Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / include / hw / xen / interface / xen.h
blob920567e0062242e1e1b41946204a0679ae9763cf
1 /* SPDX-License-Identifier: MIT */
2 /******************************************************************************
3 * xen.h
5 * Guest OS interface to Xen.
7 * Copyright (c) 2004, K A Fraser
8 */
10 #ifndef __XEN_PUBLIC_XEN_H__
11 #define __XEN_PUBLIC_XEN_H__
13 #include "xen-compat.h"
15 #if defined(__i386__) || defined(__x86_64__)
16 #include "arch-x86/xen.h"
17 #elif defined(__arm__) || defined (__aarch64__)
18 #include "arch-arm.h"
19 #else
20 #error "Unsupported architecture"
21 #endif
23 #ifndef __ASSEMBLY__
24 /* Guest handles for primitive C types. */
25 DEFINE_XEN_GUEST_HANDLE(char);
26 __DEFINE_XEN_GUEST_HANDLE(uchar, unsigned char);
27 DEFINE_XEN_GUEST_HANDLE(int);
28 __DEFINE_XEN_GUEST_HANDLE(uint, unsigned int);
29 #if __XEN_INTERFACE_VERSION__ < 0x00040300
30 DEFINE_XEN_GUEST_HANDLE(long);
31 __DEFINE_XEN_GUEST_HANDLE(ulong, unsigned long);
32 #endif
33 DEFINE_XEN_GUEST_HANDLE(void);
35 DEFINE_XEN_GUEST_HANDLE(uint64_t);
36 DEFINE_XEN_GUEST_HANDLE(xen_pfn_t);
37 DEFINE_XEN_GUEST_HANDLE(xen_ulong_t);
39 /* Define a variable length array (depends on compiler). */
40 #if defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
41 #define XEN_FLEX_ARRAY_DIM
42 #elif defined(__GNUC__)
43 #define XEN_FLEX_ARRAY_DIM 0
44 #else
45 #define XEN_FLEX_ARRAY_DIM 1 /* variable size */
46 #endif
48 /* Turn a plain number into a C unsigned (long (long)) constant. */
49 #define __xen_mk_uint(x) x ## U
50 #define __xen_mk_ulong(x) x ## UL
51 #ifndef __xen_mk_ullong
52 # define __xen_mk_ullong(x) x ## ULL
53 #endif
54 #define xen_mk_uint(x) __xen_mk_uint(x)
55 #define xen_mk_ulong(x) __xen_mk_ulong(x)
56 #define xen_mk_ullong(x) __xen_mk_ullong(x)
58 #else
60 /* In assembly code we cannot use C numeric constant suffixes. */
61 #define xen_mk_uint(x) x
62 #define xen_mk_ulong(x) x
63 #define xen_mk_ullong(x) x
65 #endif
68 * HYPERCALLS
71 /* `incontents 100 hcalls List of hypercalls
72 * ` enum hypercall_num { // __HYPERVISOR_* => HYPERVISOR_*()
75 #define __HYPERVISOR_set_trap_table 0
76 #define __HYPERVISOR_mmu_update 1
77 #define __HYPERVISOR_set_gdt 2
78 #define __HYPERVISOR_stack_switch 3
79 #define __HYPERVISOR_set_callbacks 4
80 #define __HYPERVISOR_fpu_taskswitch 5
81 #define __HYPERVISOR_sched_op_compat 6 /* compat since 0x00030101 */
82 #define __HYPERVISOR_platform_op 7
83 #define __HYPERVISOR_set_debugreg 8
84 #define __HYPERVISOR_get_debugreg 9
85 #define __HYPERVISOR_update_descriptor 10
86 #define __HYPERVISOR_memory_op 12
87 #define __HYPERVISOR_multicall 13
88 #define __HYPERVISOR_update_va_mapping 14
89 #define __HYPERVISOR_set_timer_op 15
90 #define __HYPERVISOR_event_channel_op_compat 16 /* compat since 0x00030202 */
91 #define __HYPERVISOR_xen_version 17
92 #define __HYPERVISOR_console_io 18
93 #define __HYPERVISOR_physdev_op_compat 19 /* compat since 0x00030202 */
94 #define __HYPERVISOR_grant_table_op 20
95 #define __HYPERVISOR_vm_assist 21
96 #define __HYPERVISOR_update_va_mapping_otherdomain 22
97 #define __HYPERVISOR_iret 23 /* x86 only */
98 #define __HYPERVISOR_vcpu_op 24
99 #define __HYPERVISOR_set_segment_base 25 /* x86/64 only */
100 #define __HYPERVISOR_mmuext_op 26
101 #define __HYPERVISOR_xsm_op 27
102 #define __HYPERVISOR_nmi_op 28
103 #define __HYPERVISOR_sched_op 29
104 #define __HYPERVISOR_callback_op 30
105 #define __HYPERVISOR_xenoprof_op 31
106 #define __HYPERVISOR_event_channel_op 32
107 #define __HYPERVISOR_physdev_op 33
108 #define __HYPERVISOR_hvm_op 34
109 #define __HYPERVISOR_sysctl 35
110 #define __HYPERVISOR_domctl 36
111 #define __HYPERVISOR_kexec_op 37
112 #define __HYPERVISOR_tmem_op 38
113 #define __HYPERVISOR_argo_op 39
114 #define __HYPERVISOR_xenpmu_op 40
115 #define __HYPERVISOR_dm_op 41
116 #define __HYPERVISOR_hypfs_op 42
118 /* Architecture-specific hypercall definitions. */
119 #define __HYPERVISOR_arch_0 48
120 #define __HYPERVISOR_arch_1 49
121 #define __HYPERVISOR_arch_2 50
122 #define __HYPERVISOR_arch_3 51
123 #define __HYPERVISOR_arch_4 52
124 #define __HYPERVISOR_arch_5 53
125 #define __HYPERVISOR_arch_6 54
126 #define __HYPERVISOR_arch_7 55
128 /* ` } */
131 * HYPERCALL COMPATIBILITY.
