2 * QEMU RISC-V Boot Helper
4 * Copyright (c) 2017 SiFive, Inc.
5 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/error-report.h"
24 #include "exec/cpu-defs.h"
25 #include "hw/boards.h"
26 #include "hw/loader.h"
27 #include "hw/riscv/boot.h"
28 #include "hw/riscv/boot_opensbi.h"
30 #include "sysemu/device_tree.h"
31 #include "sysemu/qtest.h"
32 #include "sysemu/kvm.h"
33 #include "sysemu/reset.h"
37 bool riscv_is_32bit(RISCVHartArrayState
*harts
)
39 RISCVCPUClass
*mcc
= RISCV_CPU_GET_CLASS(&harts
->harts
[0]);
40 return mcc
->misa_mxl_max
== MXL_RV32
;
44 * Return the per-socket PLIC hart topology configuration string
45 * (caller must free with g_free())
47 char *riscv_plic_hart_config_string(int hart_count
)
49 g_autofree
const char **vals
= g_new(const char *, hart_count
+ 1);
52 for (i
= 0; i
< hart_count
; i
++) {
53 CPUState
*cs
= qemu_get_cpu(i
);
54 CPURISCVState
*env
= &RISCV_CPU(cs
)->env
;
58 } else if (riscv_has_ext(env
, RVS
)) {
66 /* g_strjoinv() obliges us to cast away const here */
67 return g_strjoinv(",", (char **)vals
);
70 target_ulong
riscv_calc_kernel_start_addr(RISCVHartArrayState
*harts
,
71 target_ulong firmware_end_addr
) {
72 if (riscv_is_32bit(harts
)) {
73 return QEMU_ALIGN_UP(firmware_end_addr
, 4 * MiB
);
75 return QEMU_ALIGN_UP(firmware_end_addr
, 2 * MiB
);
79 const char *riscv_default_firmware_name(RISCVHartArrayState
*harts
)
81 if (riscv_is_32bit(harts
)) {
82 return RISCV32_BIOS_BIN
;
85 return RISCV64_BIOS_BIN
;
88 static char *riscv_find_bios(const char *bios_filename
)
92 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_filename
);
93 if (filename
== NULL
) {
94 if (!qtest_enabled()) {
96 * We only ship OpenSBI binary bios images in the QEMU source.
97 * For machines that use images other than the default bios,
98 * running QEMU test will complain hence let's suppress the error
99 * report for QEMU testing.
101 error_report("Unable to find the RISC-V BIOS \"%s\"",
110 char *riscv_find_firmware(const char *firmware_filename
,
111 const char *default_machine_firmware
)
113 char *filename
= NULL
;
115 if ((!firmware_filename
) || (!strcmp(firmware_filename
, "default"))) {
117 * The user didn't specify -bios, or has specified "-bios default".
118 * That means we are going to load the OpenSBI binary included in
121 filename
= riscv_find_bios(default_machine_firmware
);
122 } else if (strcmp(firmware_filename
, "none")) {
123 filename
= riscv_find_bios(firmware_filename
);
129 target_ulong
riscv_find_and_load_firmware(MachineState
*machine
,
130 const char *default_machine_firmware
,
131 hwaddr
*firmware_load_addr
,
134 char *firmware_filename
;
135 target_ulong firmware_end_addr
= *firmware_load_addr
;
137 firmware_filename
= riscv_find_firmware(machine
->firmware
,
138 default_machine_firmware
);
140 if (firmware_filename
) {
141 /* If not "none" load the firmware */
142 firmware_end_addr
= riscv_load_firmware(firmware_filename
,
143 firmware_load_addr
, sym_cb
);
144 g_free(firmware_filename
);
147 return firmware_end_addr
;
150 target_ulong
riscv_load_firmware(const char *firmware_filename
,
151 hwaddr
*firmware_load_addr
,
154 uint64_t firmware_entry
, firmware_end
;
155 ssize_t firmware_size
;
157 g_assert(firmware_filename
!= NULL
);
159 if (load_elf_ram_sym(firmware_filename
, NULL
, NULL
, NULL
,
160 &firmware_entry
, NULL
, &firmware_end
, NULL
,
161 0, EM_RISCV
, 1, 0, NULL
, true, sym_cb
) > 0) {
162 *firmware_load_addr
= firmware_entry
;
166 firmware_size
= load_image_targphys_as(firmware_filename
,
168 current_machine
->ram_size
, NULL
);
170 if (firmware_size
> 0) {
171 return *firmware_load_addr
+ firmware_size
;
174 error_report("could not load firmware '%s'", firmware_filename
);
178 static void riscv_load_initrd(MachineState
*machine
, uint64_t kernel_entry
)
180 const char *filename
= machine
->initrd_filename
;
181 uint64_t mem_size
= machine
->ram_size
;
182 void *fdt
= machine
->fdt
;
186 g_assert(filename
!= NULL
);
189 * We want to put the initrd far enough into RAM that when the
190 * kernel is uncompressed it will not clobber the initrd. However
191 * on boards without much RAM we must ensure that we still leave
192 * enough room for a decent sized initrd, and on boards with large
193 * amounts of RAM, we put the initrd at 512MB to allow large kernels
195 * So for boards with less than 1GB of RAM we put the initrd
196 * halfway into RAM, and for boards with 1GB of RAM or more we put
197 * the initrd at 512MB.
