Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / target / arm / kvm.c
blobf1f1b5b375a55ed5fae03b0fe81b85ce4bb9b456
1 /*
2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
5 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
6 * Copyright Alex Bennée 2014, Linaro
8 * This work is licensed under the terms of the GNU GPL, version 2 or later.
9 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include <sys/ioctl.h>
16 #include <linux/kvm.h>
18 #include "qemu/timer.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qom/object.h"
22 #include "qapi/error.h"
23 #include "sysemu/sysemu.h"
24 #include "sysemu/runstate.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/kvm_int.h"
27 #include "kvm_arm.h"
28 #include "cpu.h"
29 #include "trace.h"
30 #include "internals.h"
31 #include "hw/pci/pci.h"
32 #include "exec/memattrs.h"
33 #include "exec/address-spaces.h"
34 #include "gdbstub/enums.h"
35 #include "hw/boards.h"
36 #include "hw/irq.h"
37 #include "qapi/visitor.h"
38 #include "qemu/log.h"
39 #include "hw/acpi/acpi.h"
40 #include "hw/acpi/ghes.h"
41 #include "target/arm/gtimer.h"
43 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
44 KVM_CAP_LAST_INFO
47 static bool cap_has_mp_state;
48 static bool cap_has_inject_serror_esr;
49 static bool cap_has_inject_ext_dabt;
51 /**
52 * ARMHostCPUFeatures: information about the host CPU (identified
53 * by asking the host kernel)
55 typedef struct ARMHostCPUFeatures {
56 ARMISARegisters isar;
57 uint64_t features;
58 uint32_t target;
59 const char *dtb_compatible;
60 } ARMHostCPUFeatures;
62 static ARMHostCPUFeatures arm_host_cpu_features;
64 /**
65 * kvm_arm_vcpu_init:
66 * @cpu: ARMCPU
68 * Initialize (or reinitialize) the VCPU by invoking the
69 * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
70 * bitmask specified in the CPUState.
72 * Returns: 0 if success else < 0 error code
74 static int kvm_arm_vcpu_init(ARMCPU *cpu)
76 struct kvm_vcpu_init init;
78 init.target = cpu->kvm_target;
79 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
81 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
84 /**
85 * kvm_arm_vcpu_finalize:
86 * @cpu: ARMCPU
87 * @feature: feature to finalize
89 * Finalizes the configuration of the specified VCPU feature by
90 * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
91 * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
92 * KVM's API documentation.
94 * Returns: 0 if success else < 0 error code
96 static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
98 return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
101 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
102 int *fdarray,
103 struct kvm_vcpu_init *init)
105 int ret = 0, kvmfd = -1, vmfd = -1, cpufd = -1;
106 int max_vm_pa_size;
108 kvmfd = qemu_open_old("/dev/kvm", O_RDWR);
109 if (kvmfd < 0) {
110 goto err;
112 max_vm_pa_size = ioctl(kvmfd, KVM_CHECK_EXTENSION, KVM_CAP_ARM_VM_IPA_SIZE);
113 if (max_vm_pa_size < 0) {
114 max_vm_pa_size = 0;
116 do {
117 vmfd = ioctl(kvmfd, KVM_CREATE_VM, max_vm_pa_size);
118 } while (vmfd == -1 && errno == EINTR);
119 if (vmfd < 0) {
120 goto err;
122 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
123 if (cpufd < 0) {
124 goto err;
127 if (!init) {
128 /* Caller doesn't want the VCPU to be initialized, so skip it */
129 goto finish;
132 if (init->target == -1) {
133 struct kvm_vcpu_init preferred;
135 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, &preferred);
136 if (!ret) {
137 init->target = preferred.target;
140 if (ret >= 0) {
141 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
142 if (ret < 0) {
143 goto err;
145 } else if (cpus_to_try) {
146 /* Old kernel which doesn't know about the
147 * PREFERRED_TARGET ioctl: we know it will only support
148 * creating one kind of guest CPU which is its preferred
149 * CPU type.
151 struct kvm_vcpu_init try;
153 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
154 try.target = *cpus_to_try++;
155 memcpy(try.features, init->features, sizeof(init->features));
156 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, &try);
157 if (ret >= 0) {
158 break;
161 if (ret < 0) {
162 goto err;
164 init->target = try.target;
165 } else {
166 /* Treat a NULL cpus_to_try argument the same as an empty
167 * list, which means we will fail the call since this must
168 * be an old kernel which doesn't support PREFERRED_TARGET.
170 goto err;
173 finish:
174 fdarray[0] = kvmfd;
175 fdarray[1] = vmfd;
176 fdarray[2] = cpufd;
178 return true;
180 err:
181 if (cpufd >= 0) {
182 close(cpufd);
184 if (vmfd >= 0) {
185 close(vmfd);
187 if (kvmfd >= 0) {
188 close(kvmfd);
191 return false;
194 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
196 int i;
198 for (i = 2; i >= 0; i--) {
199 close(fdarray[i]);
203 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
205 uint64_t ret;
206 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
207 int err;
209 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
210 err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
211 if (err < 0) {
212 return -1;
214 *pret = ret;
215 return 0;
218 static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
220 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
222 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
223 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
226 static bool kvm_arm_pauth_supported(void)
228 return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
229 kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
232 static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
234 /* Identify the feature bits corresponding to the host CPU, and
235 * fill out the ARMHostCPUClass fields accordingly. To do this
236 * we have to create a scratch VM, create a single CPU inside it,
237 * and then query that CPU for the relevant ID registers.
239 int fdarray[3];
240 bool sve_supported;
241 bool pmu_supported = false;
242 uint64_t features = 0;
243 int err;
245 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
246 * we know these will only support creating one kind of guest CPU,
247 * which is its preferred CPU type. Fortunately these old kernels
248 * support only a very limited number of CPUs.
250 static const uint32_t cpus_to_try[] = {
251 KVM_ARM_TARGET_AEM_V8,
252 KVM_ARM_TARGET_FOUNDATION_V8,
253 KVM_ARM_TARGET_CORTEX_A57,
254 QEMU_KVM_ARM_TARGET_NONE
257 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
258 * to use the preferred target
260 struct kvm_vcpu_init init = { .target = -1, };
263 * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
264 * which is otherwise RAZ.
266 sve_supported = kvm_arm_sve_supported();
267 if (sve_supported) {
268 init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
272 * Ask for Pointer Authentication if supported, so that we get
273 * the unsanitized field values for AA64ISAR1_EL1.
275 if (kvm_arm_pauth_supported()) {
276 init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
277 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
280 if (kvm_arm_pmu_supported()) {
281 init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
282 pmu_supported = true;
283 features |= 1ULL << ARM_FEATURE_PMU;
286 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
287 return false;
290 ahcf->target = init.target;
291 ahcf->dtb_compatible = "arm,arm-v8";
293 err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
294 ARM64_SYS_REG(3, 0, 0, 4, 0));
295 if (unlikely(err < 0)) {
297 * Before v4.15, the kernel only exposed a limited number of system
298 * registers, not including any of the interesting AArch64 ID regs.
299 * For the most part we could leave these fields as zero with minimal
300 * effect, since this does not affect the values seen by the guest.
302 * However, it could cause problems down the line for QEMU,
303 * so provide a minimal v8.0 default.
305 * ??? Could read MIDR and use knowledge from cpu64.c.
306 * ??? Could map a page of memory into our temp guest and
307 * run the tiniest of hand-crafted kernels to extract
308 * the values seen by the guest.
309 * ??? Either of these sounds like too much effort just
310 * to work around running a modern host kernel.
