Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / hw / sparc / leon3.c
blob6aaa04cb19101eae236700fbdee93e362175ec3f
1 /*
2 * QEMU Leon3 System Emulator
4 * SPDX-License-Identifier: MIT
6 * Copyright (c) 2010-2024 AdaCore
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qemu/units.h"
29 #include "qemu/error-report.h"
30 #include "qapi/error.h"
31 #include "qemu/datadir.h"
32 #include "cpu.h"
33 #include "hw/irq.h"
34 #include "qemu/timer.h"
35 #include "hw/ptimer.h"
36 #include "hw/qdev-properties.h"
37 #include "sysemu/sysemu.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "hw/boards.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "trace.h"
45 #include "hw/timer/grlib_gptimer.h"
46 #include "hw/char/grlib_uart.h"
47 #include "hw/intc/grlib_irqmp.h"
48 #include "hw/misc/grlib_ahb_apb_pnp.h"
50 /* Default system clock. */
51 #define CPU_CLK (40 * 1000 * 1000)
53 #define LEON3_PROM_FILENAME "u-boot.bin"
54 #define LEON3_PROM_OFFSET (0x00000000)
55 #define LEON3_RAM_OFFSET (0x40000000)
57 #define MAX_CPUS 4
59 #define LEON3_UART_OFFSET (0x80000100)
60 #define LEON3_UART_IRQ (3)
62 #define LEON3_IRQMP_OFFSET (0x80000200)
64 #define LEON3_TIMER_OFFSET (0x80000300)
65 #define LEON3_TIMER_IRQ (6)
66 #define LEON3_TIMER_COUNT (2)
68 #define LEON3_APB_PNP_OFFSET (0x800FF000)
69 #define LEON3_AHB_PNP_OFFSET (0xFFFFF000)
71 typedef struct ResetData {
72 struct CPUResetData {
73 int id;
74 SPARCCPU *cpu;
75 } info[MAX_CPUS];
76 uint32_t entry; /* save kernel entry in case of reset */
77 } ResetData;
79 static uint32_t *gen_store_u32(uint32_t *code, hwaddr addr, uint32_t val)
81 stl_p(code++, 0x82100000); /* mov %g0, %g1 */
82 stl_p(code++, 0x84100000); /* mov %g0, %g2 */
83 stl_p(code++, 0x03000000 +
84 extract32(addr, 10, 22));
85 /* sethi %hi(addr), %g1 */
86 stl_p(code++, 0x82106000 +
87 extract32(addr, 0, 10));
88 /* or %g1, addr, %g1 */
89 stl_p(code++, 0x05000000 +
90 extract32(val, 10, 22));
91 /* sethi %hi(val), %g2 */
92 stl_p(code++, 0x8410a000 +
93 extract32(val, 0, 10));
94 /* or %g2, val, %g2 */
95 stl_p(code++, 0xc4204000); /* st %g2, [ %g1 ] */
97 return code;
101 * When loading a kernel in RAM the machine is expected to be in a different
102 * state (eg: initialized by the bootloader). This little code reproduces
103 * this behavior. Also this code can be executed by the secondary cpus as
104 * well since it looks at the %asr17 register before doing any
105 * initialization, it allows to use the same reset address for all the
106 * cpus.
