Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / hw / ppc / spapr_events.c
blob4dbf8e2e2efdf819b3719093586e4772d8e8d40e
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * RTAS events handling
6 * Copyright (c) 2012 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
28 #include "qemu/osdep.h"
29 #include "qapi/error.h"
30 #include "sysemu/device_tree.h"
31 #include "sysemu/runstate.h"
33 #include "hw/ppc/fdt.h"
34 #include "hw/ppc/spapr.h"
35 #include "hw/ppc/spapr_vio.h"
36 #include "hw/pci/pci.h"
37 #include "hw/irq.h"
38 #include "hw/pci-host/spapr.h"
39 #include "hw/ppc/spapr_drc.h"
40 #include "qemu/help_option.h"
41 #include "qemu/bcd.h"
42 #include "qemu/main-loop.h"
43 #include "hw/ppc/spapr_ovec.h"
44 #include <libfdt.h>
45 #include "migration/blocker.h"
47 #define RTAS_LOG_VERSION_MASK 0xff000000
48 #define RTAS_LOG_VERSION_6 0x06000000
49 #define RTAS_LOG_SEVERITY_MASK 0x00e00000
50 #define RTAS_LOG_SEVERITY_ALREADY_REPORTED 0x00c00000
51 #define RTAS_LOG_SEVERITY_FATAL 0x00a00000
52 #define RTAS_LOG_SEVERITY_ERROR 0x00800000
53 #define RTAS_LOG_SEVERITY_ERROR_SYNC 0x00600000
54 #define RTAS_LOG_SEVERITY_WARNING 0x00400000
55 #define RTAS_LOG_SEVERITY_EVENT 0x00200000
56 #define RTAS_LOG_SEVERITY_NO_ERROR 0x00000000
57 #define RTAS_LOG_DISPOSITION_MASK 0x00180000
58 #define RTAS_LOG_DISPOSITION_FULLY_RECOVERED 0x00000000
59 #define RTAS_LOG_DISPOSITION_LIMITED_RECOVERY 0x00080000
60 #define RTAS_LOG_DISPOSITION_NOT_RECOVERED 0x00100000
61 #define RTAS_LOG_OPTIONAL_PART_PRESENT 0x00040000
62 #define RTAS_LOG_INITIATOR_MASK 0x0000f000
63 #define RTAS_LOG_INITIATOR_UNKNOWN 0x00000000
64 #define RTAS_LOG_INITIATOR_CPU 0x00001000
65 #define RTAS_LOG_INITIATOR_PCI 0x00002000
66 #define RTAS_LOG_INITIATOR_MEMORY 0x00004000
67 #define RTAS_LOG_INITIATOR_HOTPLUG 0x00006000
68 #define RTAS_LOG_TARGET_MASK 0x00000f00
69 #define RTAS_LOG_TARGET_UNKNOWN 0x00000000
70 #define RTAS_LOG_TARGET_CPU 0x00000100
71 #define RTAS_LOG_TARGET_PCI 0x00000200
72 #define RTAS_LOG_TARGET_MEMORY 0x00000400
73 #define RTAS_LOG_TARGET_HOTPLUG 0x00000600
74 #define RTAS_LOG_TYPE_MASK 0x000000ff
75 #define RTAS_LOG_TYPE_OTHER 0x00000000
76 #define RTAS_LOG_TYPE_RETRY 0x00000001
77 #define RTAS_LOG_TYPE_TCE_ERR 0x00000002
78 #define RTAS_LOG_TYPE_INTERN_DEV_FAIL 0x00000003
79 #define RTAS_LOG_TYPE_TIMEOUT 0x00000004
80 #define RTAS_LOG_TYPE_DATA_PARITY 0x00000005
81 #define RTAS_LOG_TYPE_ADDR_PARITY 0x00000006
82 #define RTAS_LOG_TYPE_CACHE_PARITY 0x00000007
83 #define RTAS_LOG_TYPE_ADDR_INVALID 0x00000008
84 #define RTAS_LOG_TYPE_ECC_UNCORR 0x00000009
85 #define RTAS_LOG_TYPE_ECC_CORR 0x0000000a
86 #define RTAS_LOG_TYPE_EPOW 0x00000040
87 #define RTAS_LOG_TYPE_HOTPLUG 0x000000e5
89 struct rtas_error_log {
90 uint32_t summary;
91 uint32_t extended_length;
92 } QEMU_PACKED;
94 struct rtas_event_log_v6 {
95 uint8_t b0;
96 #define RTAS_LOG_V6_B0_VALID 0x80
97 #define RTAS_LOG_V6_B0_UNRECOVERABLE_ERROR 0x40
98 #define RTAS_LOG_V6_B0_RECOVERABLE_ERROR 0x20
99 #define RTAS_LOG_V6_B0_DEGRADED_OPERATION 0x10
100 #define RTAS_LOG_V6_B0_PREDICTIVE_ERROR 0x08
101 #define RTAS_LOG_V6_B0_NEW_LOG 0x04
102 #define RTAS_LOG_V6_B0_BIGENDIAN 0x02
103 uint8_t _resv1;
104 uint8_t b2;
105 #define RTAS_LOG_V6_B2_POWERPC_FORMAT 0x80
106 #define RTAS_LOG_V6_B2_LOG_FORMAT_MASK 0x0f
107 #define RTAS_LOG_V6_B2_LOG_FORMAT_PLATFORM_EVENT 0x0e
108 uint8_t _resv2[9];
109 uint32_t company;
110 #define RTAS_LOG_V6_COMPANY_IBM 0x49424d00 /* IBM<null> */
111 } QEMU_PACKED;
113 struct rtas_event_log_v6_section_header {
114 uint16_t section_id;
115 uint16_t section_length;
116 uint8_t section_version;
117 uint8_t section_subtype;
118 uint16_t creator_component_id;
119 } QEMU_PACKED;
121 struct rtas_event_log_v6_maina {
122 #define RTAS_LOG_V6_SECTION_ID_MAINA 0x5048 /* PH */
123 struct rtas_event_log_v6_section_header hdr;
124 uint32_t creation_date; /* BCD: YYYYMMDD */
125 uint32_t creation_time; /* BCD: HHMMSS00 */
126 uint8_t _platform1[8];
127 char creator_id;
128 uint8_t _resv1[2];
129 uint8_t section_count;
130 uint8_t _resv2[4];
131 uint8_t _platform2[8];
132 uint32_t plid;
133 uint8_t _platform3[4];
134 } QEMU_PACKED;
136 struct rtas_event_log_v6_mainb {
