
1328 switch (ASPEED_MII_PHYCR_OP(s->phycr)) {
1329 case ASPEED_MII_PHYCR_OP_WRITE:
1330 do_phy_write(s->nic, reg, data);
1331 break;
1332 case ASPEED_MII_PHYCR_OP_READ:
1333 s->phydata = (s->phydata & ~0xffff) | do_phy_read(s->nic, reg);
1334 break;
1335 default:
1336 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid OP code %08x\n",
1337 __func__, s->phycr);
1340 aspeed_mii_transition(s, !ASPEED_MII_PHYCR_FIRE);
1343 static uint64_t aspeed_mii_read(void *opaque, hwaddr addr, unsigned size)
1345 AspeedMiiState *s = ASPEED_MII(opaque);
1347 switch (addr) {
1348 case 0x0:
1349 return s->phycr;
1350 case 0x4:
1351 return s->phydata;
1352 default:
1353 g_assert_not_reached();
1357 static void aspeed_mii_write(void *opaque, hwaddr addr,
1358 uint64_t value, unsigned size)
1360 AspeedMiiState *s = ASPEED_MII(opaque);
1362 switch (addr) {
1363 case 0x0:
1364 s->phycr = value & ~(s->phycr & ASPEED_MII_PHYCR_FIRE);
1365 break;
1366 case 0x4:
1367 s->phydata = value & ~(0xffff | ASPEED_MII_PHYDATA_IDLE);
1368 break;
1369 default:
1370 g_assert_not_reached();
1373 aspeed_mii_transition(s, !!(s->phycr & ASPEED_MII_PHYCR_FIRE));
1374 aspeed_mii_do_phy_ctl(s);
1377 static const MemoryRegionOps aspeed_mii_ops = {
1378 .read = aspeed_mii_read,
1379 .write = aspeed_mii_write,
1380 .valid.min_access_size = 4,
1381 .valid.max_access_size = 4,
1382 .endianness = DEVICE_LITTLE_ENDIAN,
1385 static void aspeed_mii_reset(DeviceState *dev)
1387 AspeedMiiState *s = ASPEED_MII(dev);
1389 s->phycr = 0;
1390 s->phydata = 0;
1392 aspeed_mii_transition(s, !!(s->phycr & ASPEED_MII_PHYCR_FIRE));
1395 static void aspeed_mii_realize(DeviceState *dev, Error **errp)
1397 AspeedMiiState *s = ASPEED_MII(dev);
1398 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1400 assert(s->nic);
1402 memory_region_init_io(&s->iomem, OBJECT(dev), &aspeed_mii_ops, s,
1403 TYPE_ASPEED_MII, 0x8);
1404 sysbus_init_mmio(sbd, &s->iomem);
1407 static const VMStateDescription vmstate_aspeed_mii = {
1408 .name = TYPE_ASPEED_MII,
1409 .version_id = 1,
1410 .minimum_version_id = 1,
1411 .fields = (const VMStateField[]) {
1412 VMSTATE_UINT32(phycr, FTGMAC100State),
1413 VMSTATE_UINT32(phydata, FTGMAC100State),
1414 VMSTATE_END_OF_LIST()
1418 static Property aspeed_mii_properties[] = {
1419 DEFINE_PROP_LINK("nic", AspeedMiiState, nic, TYPE_FTGMAC100,
1420 FTGMAC100State *),
1421 DEFINE_PROP_END_OF_LIST(),
1424 static void aspeed_mii_class_init(ObjectClass *klass, void *data)
1426 DeviceClass *dc = DEVICE_CLASS(klass);
1428 dc->vmsd = &vmstate_aspeed_mii;
1429 device_class_set_legacy_reset(dc, aspeed_mii_reset);
1430 dc->realize = aspeed_mii_realize;
1431 dc->desc = "Aspeed MII controller";
1432 device_class_set_props(dc, aspeed_mii_properties);
1435 static const TypeInfo aspeed_mii_info = {
1436 .name = TYPE_ASPEED_MII,
1437 .parent = TYPE_SYS_BUS_DEVICE,
1438 .instance_size = sizeof(AspeedMiiState),
1439 .class_init = aspeed_mii_class_init,
1442 static void ftgmac100_register_types(void)
1444 type_register_static(&ftgmac100_info);
1445 type_register_static(&aspeed_mii_info);
1448 type_init(ftgmac100_register_types)