108 static void write_bootloader(void *ptr, hwaddr kernel_addr)
110 uint32_t *p = ptr;
111 uint32_t *sec_cpu_branch_p = NULL;
113 /* If we are running on a secondary CPU, jump directly to the kernel. */
115 stl_p(p++, 0x85444000); /* rd %asr17, %g2 */
116 stl_p(p++, 0x8530a01c); /* srl %g2, 0x1c, %g2 */
117 stl_p(p++, 0x80908000); /* tst %g2 */
118 /* Filled below. */
119 sec_cpu_branch_p = p;
120 stl_p(p++, 0x0BADC0DE); /* bne xxx */
121 stl_p(p++, 0x01000000); /* nop */
123 /* Initialize the UARTs */
124 /* *UART_CONTROL = UART_RECEIVE_ENABLE | UART_TRANSMIT_ENABLE; */
125 p = gen_store_u32(p, 0x80000108, 3);
127 /* Initialize the TIMER 0 */
128 /* *GPTIMER_SCALER_RELOAD = 40 - 1; */
129 p = gen_store_u32(p, 0x80000304, 39);
130 /* *GPTIMER0_COUNTER_RELOAD = 0xFFFE; */
131 p = gen_store_u32(p, 0x80000314, 0xFFFFFFFE);
132 /* *GPTIMER0_CONFIG = GPTIMER_ENABLE | GPTIMER_RESTART; */
133 p = gen_store_u32(p, 0x80000318, 3);
135 /* Now, the relative branch above can be computed. */
136 stl_p(sec_cpu_branch_p, 0x12800000
137 + (p - sec_cpu_branch_p));
139 /* JUMP to the entry point */
140 stl_p(p++, 0x82100000); /* mov %g0, %g1 */
141 stl_p(p++, 0x03000000 + extract32(kernel_addr, 10, 22));
142 /* sethi %hi(kernel_addr), %g1 */
143 stl_p(p++, 0x82106000 + extract32(kernel_addr, 0, 10));
144 /* or kernel_addr, %g1 */
145 stl_p(p++, 0x81c04000); /* jmp %g1 */
146 stl_p(p++, 0x01000000); /* nop */
149 static void leon3_cpu_reset(void *opaque)
151 struct CPUResetData *info = (struct CPUResetData *) opaque;
152 int id = info->id;
153 ResetData *s = container_of(info, ResetData, info[id]);
154 CPUState *cpu = CPU(s->info[id].cpu);
155 CPUSPARCState *env = cpu_env(cpu);
157 cpu_reset(cpu);
159 cpu->halted = cpu->cpu_index != 0;
160 env->pc = s->entry;
161 env->npc = s->entry + 4;
164 static void leon3_cache_control_int(CPUSPARCState *env)
166 uint32_t state = 0;
168 if (env->cache_control & CACHE_CTRL_IF) {
169 /* Instruction cache state */
170 state = env->cache_control & CACHE_STATE_MASK;
171 if (state == CACHE_ENABLED) {
172 state = CACHE_FROZEN;
173 trace_int_helper_icache_freeze();
176 env->cache_control &= ~CACHE_STATE_MASK;
177 env->cache_control |= state;
180 if (env->cache_control & CACHE_CTRL_DF) {
181 /* Data cache state */
182 state = (env->cache_control >> 2) & CACHE_STATE_MASK;
183 if (state == CACHE_ENABLED) {
184 state = CACHE_FROZEN;
185 trace_int_helper_dcache_freeze();
188 env->cache_control &= ~(CACHE_STATE_MASK << 2);
189 env->cache_control |= (state << 2);
193 static void leon3_irq_ack(CPUSPARCState *env, int intno)
195 CPUState *cpu = CPU(env_cpu(env));
196 grlib_irqmp_ack(env->irq_manager, cpu->cpu_index, intno);
200 * This device assumes that the incoming 'level' value on the
201 * qemu_irq is the interrupt number, not just a simple 0/1 level.
203 static void leon3_set_pil_in(void *opaque, int n, int level)
205 DeviceState *cpu = opaque;
206 CPUState *cs = CPU(cpu);
207 CPUSPARCState *env = cpu_env(cs);
208 uint32_t pil_in = level;
210 assert(env != NULL);
212 env->pil_in = pil_in;
214 if (env->pil_in && (env->interrupt_index == 0 ||
215 (env->interrupt_index & ~15) == TT_EXTINT)) {
216 unsigned int i;
218 for (i = 15; i > 0; i--) {
219 if (env->pil_in & (1 << i)) {
220 int old_interrupt = env->interrupt_index;
222 env->interrupt_index = TT_EXTINT | i;
223 if (old_interrupt != env->interrupt_index) {
224 trace_leon3_set_irq(i);
225 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