137 #define RTAS_LOG_V6_SECTION_ID_MAINB 0x5548 /* UH */
138 struct rtas_event_log_v6_section_header hdr;
139 uint8_t subsystem_id;
140 uint8_t _platform1;
141 uint8_t event_severity;
142 uint8_t event_subtype;
143 uint8_t _platform2[4];
144 uint8_t _resv1[2];
145 uint16_t action_flags;
146 uint8_t _resv2[4];
147 } QEMU_PACKED;
149 struct rtas_event_log_v6_epow {
150 #define RTAS_LOG_V6_SECTION_ID_EPOW 0x4550 /* EP */
151 struct rtas_event_log_v6_section_header hdr;
152 uint8_t sensor_value;
153 #define RTAS_LOG_V6_EPOW_ACTION_RESET 0
154 #define RTAS_LOG_V6_EPOW_ACTION_WARN_COOLING 1
155 #define RTAS_LOG_V6_EPOW_ACTION_WARN_POWER 2
156 #define RTAS_LOG_V6_EPOW_ACTION_SYSTEM_SHUTDOWN 3
157 #define RTAS_LOG_V6_EPOW_ACTION_SYSTEM_HALT 4
158 #define RTAS_LOG_V6_EPOW_ACTION_MAIN_ENCLOSURE 5
159 #define RTAS_LOG_V6_EPOW_ACTION_POWER_OFF 7
160 uint8_t event_modifier;
161 #define RTAS_LOG_V6_EPOW_MODIFIER_NORMAL 1
162 #define RTAS_LOG_V6_EPOW_MODIFIER_ON_UPS 2
163 #define RTAS_LOG_V6_EPOW_MODIFIER_CRITICAL 3
164 #define RTAS_LOG_V6_EPOW_MODIFIER_TEMPERATURE 4
165 uint8_t extended_modifier;
166 #define RTAS_LOG_V6_EPOW_XMODIFIER_SYSTEM_WIDE 0
167 #define RTAS_LOG_V6_EPOW_XMODIFIER_PARTITION_SPECIFIC 1
168 uint8_t _resv;
169 uint64_t reason_code;
170 } QEMU_PACKED;
172 struct epow_extended_log {
173 struct rtas_event_log_v6 v6hdr;
174 struct rtas_event_log_v6_maina maina;
175 struct rtas_event_log_v6_mainb mainb;
176 struct rtas_event_log_v6_epow epow;
177 } QEMU_PACKED;
179 union drc_identifier {
180 uint32_t index;
181 uint32_t count;
182 struct {
183 uint32_t count;
184 uint32_t index;
185 } count_indexed;
186 char name[1];
187 } QEMU_PACKED;
189 struct rtas_event_log_v6_hp {
190 #define RTAS_LOG_V6_SECTION_ID_HOTPLUG 0x4850 /* HP */
191 struct rtas_event_log_v6_section_header hdr;
192 uint8_t hotplug_type;
193 #define RTAS_LOG_V6_HP_TYPE_CPU 1
194 #define RTAS_LOG_V6_HP_TYPE_MEMORY 2
195 #define RTAS_LOG_V6_HP_TYPE_SLOT 3
196 #define RTAS_LOG_V6_HP_TYPE_PHB 4
197 #define RTAS_LOG_V6_HP_TYPE_PCI 5
198 #define RTAS_LOG_V6_HP_TYPE_PMEM 6
199 uint8_t hotplug_action;
200 #define RTAS_LOG_V6_HP_ACTION_ADD 1
201 #define RTAS_LOG_V6_HP_ACTION_REMOVE 2
202 uint8_t hotplug_identifier;
203 #define RTAS_LOG_V6_HP_ID_DRC_NAME 1
204 #define RTAS_LOG_V6_HP_ID_DRC_INDEX 2
205 #define RTAS_LOG_V6_HP_ID_DRC_COUNT 3
206 #define RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED 4
207 uint8_t reserved;
208 union drc_identifier drc_id;
209 } QEMU_PACKED;
211 struct hp_extended_log {
212 struct rtas_event_log_v6 v6hdr;
213 struct rtas_event_log_v6_maina maina;
214 struct rtas_event_log_v6_mainb mainb;
215 struct rtas_event_log_v6_hp hp;
216 } QEMU_PACKED;
218 struct rtas_event_log_v6_mc {
219 #define RTAS_LOG_V6_SECTION_ID_MC 0x4D43 /* MC */
220 struct rtas_event_log_v6_section_header hdr;
221 uint32_t fru_id;
222 uint32_t proc_id;
223 uint8_t error_type;
224 #define RTAS_LOG_V6_MC_TYPE_UE 0
225 #define RTAS_LOG_V6_MC_TYPE_SLB 1
226 #define RTAS_LOG_V6_MC_TYPE_ERAT 2
227 #define RTAS_LOG_V6_MC_TYPE_TLB 4
228 #define RTAS_LOG_V6_MC_TYPE_D_CACHE 5
229 #define RTAS_LOG_V6_MC_TYPE_I_CACHE 7
230 uint8_t sub_err_type;
231 #define RTAS_LOG_V6_MC_UE_INDETERMINATE 0
232 #define RTAS_LOG_V6_MC_UE_IFETCH 1
233 #define RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_IFETCH 2
234 #define RTAS_LOG_V6_MC_UE_LOAD_STORE 3
235 #define RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_LOAD_STORE 4
236 #define RTAS_LOG_V6_MC_SLB_PARITY 0
237 #define RTAS_LOG_V6_MC_SLB_MULTIHIT 1
238 #define RTAS_LOG_V6_MC_SLB_INDETERMINATE 2
239 #define RTAS_LOG_V6_MC_ERAT_PARITY 1
240 #define RTAS_LOG_V6_MC_ERAT_MULTIHIT 2
241 #define RTAS_LOG_V6_MC_ERAT_INDETERMINATE 3
242 #define RTAS_LOG_V6_MC_TLB_PARITY 1
243 #define RTAS_LOG_V6_MC_TLB_MULTIHIT 2
244 #define RTAS_LOG_V6_MC_TLB_INDETERMINATE 3
246 * Per PAPR,
247 * For UE error type, set bit 1 of sub_err_type to indicate effective addr is
248 * provided. For other error types (SLB/ERAT/TLB), set bit 0 to indicate
249 * same.
251 #define RTAS_LOG_V6_MC_UE_EA_ADDR_PROVIDED 0x40
252 #define RTAS_LOG_V6_MC_EA_ADDR_PROVIDED 0x80
253 uint8_t reserved_1[6];
254 uint64_t effective_address;
255 uint64_t logical_address;
256 } QEMU_PACKED;