312 ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
313 err = 0;
314 } else {
315 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
316 ARM64_SYS_REG(3, 0, 0, 4, 1));
317 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
318 ARM64_SYS_REG(3, 0, 0, 4, 5));
319 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
320 ARM64_SYS_REG(3, 0, 0, 5, 0));
321 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
322 ARM64_SYS_REG(3, 0, 0, 5, 1));
323 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
324 ARM64_SYS_REG(3, 0, 0, 6, 0));
325 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
326 ARM64_SYS_REG(3, 0, 0, 6, 1));
327 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
328 ARM64_SYS_REG(3, 0, 0, 6, 2));
329 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
330 ARM64_SYS_REG(3, 0, 0, 7, 0));
331 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
332 ARM64_SYS_REG(3, 0, 0, 7, 1));
333 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
334 ARM64_SYS_REG(3, 0, 0, 7, 2));
335 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr3,
336 ARM64_SYS_REG(3, 0, 0, 7, 3));
339 * Note that if AArch32 support is not present in the host,
340 * the AArch32 sysregs are present to be read, but will
341 * return UNKNOWN values. This is neither better nor worse
342 * than skipping the reads and leaving 0, as we must avoid
343 * considering the values in every case.
345 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
346 ARM64_SYS_REG(3, 0, 0, 1, 0));
347 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
348 ARM64_SYS_REG(3, 0, 0, 1, 1));
349 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
350 ARM64_SYS_REG(3, 0, 0, 1, 2));
351 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
352 ARM64_SYS_REG(3, 0, 0, 1, 4));
353 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
354 ARM64_SYS_REG(3, 0, 0, 1, 5));
355 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
356 ARM64_SYS_REG(3, 0, 0, 1, 6));
357 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
358 ARM64_SYS_REG(3, 0, 0, 1, 7));
359 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
360 ARM64_SYS_REG(3, 0, 0, 2, 0));
361 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
362 ARM64_SYS_REG(3, 0, 0, 2, 1));
363 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
364 ARM64_SYS_REG(3, 0, 0, 2, 2));
365 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
366 ARM64_SYS_REG(3, 0, 0, 2, 3));
367 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
368 ARM64_SYS_REG(3, 0, 0, 2, 4));
369 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
370 ARM64_SYS_REG(3, 0, 0, 2, 5));
371 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
372 ARM64_SYS_REG(3, 0, 0, 2, 6));
373 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
374 ARM64_SYS_REG(3, 0, 0, 2, 7));
376 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
377 ARM64_SYS_REG(3, 0, 0, 3, 0));
378 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
379 ARM64_SYS_REG(3, 0, 0, 3, 1));
380 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
381 ARM64_SYS_REG(3, 0, 0, 3, 2));
382 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
383 ARM64_SYS_REG(3, 0, 0, 3, 4));
384 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
385 ARM64_SYS_REG(3, 0, 0, 3, 5));
386 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
387 ARM64_SYS_REG(3, 0, 0, 3, 6));
390 * DBGDIDR is a bit complicated because the kernel doesn't
391 * provide an accessor for it in 64-bit mode, which is what this
392 * scratch VM is in, and there's no architected "64-bit sysreg
393 * which reads the same as the 32-bit register" the way there is
394 * for other ID registers. Instead we synthesize a value from the
395 * AArch64 ID_AA64DFR0, the same way the kernel code in
396 * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
397 * We only do this if the CPU supports AArch32 at EL1.
399 if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
400 int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
401 int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
402 int ctx_cmps =
403 FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
404 int version = 6; /* ARMv8 debug architecture */
405 bool has_el3 =
406 !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
407 uint32_t dbgdidr = 0;
409 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
410 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
411 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
412 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
413 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
414 dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
415 dbgdidr |= (1 << 15); /* RES1 bit */
416 ahcf->isar.dbgdidr = dbgdidr;
419 if (pmu_supported) {
420 /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
421 err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
422 ARM64_SYS_REG(3, 3, 9, 12, 0));
425 if (sve_supported) {
427 * There is a range of kernels between kernel commit 73433762fcae
428 * and f81cb2c3ad41 which have a bug where the kernel doesn't
429 * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
430 * enabled SVE support, which resulted in an error rather than RAZ.
431 * So only read the register if we set KVM_ARM_VCPU_SVE above.
433 err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
434 ARM64_SYS_REG(3, 0, 0, 4, 4));
438 kvm_arm_destroy_scratch_host_vcpu(fdarray);
440 if (err < 0) {
441 return false;
445 * We can assume any KVM supporting CPU is at least a v8
446 * with VFPv4+Neon; this in turn implies most of the other
447 * feature bits.
449 features |= 1ULL << ARM_FEATURE_V8;
450 features |= 1ULL << ARM_FEATURE_NEON;
451 features |= 1ULL << ARM_FEATURE_AARCH64;
452 features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
454 ahcf->features = features;
456 return true;
459 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
461 CPUARMState *env = &cpu->env;
463 if (!arm_host_cpu_features.dtb_compatible) {
464 if (!kvm_enabled() ||
465 !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
466 /* We can't report this error yet, so flag that we need to
467 * in arm_cpu_realizefn().
469 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
470 cpu->host_cpu_probe_failed = true;
471 return;
475 cpu->kvm_target = arm_host_cpu_features.target;
476 cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
477 cpu->isar = arm_host_cpu_features.isar;
478 env->features = arm_host_cpu_features.features;
481 static bool kvm_no_adjvtime_get(Object *obj, Error **errp)
483 return !ARM_CPU(obj)->kvm_adjvtime;
486 static void kvm_no_adjvtime_set(Object *obj, bool value, Error **errp)
488 ARM_CPU(obj)->kvm_adjvtime = !value;
491 static bool kvm_steal_time_get(Object *obj, Error **errp)
493 return ARM_CPU(obj)->kvm_steal_time != ON_OFF_AUTO_OFF;
496 static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
498 ARM_CPU(obj)->kvm_steal_time = value ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
501 /* KVM VCPU properties should be prefixed with "kvm-". */
502 void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
504 CPUARMState *env = &cpu->env;
505 Object *obj = OBJECT(cpu);
507 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
508 cpu->kvm_adjvtime = true;
509 object_property_add_bool(obj, "kvm-no-adjvtime", kvm_no_adjvtime_get,
510 kvm_no_adjvtime_set);
511 object_property_set_description(obj, "kvm-no-adjvtime",
512 "Set on to disable the adjustment of "
513 "the virtual counter. VM stopped time "
514 "will be counted.");
517 cpu->kvm_steal_time = ON_OFF_AUTO_AUTO;
518 object_property_add_bool(obj, "kvm-steal-time", kvm_steal_time_get,
519 kvm_steal_time_set);
520 object_property_set_description(obj, "kvm-steal-time",
521 "Set off to disable KVM steal time.");
524 bool kvm_arm_pmu_supported(void)
526 return kvm_check_extension(kvm_state, KVM_CAP_ARM_PMU_V3);
529 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa)
531 KVMState *s = KVM_STATE(ms->accelerator);
532 int ret;
534 ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
535 *fixed_ipa = ret <= 0;
537 return ret > 0 ? ret : 40;
540 int kvm_arch_get_default_type(MachineState *ms)
542 bool fixed_ipa;
543 int size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
544 return fixed_ipa ? 0 : size;
547 int kvm_arch_init(MachineState *ms, KVMState *s)
549 int ret = 0;
550 /* For ARM interrupt delivery is always asynchronous,
551 * whether we are using an in-kernel VGIC or not.