227 break;
230 } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
231 trace_leon3_reset_irq(env->interrupt_index & 15);
232 env->interrupt_index = 0;
233 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
237 static void leon3_start_cpu_async_work(CPUState *cpu, run_on_cpu_data data)
239 cpu->halted = 0;
242 static void leon3_start_cpu(void *opaque, int n, int level)
244 DeviceState *cpu = opaque;
245 CPUState *cs = CPU(cpu);
247 assert(level == 1);
248 async_run_on_cpu(cs, leon3_start_cpu_async_work, RUN_ON_CPU_NULL);
251 static void leon3_irq_manager(CPUSPARCState *env, int intno)
253 leon3_irq_ack(env, intno);
254 leon3_cache_control_int(env);
257 static void leon3_generic_hw_init(MachineState *machine)
259 ram_addr_t ram_size = machine->ram_size;
260 const char *bios_name = machine->firmware ?: LEON3_PROM_FILENAME;
261 const char *kernel_filename = machine->kernel_filename;
262 SPARCCPU *cpu;
263 CPUSPARCState *env;
264 MemoryRegion *address_space_mem = get_system_memory();
265 MemoryRegion *prom = g_new(MemoryRegion, 1);
266 int ret;
267 char *filename;
268 int bios_size;
269 int prom_size;
270 ResetData *reset_info;
271 DeviceState *dev, *irqmpdev;
272 int i;
273 AHBPnp *ahb_pnp;
274 APBPnp *apb_pnp;
276 reset_info = g_malloc0(sizeof(ResetData));
278 for (i = 0; i < machine->smp.cpus; i++) {
279 /* Init CPU */
280 cpu = SPARC_CPU(object_new(machine->cpu_type));
281 qdev_init_gpio_in_named(DEVICE(cpu), leon3_start_cpu, "start_cpu", 1);
282 qdev_init_gpio_in_named(DEVICE(cpu), leon3_set_pil_in, "pil", 1);
283 qdev_realize(DEVICE(cpu), NULL, &error_fatal);
284 env = &cpu->env;
286 cpu_sparc_set_id(env, i);
288 /* Reset data */
289 reset_info->info[i].id = i;
290 reset_info->info[i].cpu = cpu;
291 qemu_register_reset(leon3_cpu_reset, &reset_info->info[i]);
294 ahb_pnp = GRLIB_AHB_PNP(qdev_new(TYPE_GRLIB_AHB_PNP));
295 sysbus_realize_and_unref(SYS_BUS_DEVICE(ahb_pnp), &error_fatal);
296 sysbus_mmio_map(SYS_BUS_DEVICE(ahb_pnp), 0, LEON3_AHB_PNP_OFFSET);
297 grlib_ahb_pnp_add_entry(ahb_pnp, 0, 0, GRLIB_VENDOR_GAISLER,
298 GRLIB_LEON3_DEV, GRLIB_AHB_MASTER,
299 GRLIB_CPU_AREA);
301 apb_pnp = GRLIB_APB_PNP(qdev_new(TYPE_GRLIB_APB_PNP));
302 sysbus_realize_and_unref(SYS_BUS_DEVICE(apb_pnp), &error_fatal);
303 sysbus_mmio_map(SYS_BUS_DEVICE(apb_pnp), 0, LEON3_APB_PNP_OFFSET);
304 grlib_ahb_pnp_add_entry(ahb_pnp, LEON3_APB_PNP_OFFSET, 0xFFF,
305 GRLIB_VENDOR_GAISLER, GRLIB_APBMST_DEV,
306 GRLIB_AHB_SLAVE, GRLIB_AHBMEM_AREA);
308 /* Allocate IRQ manager */
309 irqmpdev = qdev_new(TYPE_GRLIB_IRQMP);
310 object_property_set_int(OBJECT(irqmpdev), "ncpus", machine->smp.cpus,
311 &error_fatal);
312 sysbus_realize_and_unref(SYS_BUS_DEVICE(irqmpdev), &error_fatal);
314 for (i = 0; i < machine->smp.cpus; i++) {
315 cpu = reset_info->info[i].cpu;
316 env = &cpu->env;
317 qdev_connect_gpio_out_named(irqmpdev, "grlib-start-cpu", i,
318 qdev_get_gpio_in_named(DEVICE(cpu),
319 "start_cpu", 0));
320 qdev_connect_gpio_out_named(irqmpdev, "grlib-irq", i,
321 qdev_get_gpio_in_named(DEVICE(cpu),
322 "pil", 0));
323 env->irq_manager = irqmpdev;
324 env->qemu_irq_ack = leon3_irq_manager;
327 sysbus_mmio_map(SYS_BUS_DEVICE(irqmpdev), 0, LEON3_IRQMP_OFFSET);
328 grlib_apb_pnp_add_entry(apb_pnp, LEON3_IRQMP_OFFSET, 0xFFF,
329 GRLIB_VENDOR_GAISLER, GRLIB_IRQMP_DEV,
330 2, 0, GRLIB_APBIO_AREA);
332 /* Allocate RAM */
333 if (ram_size > 1 * GiB) {
334 error_report("Too much memory for this machine: %" PRId64 "MB,"