258 struct mc_extended_log {
259 struct rtas_event_log_v6 v6hdr;
260 struct rtas_event_log_v6_mc mc;
261 } QEMU_PACKED;
263 struct MC_ierror_table {
264 unsigned long srr1_mask;
265 unsigned long srr1_value;
266 bool nip_valid; /* nip is a valid indicator of faulting address */
267 uint8_t error_type;
268 uint8_t error_subtype;
269 unsigned int initiator;
270 unsigned int severity;
273 static const struct MC_ierror_table mc_ierror_table[] = {
274 { 0x00000000081c0000, 0x0000000000040000, true,
275 RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_IFETCH,
276 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
277 { 0x00000000081c0000, 0x0000000000080000, true,
278 RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_PARITY,
279 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
280 { 0x00000000081c0000, 0x00000000000c0000, true,
281 RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_MULTIHIT,
282 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
283 { 0x00000000081c0000, 0x0000000000100000, true,
284 RTAS_LOG_V6_MC_TYPE_ERAT, RTAS_LOG_V6_MC_ERAT_MULTIHIT,
285 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
286 { 0x00000000081c0000, 0x0000000000140000, true,
287 RTAS_LOG_V6_MC_TYPE_TLB, RTAS_LOG_V6_MC_TLB_MULTIHIT,
288 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
289 { 0x00000000081c0000, 0x0000000000180000, true,
290 RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_IFETCH,
291 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, } };
293 struct MC_derror_table {
294 unsigned long dsisr_value;
295 bool dar_valid; /* dar is a valid indicator of faulting address */
296 uint8_t error_type;
297 uint8_t error_subtype;
298 unsigned int initiator;
299 unsigned int severity;
302 static const struct MC_derror_table mc_derror_table[] = {
303 { 0x00008000, false,
304 RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_LOAD_STORE,
305 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
306 { 0x00004000, true,
307 RTAS_LOG_V6_MC_TYPE_UE, RTAS_LOG_V6_MC_UE_PAGE_TABLE_WALK_LOAD_STORE,
308 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
309 { 0x00000800, true,
310 RTAS_LOG_V6_MC_TYPE_ERAT, RTAS_LOG_V6_MC_ERAT_MULTIHIT,
311 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
312 { 0x00000400, true,
313 RTAS_LOG_V6_MC_TYPE_TLB, RTAS_LOG_V6_MC_TLB_MULTIHIT,
314 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
315 { 0x00000080, true,
316 RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_MULTIHIT, /* Before PARITY */
317 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, },
318 { 0x00000100, true,
319 RTAS_LOG_V6_MC_TYPE_SLB, RTAS_LOG_V6_MC_SLB_PARITY,
320 RTAS_LOG_INITIATOR_CPU, RTAS_LOG_SEVERITY_ERROR_SYNC, } };
322 #define SRR1_MC_LOADSTORE(srr1) ((srr1) & PPC_BIT(42))
324 typedef enum EventClass {
325 EVENT_CLASS_INTERNAL_ERRORS = 0,
326 EVENT_CLASS_EPOW = 1,
327 EVENT_CLASS_RESERVED = 2,
328 EVENT_CLASS_HOT_PLUG = 3,
329 EVENT_CLASS_IO = 4,
330 EVENT_CLASS_MAX
331 } EventClassIndex;
332 #define EVENT_CLASS_MASK(index) (1 << (31 - index))
334 static const char * const event_names[EVENT_CLASS_MAX] = {
335 [EVENT_CLASS_INTERNAL_ERRORS] = "internal-errors",
336 [EVENT_CLASS_EPOW] = "epow-events",
337 [EVENT_CLASS_HOT_PLUG] = "hot-plug-events",
338 [EVENT_CLASS_IO] = "ibm,io-events",
341 struct SpaprEventSource {
342 int irq;
343 uint32_t mask;
344 bool enabled;
347 static SpaprEventSource *spapr_event_sources_new(void)
349 return g_new0(SpaprEventSource, EVENT_CLASS_MAX);
352 static void spapr_event_sources_register(SpaprEventSource *event_sources,
353 EventClassIndex index, int irq)
355 /* we only support 1 irq per event class at the moment */
356 g_assert(event_sources);
357 g_assert(!event_sources[index].enabled);
358 event_sources[index].irq = irq;
359 event_sources[index].mask = EVENT_CLASS_MASK(index);
360 event_sources[index].enabled = true;
363 static const SpaprEventSource *
364 spapr_event_sources_get_source(SpaprEventSource *event_sources,
365 EventClassIndex index)
367 g_assert(index < EVENT_CLASS_MAX);
368 g_assert(event_sources);
370 return &event_sources[index];
373 void spapr_dt_events(SpaprMachineState *spapr, void *fdt)
375 uint32_t irq_ranges[EVENT_CLASS_MAX * 2];