553 kvm_async_interrupts_allowed = true;
556 * PSCI wakes up secondary cores, so we always need to
557 * have vCPUs waiting in kernel space
559 kvm_halt_in_kernel_allowed = true;
561 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
563 /* Check whether user space can specify guest syndrome value */
564 cap_has_inject_serror_esr =
565 kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
567 if (ms->smp.cpus > 256 &&
568 !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
569 error_report("Using more than 256 vcpus requires a host kernel "
570 "with KVM_CAP_ARM_IRQ_LINE_LAYOUT_2");
571 ret = -EINVAL;
574 if (kvm_check_extension(s, KVM_CAP_ARM_NISV_TO_USER)) {
575 if (kvm_vm_enable_cap(s, KVM_CAP_ARM_NISV_TO_USER, 0)) {
576 error_report("Failed to enable KVM_CAP_ARM_NISV_TO_USER cap");
577 } else {
578 /* Set status for supporting the external dabt injection */
579 cap_has_inject_ext_dabt = kvm_check_extension(s,
580 KVM_CAP_ARM_INJECT_EXT_DABT);
584 if (s->kvm_eager_split_size) {
585 uint32_t sizes;
587 sizes = kvm_vm_check_extension(s, KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES);
588 if (!sizes) {
589 s->kvm_eager_split_size = 0;
590 warn_report("Eager Page Split support not available");
591 } else if (!(s->kvm_eager_split_size & sizes)) {
592 error_report("Eager Page Split requested chunk size not valid");
593 ret = -EINVAL;
594 } else {
595 ret = kvm_vm_enable_cap(s, KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE, 0,
596 s->kvm_eager_split_size);
597 if (ret < 0) {
598 error_report("Enabling of Eager Page Split failed: %s",
599 strerror(-ret));
604 max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
605 hw_watchpoints = g_array_sized_new(true, true,
606 sizeof(HWWatchpoint), max_hw_wps);
608 max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
609 hw_breakpoints = g_array_sized_new(true, true,
610 sizeof(HWBreakpoint), max_hw_bps);
612 return ret;
615 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
617 return cpu->cpu_index;
620 /* We track all the KVM devices which need their memory addresses
621 * passing to the kernel in a list of these structures.
622 * When board init is complete we run through the list and
623 * tell the kernel the base addresses of the memory regions.
624 * We use a MemoryListener to track mapping and unmapping of
625 * the regions during board creation, so the board models don't
626 * need to do anything special for the KVM case.
628 * Sometimes the address must be OR'ed with some other fields
629 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
630 * @kda_addr_ormask aims at storing the value of those fields.
632 typedef struct KVMDevice {
633 struct kvm_arm_device_addr kda;
634 struct kvm_device_attr kdattr;
635 uint64_t kda_addr_ormask;
636 MemoryRegion *mr;
637 QSLIST_ENTRY(KVMDevice) entries;
638 int dev_fd;
639 } KVMDevice;
641 static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
643 static void kvm_arm_devlistener_add(MemoryListener *listener,
644 MemoryRegionSection *section)
646 KVMDevice *kd;
648 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
649 if (section->mr == kd->mr) {
650 kd->kda.addr = section->offset_within_address_space;
655 static void kvm_arm_devlistener_del(MemoryListener *listener,
656 MemoryRegionSection *section)
658 KVMDevice *kd;
660 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
661 if (section->mr == kd->mr) {
662 kd->kda.addr = -1;
667 static MemoryListener devlistener = {
668 .name = "kvm-arm",
669 .region_add = kvm_arm_devlistener_add,
670 .region_del = kvm_arm_devlistener_del,
671 .priority = MEMORY_LISTENER_PRIORITY_MIN,
674 static void kvm_arm_set_device_addr(KVMDevice *kd)
676 struct kvm_device_attr *attr = &kd->kdattr;
677 int ret;
679 /* If the device control API is available and we have a device fd on the
680 * KVMDevice struct, let's use the newer API
682 if (kd->dev_fd >= 0) {
683 uint64_t addr = kd->kda.addr;
685 addr |= kd->kda_addr_ormask;
686 attr->addr = (uintptr_t)&addr;
687 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
688 } else {
689 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
692 if (ret < 0) {
693 fprintf(stderr, "Failed to set device address: %s\n",
694 strerror(-ret));
695 abort();
699 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
701 KVMDevice *kd, *tkd;
703 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
704 if (kd->kda.addr != -1) {
705 kvm_arm_set_device_addr(kd);
707 memory_region_unref(kd->mr);
708 QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
709 g_free(kd);
711 memory_listener_unregister(&devlistener);
714 static Notifier notify = {
715 .notify = kvm_arm_machine_init_done,
718 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
719 uint64_t attr, int dev_fd, uint64_t addr_ormask)
721 KVMDevice *kd;
723 if (!kvm_irqchip_in_kernel()) {
724 return;
727 if (QSLIST_EMPTY(&kvm_devices_head)) {
728 memory_listener_register(&devlistener, &address_space_memory);
729 qemu_add_machine_init_done_notifier(&notify);
731 kd = g_new0(KVMDevice, 1);
732 kd->mr = mr;
733 kd->kda.id = devid;
734 kd->kda.addr = -1;
735 kd->kdattr.flags = 0;
736 kd->kdattr.group = group;
737 kd->kdattr.attr = attr;
738 kd->dev_fd = dev_fd;
739 kd->kda_addr_ormask = addr_ormask;
740 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
741 memory_region_ref(kd->mr);
744 static int compare_u64(const void *a, const void *b)
746 if (*(uint64_t *)a > *(uint64_t *)b) {
747 return 1;
749 if (*(uint64_t *)a < *(uint64_t *)b) {
750 return -1;
752 return 0;
756 * cpreg_values are sorted in ascending order by KVM register ID
757 * (see kvm_arm_init_cpreg_list). This allows us to cheaply find
758 * the storage for a KVM register by ID with a binary search.
760 static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
762 uint64_t *res;
764 res = bsearch(&regidx, cpu->cpreg_indexes, cpu->cpreg_array_len,
765 sizeof(uint64_t), compare_u64);
766 assert(res);
768 return &cpu->cpreg_values[res - cpu->cpreg_indexes];
772 * kvm_arm_reg_syncs_via_cpreg_list:
773 * @regidx: KVM register index
775 * Return true if this KVM register should be synchronized via the
776 * cpreg list of arbitrary system registers, false if it is synchronized
777 * by hand using code in kvm_arch_get/put_registers().
779 static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
781 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
782 case KVM_REG_ARM_CORE:
783 case KVM_REG_ARM64_SVE:
784 return false;
785 default:
786 return true;
791 * kvm_arm_init_cpreg_list:
792 * @cpu: ARMCPU
794 * Initialize the ARMCPU cpreg list according to the kernel's
795 * definition of what CPU registers it knows about (and throw away
796 * the previous TCG-created cpreg list).
798 * Returns: 0 if success, else < 0 error code
800 static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
802 struct kvm_reg_list rl;
803 struct kvm_reg_list *rlp;
804 int i, ret, arraylen;
805 CPUState *cs = CPU(cpu);
807 rl.n = 0;
808 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
809 if (ret != -E2BIG) {
810 return ret;
812 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
813 rlp->n = rl.n;
814 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
815 if (ret) {
816 goto out;
818 /* Sort the list we get back from the kernel, since cpreg_tuples
819 * must be in strictly ascending order.