134 /* New sched_op hypercall introduced in 0x00030101. */
135 #if __XEN_INTERFACE_VERSION__ < 0x00030101
136 #undef __HYPERVISOR_sched_op
137 #define __HYPERVISOR_sched_op __HYPERVISOR_sched_op_compat
138 #endif
140 /* New event-channel and physdev hypercalls introduced in 0x00030202. */
141 #if __XEN_INTERFACE_VERSION__ < 0x00030202
142 #undef __HYPERVISOR_event_channel_op
143 #define __HYPERVISOR_event_channel_op __HYPERVISOR_event_channel_op_compat
144 #undef __HYPERVISOR_physdev_op
145 #define __HYPERVISOR_physdev_op __HYPERVISOR_physdev_op_compat
146 #endif
148 /* New platform_op hypercall introduced in 0x00030204. */
149 #if __XEN_INTERFACE_VERSION__ < 0x00030204
150 #define __HYPERVISOR_dom0_op __HYPERVISOR_platform_op
151 #endif
154 * VIRTUAL INTERRUPTS
156 * Virtual interrupts that a guest OS may receive from Xen.
158 * In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
159 * global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
160 * The latter can be allocated only once per guest: they must initially be
161 * allocated to VCPU0 but can subsequently be re-bound.
163 /* ` enum virq { */
164 #define VIRQ_TIMER 0 /* V. Timebase update, and/or requested timeout. */
165 #define VIRQ_DEBUG 1 /* V. Request guest to dump debug info. */
166 #define VIRQ_CONSOLE 2 /* G. (DOM0) Bytes received on emergency console. */
167 #define VIRQ_DOM_EXC 3 /* G. (DOM0) Exceptional event for some domain. */
168 #define VIRQ_TBUF 4 /* G. (DOM0) Trace buffer has records available. */
169 #define VIRQ_DEBUGGER 6 /* G. (DOM0) A domain has paused for debugging. */
170 #define VIRQ_XENOPROF 7 /* V. XenOprofile interrupt: new sample available */
171 #define VIRQ_CON_RING 8 /* G. (DOM0) Bytes received on console */
172 #define VIRQ_PCPU_STATE 9 /* G. (DOM0) PCPU state changed */
173 #define VIRQ_MEM_EVENT 10 /* G. (DOM0) A memory event has occurred */
174 #define VIRQ_ARGO 11 /* G. Argo interdomain message notification */
175 #define VIRQ_ENOMEM 12 /* G. (DOM0) Low on heap memory */
176 #define VIRQ_XENPMU 13 /* V. PMC interrupt */
178 /* Architecture-specific VIRQ definitions. */
179 #define VIRQ_ARCH_0 16
180 #define VIRQ_ARCH_1 17
181 #define VIRQ_ARCH_2 18
182 #define VIRQ_ARCH_3 19
183 #define VIRQ_ARCH_4 20
184 #define VIRQ_ARCH_5 21
185 #define VIRQ_ARCH_6 22
186 #define VIRQ_ARCH_7 23
187 /* ` } */
189 #define NR_VIRQS 24
192 * ` enum neg_errnoval
193 * ` HYPERVISOR_mmu_update(const struct mmu_update reqs[],
194 * ` unsigned count, unsigned *done_out,
195 * ` unsigned foreigndom)
197 * @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
198 * @count is the length of the above array.
199 * @pdone is an output parameter indicating number of completed operations
200 * @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
201 * hypercall invocation. Can be DOMID_SELF.
202 * @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
203 * in this hypercall invocation. The value of this field
204 * (x) encodes the PFD as follows:
205 * x == 0 => PFD == DOMID_SELF
206 * x != 0 => PFD == x - 1
208 * Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
209 * -------------
210 * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
211 * Updates an entry in a page table belonging to PFD. If updating an L1 table,
212 * and the new table entry is valid/present, the mapped frame must belong to
213 * FD. If attempting to map an I/O page then the caller assumes the privilege
214 * of the FD.
215 * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
216 * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
217 * ptr[:2] -- Machine address of the page-table entry to modify.
218 * val -- Value to write.
220 * There also certain implicit requirements when using this hypercall. The
221 * pages that make up a pagetable must be mapped read-only in the guest.
222 * This prevents uncontrolled guest updates to the pagetable. Xen strictly
223 * enforces this, and will disallow any pagetable update which will end up
224 * mapping pagetable page RW, and will disallow using any writable page as a
225 * pagetable. In practice it means that when constructing a page table for a
226 * process, thread, etc, we MUST be very dilligient in following these rules:
227 * 1). Start with top-level page (PGD or in Xen language: L4). Fill out
228 * the entries.
229 * 2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
230 * or L2).
231 * 3). Start filling out the PTE table (L1) with the PTE entries. Once
232 * done, make sure to set each of those entries to RO (so writeable bit
233 * is unset). Once that has been completed, set the PMD (L2) for this
234 * PTE table as RO.
235 * 4). When completed with all of the PMD (L2) entries, and all of them have
236 * been set to RO, make sure to set RO the PUD (L3). Do the same
237 * operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
238 * 5). Now before you can use those pages (so setting the cr3), you MUST also
239 * pin them so that the hypervisor can verify the entries. This is done
240 * via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
241 * number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
242 * MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
243 * issued.