376 int i, count = 0, event_sources;
377 SpaprEventSource *events = spapr->event_sources;
379 g_assert(events);
381 _FDT(event_sources = fdt_add_subnode(fdt, 0, "event-sources"));
383 for (i = 0, count = 0; i < EVENT_CLASS_MAX; i++) {
384 int node_offset;
385 uint32_t interrupts[2];
386 const SpaprEventSource *source =
387 spapr_event_sources_get_source(events, i);
388 const char *source_name = event_names[i];
390 if (!source->enabled) {
391 continue;
394 spapr_dt_irq(interrupts, source->irq, false);
396 _FDT(node_offset = fdt_add_subnode(fdt, event_sources, source_name));
397 _FDT(fdt_setprop(fdt, node_offset, "interrupts", interrupts,
398 sizeof(interrupts)));
400 irq_ranges[count++] = interrupts[0];
401 irq_ranges[count++] = cpu_to_be32(1);
404 _FDT((fdt_setprop(fdt, event_sources, "interrupt-controller", NULL, 0)));
405 _FDT((fdt_setprop_cell(fdt, event_sources, "#interrupt-cells", 2)));
406 _FDT((fdt_setprop(fdt, event_sources, "interrupt-ranges",
407 irq_ranges, count * sizeof(uint32_t))));
410 static const SpaprEventSource *
411 rtas_event_log_to_source(SpaprMachineState *spapr, int log_type)
413 const SpaprEventSource *source;
415 g_assert(spapr->event_sources);
417 switch (log_type) {
418 case RTAS_LOG_TYPE_HOTPLUG:
419 source = spapr_event_sources_get_source(spapr->event_sources,
420 EVENT_CLASS_HOT_PLUG);
421 if (spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT)) {
422 g_assert(source->enabled);
423 break;
425 /* fall through back to epow for legacy hotplug interrupt source */
426 case RTAS_LOG_TYPE_EPOW:
427 source = spapr_event_sources_get_source(spapr->event_sources,
428 EVENT_CLASS_EPOW);
429 break;
430 default:
431 source = NULL;
434 return source;
437 static int rtas_event_log_to_irq(SpaprMachineState *spapr, int log_type)
439 const SpaprEventSource *source;
441 source = rtas_event_log_to_source(spapr, log_type);
442 g_assert(source);
443 g_assert(source->enabled);
445 return source->irq;
448 static uint32_t spapr_event_log_entry_type(SpaprEventLogEntry *entry)
450 return entry->summary & RTAS_LOG_TYPE_MASK;
453 static void rtas_event_log_queue(SpaprMachineState *spapr,
454 SpaprEventLogEntry *entry)
456 QTAILQ_INSERT_TAIL(&spapr->pending_events, entry, next);
459 static SpaprEventLogEntry *rtas_event_log_dequeue(SpaprMachineState *spapr,
460 uint32_t event_mask)
462 SpaprEventLogEntry *entry = NULL;
464 QTAILQ_FOREACH(entry, &spapr->pending_events, next) {
465 const SpaprEventSource *source =
466 rtas_event_log_to_source(spapr,
467 spapr_event_log_entry_type(entry));
469 g_assert(source);
470 if (source->mask & event_mask) {
471 break;
475 if (entry) {
476 QTAILQ_REMOVE(&spapr->pending_events, entry, next);
479 return entry;
482 static bool rtas_event_log_contains(SpaprMachineState *spapr, uint32_t event_mask)
484 SpaprEventLogEntry *entry = NULL;
486 QTAILQ_FOREACH(entry, &spapr->pending_events, next) {
487 const SpaprEventSource *source =
488 rtas_event_log_to_source(spapr,
489 spapr_event_log_entry_type(entry));
491 if (source->mask & event_mask) {
492 return true;
496 return false;
499 static uint32_t next_plid;
501 static void spapr_init_v6hdr(struct rtas_event_log_v6 *v6hdr)
503 v6hdr->b0 = RTAS_LOG_V6_B0_VALID | RTAS_LOG_V6_B0_NEW_LOG
504 | RTAS_LOG_V6_B0_BIGENDIAN;
505 v6hdr->b2 = RTAS_LOG_V6_B2_POWERPC_FORMAT
506 | RTAS_LOG_V6_B2_LOG_FORMAT_PLATFORM_EVENT;
507 v6hdr->company = cpu_to_be32(RTAS_LOG_V6_COMPANY_IBM);
510 static void spapr_init_maina(SpaprMachineState *spapr,
511 struct rtas_event_log_v6_maina *maina,
512 int section_count)
514 struct tm tm;
515 int year;
517 maina->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINA);
518 maina->hdr.section_length = cpu_to_be16(sizeof(*maina));
519 /* FIXME: section version, subtype and creator id? */
520 spapr_rtc_read(&spapr->rtc, &tm, NULL);
521 year = tm.tm_year + 1900;
522 maina->creation_date = cpu_to_be32((to_bcd(year / 100) << 24)
523 | (to_bcd(year % 100) << 16)
524 | (to_bcd(tm.tm_mon + 1) << 8)
525 | to_bcd(tm.tm_mday));
526 maina->creation_time = cpu_to_be32((to_bcd(tm.tm_hour) << 24)
527 | (to_bcd(tm.tm_min) << 16)
528 | (to_bcd(tm.tm_sec) << 8));
529 maina->creator_id = 'H'; /* Hypervisor */
530 maina->section_count = section_count;