821 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
823 for (i = 0, arraylen = 0; i < rlp->n; i++) {
824 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
825 continue;
827 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
828 case KVM_REG_SIZE_U32:
829 case KVM_REG_SIZE_U64:
830 break;
831 default:
832 fprintf(stderr, "Can't handle size of register in kernel list\n");
833 ret = -EINVAL;
834 goto out;
837 arraylen++;
840 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
841 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
842 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
843 arraylen);
844 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
845 arraylen);
846 cpu->cpreg_array_len = arraylen;
847 cpu->cpreg_vmstate_array_len = arraylen;
849 for (i = 0, arraylen = 0; i < rlp->n; i++) {
850 uint64_t regidx = rlp->reg[i];
851 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
852 continue;
854 cpu->cpreg_indexes[arraylen] = regidx;
855 arraylen++;
857 assert(cpu->cpreg_array_len == arraylen);
859 if (!write_kvmstate_to_list(cpu)) {
860 /* Shouldn't happen unless kernel is inconsistent about
861 * what registers exist.
863 fprintf(stderr, "Initial read of kernel register state failed\n");
864 ret = -EINVAL;
865 goto out;
868 out:
869 g_free(rlp);
870 return ret;
874 * kvm_arm_cpreg_level:
875 * @regidx: KVM register index
877 * Return the level of this coprocessor/system register. Return value is
878 * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
880 static int kvm_arm_cpreg_level(uint64_t regidx)
883 * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
884 * If a register should be written less often, you must add it here
885 * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
887 switch (regidx) {
888 case KVM_REG_ARM_TIMER_CNT:
889 case KVM_REG_ARM_PTIMER_CNT:
890 return KVM_PUT_FULL_STATE;
892 return KVM_PUT_RUNTIME_STATE;
895 bool write_kvmstate_to_list(ARMCPU *cpu)
897 CPUState *cs = CPU(cpu);
898 int i;
899 bool ok = true;
901 for (i = 0; i < cpu->cpreg_array_len; i++) {
902 uint64_t regidx = cpu->cpreg_indexes[i];
903 uint32_t v32;
904 int ret;
906 switch (regidx & KVM_REG_SIZE_MASK) {
907 case KVM_REG_SIZE_U32:
908 ret = kvm_get_one_reg(cs, regidx, &v32);
909 if (!ret) {
910 cpu->cpreg_values[i] = v32;
912 break;
913 case KVM_REG_SIZE_U64:
914 ret = kvm_get_one_reg(cs, regidx, cpu->cpreg_values + i);
915 break;
916 default:
917 g_assert_not_reached();
919 if (ret) {
920 ok = false;
923 return ok;
926 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
928 CPUState *cs = CPU(cpu);
929 int i;
930 bool ok = true;
932 for (i = 0; i < cpu->cpreg_array_len; i++) {
933 uint64_t regidx = cpu->cpreg_indexes[i];
934 uint32_t v32;
935 int ret;
937 if (kvm_arm_cpreg_level(regidx) > level) {
938 continue;
941 switch (regidx & KVM_REG_SIZE_MASK) {
942 case KVM_REG_SIZE_U32:
943 v32 = cpu->cpreg_values[i];
944 ret = kvm_set_one_reg(cs, regidx, &v32);
945 break;
946 case KVM_REG_SIZE_U64:
947 ret = kvm_set_one_reg(cs, regidx, cpu->cpreg_values + i);
948 break;
949 default:
950 g_assert_not_reached();
952 if (ret) {
953 /* We might fail for "unknown register" and also for
954 * "you tried to set a register which is constant with
955 * a different value from what it actually contains".
957 ok = false;
960 return ok;
963 void kvm_arm_cpu_pre_save(ARMCPU *cpu)
965 /* KVM virtual time adjustment */
966 if (cpu->kvm_vtime_dirty) {
967 *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT) = cpu->kvm_vtime;
971 void kvm_arm_cpu_post_load(ARMCPU *cpu)
973 /* KVM virtual time adjustment */
974 if (cpu->kvm_adjvtime) {
975 cpu->kvm_vtime = *kvm_arm_get_cpreg_ptr(cpu, KVM_REG_ARM_TIMER_CNT);
976 cpu->kvm_vtime_dirty = true;
980 void kvm_arm_reset_vcpu(ARMCPU *cpu)
982 int ret;
984 /* Re-init VCPU so that all registers are set to
985 * their respective reset values.
987 ret = kvm_arm_vcpu_init(cpu);
988 if (ret < 0) {
989 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
990 abort();
992 if (!write_kvmstate_to_list(cpu)) {
993 fprintf(stderr, "write_kvmstate_to_list failed\n");
994 abort();
997 * Sync the reset values also into the CPUState. This is necessary
998 * because the next thing we do will be a kvm_arch_put_registers()
999 * which will update the list values from the CPUState before copying
1000 * the list values back to KVM. It's OK to ignore failure returns here
1001 * for the same reason we do so in kvm_arch_get_registers().
1003 write_list_to_cpustate(cpu);
1007 * Update KVM's MP_STATE based on what QEMU thinks it is
1009 static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
1011 if (cap_has_mp_state) {
1012 struct kvm_mp_state mp_state = {
1013 .mp_state = (cpu->power_state == PSCI_OFF) ?
1014 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
1016 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1018 return 0;
1022 * Sync the KVM MP_STATE into QEMU
1024 static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
1026 if (cap_has_mp_state) {
1027 struct kvm_mp_state mp_state;
1028 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1029 if (ret) {
1030 return ret;
1032 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
1033 PSCI_OFF : PSCI_ON;
1035 return 0;
1039 * kvm_arm_get_virtual_time:
1040 * @cpu: ARMCPU
1042 * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
1044 static void kvm_arm_get_virtual_time(ARMCPU *cpu)
1046 int ret;
1048 if (cpu->kvm_vtime_dirty) {
1049 return;
1052 ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1053 if (ret) {
1054 error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
1055 abort();
1058 cpu->kvm_vtime_dirty = true;
1062 * kvm_arm_put_virtual_time:
1063 * @cpu: ARMCPU
1065 * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
1067 static void kvm_arm_put_virtual_time(ARMCPU *cpu)
1069 int ret;
1071 if (!cpu->kvm_vtime_dirty) {
1072 return;
1075 ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
1076 if (ret) {
1077 error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
1078 abort();
1081 cpu->kvm_vtime_dirty = false;
1085 * kvm_put_vcpu_events:
1086 * @cpu: ARMCPU
1088 * Put VCPU related state to kvm.
1090 * Returns: 0 if success else < 0 error code
1092 static int kvm_put_vcpu_events(ARMCPU *cpu)
1094 CPUARMState *env = &cpu->env;
1095 struct kvm_vcpu_events events;
1096 int ret;
1098 if (!kvm_has_vcpu_events()) {
1099 return 0;
1102 memset(&events, 0, sizeof(events));
1103 events.exception.serror_pending = env->serror.pending;
1105 /* Inject SError to guest with specified syndrome if host kernel
1106 * supports it, otherwise inject SError without syndrome.
1108 if (cap_has_inject_serror_esr) {
1109 events.exception.serror_has_esr = env->serror.has_esr;
1110 events.exception.serror_esr = env->serror.esr;
1113 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1114 if (ret) {
1115 error_report("failed to put vcpu events");
1118 return ret;
1122 * kvm_get_vcpu_events:
1123 * @cpu: ARMCPU
1125 * Get VCPU related state from kvm.