244 * For 32-bit guests, the L4 is not used (as there is less pagetables), so
245 * instead use L3.
246 * At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
247 * hypercall. Also if so desired the OS can also try to write to the PTE
248 * and be trapped by the hypervisor (as the PTE entry is RO).
250 * To deallocate the pages, the operations are the reverse of the steps
251 * mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
252 * pagetable MUST not be in use (meaning that the cr3 is not set to it).
254 * ptr[1:0] == MMU_MACHPHYS_UPDATE:
255 * Updates an entry in the machine->pseudo-physical mapping table.
256 * ptr[:2] -- Machine address within the frame whose mapping to modify.
257 * The frame must belong to the FD, if one is specified.
258 * val -- Value to write into the mapping entry.
260 * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
261 * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
262 * with those in @val.
264 * ptr[1:0] == MMU_PT_UPDATE_NO_TRANSLATE:
265 * As MMU_NORMAL_PT_UPDATE above, but @val is not translated though FD
266 * page tables.
268 * @val is usually the machine frame number along with some attributes.
269 * The attributes by default follow the architecture defined bits. Meaning that
270 * if this is a X86_64 machine and four page table layout is used, the layout
271 * of val is:
272 * - 63 if set means No execute (NX)
273 * - 46-13 the machine frame number
274 * - 12 available for guest
275 * - 11 available for guest
276 * - 10 available for guest
277 * - 9 available for guest
278 * - 8 global
279 * - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
280 * - 6 dirty
281 * - 5 accessed
282 * - 4 page cached disabled
283 * - 3 page write through
284 * - 2 userspace accessible
285 * - 1 writeable
286 * - 0 present
288 * The one bits that does not fit with the default layout is the PAGE_PSE
289 * also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
290 * HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
291 * (or 2MB) instead of using the PAGE_PSE bit.
293 * The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
294 * using it as the Page Attribute Table (PAT) bit - for details on it please
295 * refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
296 * pages instead of using MTRRs.
298 * The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
299 * PAT4 PAT0
300 * +-----+-----+----+----+----+-----+----+----+
301 * | UC | UC- | WC | WB | UC | UC- | WC | WB | <= Linux
302 * +-----+-----+----+----+----+-----+----+----+
303 * | UC | UC- | WT | WB | UC | UC- | WT | WB | <= BIOS (default when machine boots)
304 * +-----+-----+----+----+----+-----+----+----+
305 * | rsv | rsv | WP | WC | UC | UC- | WT | WB | <= Xen
306 * +-----+-----+----+----+----+-----+----+----+
308 * The lookup of this index table translates to looking up
309 * Bit 7, Bit 4, and Bit 3 of val entry:
311 * PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
313 * If all bits are off, then we are using PAT0. If bit 3 turned on,
314 * then we are using PAT1, if bit 3 and bit 4, then PAT2..
316 * As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
317 * that if a guest that follows Linux's PAT setup and would like to set Write
318 * Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
319 * set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
320 * caching as:
322 * WB = none (so PAT0)
323 * WC = PWT (bit 3 on)
324 * UC = PWT | PCD (bit 3 and 4 are on).
326 * To make it work with Xen, it needs to translate the WC bit as so:
328 * PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
330 * And to translate back it would:
332 * PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
334 #define MMU_NORMAL_PT_UPDATE 0 /* checked '*ptr = val'. ptr is MA. */
335 #define MMU_MACHPHYS_UPDATE 1 /* ptr = MA of frame to modify entry for */
336 #define MMU_PT_UPDATE_PRESERVE_AD 2 /* atomically: *ptr = val | (*ptr&(A|D)) */
337 #define MMU_PT_UPDATE_NO_TRANSLATE 3 /* checked '*ptr = val'. ptr is MA. */
338 /* val never translated. */
341 * MMU EXTENDED OPERATIONS
343 * ` enum neg_errnoval
344 * ` HYPERVISOR_mmuext_op(mmuext_op_t uops[],
345 * ` unsigned int count,
346 * ` unsigned int *pdone,
347 * ` unsigned int foreigndom)
349 /* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
350 * A foreigndom (FD) can be specified (or DOMID_SELF for none).
351 * Where the FD has some effect, it is described below.
353 * cmd: MMUEXT_(UN)PIN_*_TABLE
354 * mfn: Machine frame number to be (un)pinned as a p.t. page.
355 * The frame must belong to the FD, if one is specified.
357 * cmd: MMUEXT_NEW_BASEPTR
358 * mfn: Machine frame number of new page-table base to install in MMU.
360 * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
361 * mfn: Machine frame number of new page-table base to install in MMU
362 * when in user space.
364 * cmd: MMUEXT_TLB_FLUSH_LOCAL
365 * No additional arguments. Flushes local TLB.
367 * cmd: MMUEXT_INVLPG_LOCAL
368 * linear_addr: Linear address to be flushed from the local TLB.
370 * cmd: MMUEXT_TLB_FLUSH_MULTI
371 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
373 * cmd: MMUEXT_INVLPG_MULTI
374 * linear_addr: Linear address to be flushed.
375 * vcpumask: Pointer to bitmap of VCPUs to be flushed.
377 * cmd: MMUEXT_TLB_FLUSH_ALL
378 * No additional arguments. Flushes all VCPUs' TLBs.
380 * cmd: MMUEXT_INVLPG_ALL
381 * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
383 * cmd: MMUEXT_FLUSH_CACHE
384 * No additional arguments. Writes back and flushes cache contents.