531 maina->plid = next_plid++;
534 static void spapr_powerdown_req(Notifier *n, void *opaque)
536 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
537 SpaprEventLogEntry *entry;
538 struct rtas_event_log_v6 *v6hdr;
539 struct rtas_event_log_v6_maina *maina;
540 struct rtas_event_log_v6_mainb *mainb;
541 struct rtas_event_log_v6_epow *epow;
542 struct epow_extended_log *new_epow;
544 entry = g_new(SpaprEventLogEntry, 1);
545 new_epow = g_malloc0(sizeof(*new_epow));
546 entry->extended_log = new_epow;
548 v6hdr = &new_epow->v6hdr;
549 maina = &new_epow->maina;
550 mainb = &new_epow->mainb;
551 epow = &new_epow->epow;
553 entry->summary = RTAS_LOG_VERSION_6
554 | RTAS_LOG_SEVERITY_EVENT
555 | RTAS_LOG_DISPOSITION_NOT_RECOVERED
556 | RTAS_LOG_OPTIONAL_PART_PRESENT
557 | RTAS_LOG_TYPE_EPOW;
558 entry->extended_length = sizeof(*new_epow);
560 spapr_init_v6hdr(v6hdr);
561 spapr_init_maina(spapr, maina, 3 /* Main-A, Main-B and EPOW */);
563 mainb->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINB);
564 mainb->hdr.section_length = cpu_to_be16(sizeof(*mainb));
565 /* FIXME: section version, subtype and creator id? */
566 mainb->subsystem_id = 0xa0; /* External environment */
567 mainb->event_severity = 0x00; /* Informational / non-error */
568 mainb->event_subtype = 0xd0; /* Normal shutdown */
570 epow->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_EPOW);
571 epow->hdr.section_length = cpu_to_be16(sizeof(*epow));
572 epow->hdr.section_version = 2; /* includes extended modifier */
573 /* FIXME: section subtype and creator id? */
574 epow->sensor_value = RTAS_LOG_V6_EPOW_ACTION_SYSTEM_SHUTDOWN;
575 epow->event_modifier = RTAS_LOG_V6_EPOW_MODIFIER_NORMAL;
576 epow->extended_modifier = RTAS_LOG_V6_EPOW_XMODIFIER_PARTITION_SPECIFIC;
578 rtas_event_log_queue(spapr, entry);
580 qemu_irq_pulse(spapr_qirq(spapr,
581 rtas_event_log_to_irq(spapr, RTAS_LOG_TYPE_EPOW)));
584 static void spapr_hotplug_req_event(uint8_t hp_id, uint8_t hp_action,
585 SpaprDrcType drc_type,
586 union drc_identifier *drc_id)
588 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
589 SpaprEventLogEntry *entry;
590 struct hp_extended_log *new_hp;
591 struct rtas_event_log_v6 *v6hdr;
592 struct rtas_event_log_v6_maina *maina;
593 struct rtas_event_log_v6_mainb *mainb;
594 struct rtas_event_log_v6_hp *hp;
596 entry = g_new(SpaprEventLogEntry, 1);
597 new_hp = g_new0(struct hp_extended_log, 1);
598 entry->extended_log = new_hp;
600 v6hdr = &new_hp->v6hdr;
601 maina = &new_hp->maina;
602 mainb = &new_hp->mainb;
603 hp = &new_hp->hp;
605 entry->summary = RTAS_LOG_VERSION_6
606 | RTAS_LOG_SEVERITY_EVENT
607 | RTAS_LOG_DISPOSITION_NOT_RECOVERED
608 | RTAS_LOG_OPTIONAL_PART_PRESENT
609 | RTAS_LOG_INITIATOR_HOTPLUG
610 | RTAS_LOG_TYPE_HOTPLUG;
611 entry->extended_length = sizeof(*new_hp);
613 spapr_init_v6hdr(v6hdr);
614 spapr_init_maina(spapr, maina, 3 /* Main-A, Main-B, HP */);
616 mainb->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MAINB);
617 mainb->hdr.section_length = cpu_to_be16(sizeof(*mainb));
618 mainb->subsystem_id = 0x80; /* External environment */
619 mainb->event_severity = 0x00; /* Informational / non-error */
620 mainb->event_subtype = 0x00; /* Normal shutdown */
622 hp->hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_HOTPLUG);
623 hp->hdr.section_length = cpu_to_be16(sizeof(*hp));
624 hp->hdr.section_version = 1; /* includes extended modifier */
625 hp->hotplug_action = hp_action;
626 hp->hotplug_identifier = hp_id;
628 switch (drc_type) {
629 case SPAPR_DR_CONNECTOR_TYPE_PCI:
630 hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PCI;
631 break;
632 case SPAPR_DR_CONNECTOR_TYPE_LMB:
633 hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_MEMORY;
634 break;
635 case SPAPR_DR_CONNECTOR_TYPE_CPU:
636 hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_CPU;
637 break;
638 case SPAPR_DR_CONNECTOR_TYPE_PHB:
639 hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PHB;
640 break;
641 case SPAPR_DR_CONNECTOR_TYPE_PMEM:
642 hp->hotplug_type = RTAS_LOG_V6_HP_TYPE_PMEM;
643 break;
644 default:
645 /* we shouldn't be signaling hotplug events for resources
646 * that don't support them
648 g_assert_not_reached();