1127 * Returns: 0 if success else < 0 error code
1129 static int kvm_get_vcpu_events(ARMCPU *cpu)
1131 CPUARMState *env = &cpu->env;
1132 struct kvm_vcpu_events events;
1133 int ret;
1135 if (!kvm_has_vcpu_events()) {
1136 return 0;
1139 memset(&events, 0, sizeof(events));
1140 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1141 if (ret) {
1142 error_report("failed to get vcpu events");
1143 return ret;
1146 env->serror.pending = events.exception.serror_pending;
1147 env->serror.has_esr = events.exception.serror_has_esr;
1148 env->serror.esr = events.exception.serror_esr;
1150 return 0;
1153 #define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
1154 #define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
1157 * ESR_EL1
1158 * ISS encoding
1159 * AARCH64: DFSC, bits [5:0]
1160 * AARCH32:
1161 * TTBCR.EAE == 0
1162 * FS[4] - DFSR[10]
1163 * FS[3:0] - DFSR[3:0]
1164 * TTBCR.EAE == 1
1165 * FS, bits [5:0]
1167 #define ESR_DFSC(aarch64, lpae, v) \
1168 ((aarch64 || (lpae)) ? ((v) & 0x3F) \
1169 : (((v) >> 6) | ((v) & 0x1F)))
1171 #define ESR_DFSC_EXTABT(aarch64, lpae) \
1172 ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
1175 * kvm_arm_verify_ext_dabt_pending:
1176 * @cpu: ARMCPU
1178 * Verify the fault status code wrt the Ext DABT injection
1180 * Returns: true if the fault status code is as expected, false otherwise
1182 static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
1184 CPUState *cs = CPU(cpu);
1185 uint64_t dfsr_val;
1187 if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
1188 CPUARMState *env = &cpu->env;
1189 int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
1190 int lpae = 0;
1192 if (!aarch64_mode) {
1193 uint64_t ttbcr;
1195 if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
1196 lpae = arm_feature(env, ARM_FEATURE_LPAE)
1197 && (ttbcr & TTBCR_EAE);
1201 * The verification here is based on the DFSC bits
1202 * of the ESR_EL1 reg only
1204 return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
1205 ESR_DFSC_EXTABT(aarch64_mode, lpae));
1207 return false;
1210 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
1212 ARMCPU *cpu = ARM_CPU(cs);
1213 CPUARMState *env = &cpu->env;
1215 if (unlikely(env->ext_dabt_raised)) {
1217 * Verifying that the ext DABT has been properly injected,
1218 * otherwise risking indefinitely re-running the faulting instruction
1219 * Covering a very narrow case for kernels 5.5..5.5.4
1220 * when injected abort was misconfigured to be
1221 * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
1223 if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
1224 unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
1226 error_report("Data abort exception with no valid ISS generated by "
1227 "guest memory access. KVM unable to emulate faulting "
1228 "instruction. Failed to inject an external data abort "
1229 "into the guest.");
1230 abort();
1232 /* Clear the status */
1233 env->ext_dabt_raised = 0;
1237 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
1239 ARMCPU *cpu;
1240 uint32_t switched_level;
1242 if (kvm_irqchip_in_kernel()) {
1244 * We only need to sync timer states with user-space interrupt
1245 * controllers, so return early and save cycles if we don't.
1247 return MEMTXATTRS_UNSPECIFIED;
1250 cpu = ARM_CPU(cs);
1252 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
1253 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
1254 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
1256 bql_lock();
1258 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
1259 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
1260 !!(run->s.regs.device_irq_level &
1261 KVM_ARM_DEV_EL1_VTIMER));
1262 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
1265 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
1266 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
1267 !!(run->s.regs.device_irq_level &
1268 KVM_ARM_DEV_EL1_PTIMER));
1269 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
1272 if (switched_level & KVM_ARM_DEV_PMU) {
1273 qemu_set_irq(cpu->pmu_interrupt,
1274 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
1275 switched_level &= ~KVM_ARM_DEV_PMU;
1278 if (switched_level) {
1279 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
1280 __func__, switched_level);
1283 /* We also mark unknown levels as processed to not waste cycles */
1284 cpu->device_irq_level = run->s.regs.device_irq_level;
1285 bql_unlock();
1288 return MEMTXATTRS_UNSPECIFIED;
1291 static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
1293 ARMCPU *cpu = opaque;
1295 if (running) {
1296 if (cpu->kvm_adjvtime) {
1297 kvm_arm_put_virtual_time(cpu);
1299 } else {
1300 if (cpu->kvm_adjvtime) {
1301 kvm_arm_get_virtual_time(cpu);
1307 * kvm_arm_handle_dabt_nisv:
1308 * @cpu: ARMCPU
1309 * @esr_iss: ISS encoding (limited) for the exception from Data Abort
1310 * ISV bit set to '0b0' -> no valid instruction syndrome
1311 * @fault_ipa: faulting address for the synchronous data abort
1313 * Returns: 0 if the exception has been handled, < 0 otherwise
1315 static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
1316 uint64_t fault_ipa)
1318 CPUARMState *env = &cpu->env;
1320 * Request KVM to inject the external data abort into the guest
1322 if (cap_has_inject_ext_dabt) {
1323 struct kvm_vcpu_events events = { };
1325 * The external data abort event will be handled immediately by KVM
1326 * using the address fault that triggered the exit on given VCPU.
1327 * Requesting injection of the external data abort does not rely
1328 * on any other VCPU state. Therefore, in this particular case, the VCPU
1329 * synchronization can be exceptionally skipped.
1331 events.exception.ext_dabt_pending = 1;
1332 /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
1333 if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
1334 env->ext_dabt_raised = 1;
1335 return 0;
1337 } else {
1338 error_report("Data abort exception triggered by guest memory access "
1339 "at physical address: 0x" TARGET_FMT_lx,
1340 (target_ulong)fault_ipa);
1341 error_printf("KVM unable to emulate faulting instruction.\n");
1343 return -1;
1347 * kvm_arm_handle_debug:
1348 * @cpu: ARMCPU
1349 * @debug_exit: debug part of the KVM exit structure
1351 * Returns: TRUE if the debug exception was handled.
1353 * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1355 * To minimise translating between kernel and user-space the kernel
1356 * ABI just provides user-space with the full exception syndrome
1357 * register value to be decoded in QEMU.
1359 static bool kvm_arm_handle_debug(ARMCPU *cpu,
1360 struct kvm_debug_exit_arch *debug_exit)
1362 int hsr_ec = syn_get_ec(debug_exit->hsr);
1363 CPUState *cs = CPU(cpu);
1364 CPUARMState *env = &cpu->env;
1366 /* Ensure PC is synchronised */
1367 kvm_cpu_synchronize_state(cs);
1369 switch (hsr_ec) {
1370 case EC_SOFTWARESTEP:
1371 if (cs->singlestep_enabled) {
1372 return true;
1373 } else {
1375 * The kernel should have suppressed the guest's ability to
1376 * single step at this point so something has gone wrong.
1378 error_report("%s: guest single-step while debugging unsupported"
1379 " (%"PRIx64", %"PRIx32")",
1380 __func__, env->pc, debug_exit->hsr);
1381 return false;
1383 break;
1384 case EC_AA64_BKPT:
1385 if (kvm_find_sw_breakpoint(cs, env->pc)) {
1386 return true;
1388 break;
1389 case EC_BREAKPOINT:
1390 if (find_hw_breakpoint(cs, env->pc)) {
1391 return true;
1393 break;
1394 case EC_WATCHPOINT:
1396 CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1397 if (wp) {
1398 cs->watchpoint_hit = wp;
1399 return true;
1401 break;
1403 default:
1404 error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1405 __func__, debug_exit->hsr, env->pc);
1408 /* If we are not handling the debug exception it must belong to
1409 * the guest. Let's re-use the existing TCG interrupt code to set
1410 * everything up properly.