386 * cmd: MMUEXT_FLUSH_CACHE_GLOBAL
387 * No additional arguments. Writes back and flushes cache contents
388 * on all CPUs in the system.
390 * cmd: MMUEXT_SET_LDT
391 * linear_addr: Linear address of LDT base (NB. must be page-aligned).
392 * nr_ents: Number of entries in LDT.
394 * cmd: MMUEXT_CLEAR_PAGE
395 * mfn: Machine frame number to be cleared.
397 * cmd: MMUEXT_COPY_PAGE
398 * mfn: Machine frame number of the destination page.
399 * src_mfn: Machine frame number of the source page.
401 * cmd: MMUEXT_[UN]MARK_SUPER
402 * mfn: Machine frame number of head of superpage to be [un]marked.
404 /* ` enum mmuext_cmd { */
405 #define MMUEXT_PIN_L1_TABLE 0
406 #define MMUEXT_PIN_L2_TABLE 1
407 #define MMUEXT_PIN_L3_TABLE 2
408 #define MMUEXT_PIN_L4_TABLE 3
409 #define MMUEXT_UNPIN_TABLE 4
410 #define MMUEXT_NEW_BASEPTR 5
411 #define MMUEXT_TLB_FLUSH_LOCAL 6
412 #define MMUEXT_INVLPG_LOCAL 7
413 #define MMUEXT_TLB_FLUSH_MULTI 8
414 #define MMUEXT_INVLPG_MULTI 9
415 #define MMUEXT_TLB_FLUSH_ALL 10
416 #define MMUEXT_INVLPG_ALL 11
417 #define MMUEXT_FLUSH_CACHE 12
418 #define MMUEXT_SET_LDT 13
419 #define MMUEXT_NEW_USER_BASEPTR 15
420 #define MMUEXT_CLEAR_PAGE 16
421 #define MMUEXT_COPY_PAGE 17
422 #define MMUEXT_FLUSH_CACHE_GLOBAL 18
423 #define MMUEXT_MARK_SUPER 19
424 #define MMUEXT_UNMARK_SUPER 20
425 /* ` } */
427 #ifndef __ASSEMBLY__
428 struct mmuext_op {
429 unsigned int cmd; /* => enum mmuext_cmd */
430 union {
431 /* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
432 * CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
433 xen_pfn_t mfn;
434 /* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
435 unsigned long linear_addr;
436 } arg1;
437 union {
438 /* SET_LDT */
439 unsigned int nr_ents;
440 /* TLB_FLUSH_MULTI, INVLPG_MULTI */
441 #if __XEN_INTERFACE_VERSION__ >= 0x00030205
442 XEN_GUEST_HANDLE(const_void) vcpumask;
443 #else
444 const void *vcpumask;
445 #endif
446 /* COPY_PAGE */
447 xen_pfn_t src_mfn;
448 } arg2;
450 typedef struct mmuext_op mmuext_op_t;
451 DEFINE_XEN_GUEST_HANDLE(mmuext_op_t);
452 #endif
455 * ` enum neg_errnoval
456 * ` HYPERVISOR_update_va_mapping(unsigned long va, u64 val,
457 * ` enum uvm_flags flags)
459 * ` enum neg_errnoval
460 * ` HYPERVISOR_update_va_mapping_otherdomain(unsigned long va, u64 val,
461 * ` enum uvm_flags flags,
462 * ` domid_t domid)
464 * ` @va: The virtual address whose mapping we want to change
465 * ` @val: The new page table entry, must contain a machine address
466 * ` @flags: Control TLB flushes
468 /* These are passed as 'flags' to update_va_mapping. They can be ORed. */
469 /* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap. */
470 /* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer. */
471 /* ` enum uvm_flags { */
472 #define UVMF_NONE (xen_mk_ulong(0)<<0) /* No flushing at all. */
473 #define UVMF_TLB_FLUSH (xen_mk_ulong(1)<<0) /* Flush entire TLB(s). */
474 #define UVMF_INVLPG (xen_mk_ulong(2)<<0) /* Flush only one entry. */
475 #define UVMF_FLUSHTYPE_MASK (xen_mk_ulong(3)<<0)
476 #define UVMF_MULTI (xen_mk_ulong(0)<<2) /* Flush subset of TLBs. */
477 #define UVMF_LOCAL (xen_mk_ulong(0)<<2) /* Flush local TLB. */
478 #define UVMF_ALL (xen_mk_ulong(1)<<2) /* Flush all TLBs. */
479 /* ` } */
482 * ` int
483 * ` HYPERVISOR_console_io(unsigned int cmd,
484 * ` unsigned int count,
485 * ` char buffer[]);
487 * @cmd: Command (see below)
488 * @count: Size of the buffer to read/write
489 * @buffer: Pointer in the guest memory
491 * List of commands:
493 * * CONSOLEIO_write: Write the buffer to Xen console.
494 * For the hardware domain, all the characters in the buffer will
495 * be written. Characters will be printed directly to the console.
496 * For all the other domains, only the printable characters will be
497 * written. Characters may be buffered until a newline (i.e '\n') is
498 * found.
499 * @return 0 on success, otherwise return an error code.
500 * * CONSOLEIO_read: Attempts to read up to @count characters from Xen
501 * console. The maximum buffer size (i.e. @count) supported is 2GB.
502 * @return the number of characters read on success, otherwise return
503 * an error code.
505 #define CONSOLEIO_write 0
506 #define CONSOLEIO_read 1
509 * Commands to HYPERVISOR_vm_assist().