651 if (hp_id == RTAS_LOG_V6_HP_ID_DRC_COUNT) {
652 hp->drc_id.count = cpu_to_be32(drc_id->count);
653 } else if (hp_id == RTAS_LOG_V6_HP_ID_DRC_INDEX) {
654 hp->drc_id.index = cpu_to_be32(drc_id->index);
655 } else if (hp_id == RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED) {
656 /* we should not be using count_indexed value unless the guest
657 * supports dedicated hotplug event source
659 g_assert(spapr_memory_hot_unplug_supported(spapr));
660 hp->drc_id.count_indexed.count =
661 cpu_to_be32(drc_id->count_indexed.count);
662 hp->drc_id.count_indexed.index =
663 cpu_to_be32(drc_id->count_indexed.index);
666 rtas_event_log_queue(spapr, entry);
668 qemu_irq_pulse(spapr_qirq(spapr,
669 rtas_event_log_to_irq(spapr, RTAS_LOG_TYPE_HOTPLUG)));
672 void spapr_hotplug_req_add_by_index(SpaprDrc *drc)
674 SpaprDrcType drc_type = spapr_drc_type(drc);
675 union drc_identifier drc_id;
677 drc_id.index = spapr_drc_index(drc);
678 spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_INDEX,
679 RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
682 void spapr_hotplug_req_remove_by_index(SpaprDrc *drc)
684 SpaprDrcType drc_type = spapr_drc_type(drc);
685 union drc_identifier drc_id;
687 drc_id.index = spapr_drc_index(drc);
688 spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_INDEX,
689 RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
692 void spapr_hotplug_req_add_by_count(SpaprDrcType drc_type,
693 uint32_t count)
695 union drc_identifier drc_id;
697 drc_id.count = count;
698 spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT,
699 RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
702 void spapr_hotplug_req_remove_by_count(SpaprDrcType drc_type,
703 uint32_t count)
705 union drc_identifier drc_id;
707 drc_id.count = count;
708 spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT,
709 RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
712 void spapr_hotplug_req_add_by_count_indexed(SpaprDrcType drc_type,
713 uint32_t count, uint32_t index)
715 union drc_identifier drc_id;
717 drc_id.count_indexed.count = count;
718 drc_id.count_indexed.index = index;
719 spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED,
720 RTAS_LOG_V6_HP_ACTION_ADD, drc_type, &drc_id);
723 void spapr_hotplug_req_remove_by_count_indexed(SpaprDrcType drc_type,
724 uint32_t count, uint32_t index)
726 union drc_identifier drc_id;
728 drc_id.count_indexed.count = count;
729 drc_id.count_indexed.index = index;
730 spapr_hotplug_req_event(RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED,
731 RTAS_LOG_V6_HP_ACTION_REMOVE, drc_type, &drc_id);
734 static void spapr_mc_set_ea_provided_flag(struct mc_extended_log *ext_elog)
736 switch (ext_elog->mc.error_type) {
737 case RTAS_LOG_V6_MC_TYPE_UE:
738 ext_elog->mc.sub_err_type |= RTAS_LOG_V6_MC_UE_EA_ADDR_PROVIDED;
739 break;
740 case RTAS_LOG_V6_MC_TYPE_SLB:
741 case RTAS_LOG_V6_MC_TYPE_ERAT:
742 case RTAS_LOG_V6_MC_TYPE_TLB:
743 ext_elog->mc.sub_err_type |= RTAS_LOG_V6_MC_EA_ADDR_PROVIDED;
744 break;
745 default:
746 break;
750 static uint32_t spapr_mce_get_elog_type(PowerPCCPU *cpu, bool recovered,
751 struct mc_extended_log *ext_elog)
753 int i;
754 CPUPPCState *env = &cpu->env;
755 uint32_t summary;
756 uint64_t dsisr = env->spr[SPR_DSISR];
758 summary = RTAS_LOG_VERSION_6 | RTAS_LOG_OPTIONAL_PART_PRESENT;
759 if (recovered) {
760 summary |= RTAS_LOG_DISPOSITION_FULLY_RECOVERED;
761 } else {
762 summary |= RTAS_LOG_DISPOSITION_NOT_RECOVERED;
765 if (SRR1_MC_LOADSTORE(env->spr[SPR_SRR1])) {
766 for (i = 0; i < ARRAY_SIZE(mc_derror_table); i++) {
767 if (!(dsisr & mc_derror_table[i].dsisr_value)) {
768 continue;
771 ext_elog->mc.error_type = mc_derror_table[i].error_type;
772 ext_elog->mc.sub_err_type = mc_derror_table[i].error_subtype;
773 if (mc_derror_table[i].dar_valid) {
774 ext_elog->mc.effective_address = cpu_to_be64(env->spr[SPR_DAR]);
775 spapr_mc_set_ea_provided_flag(ext_elog);
778 summary |= mc_derror_table[i].initiator
779 | mc_derror_table[i].severity;
781 return summary;
783 } else {
784 for (i = 0; i < ARRAY_SIZE(mc_ierror_table); i++) {
785 if ((env->spr[SPR_SRR1] & mc_ierror_table[i].srr1_mask) !=
786 mc_ierror_table[i].srr1_value) {
787 continue;