1412 cs->exception_index = EXCP_BKPT;
1413 env->exception.syndrome = debug_exit->hsr;
1414 env->exception.vaddress = debug_exit->far;
1415 env->exception.target_el = 1;
1416 bql_lock();
1417 arm_cpu_do_interrupt(cs);
1418 bql_unlock();
1420 return false;
1423 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1425 ARMCPU *cpu = ARM_CPU(cs);
1426 int ret = 0;
1428 switch (run->exit_reason) {
1429 case KVM_EXIT_DEBUG:
1430 if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
1431 ret = EXCP_DEBUG;
1432 } /* otherwise return to guest */
1433 break;
1434 case KVM_EXIT_ARM_NISV:
1435 /* External DABT with no valid iss to decode */
1436 ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
1437 run->arm_nisv.fault_ipa);
1438 break;
1439 default:
1440 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
1441 __func__, run->exit_reason);
1442 break;
1444 return ret;
1447 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
1449 return true;
1452 int kvm_arch_process_async_events(CPUState *cs)
1454 return 0;
1458 * kvm_arm_hw_debug_active:
1459 * @cpu: ARMCPU
1461 * Return: TRUE if any hardware breakpoints in use.
1463 static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
1465 return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
1469 * kvm_arm_copy_hw_debug_data:
1470 * @ptr: kvm_guest_debug_arch structure
1472 * Copy the architecture specific debug registers into the
1473 * kvm_guest_debug ioctl structure.
1475 static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
1477 int i;
1478 memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
1480 for (i = 0; i < max_hw_wps; i++) {
1481 HWWatchpoint *wp = get_hw_wp(i);
1482 ptr->dbg_wcr[i] = wp->wcr;
1483 ptr->dbg_wvr[i] = wp->wvr;
1485 for (i = 0; i < max_hw_bps; i++) {
1486 HWBreakpoint *bp = get_hw_bp(i);
1487 ptr->dbg_bcr[i] = bp->bcr;
1488 ptr->dbg_bvr[i] = bp->bvr;
1492 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
1494 if (kvm_sw_breakpoints_active(cs)) {
1495 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1497 if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
1498 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
1499 kvm_arm_copy_hw_debug_data(&dbg->arch);
1503 void kvm_arch_init_irq_routing(KVMState *s)
1507 int kvm_arch_irqchip_create(KVMState *s)
1509 if (kvm_kernel_irqchip_split()) {
1510 error_report("-machine kernel_irqchip=split is not supported on ARM.");
1511 exit(1);
1514 /* If we can create the VGIC using the newer device control API, we
1515 * let the device do this when it initializes itself, otherwise we
1516 * fall back to the old API */
1517 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
1520 int kvm_arm_vgic_probe(void)
1522 int val = 0;
1524 if (kvm_create_device(kvm_state,
1525 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
1526 val |= KVM_ARM_VGIC_V3;
1528 if (kvm_create_device(kvm_state,
1529 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
1530 val |= KVM_ARM_VGIC_V2;
1532 return val;
1535 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level)
1537 int kvm_irq = (irqtype << KVM_ARM_IRQ_TYPE_SHIFT) | irq;
1538 int cpu_idx1 = cpu % 256;
1539 int cpu_idx2 = cpu / 256;
1541 kvm_irq |= (cpu_idx1 << KVM_ARM_IRQ_VCPU_SHIFT) |
1542 (cpu_idx2 << KVM_ARM_IRQ_VCPU2_SHIFT);
1544 return kvm_set_irq(kvm_state, kvm_irq, !!level);
1547 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1548 uint64_t address, uint32_t data, PCIDevice *dev)
1550 AddressSpace *as = pci_device_iommu_address_space(dev);
1551 hwaddr xlat, len, doorbell_gpa;
1552 MemoryRegionSection mrs;
1553 MemoryRegion *mr;
1555 if (as == &address_space_memory) {
1556 return 0;
1559 /* MSI doorbell address is translated by an IOMMU */
1561 RCU_READ_LOCK_GUARD();
1563 mr = address_space_translate(as, address, &xlat, &len, true,
1564 MEMTXATTRS_UNSPECIFIED);
1566 if (!mr) {
1567 return 1;
1570 mrs = memory_region_find(mr, xlat, 1);
1572 if (!mrs.mr) {
1573 return 1;
1576 doorbell_gpa = mrs.offset_within_address_space;
1577 memory_region_unref(mrs.mr);
1579 route->u.msi.address_lo = doorbell_gpa;
1580 route->u.msi.address_hi = doorbell_gpa >> 32;
1582 trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
1584 return 0;
1587 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1588 int vector, PCIDevice *dev)
1590 return 0;
1593 int kvm_arch_release_virq_post(int virq)
1595 return 0;
1598 int kvm_arch_msi_data_to_gsi(uint32_t data)
1600 return (data - 32) & 0xffff;
1603 static void kvm_arch_get_eager_split_size(Object *obj, Visitor *v,
1604 const char *name, void *opaque,
1605 Error **errp)
1607 KVMState *s = KVM_STATE(obj);
1608 uint64_t value = s->kvm_eager_split_size;
1610 visit_type_size(v, name, &value, errp);
1613 static void kvm_arch_set_eager_split_size(Object *obj, Visitor *v,
1614 const char *name, void *opaque,
1615 Error **errp)
1617 KVMState *s = KVM_STATE(obj);
1618 uint64_t value;
1620 if (s->fd != -1) {
1621 error_setg(errp, "Unable to set early-split-size after KVM has been initialized");
1622 return;
1625 if (!visit_type_size(v, name, &value, errp)) {
1626 return;
1629 if (value && !is_power_of_2(value)) {
1630 error_setg(errp, "early-split-size must be a power of two");
1631 return;
1634 s->kvm_eager_split_size = value;
1637 void kvm_arch_accel_class_init(ObjectClass *oc)
1639 object_class_property_add(oc, "eager-split-size", "size",
1640 kvm_arch_get_eager_split_size,
1641 kvm_arch_set_eager_split_size, NULL, NULL);
1643 object_class_property_set_description(oc, "eager-split-size",
1644 "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
1647 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
1649 switch (type) {
1650 case GDB_BREAKPOINT_HW:
1651 return insert_hw_breakpoint(addr);
1652 break;
1653 case GDB_WATCHPOINT_READ:
1654 case GDB_WATCHPOINT_WRITE:
1655 case GDB_WATCHPOINT_ACCESS:
1656 return insert_hw_watchpoint(addr, len, type);
1657 default:
1658 return -ENOSYS;
1662 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
1664 switch (type) {
1665 case GDB_BREAKPOINT_HW:
1666 return delete_hw_breakpoint(addr);
1667 case GDB_WATCHPOINT_READ:
1668 case GDB_WATCHPOINT_WRITE:
1669 case GDB_WATCHPOINT_ACCESS:
1670 return delete_hw_watchpoint(addr, len, type);
1671 default:
1672 return -ENOSYS;
1676 void kvm_arch_remove_all_hw_breakpoints(void)
1678 if (cur_hw_wps > 0) {
1679 g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
1681 if (cur_hw_bps > 0) {
1682 g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
1686 static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
1687 const char *name)
1689 int err;
1691 err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
1692 if (err != 0) {
1693 error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
1694 return false;
1697 err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
1698 if (err != 0) {
1699 error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
1700 return false;
1703 return true;
1706 void kvm_arm_pmu_init(ARMCPU *cpu)
1708 struct kvm_device_attr attr = {
1709 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1710 .attr = KVM_ARM_VCPU_PMU_V3_INIT,
1713 if (!cpu->has_pmu) {
1714 return;
1716 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1717 error_report("failed to init PMU");
1718 abort();
1722 void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
1724 struct kvm_device_attr attr = {
1725 .group = KVM_ARM_VCPU_PMU_V3_CTRL,
1726 .addr = (intptr_t)&irq,
1727 .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
1730 if (!cpu->has_pmu) {
1731 return;
1733 if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
1734 error_report("failed to set irq for PMU");
1735 abort();
1739 void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
1741 struct kvm_device_attr attr = {
1742 .group = KVM_ARM_VCPU_PVTIME_CTRL,
1743 .attr = KVM_ARM_VCPU_PVTIME_IPA,
1744 .addr = (uint64_t)&ipa,
1747 if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
1748 return;
1750 if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
1751 error_report("failed to init PVTIME IPA");
1752 abort();
1756 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
1758 bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
1760 if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
1761 if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1762 cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
1763 } else {
1764 cpu->kvm_steal_time = ON_OFF_AUTO_ON;
1766 } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
1767 if (!has_steal_time) {
1768 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1769 "on this host");
1770 return;
1771 } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1773 * DEN0057A chapter 2 says "This specification only covers
1774 * systems in which the Execution state of the hypervisor
1775 * as well as EL1 of virtual machines is AArch64.". And,
1776 * to ensure that, the smc/hvc calls are only specified as
1777 * smc64/hvc64.