511 #define VMASST_CMD_enable 0
512 #define VMASST_CMD_disable 1
514 /* x86/32 guests: simulate full 4GB segment limits. */
515 #define VMASST_TYPE_4gb_segments 0
517 /* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
518 #define VMASST_TYPE_4gb_segments_notify 1
521 * x86 guests: support writes to bottom-level PTEs.
522 * NB1. Page-directory entries cannot be written.
523 * NB2. Guest must continue to remove all writable mappings of PTEs.
525 #define VMASST_TYPE_writable_pagetables 2
527 /* x86/PAE guests: support PDPTs above 4GB. */
528 #define VMASST_TYPE_pae_extended_cr3 3
531 * x86 guests: Sane behaviour for virtual iopl
532 * - virtual iopl updated from do_iret() hypercalls.
533 * - virtual iopl reported in bounce frames.
534 * - guest kernels assumed to be level 0 for the purpose of iopl checks.
536 #define VMASST_TYPE_architectural_iopl 4
539 * All guests: activate update indicator in vcpu_runstate_info
540 * Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
541 * vcpu_runstate_info during updates of the runstate information.
543 #define VMASST_TYPE_runstate_update_flag 5
546 * x86/64 guests: strictly hide M2P from user mode.
547 * This allows the guest to control respective hypervisor behavior:
548 * - when not set, L4 tables get created with the respective slot blank,
549 * and whenever the L4 table gets used as a kernel one the missing
550 * mapping gets inserted,
551 * - when set, L4 tables get created with the respective slot initialized
552 * as before, and whenever the L4 table gets used as a user one the
553 * mapping gets zapped.
555 #define VMASST_TYPE_m2p_strict 32
557 #if __XEN_INTERFACE_VERSION__ < 0x00040600
558 #define MAX_VMASST_TYPE 3
559 #endif
561 /* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
562 #define DOMID_FIRST_RESERVED xen_mk_uint(0x7FF0)
564 /* DOMID_SELF is used in certain contexts to refer to oneself. */
565 #define DOMID_SELF xen_mk_uint(0x7FF0)
568 * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
569 * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
570 * is useful to ensure that no mappings to the OS's own heap are accidentally
571 * installed. (e.g., in Linux this could cause havoc as reference counts
572 * aren't adjusted on the I/O-mapping code path).
573 * This only makes sense as HYPERVISOR_mmu_update()'s and
574 * HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument. For
575 * HYPERVISOR_mmu_update() context it can be specified by any calling domain,
576 * otherwise it's only permitted if the caller is privileged.
578 #define DOMID_IO xen_mk_uint(0x7FF1)
581 * DOMID_XEN is used to allow privileged domains to map restricted parts of
582 * Xen's heap space (e.g., the machine_to_phys table).
583 * This only makes sense as
584 * - HYPERVISOR_mmu_update()'s, HYPERVISOR_mmuext_op()'s, or
585 * HYPERVISOR_update_va_mapping_otherdomain()'s "foreigndom" argument,
586 * - with XENMAPSPACE_gmfn_foreign,
587 * and is only permitted if the caller is privileged.
589 #define DOMID_XEN xen_mk_uint(0x7FF2)
592 * DOMID_COW is used as the owner of sharable pages */
593 #define DOMID_COW xen_mk_uint(0x7FF3)
595 /* DOMID_INVALID is used to identify pages with unknown owner. */
596 #define DOMID_INVALID xen_mk_uint(0x7FF4)
598 /* Idle domain. */
599 #define DOMID_IDLE xen_mk_uint(0x7FFF)
601 /* Mask for valid domain id values */
602 #define DOMID_MASK xen_mk_uint(0x7FFF)
604 #ifndef __ASSEMBLY__
606 typedef uint16_t domid_t;
609 * Send an array of these to HYPERVISOR_mmu_update().
610 * NB. The fields are natural pointer/address size for this architecture.
612 struct mmu_update {
613 uint64_t ptr; /* Machine address of PTE. */
614 uint64_t val; /* New contents of PTE. */
616 typedef struct mmu_update mmu_update_t;
617 DEFINE_XEN_GUEST_HANDLE(mmu_update_t);
620 * ` enum neg_errnoval
621 * ` HYPERVISOR_multicall(multicall_entry_t call_list[],
622 * ` uint32_t nr_calls);
624 * NB. The fields are logically the natural register size for this
625 * architecture. In cases where xen_ulong_t is larger than this then
626 * any unused bits in the upper portion must be zero.
628 struct multicall_entry {
629 xen_ulong_t op, result;
630 xen_ulong_t args[6];
632 typedef struct multicall_entry multicall_entry_t;
633 DEFINE_XEN_GUEST_HANDLE(multicall_entry_t);
635 #if __XEN_INTERFACE_VERSION__ < 0x00040400
637 * Event channel endpoints per domain (when using the 2-level ABI):
638 * 1024 if a long is 32 bits; 4096 if a long is 64 bits.
640 #define NR_EVENT_CHANNELS EVTCHN_2L_NR_CHANNELS
641 #endif
643 struct vcpu_time_info {
645 * Updates to the following values are preceded and followed by an
646 * increment of 'version'. The guest can therefore detect updates by
647 * looking for changes to 'version'. If the least-significant bit of
648 * the version number is set then an update is in progress and the guest
649 * must wait to read a consistent set of values.
650 * The correct way to interact with the version number is similar to
651 * Linux's seqlock: see the implementations of read_seqbegin/read_seqretry.