790 ext_elog->mc.error_type = mc_ierror_table[i].error_type;
791 ext_elog->mc.sub_err_type = mc_ierror_table[i].error_subtype;
792 if (mc_ierror_table[i].nip_valid) {
793 ext_elog->mc.effective_address = cpu_to_be64(env->nip);
794 spapr_mc_set_ea_provided_flag(ext_elog);
797 summary |= mc_ierror_table[i].initiator
798 | mc_ierror_table[i].severity;
800 return summary;
804 summary |= RTAS_LOG_INITIATOR_CPU;
805 return summary;
808 static void spapr_mce_dispatch_elog(SpaprMachineState *spapr, PowerPCCPU *cpu,
809 bool recovered)
811 CPUState *cs = CPU(cpu);
812 CPUPPCState *env = &cpu->env;
813 uint64_t rtas_addr;
814 struct rtas_error_log log;
815 struct mc_extended_log *ext_elog;
816 uint32_t summary;
818 ext_elog = g_malloc0(sizeof(*ext_elog));
819 summary = spapr_mce_get_elog_type(cpu, recovered, ext_elog);
821 log.summary = cpu_to_be32(summary);
822 log.extended_length = cpu_to_be32(sizeof(*ext_elog));
824 spapr_init_v6hdr(&ext_elog->v6hdr);
825 ext_elog->mc.hdr.section_id = cpu_to_be16(RTAS_LOG_V6_SECTION_ID_MC);
826 ext_elog->mc.hdr.section_length =
827 cpu_to_be16(sizeof(struct rtas_event_log_v6_mc));
828 ext_elog->mc.hdr.section_version = 1;
830 /* get rtas addr from fdt */
831 rtas_addr = spapr_get_rtas_addr();
832 if (!rtas_addr) {
833 if (!recovered) {
834 error_report(
835 "FWNMI: Unable to deliver machine check to guest: rtas_addr not found.");
836 qemu_system_guest_panicked(NULL);
837 } else {
838 warn_report(
839 "FWNMI: Unable to deliver machine check to guest: rtas_addr not found. "
840 "Machine check recovered.");
842 g_free(ext_elog);
843 return;
847 * By taking the interlock, we assume that the MCE will be
848 * delivered to the guest. CAUTION: don't add anything that could
849 * prevent the MCE to be delivered after this line, otherwise the
850 * guest won't be able to release the interlock and ultimately
851 * hang/crash?
853 spapr->fwnmi_machine_check_interlock = cpu->vcpu_id;
855 stq_be_phys(&address_space_memory, rtas_addr + RTAS_ERROR_LOG_OFFSET,
856 env->gpr[3]);
857 cpu_physical_memory_write(rtas_addr + RTAS_ERROR_LOG_OFFSET +
858 sizeof(env->gpr[3]), &log, sizeof(log));
859 cpu_physical_memory_write(rtas_addr + RTAS_ERROR_LOG_OFFSET +
860 sizeof(env->gpr[3]) + sizeof(log), ext_elog,
861 sizeof(*ext_elog));
862 g_free(ext_elog);
864 env->gpr[3] = rtas_addr + RTAS_ERROR_LOG_OFFSET;
866 ppc_cpu_do_fwnmi_machine_check(cs, spapr->fwnmi_machine_check_addr);
869 void spapr_mce_req_event(PowerPCCPU *cpu, bool recovered)
871 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
872 CPUState *cs = CPU(cpu);
873 int ret;
875 if (spapr->fwnmi_machine_check_addr == -1) {
876 /* Non-FWNMI case, deliver it like an architected CPU interrupt. */
877 cs->exception_index = POWERPC_EXCP_MCHECK;
878 ppc_cpu_do_interrupt(cs);
879 return;
882 /* Wait for FWNMI interlock. */
883 while (spapr->fwnmi_machine_check_interlock != -1) {
885 * Check whether the same CPU got machine check error
886 * while still handling the mc error (i.e., before
887 * that CPU called "ibm,nmi-interlock")
889 if (spapr->fwnmi_machine_check_interlock == cpu->vcpu_id) {
890 if (!recovered) {
891 error_report(
892 "FWNMI: Unable to deliver machine check to guest: nested machine check.");
893 qemu_system_guest_panicked(NULL);
894 } else {
895 warn_report(
896 "FWNMI: Unable to deliver machine check to guest: nested machine check. "
897 "Machine check recovered.");
899 return;
901 qemu_cond_wait_bql(&spapr->fwnmi_machine_check_interlock_cond);
902 if (spapr->fwnmi_machine_check_addr == -1) {
904 * If the machine was reset while waiting for the interlock,
905 * abort the delivery. The machine check applies to a context
906 * that no longer exists, so it wouldn't make sense to deliver
907 * it now.
909 return;
914 * Try to block migration while FWNMI is being handled, so the
915 * machine check handler runs where the information passed to it
916 * actually makes sense. This shouldn't actually block migration,
917 * only delay it slightly, assuming migration is retried. If the
918 * attempt to block fails, carry on. Unfortunately, it always
919 * fails when running with -only-migrate. A proper interface to
920 * delay migration completion for a bit could avoid that.