199 start
= kernel_entry
+ MIN(mem_size
/ 2, 512 * MiB
);
201 size
= load_ramdisk(filename
, start
, mem_size
- start
);
203 size
= load_image_targphys(filename
, start
, mem_size
- start
);
205 error_report("could not load ramdisk '%s'", filename
);
210 /* Some RISC-V machines (e.g. opentitan) don't have a fdt. */
213 qemu_fdt_setprop_u64(fdt
, "/chosen", "linux,initrd-start", start
);
214 qemu_fdt_setprop_u64(fdt
, "/chosen", "linux,initrd-end", end
);
218 target_ulong
riscv_load_kernel(MachineState
*machine
,
219 RISCVHartArrayState
*harts
,
220 target_ulong kernel_start_addr
,
224 const char *kernel_filename
= machine
->kernel_filename
;
225 uint64_t kernel_load_base
, kernel_entry
;
226 void *fdt
= machine
->fdt
;
228 g_assert(kernel_filename
!= NULL
);
231 * NB: Use low address not ELF entry point to ensure that the fw_dynamic
232 * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
233 * behaviour, as well as fw_dynamic with a raw binary, all of which jump to
234 * the (expected) load address load address. This allows kernels to have
235 * separate SBI and ELF entry points (used by FreeBSD, for example).
237 if (load_elf_ram_sym(kernel_filename
, NULL
, NULL
, NULL
,
238 NULL
, &kernel_load_base
, NULL
, NULL
, 0,
239 EM_RISCV
, 1, 0, NULL
, true, sym_cb
) > 0) {
240 kernel_entry
= kernel_load_base
;
244 if (load_uimage_as(kernel_filename
, &kernel_entry
, NULL
, NULL
,
245 NULL
, NULL
, NULL
) > 0) {
249 if (load_image_targphys_as(kernel_filename
, kernel_start_addr
,
250 current_machine
->ram_size
, NULL
) > 0) {
251 kernel_entry
= kernel_start_addr
;
255 error_report("could not load kernel '%s'", kernel_filename
);
260 * For 32 bit CPUs 'kernel_entry' can be sign-extended by
261 * load_elf_ram_sym().
263 if (riscv_is_32bit(harts
)) {
264 kernel_entry
= extract64(kernel_entry
, 0, 32);
267 if (load_initrd
&& machine
->initrd_filename
) {
268 riscv_load_initrd(machine
, kernel_entry
);
271 if (fdt
&& machine
->kernel_cmdline
&& *machine
->kernel_cmdline
) {
272 qemu_fdt_setprop_string(fdt
, "/chosen", "bootargs",
273 machine
->kernel_cmdline
);
280 * This function makes an assumption that the DRAM interval
281 * 'dram_base' + 'dram_size' is contiguous.
283 * Considering that 'dram_end' is the lowest value between
284 * the end of the DRAM block and MachineState->ram_size, the
285 * FDT location will vary according to 'dram_base':
287 * - if 'dram_base' is less that 3072 MiB, the FDT will be
288 * put at the lowest value between 3072 MiB and 'dram_end';
290 * - if 'dram_base' is higher than 3072 MiB, the FDT will be
293 * The FDT is fdt_packed() during the calculation.
295 uint64_t riscv_compute_fdt_addr(hwaddr dram_base
, hwaddr dram_size
,
298 int ret
= fdt_pack(ms
->fdt
);
299 hwaddr dram_end
, temp
;
302 /* Should only fail if we've built a corrupted tree */
305 fdtsize
= fdt_totalsize(ms
->fdt
);
307 error_report("invalid device-tree");
312 * A dram_size == 0, usually from a MemMapEntry[].size element,
313 * means that the DRAM block goes all the way to ms->ram_size.
315 dram_end
= dram_base
;
316 dram_end
+= dram_size
? MIN(ms
->ram_size
, dram_size
) : ms
->ram_size
;
319 * We should put fdt as far as possible to avoid kernel/initrd overwriting
320 * its content. But it should be addressable by 32 bit system as well.
321 * Thus, put it at an 2MB aligned address that less than fdt size from the
322 * end of dram or 3GB whichever is lesser.
324 temp
= (dram_base
< 3072 * MiB
) ? MIN(dram_end
, 3072 * MiB
) : dram_end
;
326 return QEMU_ALIGN_DOWN(temp
- fdtsize
, 2 * MiB
);
330 * 'fdt_addr' is received as hwaddr because boards might put
331 * the FDT beyond 32-bit addressing boundary.