653 uint32_t version;
654 uint32_t pad0;
655 uint64_t tsc_timestamp; /* TSC at last update of time vals. */
656 uint64_t system_time; /* Time, in nanosecs, since boot. */
658 * Current system time:
659 * system_time +
660 * ((((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul) >> 32)
661 * CPU frequency (Hz):
662 * ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
664 uint32_t tsc_to_system_mul;
665 int8_t tsc_shift;
666 #if __XEN_INTERFACE_VERSION__ > 0x040600
667 uint8_t flags;
668 uint8_t pad1[2];
669 #else
670 int8_t pad1[3];
671 #endif
672 }; /* 32 bytes */
673 typedef struct vcpu_time_info vcpu_time_info_t;
675 #define XEN_PVCLOCK_TSC_STABLE_BIT (1 << 0)
676 #define XEN_PVCLOCK_GUEST_STOPPED (1 << 1)
678 struct vcpu_info {
680 * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
681 * a pending notification for a particular VCPU. It is then cleared
682 * by the guest OS /before/ checking for pending work, thus avoiding
683 * a set-and-check race. Note that the mask is only accessed by Xen
684 * on the CPU that is currently hosting the VCPU. This means that the
685 * pending and mask flags can be updated by the guest without special
686 * synchronisation (i.e., no need for the x86 LOCK prefix).
687 * This may seem suboptimal because if the pending flag is set by
688 * a different CPU then an IPI may be scheduled even when the mask
689 * is set. However, note:
690 * 1. The task of 'interrupt holdoff' is covered by the per-event-
691 * channel mask bits. A 'noisy' event that is continually being
692 * triggered can be masked at source at this very precise
693 * granularity.
694 * 2. The main purpose of the per-VCPU mask is therefore to restrict
695 * reentrant execution: whether for concurrency control, or to
696 * prevent unbounded stack usage. Whatever the purpose, we expect
697 * that the mask will be asserted only for short periods at a time,
698 * and so the likelihood of a 'spurious' IPI is suitably small.
699 * The mask is read before making an event upcall to the guest: a
700 * non-zero mask therefore guarantees that the VCPU will not receive
701 * an upcall activation. The mask is cleared when the VCPU requests
702 * to block: this avoids wakeup-waiting races.
704 uint8_t evtchn_upcall_pending;
705 #ifdef XEN_HAVE_PV_UPCALL_MASK
706 uint8_t evtchn_upcall_mask;
707 #else /* XEN_HAVE_PV_UPCALL_MASK */
708 uint8_t pad0;
709 #endif /* XEN_HAVE_PV_UPCALL_MASK */
710 xen_ulong_t evtchn_pending_sel;
711 struct arch_vcpu_info arch;
712 vcpu_time_info_t time;
713 }; /* 64 bytes (x86) */
714 #ifndef __XEN__
715 typedef struct vcpu_info vcpu_info_t;
716 #endif
719 * `incontents 200 startofday_shared Start-of-day shared data structure
720 * Xen/kernel shared data -- pointer provided in start_info.
722 * This structure is defined to be both smaller than a page, and the
723 * only data on the shared page, but may vary in actual size even within
724 * compatible Xen versions; guests should not rely on the size
725 * of this structure remaining constant.
727 struct shared_info {
728 struct vcpu_info vcpu_info[XEN_LEGACY_MAX_VCPUS];
731 * A domain can create "event channels" on which it can send and receive
732 * asynchronous event notifications. There are three classes of event that
733 * are delivered by this mechanism:
734 * 1. Bi-directional inter- and intra-domain connections. Domains must
735 * arrange out-of-band to set up a connection (usually by allocating
736 * an unbound 'listener' port and avertising that via a storage service
737 * such as xenstore).
738 * 2. Physical interrupts. A domain with suitable hardware-access
739 * privileges can bind an event-channel port to a physical interrupt
740 * source.
741 * 3. Virtual interrupts ('events'). A domain can bind an event-channel
742 * port to a virtual interrupt source, such as the virtual-timer
743 * device or the emergency console.
745 * Event channels are addressed by a "port index". Each channel is
746 * associated with two bits of information:
747 * 1. PENDING -- notifies the domain that there is a pending notification
748 * to be processed. This bit is cleared by the guest.
749 * 2. MASK -- if this bit is clear then a 0->1 transition of PENDING
750 * will cause an asynchronous upcall to be scheduled. This bit is only
751 * updated by the guest. It is read-only within Xen. If a channel
752 * becomes pending while the channel is masked then the 'edge' is lost
753 * (i.e., when the channel is unmasked, the guest must manually handle
754 * pending notifications as no upcall will be scheduled by Xen).
756 * To expedite scanning of pending notifications, any 0->1 pending
757 * transition on an unmasked channel causes a corresponding bit in a
758 * per-vcpu selector word to be set. Each bit in the selector covers a
759 * 'C long' in the PENDING bitfield array.
761 xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
762 xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
765 * Wallclock time: updated by control software or RTC emulation.
766 * Guests should base their gettimeofday() syscall on this
767 * wallclock-base value.
768 * The values of wc_sec and wc_nsec are offsets from the Unix epoch
769 * adjusted by the domain's 'time offset' (in seconds) as set either
770 * by XEN_DOMCTL_settimeoffset, or adjusted via a guest write to the
771 * emulated RTC.
773 uint32_t wc_version; /* Version counter: see vcpu_time_info_t. */
774 uint32_t wc_sec;
775 uint32_t wc_nsec;
776 #if !defined(__i386__)
777 uint32_t wc_sec_hi;
778 # define xen_wc_sec_hi wc_sec_hi
779 #elif !defined(__XEN__) && !defined(__XEN_TOOLS__)
780 # define xen_wc_sec_hi arch.wc_sec_hi
781 #endif
783 struct arch_shared_info arch;
786 #ifndef __XEN__
787 typedef struct shared_info shared_info_t;
788 #endif
791 * `incontents 200 startofday Start-of-day memory layout
793 * 1. The domain is started within contiguous virtual-memory region.