922 error_setg(&spapr->fwnmi_migration_blocker,
923 "A machine check is being handled during migration. The handler"
924 "may run and log hardware error on the destination");
926 ret = migrate_add_blocker(&spapr->fwnmi_migration_blocker, NULL);
927 if (ret == -EBUSY) {
928 warn_report("Received a fwnmi while migration was in progress");
931 spapr_mce_dispatch_elog(spapr, cpu, recovered);
934 static void check_exception(PowerPCCPU *cpu, SpaprMachineState *spapr,
935 uint32_t token, uint32_t nargs,
936 target_ulong args,
937 uint32_t nret, target_ulong rets)
939 uint32_t mask, buf, len, event_len;
940 SpaprEventLogEntry *event;
941 struct rtas_error_log header;
942 int i;
944 if ((nargs < 6) || (nargs > 7) || nret != 1) {
945 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
946 return;
949 mask = rtas_ld(args, 2);
950 buf = rtas_ld(args, 4);
951 len = rtas_ld(args, 5);
953 event = rtas_event_log_dequeue(spapr, mask);
954 if (!event) {
955 goto out_no_events;
958 event_len = event->extended_length + sizeof(header);
960 if (event_len < len) {
961 len = event_len;
964 header.summary = cpu_to_be32(event->summary);
965 header.extended_length = cpu_to_be32(event->extended_length);
966 cpu_physical_memory_write(buf, &header, sizeof(header));
967 cpu_physical_memory_write(buf + sizeof(header), event->extended_log,
968 event->extended_length);
969 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
970 g_free(event->extended_log);
971 g_free(event);
973 /* according to PAPR+, the IRQ must be left asserted, or re-asserted, if
974 * there are still pending events to be fetched via check-exception. We
975 * do the latter here, since our code relies on edge-triggered
976 * interrupts.
978 for (i = 0; i < EVENT_CLASS_MAX; i++) {
979 if (rtas_event_log_contains(spapr, EVENT_CLASS_MASK(i))) {
980 const SpaprEventSource *source =
981 spapr_event_sources_get_source(spapr->event_sources, i);
983 g_assert(source->enabled);
984 qemu_irq_pulse(spapr_qirq(spapr, source->irq));
988 return;
990 out_no_events:
991 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
994 static void event_scan(PowerPCCPU *cpu, SpaprMachineState *spapr,
995 uint32_t token, uint32_t nargs,
996 target_ulong args,
997 uint32_t nret, target_ulong rets)
999 int i;
1000 if (nargs != 4 || nret != 1) {
1001 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1002 return;
1005 for (i = 0; i < EVENT_CLASS_MAX; i++) {
1006 if (rtas_event_log_contains(spapr, EVENT_CLASS_MASK(i))) {
1007 const SpaprEventSource *source =
1008 spapr_event_sources_get_source(spapr->event_sources, i);
1010 g_assert(source->enabled);
1011 qemu_irq_pulse(spapr_qirq(spapr, source->irq));
1015 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
1018 void spapr_clear_pending_events(SpaprMachineState *spapr)
1020 SpaprEventLogEntry *entry = NULL, *next_entry;
1022 QTAILQ_FOREACH_SAFE(entry, &spapr->pending_events, next, next_entry) {
1023 QTAILQ_REMOVE(&spapr->pending_events, entry, next);
1024 g_free(entry->extended_log);
1025 g_free(entry);
1029 void spapr_clear_pending_hotplug_events(SpaprMachineState *spapr)
1031 SpaprEventLogEntry *entry = NULL, *next_entry;
1033 QTAILQ_FOREACH_SAFE(entry, &spapr->pending_events, next, next_entry) {
1034 if (spapr_event_log_entry_type(entry) == RTAS_LOG_TYPE_HOTPLUG) {
1035 QTAILQ_REMOVE(&spapr->pending_events, entry, next);
1036 g_free(entry->extended_log);
1037 g_free(entry);
1042 void spapr_events_init(SpaprMachineState *spapr)
1044 int epow_irq = SPAPR_IRQ_EPOW;
1046 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1047 epow_irq = spapr_irq_findone(spapr, &error_fatal);
1050 spapr_irq_claim(spapr, epow_irq, false, &error_fatal);
1052 QTAILQ_INIT(&spapr->pending_events);
1054 spapr->event_sources = spapr_event_sources_new();
1056 spapr_event_sources_register(spapr->event_sources, EVENT_CLASS_EPOW,
1057 epow_irq);
1059 /* NOTE: if machine supports modern/dedicated hotplug event source,
1060 * we add it to the device-tree unconditionally. This means we may
1061 * have cases where the source is enabled in QEMU, but unused by the
1062 * guest because it does not support modern hotplug events, so we
1063 * take care to rely on checking for negotiation of OV5_HP_EVT option
1064 * before attempting to use it to signal events, rather than simply
1065 * checking that it's enabled.
1067 if (spapr->use_hotplug_event_source) {
1068 int hp_irq = SPAPR_IRQ_HOTPLUG;
1070 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1071 hp_irq = spapr_irq_findone(spapr, &error_fatal);
1074 spapr_irq_claim(spapr, hp_irq, false, &error_fatal);
1076 spapr_event_sources_register(spapr->event_sources, EVENT_CLASS_HOT_PLUG,
1077 hp_irq);
1080 spapr->epow_notifier.notify = spapr_powerdown_req;
1081 qemu_register_powerdown_notifier(&spapr->epow_notifier);
1082 spapr_rtas_register(RTAS_CHECK_EXCEPTION, "check-exception",
1083 check_exception);
1084 spapr_rtas_register(RTAS_EVENT_SCAN, "event-scan", event_scan);