335 " maximum 1G",
336 ram_size / MiB);
337 exit(1);
340 memory_region_add_subregion(address_space_mem, LEON3_RAM_OFFSET,
341 machine->ram);
343 /* Allocate BIOS */
344 prom_size = 8 * MiB;
345 memory_region_init_rom(prom, NULL, "Leon3.bios", prom_size, &error_fatal);
346 memory_region_add_subregion(address_space_mem, LEON3_PROM_OFFSET, prom);
348 /* Load boot prom */
349 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
351 if (filename) {
352 bios_size = get_image_size(filename);
353 } else {
354 bios_size = -1;
357 if (bios_size > prom_size) {
358 error_report("could not load prom '%s': file too big", filename);
359 exit(1);
362 if (bios_size > 0) {
363 ret = load_image_targphys(filename, LEON3_PROM_OFFSET, bios_size);
364 if (ret < 0 || ret > prom_size) {
365 error_report("could not load prom '%s'", filename);
366 exit(1);
368 } else if (kernel_filename == NULL && !qtest_enabled()) {
369 error_report("Can't read bios image '%s'", filename
370 ? filename
371 : LEON3_PROM_FILENAME);
372 exit(1);
374 g_free(filename);
376 /* Can directly load an application. */
377 if (kernel_filename != NULL) {
378 long kernel_size;
379 uint64_t entry;
381 kernel_size = load_elf(kernel_filename, NULL, NULL, NULL,
382 &entry, NULL, NULL, NULL,
383 1 /* big endian */, EM_SPARC, 0, 0);
384 if (kernel_size < 0) {
385 kernel_size = load_uimage(kernel_filename, NULL, &entry,
386 NULL, NULL, NULL);
388 if (kernel_size < 0) {
389 error_report("could not load kernel '%s'", kernel_filename);
390 exit(1);
392 if (bios_size <= 0) {
394 * If there is no bios/monitor just start the application but put
395 * the machine in an initialized state through a little
396 * bootloader.
398 write_bootloader(memory_region_get_ram_ptr(prom), entry);
399 reset_info->entry = LEON3_PROM_OFFSET;
400 for (i = 0; i < machine->smp.cpus; i++) {
401 reset_info->info[i].cpu->env.pc = LEON3_PROM_OFFSET;
402 reset_info->info[i].cpu->env.npc = LEON3_PROM_OFFSET + 4;
407 /* Allocate timers */
408 dev = qdev_new(TYPE_GRLIB_GPTIMER);
409 qdev_prop_set_uint32(dev, "nr-timers", LEON3_TIMER_COUNT);
410 qdev_prop_set_uint32(dev, "frequency", CPU_CLK);
411 qdev_prop_set_uint32(dev, "irq-line", LEON3_TIMER_IRQ);
412 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
414 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_TIMER_OFFSET);
415 for (i = 0; i < LEON3_TIMER_COUNT; i++) {
416 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
417 qdev_get_gpio_in(irqmpdev, LEON3_TIMER_IRQ + i));
420 grlib_apb_pnp_add_entry(apb_pnp, LEON3_TIMER_OFFSET, 0xFFF,
421 GRLIB_VENDOR_GAISLER, GRLIB_GPTIMER_DEV,
422 0, LEON3_TIMER_IRQ, GRLIB_APBIO_AREA);
424 /* Allocate uart */
425 dev = qdev_new(TYPE_GRLIB_APB_UART);
426 qdev_prop_set_chr(dev, "chrdev", serial_hd(0));
427 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
428 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_UART_OFFSET);
429 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0,
430 qdev_get_gpio_in(irqmpdev, LEON3_UART_IRQ));
431 grlib_apb_pnp_add_entry(apb_pnp, LEON3_UART_OFFSET, 0xFFF,
432 GRLIB_VENDOR_GAISLER, GRLIB_APBUART_DEV, 1,
433 LEON3_UART_IRQ, GRLIB_APBIO_AREA);
436 static void leon3_generic_machine_init(MachineClass *mc)
438 mc->desc = "Leon-3 generic";
439 mc->init = leon3_generic_hw_init;
440 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("LEON3");
441 mc->default_ram_id = "leon3.ram";
442 mc->max_cpus = MAX_CPUS;
445 DEFINE_MACHINE("leon3_generic", leon3_generic_machine_init)