794 * 2. The contiguous region ends on an aligned 4MB boundary.
795 * 3. This the order of bootstrap elements in the initial virtual region:
796 * a. relocated kernel image
797 * b. initial ram disk [mod_start, mod_len]
798 * (may be omitted)
799 * c. list of allocated page frames [mfn_list, nr_pages]
800 * (unless relocated due to XEN_ELFNOTE_INIT_P2M)
801 * d. start_info_t structure [register rSI (x86)]
802 * in case of dom0 this page contains the console info, too
803 * e. unless dom0: xenstore ring page
804 * f. unless dom0: console ring page
805 * g. bootstrap page tables [pt_base and CR3 (x86)]
806 * h. bootstrap stack [register ESP (x86)]
807 * 4. Bootstrap elements are packed together, but each is 4kB-aligned.
808 * 5. The list of page frames forms a contiguous 'pseudo-physical' memory
809 * layout for the domain. In particular, the bootstrap virtual-memory
810 * region is a 1:1 mapping to the first section of the pseudo-physical map.
811 * 6. All bootstrap elements are mapped read-writable for the guest OS. The
812 * only exception is the bootstrap page table, which is mapped read-only.
813 * 7. There is guaranteed to be at least 512kB padding after the final
814 * bootstrap element. If necessary, the bootstrap virtual region is
815 * extended by an extra 4MB to ensure this.
817 * Note: Prior to 25833:bb85bbccb1c9. ("x86/32-on-64 adjust Dom0 initial page
818 * table layout") a bug caused the pt_base (3.g above) and cr3 to not point
819 * to the start of the guest page tables (it was offset by two pages).
820 * This only manifested itself on 32-on-64 dom0 kernels and not 32-on-64 domU
821 * or 64-bit kernels of any colour. The page tables for a 32-on-64 dom0 got
822 * allocated in the order: 'first L1','first L2', 'first L3', so the offset
823 * to the page table base is by two pages back. The initial domain if it is
824 * 32-bit and runs under a 64-bit hypervisor should _NOT_ use two of the
825 * pages preceding pt_base and mark them as reserved/unused.
827 #ifdef XEN_HAVE_PV_GUEST_ENTRY
828 struct start_info {
829 /* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME. */
830 char magic[32]; /* "xen-<version>-<platform>". */
831 unsigned long nr_pages; /* Total pages allocated to this domain. */
832 unsigned long shared_info; /* MACHINE address of shared info struct. */
833 uint32_t flags; /* SIF_xxx flags. */
834 xen_pfn_t store_mfn; /* MACHINE page number of shared page. */
835 uint32_t store_evtchn; /* Event channel for store communication. */
836 union {
837 struct {
838 xen_pfn_t mfn; /* MACHINE page number of console page. */
839 uint32_t evtchn; /* Event channel for console page. */
840 } domU;
841 struct {
842 uint32_t info_off; /* Offset of console_info struct. */
843 uint32_t info_size; /* Size of console_info struct from start.*/
844 } dom0;
845 } console;
846 /* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME). */
847 unsigned long pt_base; /* VIRTUAL address of page directory. */
848 unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames. */
849 unsigned long mfn_list; /* VIRTUAL address of page-frame list. */
850 unsigned long mod_start; /* VIRTUAL address of pre-loaded module */
851 /* (PFN of pre-loaded module if */
852 /* SIF_MOD_START_PFN set in flags). */
853 unsigned long mod_len; /* Size (bytes) of pre-loaded module. */
854 #define MAX_GUEST_CMDLINE 1024
855 int8_t cmd_line[MAX_GUEST_CMDLINE];
856 /* The pfn range here covers both page table and p->m table frames. */
857 unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table. */
858 unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table. */
860 typedef struct start_info start_info_t;
862 /* New console union for dom0 introduced in 0x00030203. */
863 #if __XEN_INTERFACE_VERSION__ < 0x00030203
864 #define console_mfn console.domU.mfn
865 #define console_evtchn console.domU.evtchn
866 #endif
867 #endif /* XEN_HAVE_PV_GUEST_ENTRY */
869 /* These flags are passed in the 'flags' field of start_info_t. */
870 #define SIF_PRIVILEGED (1<<0) /* Is the domain privileged? */
871 #define SIF_INITDOMAIN (1<<1) /* Is this the initial control domain? */
872 #define SIF_MULTIBOOT_MOD (1<<2) /* Is mod_start a multiboot module? */
873 #define SIF_MOD_START_PFN (1<<3) /* Is mod_start a PFN? */
874 #define SIF_VIRT_P2M_4TOOLS (1<<4) /* Do Xen tools understand a virt. mapped */
875 /* P->M making the 3 level tree obsolete? */
876 #define SIF_PM_MASK (0xFF<<8) /* reserve 1 byte for xen-pm options */
879 * A multiboot module is a package containing modules very similar to a
880 * multiboot module array. The only differences are:
881 * - the array of module descriptors is by convention simply at the beginning
882 * of the multiboot module,
883 * - addresses in the module descriptors are based on the beginning of the
884 * multiboot module,
885 * - the number of modules is determined by a termination descriptor that has
886 * mod_start == 0.
888 * This permits to both build it statically and reference it in a configuration
889 * file, and let the PV guest easily rebase the addresses to virtual addresses
890 * and at the same time count the number of modules.