333 void riscv_load_fdt(hwaddr fdt_addr
, void *fdt
)
335 uint32_t fdtsize
= fdt_totalsize(fdt
);
337 /* copy in the device tree */
338 qemu_fdt_dumpdtb(fdt
, fdtsize
);
340 rom_add_blob_fixed_as("fdt", fdt
, fdtsize
, fdt_addr
,
341 &address_space_memory
);
342 qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds
,
343 rom_ptr_for_as(&address_space_memory
, fdt_addr
, fdtsize
));
346 void riscv_rom_copy_firmware_info(MachineState
*machine
, hwaddr rom_base
,
347 hwaddr rom_size
, uint32_t reset_vec_size
,
348 uint64_t kernel_entry
)
350 struct fw_dynamic_info dinfo
;
353 if (sizeof(dinfo
.magic
) == 4) {
354 dinfo
.magic
= cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE
);
355 dinfo
.version
= cpu_to_le32(FW_DYNAMIC_INFO_VERSION
);
356 dinfo
.next_mode
= cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S
);
357 dinfo
.next_addr
= cpu_to_le32(kernel_entry
);
359 dinfo
.magic
= cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE
);
360 dinfo
.version
= cpu_to_le64(FW_DYNAMIC_INFO_VERSION
);
361 dinfo
.next_mode
= cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S
);
362 dinfo
.next_addr
= cpu_to_le64(kernel_entry
);
366 dinfo_len
= sizeof(dinfo
);
369 * copy the dynamic firmware info. This information is specific to
370 * OpenSBI but doesn't break any other firmware as long as they don't
371 * expect any certain value in "a2" register.
373 if (dinfo_len
> (rom_size
- reset_vec_size
)) {
374 error_report("not enough space to store dynamic firmware info");
378 rom_add_blob_fixed_as("mrom.finfo", &dinfo
, dinfo_len
,
379 rom_base
+ reset_vec_size
,
380 &address_space_memory
);
383 void riscv_setup_rom_reset_vec(MachineState
*machine
, RISCVHartArrayState
*harts
,
385 hwaddr rom_base
, hwaddr rom_size
,
386 uint64_t kernel_entry
,
387 uint64_t fdt_load_addr
)
390 uint32_t start_addr_hi32
= 0x00000000;
391 uint32_t fdt_load_addr_hi32
= 0x00000000;
393 if (!riscv_is_32bit(harts
)) {
394 start_addr_hi32
= start_addr
>> 32;
395 fdt_load_addr_hi32
= fdt_load_addr
>> 32;
398 uint32_t reset_vec
[10] = {
399 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
400 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
401 0xf1402573, /* csrr a0, mhartid */
404 0x00028067, /* jr t0 */
405 start_addr
, /* start: .dword */
407 fdt_load_addr
, /* fdt_laddr: .dword */
411 if (riscv_is_32bit(harts
)) {
412 reset_vec
[3] = 0x0202a583; /* lw a1, 32(t0) */
413 reset_vec
[4] = 0x0182a283; /* lw t0, 24(t0) */
415 reset_vec
[3] = 0x0202b583; /* ld a1, 32(t0) */
416 reset_vec
[4] = 0x0182b283; /* ld t0, 24(t0) */
419 if (!harts
->harts
[0].cfg
.ext_zicsr
) {
421 * The Zicsr extension has been disabled, so let's ensure we don't
422 * run the CSR instruction. Let's fill the address with a non
425 reset_vec
[2] = 0x00000013; /* addi x0, x0, 0 */
428 /* copy in the reset vector in little_endian byte order */
429 for (i
= 0; i
< ARRAY_SIZE(reset_vec
); i
++) {
430 reset_vec
[i
] = cpu_to_le32(reset_vec
[i
]);
432 rom_add_blob_fixed_as("mrom.reset", reset_vec
, sizeof(reset_vec
),
433 rom_base
, &address_space_memory
);
434 riscv_rom_copy_firmware_info(machine
, rom_base
, rom_size
, sizeof(reset_vec
),
438 void riscv_setup_direct_kernel(hwaddr kernel_addr
, hwaddr fdt_addr
)
442 for (cs
= first_cpu
; cs
; cs
= CPU_NEXT(cs
)) {
443 RISCVCPU
*riscv_cpu
= RISCV_CPU(cs
);
444 riscv_cpu
->env
.kernel_addr
= kernel_addr
;
445 riscv_cpu
->env
.fdt_addr
= fdt_addr
;
449 void riscv_setup_firmware_boot(MachineState
*machine
)
451 if (machine
->kernel_filename
) {
453 fw_cfg
= fw_cfg_find();
457 * Expose the kernel, the command line, and the initrd in fw_cfg.
458 * We don't process them here at all, it's all left to the
461 load_image_to_fw_cfg(fw_cfg
,
462 FW_CFG_KERNEL_SIZE
, FW_CFG_KERNEL_DATA
,
463 machine
->kernel_filename
,
465 load_image_to_fw_cfg(fw_cfg
,
466 FW_CFG_INITRD_SIZE
, FW_CFG_INITRD_DATA
,
467 machine
->initrd_filename
, false);
469 if (machine
->kernel_cmdline
) {
470 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
,
471 strlen(machine
->kernel_cmdline
) + 1);
472 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
,
473 machine
->kernel_cmdline
);