1779 error_setg(errp, "'kvm-steal-time' cannot be enabled "
1780 "for AArch32 guests");
1781 return;
1786 bool kvm_arm_aarch32_supported(void)
1788 return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
1791 bool kvm_arm_sve_supported(void)
1793 return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
1796 QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
1798 uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
1800 /* Only call this function if kvm_arm_sve_supported() returns true. */
1801 static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
1802 static bool probed;
1803 uint32_t vq = 0;
1804 int i;
1807 * KVM ensures all host CPUs support the same set of vector lengths.
1808 * So we only need to create the scratch VCPUs once and then cache
1809 * the results.
1811 if (!probed) {
1812 struct kvm_vcpu_init init = {
1813 .target = -1,
1814 .features[0] = (1 << KVM_ARM_VCPU_SVE),
1816 struct kvm_one_reg reg = {
1817 .id = KVM_REG_ARM64_SVE_VLS,
1818 .addr = (uint64_t)&vls[0],
1820 int fdarray[3], ret;
1822 probed = true;
1824 if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
1825 error_report("failed to create scratch VCPU with SVE enabled");
1826 abort();
1828 ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
1829 kvm_arm_destroy_scratch_host_vcpu(fdarray);
1830 if (ret) {
1831 error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
1832 strerror(errno));
1833 abort();
1836 for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
1837 if (vls[i]) {
1838 vq = 64 - clz64(vls[i]) + i * 64;
1839 break;
1842 if (vq > ARM_MAX_VQ) {
1843 warn_report("KVM supports vector lengths larger than "
1844 "QEMU can enable");
1845 vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
1849 return vls[0];
1852 static int kvm_arm_sve_set_vls(ARMCPU *cpu)
1854 uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
1856 assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
1858 return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
1861 #define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
1863 int kvm_arch_init_vcpu(CPUState *cs)
1865 int ret;
1866 uint64_t mpidr;
1867 ARMCPU *cpu = ARM_CPU(cs);
1868 CPUARMState *env = &cpu->env;
1869 uint64_t psciver;
1871 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
1872 !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
1873 error_report("KVM is not supported for this guest CPU type");
1874 return -EINVAL;
1877 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
1879 /* Determine init features for this CPU */
1880 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
1881 if (cs->start_powered_off) {
1882 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
1884 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
1885 cpu->psci_version = QEMU_PSCI_VERSION_0_2;
1886 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
1888 if (!arm_feature(env, ARM_FEATURE_AARCH64)) {
1889 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
1891 if (cpu->has_pmu) {
1892 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
1894 if (cpu_isar_feature(aa64_sve, cpu)) {
1895 assert(kvm_arm_sve_supported());
1896 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
1898 if (cpu_isar_feature(aa64_pauth, cpu)) {
1899 cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
1900 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
1903 /* Do KVM_ARM_VCPU_INIT ioctl */
1904 ret = kvm_arm_vcpu_init(cpu);
1905 if (ret) {
1906 return ret;
1909 if (cpu_isar_feature(aa64_sve, cpu)) {
1910 ret = kvm_arm_sve_set_vls(cpu);
1911 if (ret) {
1912 return ret;
1914 ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
1915 if (ret) {
1916 return ret;
1921 * KVM reports the exact PSCI version it is implementing via a
1922 * special sysreg. If it is present, use its contents to determine
1923 * what to report to the guest in the dtb (it is the PSCI version,
1924 * in the same 15-bits major 16-bits minor format that PSCI_VERSION
1925 * returns).
1927 if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
1928 cpu->psci_version = psciver;
1932 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
1933 * Currently KVM has its own idea about MPIDR assignment, so we
1934 * override our defaults with what we get from KVM.
1936 ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
1937 if (ret) {
1938 return ret;
1940 cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
1942 return kvm_arm_init_cpreg_list(cpu);
1945 int kvm_arch_destroy_vcpu(CPUState *cs)
1947 return 0;
1950 /* Callers must hold the iothread mutex lock */
1951 static void kvm_inject_arm_sea(CPUState *c)
1953 ARMCPU *cpu = ARM_CPU(c);
1954 CPUARMState *env = &cpu->env;
1955 uint32_t esr;
1956 bool same_el;
1958 c->exception_index = EXCP_DATA_ABORT;
1959 env->exception.target_el = 1;
1962 * Set the DFSC to synchronous external abort and set FnV to not valid,
1963 * this will tell guest the FAR_ELx is UNKNOWN for this abort.
1965 same_el = arm_current_el(env) == env->exception.target_el;
1966 esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
1968 env->exception.syndrome = esr;
1970 arm_cpu_do_interrupt(c);
1973 #define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
1974 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1976 #define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
1977 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1979 #define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
1980 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
1982 static int kvm_arch_put_fpsimd(CPUState *cs)
1984 CPUARMState *env = &ARM_CPU(cs)->env;
1985 int i, ret;
1987 for (i = 0; i < 32; i++) {
1988 uint64_t *q = aa64_vfp_qreg(env, i);
1989 #if HOST_BIG_ENDIAN
1990 uint64_t fp_val[2] = { q[1], q[0] };
1991 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
1992 fp_val);
1993 #else
1994 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
1995 #endif
1996 if (ret) {
1997 return ret;
2001 return 0;
2005 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2006 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2007 * code the slice index to zero for now as it's unlikely we'll need more than
2008 * one slice for quite some time.
2010 static int kvm_arch_put_sve(CPUState *cs)
2012 ARMCPU *cpu = ARM_CPU(cs);
2013 CPUARMState *env = &cpu->env;
2014 uint64_t tmp[ARM_MAX_VQ * 2];
2015 uint64_t *r;
2016 int n, ret;
2018 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2019 r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
2020 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2021 if (ret) {
2022 return ret;
2026 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2027 r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
2028 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2029 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2030 if (ret) {
2031 return ret;
2035 r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
2036 DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2037 ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2038 if (ret) {
2039 return ret;
2042 return 0;
2045 int kvm_arch_put_registers(CPUState *cs, int level, Error **errp)
2047 uint64_t val;
2048 uint32_t fpr;
2049 int i, ret;
2050 unsigned int el;
2052 ARMCPU *cpu = ARM_CPU(cs);
2053 CPUARMState *env = &cpu->env;
2055 /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
2056 * AArch64 registers before pushing them out to 64-bit KVM.
2058 if (!is_a64(env)) {
2059 aarch64_sync_32_to_64(env);
2062 for (i = 0; i < 31; i++) {
2063 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2064 &env->xregs[i]);
2065 if (ret) {
2066 return ret;
2070 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2071 * QEMU side we keep the current SP in xregs[31] as well.
2073 aarch64_save_sp(env, 1);
2075 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2076 if (ret) {
2077 return ret;
2080 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2081 if (ret) {
2082 return ret;
2085 /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
2086 if (is_a64(env)) {
2087 val = pstate_read(env);
2088 } else {
2089 val = cpsr_read(env);
2091 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2092 if (ret) {
2093 return ret;
2096 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2097 if (ret) {
2098 return ret;
2101 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2102 if (ret) {
2103 return ret;
2106 /* Saved Program State Registers
2108 * Before we restore from the banked_spsr[] array we need to
2109 * ensure that any modifications to env->spsr are correctly
2110 * reflected in the banks.
2112 el = arm_current_el(env);
2113 if (el > 0 && !is_a64(env)) {
2114 i = bank_number(env->uncached_cpsr & CPSR_M);
2115 env->banked_spsr[i] = env->spsr;
2118 /* KVM 0-4 map to QEMU banks 1-5 */
2119 for (i = 0; i < KVM_NR_SPSR; i++) {
2120 ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2121 &env->banked_spsr[i + 1]);
2122 if (ret) {
2123 return ret;
2127 if (cpu_isar_feature(aa64_sve, cpu)) {
2128 ret = kvm_arch_put_sve(cs);
2129 } else {
2130 ret = kvm_arch_put_fpsimd(cs);
2132 if (ret) {
2133 return ret;
2136 fpr = vfp_get_fpsr(env);
2137 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2138 if (ret) {
2139 return ret;
2142 fpr = vfp_get_fpcr(env);
2143 ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2144 if (ret) {
2145 return ret;
2148 write_cpustate_to_list(cpu, true);
2150 if (!write_list_to_kvmstate(cpu, level)) {
2151 return -EINVAL;
2155 * Setting VCPU events should be triggered after syncing the registers
2156 * to avoid overwriting potential changes made by KVM upon calling
2157 * KVM_SET_VCPU_EVENTS ioctl
2159 ret = kvm_put_vcpu_events(cpu);
2160 if (ret) {
2161 return ret;
2164 return kvm_arm_sync_mpstate_to_kvm(cpu);
2167 static int kvm_arch_get_fpsimd(CPUState *cs)
2169 CPUARMState *env = &ARM_CPU(cs)->env;
2170 int i, ret;
2172 for (i = 0; i < 32; i++) {
2173 uint64_t *q = aa64_vfp_qreg(env, i);
2174 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
2175 if (ret) {
2176 return ret;
2177 } else {
2178 #if HOST_BIG_ENDIAN
2179 uint64_t t;
2180 t = q[0], q[0] = q[1], q[1] = t;
2181 #endif
2185 return 0;
2189 * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
2190 * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
2191 * code the slice index to zero for now as it's unlikely we'll need more than
2192 * one slice for quite some time.
2194 static int kvm_arch_get_sve(CPUState *cs)
2196 ARMCPU *cpu = ARM_CPU(cs);
2197 CPUARMState *env = &cpu->env;
2198 uint64_t *r;
2199 int n, ret;
2201 for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
2202 r = &env->vfp.zregs[n].d[0];
2203 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
2204 if (ret) {
2205 return ret;
2207 sve_bswap64(r, r, cpu->sve_max_vq * 2);
2210 for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
2211 r = &env->vfp.pregs[n].p[0];
2212 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
2213 if (ret) {
2214 return ret;
2216 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2219 r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
2220 ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
2221 if (ret) {
2222 return ret;
2224 sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
2226 return 0;
2229 int kvm_arch_get_registers(CPUState *cs, Error **errp)
2231 uint64_t val;
2232 unsigned int el;
2233 uint32_t fpr;
2234 int i, ret;
2236 ARMCPU *cpu = ARM_CPU(cs);
2237 CPUARMState *env = &cpu->env;
2239 for (i = 0; i < 31; i++) {
2240 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
2241 &env->xregs[i]);
2242 if (ret) {
2243 return ret;
2247 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
2248 if (ret) {
2249 return ret;
2252 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
2253 if (ret) {
2254 return ret;
2257 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
2258 if (ret) {
2259 return ret;
2262 env->aarch64 = ((val & PSTATE_nRW) == 0);
2263 if (is_a64(env)) {
2264 pstate_write(env, val);
2265 } else {
2266 cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
2269 /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
2270 * QEMU side we keep the current SP in xregs[31] as well.
2272 aarch64_restore_sp(env, 1);
2274 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
2275 if (ret) {
2276 return ret;
2279 /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
2280 * incoming AArch64 regs received from 64-bit KVM.
2281 * We must perform this after all of the registers have been acquired from
2282 * the kernel.
2284 if (!is_a64(env)) {
2285 aarch64_sync_64_to_32(env);
2288 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
2289 if (ret) {
2290 return ret;
2293 /* Fetch the SPSR registers
2295 * KVM SPSRs 0-4 map to QEMU banks 1-5
2297 for (i = 0; i < KVM_NR_SPSR; i++) {
2298 ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
2299 &env->banked_spsr[i + 1]);
2300 if (ret) {
2301 return ret;
2305 el = arm_current_el(env);
2306 if (el > 0 && !is_a64(env)) {
2307 i = bank_number(env->uncached_cpsr & CPSR_M);
2308 env->spsr = env->banked_spsr[i];
2311 if (cpu_isar_feature(aa64_sve, cpu)) {
2312 ret = kvm_arch_get_sve(cs);
2313 } else {
2314 ret = kvm_arch_get_fpsimd(cs);
2316 if (ret) {
2317 return ret;
2320 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
2321 if (ret) {
2322 return ret;
2324 vfp_set_fpsr(env, fpr);
2326 ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
2327 if (ret) {
2328 return ret;
2330 vfp_set_fpcr(env, fpr);
2332 ret = kvm_get_vcpu_events(cpu);
2333 if (ret) {
2334 return ret;
2337 if (!write_kvmstate_to_list(cpu)) {
2338 return -EINVAL;
2340 /* Note that it's OK to have registers which aren't in CPUState,
2341 * so we can ignore a failure return here.
2343 write_list_to_cpustate(cpu);
2345 ret = kvm_arm_sync_mpstate_to_qemu(cpu);
2347 /* TODO: other registers */
2348 return ret;
2351 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
2353 ram_addr_t ram_addr;
2354 hwaddr paddr;
2356 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
2358 if (acpi_ghes_present() && addr) {
2359 ram_addr = qemu_ram_addr_from_host(addr);
2360 if (ram_addr != RAM_ADDR_INVALID &&
2361 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
2362 kvm_hwpoison_page_add(ram_addr);
2364 * If this is a BUS_MCEERR_AR, we know we have been called
2365 * synchronously from the vCPU thread, so we can easily
2366 * synchronize the state and inject an error.
2368 * TODO: we currently don't tell the guest at all about
2369 * BUS_MCEERR_AO. In that case we might either be being
2370 * called synchronously from the vCPU thread, or a bit
2371 * later from the main thread, so doing the injection of
2372 * the error would be more complicated.
2374 if (code == BUS_MCEERR_AR) {
2375 kvm_cpu_synchronize_state(c);
2376 if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
2377 kvm_inject_arm_sea(c);
2378 } else {
2379 error_report("failed to record the error");
2380 abort();
2383 return;
2385 if (code == BUS_MCEERR_AO) {
2386 error_report("Hardware memory error at addr %p for memory used by "
2387 "QEMU itself instead of guest system!", addr);
2391 if (code == BUS_MCEERR_AR) {
2392 error_report("Hardware memory error!");
2393 exit(1);
2397 /* C6.6.29 BRK instruction */
2398 static const uint32_t brk_insn = 0xd4200000;
2400 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2402 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
2403 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
2404 return -EINVAL;
2406 return 0;
2409 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2411 static uint32_t brk;
2413 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
2414 brk != brk_insn ||
2415 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
2416 return -EINVAL;
2418 return 0;