892 struct xen_multiboot_mod_list
894 /* Address of first byte of the module */
895 uint32_t mod_start;
896 /* Address of last byte of the module (inclusive) */
897 uint32_t mod_end;
898 /* Address of zero-terminated command line */
899 uint32_t cmdline;
900 /* Unused, must be zero */
901 uint32_t pad;
904 * `incontents 200 startofday_dom0_console Dom0_console
906 * The console structure in start_info.console.dom0
908 * This structure includes a variety of information required to
909 * have a working VGA/VESA console.
911 typedef struct dom0_vga_console_info {
912 uint8_t video_type; /* DOM0_VGA_CONSOLE_??? */
913 #define XEN_VGATYPE_TEXT_MODE_3 0x03
914 #define XEN_VGATYPE_VESA_LFB 0x23
915 #define XEN_VGATYPE_EFI_LFB 0x70
917 union {
918 struct {
919 /* Font height, in pixels. */
920 uint16_t font_height;
921 /* Cursor location (column, row). */
922 uint16_t cursor_x, cursor_y;
923 /* Number of rows and columns (dimensions in characters). */
924 uint16_t rows, columns;
925 } text_mode_3;
927 struct {
928 /* Width and height, in pixels. */
929 uint16_t width, height;
930 /* Bytes per scan line. */
931 uint16_t bytes_per_line;
932 /* Bits per pixel. */
933 uint16_t bits_per_pixel;
934 /* LFB physical address, and size (in units of 64kB). */
935 uint32_t lfb_base;
936 uint32_t lfb_size;
937 /* RGB mask offsets and sizes, as defined by VBE 1.2+ */
938 uint8_t red_pos, red_size;
939 uint8_t green_pos, green_size;
940 uint8_t blue_pos, blue_size;
941 uint8_t rsvd_pos, rsvd_size;
942 #if __XEN_INTERFACE_VERSION__ >= 0x00030206
943 /* VESA capabilities (offset 0xa, VESA command 0x4f00). */
944 uint32_t gbl_caps;
945 /* Mode attributes (offset 0x0, VESA command 0x4f01). */
946 uint16_t mode_attrs;
947 uint16_t pad;
948 #endif
949 #if __XEN_INTERFACE_VERSION__ >= 0x00040d00
950 /* high 32 bits of lfb_base */
951 uint32_t ext_lfb_base;
952 #endif
953 } vesa_lfb;
954 } u;
955 } dom0_vga_console_info_t;
956 #define xen_vga_console_info dom0_vga_console_info
957 #define xen_vga_console_info_t dom0_vga_console_info_t
959 typedef uint8_t xen_domain_handle_t[16];
961 __DEFINE_XEN_GUEST_HANDLE(uint8, uint8_t);
962 __DEFINE_XEN_GUEST_HANDLE(uint16, uint16_t);
963 __DEFINE_XEN_GUEST_HANDLE(uint32, uint32_t);
964 __DEFINE_XEN_GUEST_HANDLE(uint64, uint64_t);
966 typedef struct {
967 uint8_t a[16];
968 } xen_uuid_t;
971 * XEN_DEFINE_UUID(0x00112233, 0x4455, 0x6677, 0x8899,
972 * 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff)
973 * will construct UUID 00112233-4455-6677-8899-aabbccddeeff presented as
974 * {0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,
975 * 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff};
977 * NB: This is compatible with Linux kernel and with libuuid, but it is not
978 * compatible with Microsoft, as they use mixed-endian encoding (some
979 * components are little-endian, some are big-endian).
981 #define XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6) \
982 {{((a) >> 24) & 0xFF, ((a) >> 16) & 0xFF, \
983 ((a) >> 8) & 0xFF, ((a) >> 0) & 0xFF, \
984 ((b) >> 8) & 0xFF, ((b) >> 0) & 0xFF, \
985 ((c) >> 8) & 0xFF, ((c) >> 0) & 0xFF, \
986 ((d) >> 8) & 0xFF, ((d) >> 0) & 0xFF, \
987 e1, e2, e3, e4, e5, e6}}
989 #if defined(__STDC_VERSION__) ? __STDC_VERSION__ >= 199901L : defined(__GNUC__)
990 #define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6) \
991 ((xen_uuid_t)XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6))
992 #else
993 #define XEN_DEFINE_UUID(a, b, c, d, e1, e2, e3, e4, e5, e6) \
994 XEN_DEFINE_UUID_(a, b, c, d, e1, e2, e3, e4, e5, e6)
995 #endif /* __STDC_VERSION__ / __GNUC__ */
997 #endif /* !__ASSEMBLY__ */
999 /* Default definitions for macros used by domctl/sysctl. */
1000 #if defined(__XEN__) || defined(__XEN_TOOLS__)
1002 #ifndef int64_aligned_t
1003 #define int64_aligned_t int64_t
1004 #endif
1005 #ifndef uint64_aligned_t
1006 #define uint64_aligned_t uint64_t
1007 #endif
1008 #ifndef XEN_GUEST_HANDLE_64
1009 #define XEN_GUEST_HANDLE_64(name) XEN_GUEST_HANDLE(name)
1010 #endif
1012 #ifndef __ASSEMBLY__
1013 struct xenctl_bitmap {
1014 XEN_GUEST_HANDLE_64(uint8) bitmap;
1015 uint32_t nr_bits;
1017 typedef struct xenctl_bitmap xenctl_bitmap_t;
1018 #endif
1020 #endif /* defined(__XEN__) || defined(__XEN_TOOLS__) */
1022 #endif /* __XEN_PUBLIC_XEN_H__ */
1025 * Local variables:
1026 * mode: C
1027 * c-file-style: "BSD"
1028 * c-basic-offset: 4
1029 * tab-width: 4
1030 * indent-tabs-mode: nil
1031 * End: