Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / target / arm / tcg / mve_helper.c
blob03ebef5ef2121dfdaa98993524838bf648e32440
1 /*
2 * M-profile MVE Operations
4 * Copyright (c) 2021 Linaro, Ltd.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "vec_internal.h"
24 #include "exec/helper-proto.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/exec-all.h"
27 #include "tcg/tcg.h"
28 #include "fpu/softfloat.h"
29 #include "crypto/clmul.h"
31 static uint16_t mve_eci_mask(CPUARMState *env)
34 * Return the mask of which elements in the MVE vector correspond
35 * to beats being executed. The mask has 1 bits for executed lanes
36 * and 0 bits where ECI says this beat was already executed.
38 int eci;
40 if ((env->condexec_bits & 0xf) != 0) {
41 return 0xffff;
44 eci = env->condexec_bits >> 4;
45 switch (eci) {
46 case ECI_NONE:
47 return 0xffff;
48 case ECI_A0:
49 return 0xfff0;
50 case ECI_A0A1:
51 return 0xff00;
52 case ECI_A0A1A2:
53 case ECI_A0A1A2B0:
54 return 0xf000;
55 default:
56 g_assert_not_reached();
60 static uint16_t mve_element_mask(CPUARMState *env)
63 * Return the mask of which elements in the MVE vector should be
64 * updated. This is a combination of multiple things:
65 * (1) by default, we update every lane in the vector
66 * (2) VPT predication stores its state in the VPR register;
67 * (3) low-overhead-branch tail predication will mask out part
68 * the vector on the final iteration of the loop
69 * (4) if EPSR.ECI is set then we must execute only some beats
70 * of the insn
71 * We combine all these into a 16-bit result with the same semantics
72 * as VPR.P0: 0 to mask the lane, 1 if it is active.
73 * 8-bit vector ops will look at all bits of the result;
74 * 16-bit ops will look at bits 0, 2, 4, ...;
75 * 32-bit ops will look at bits 0, 4, 8 and 12.
76 * Compare pseudocode GetCurInstrBeat(), though that only returns
77 * the 4-bit slice of the mask corresponding to a single beat.
79 uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
81 if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) {
82 mask |= 0xff;
84 if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) {
85 mask |= 0xff00;
88 if (env->v7m.ltpsize < 4 &&
89 env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) {
91 * Tail predication active, and this is the last loop iteration.
92 * The element size is (1 << ltpsize), and we only want to process
93 * loopcount elements, so we want to retain the least significant
94 * (loopcount * esize) predicate bits and zero out bits above that.
96 int masklen = env->regs[14] << env->v7m.ltpsize;
97 assert(masklen <= 16);
98 uint16_t ltpmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
99 mask &= ltpmask;
103 * ECI bits indicate which beats are already executed;
104 * we handle this by effectively predicating them out.
106 mask &= mve_eci_mask(env);
107 return mask;
110 static void mve_advance_vpt(CPUARMState *env)
112 /* Advance the VPT and ECI state if necessary */
113 uint32_t vpr = env->v7m.vpr;
114 unsigned mask01, mask23;
115 uint16_t inv_mask;
116 uint16_t eci_mask = mve_eci_mask(env);
118 if ((env->condexec_bits & 0xf) == 0) {
119 env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ?
120 (ECI_A0 << 4) : (ECI_NONE << 4);
123 if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) {
124 /* VPT not enabled, nothing to do */
125 return;
128 /* Invert P0 bits if needed, but only for beats we actually executed */
129 mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01);
130 mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23);
131 /* Start by assuming we invert all bits corresponding to executed beats */
132 inv_mask = eci_mask;
133 if (mask01 <= 8) {
134 /* MASK01 says don't invert low half of P0 */
135 inv_mask &= ~0xff;
137 if (mask23 <= 8) {
138 /* MASK23 says don't invert high half of P0 */
139 inv_mask &= ~0xff00;
141 vpr ^= inv_mask;
142 /* Only update MASK01 if beat 1 executed */
143 if (eci_mask & 0xf0) {
144 vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1);
146 /* Beat 3 always executes, so update MASK23 */
147 vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1);
148 env->v7m.vpr = vpr;
151 /* For loads, predicated lanes are zeroed instead of keeping their old values */
152 #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE) \
153 void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \
155 TYPE *d = vd; \
156 uint16_t mask = mve_element_mask(env); \
157 uint16_t eci_mask = mve_eci_mask(env); \
158 unsigned b, e; \
159 /* \
160 * R_SXTM allows the dest reg to become UNKNOWN for abandoned \
161 * beats so we don't care if we update part of the dest and \
162 * then take an exception. \
163 */ \
164 for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \
165 if (eci_mask & (1 << b)) { \
166 d[H##ESIZE(e)] = (mask & (1 << b)) ? \
167 cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0; \
169 addr += MSIZE; \
171 mve_advance_vpt(env); \
174 #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE) \
175 void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \
177 TYPE *d = vd; \
178 uint16_t mask = mve_element_mask(env); \
179 unsigned b, e; \
180 for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \
181 if (mask & (1 << b)) { \
182 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
184 addr += MSIZE; \
186 mve_advance_vpt(env); \
189 DO_VLDR(vldrb, 1, ldub, 1, uint8_t)
190 DO_VLDR(vldrh, 2, lduw, 2, uint16_t)
191 DO_VLDR(vldrw, 4, ldl, 4, uint32_t)
193 DO_VSTR(vstrb, 1, stb, 1, uint8_t)
194 DO_VSTR(vstrh, 2, stw, 2, uint16_t)
195 DO_VSTR(vstrw, 4, stl, 4, uint32_t)
197 DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t)
198 DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t)
199 DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t)
200 DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t)
201 DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t)
202 DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t)
204 DO_VSTR(vstrb_h, 1, stb, 2, int16_t)
205 DO_VSTR(vstrb_w, 1, stb, 4, int32_t)
206 DO_VSTR(vstrh_w, 2, stw, 4, int32_t)
208 #undef DO_VLDR
209 #undef DO_VSTR
212 * Gather loads/scatter stores. Here each element of Qm specifies
213 * an offset to use from the base register Rm. In the _os_ versions
214 * that offset is scaled by the element size.
215 * For loads, predicated lanes are zeroed instead of retaining
216 * their previous values.
218 #define DO_VLDR_SG(OP, LDTYPE, ESIZE, TYPE, OFFTYPE, ADDRFN, WB) \
219 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \
220 uint32_t base) \
222 TYPE *d = vd; \
223 OFFTYPE *m = vm; \
224 uint16_t mask = mve_element_mask(env); \
225 uint16_t eci_mask = mve_eci_mask(env); \
226 unsigned e; \
227 uint32_t addr; \
228 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
229 if (!(eci_mask & 1)) { \
230 continue; \
232 addr = ADDRFN(base, m[H##ESIZE(e)]); \
233 d[H##ESIZE(e)] = (mask & 1) ? \
234 cpu_##LDTYPE##_data_ra(env, addr, GETPC()) : 0; \
235 if (WB) { \
236 m[H##ESIZE(e)] = addr; \
239 mve_advance_vpt(env); \
242 /* We know here TYPE is unsigned so always the same as the offset type */
243 #define DO_VSTR_SG(OP, STTYPE, ESIZE, TYPE, ADDRFN, WB) \
244 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \
245 uint32_t base) \
247 TYPE *d = vd; \
248 TYPE *m = vm; \
249 uint16_t mask = mve_element_mask(env); \
250 uint16_t eci_mask = mve_eci_mask(env); \
251 unsigned e; \
252 uint32_t addr; \
253 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE, eci_mask >>= ESIZE) { \
254 if (!(eci_mask & 1)) { \
255 continue; \
257 addr = ADDRFN(base, m[H##ESIZE(e)]); \
258 if (mask & 1) { \
259 cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \
261 if (WB) { \
262 m[H##ESIZE(e)] = addr; \
265 mve_advance_vpt(env); \
269 * 64-bit accesses are slightly different: they are done as two 32-bit
270 * accesses, controlled by the predicate mask for the relevant beat,
271 * and with a single 32-bit offset in the first of the two Qm elements.
272 * Note that for QEMU our IMPDEF AIRCR.ENDIANNESS is always 0 (little).
273 * Address writeback happens on the odd beats and updates the address
274 * stored in the even-beat element.
276 #define DO_VLDR64_SG(OP, ADDRFN, WB) \
277 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \
278 uint32_t base) \
280 uint32_t *d = vd; \
281 uint32_t *m = vm; \
282 uint16_t mask = mve_element_mask(env); \
283 uint16_t eci_mask = mve_eci_mask(env); \
284 unsigned e; \
285 uint32_t addr; \
286 for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) { \
287 if (!(eci_mask & 1)) { \
288 continue; \
290 addr = ADDRFN(base, m[H4(e & ~1)]); \
291 addr += 4 * (e & 1); \
292 d[H4(e)] = (mask & 1) ? cpu_ldl_data_ra(env, addr, GETPC()) : 0; \
293 if (WB && (e & 1)) { \
294 m[H4(e & ~1)] = addr - 4; \
297 mve_advance_vpt(env); \
300 #define DO_VSTR64_SG(OP, ADDRFN, WB) \
301 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm, \
302 uint32_t base) \
304 uint32_t *d = vd; \
305 uint32_t *m = vm; \
306 uint16_t mask = mve_element_mask(env); \
307 uint16_t eci_mask = mve_eci_mask(env); \
308 unsigned e; \
309 uint32_t addr; \
310 for (e = 0; e < 16 / 4; e++, mask >>= 4, eci_mask >>= 4) { \
311 if (!(eci_mask & 1)) { \
312 continue; \
314 addr = ADDRFN(base, m[H4(e & ~1)]); \
315 addr += 4 * (e & 1); \
316 if (mask & 1) { \
317 cpu_stl_data_ra(env, addr, d[H4(e)], GETPC()); \
319 if (WB && (e & 1)) { \
320 m[H4(e & ~1)] = addr - 4; \
323 mve_advance_vpt(env); \
326 #define ADDR_ADD(BASE, OFFSET) ((BASE) + (OFFSET))
327 #define ADDR_ADD_OSH(BASE, OFFSET) ((BASE) + ((OFFSET) << 1))
328 #define ADDR_ADD_OSW(BASE, OFFSET) ((BASE) + ((OFFSET) << 2))
329 #define ADDR_ADD_OSD(BASE, OFFSET) ((BASE) + ((OFFSET) << 3))
331 DO_VLDR_SG(vldrb_sg_sh, ldsb, 2, int16_t, uint16_t, ADDR_ADD, false)
332 DO_VLDR_SG(vldrb_sg_sw, ldsb, 4, int32_t, uint32_t, ADDR_ADD, false)
333 DO_VLDR_SG(vldrh_sg_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD, false)
335 DO_VLDR_SG(vldrb_sg_ub, ldub, 1, uint8_t, uint8_t, ADDR_ADD, false)
336 DO_VLDR_SG(vldrb_sg_uh, ldub, 2, uint16_t, uint16_t, ADDR_ADD, false)
337 DO_VLDR_SG(vldrb_sg_uw, ldub, 4, uint32_t, uint32_t, ADDR_ADD, false)
338 DO_VLDR_SG(vldrh_sg_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD, false)
339 DO_VLDR_SG(vldrh_sg_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD, false)
340 DO_VLDR_SG(vldrw_sg_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, false)
341 DO_VLDR64_SG(vldrd_sg_ud, ADDR_ADD, false)
343 DO_VLDR_SG(vldrh_sg_os_sw, ldsw, 4, int32_t, uint32_t, ADDR_ADD_OSH, false)
344 DO_VLDR_SG(vldrh_sg_os_uh, lduw, 2, uint16_t, uint16_t, ADDR_ADD_OSH, false)
345 DO_VLDR_SG(vldrh_sg_os_uw, lduw, 4, uint32_t, uint32_t, ADDR_ADD_OSH, false)
346 DO_VLDR_SG(vldrw_sg_os_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD_OSW, false)
347 DO_VLDR64_SG(vldrd_sg_os_ud, ADDR_ADD_OSD, false)
349 DO_VSTR_SG(vstrb_sg_ub, stb, 1, uint8_t, ADDR_ADD, false)
350 DO_VSTR_SG(vstrb_sg_uh, stb, 2, uint16_t, ADDR_ADD, false)
351 DO_VSTR_SG(vstrb_sg_uw, stb, 4, uint32_t, ADDR_ADD, false)
352 DO_VSTR_SG(vstrh_sg_uh, stw, 2, uint16_t, ADDR_ADD, false)
353 DO_VSTR_SG(vstrh_sg_uw, stw, 4, uint32_t, ADDR_ADD, false)
354 DO_VSTR_SG(vstrw_sg_uw, stl, 4, uint32_t, ADDR_ADD, false)
355 DO_VSTR64_SG(vstrd_sg_ud, ADDR_ADD, false)
357 DO_VSTR_SG(vstrh_sg_os_uh, stw, 2, uint16_t, ADDR_ADD_OSH, false)
358 DO_VSTR_SG(vstrh_sg_os_uw, stw, 4, uint32_t, ADDR_ADD_OSH, false)
359 DO_VSTR_SG(vstrw_sg_os_uw, stl, 4, uint32_t, ADDR_ADD_OSW, false)
360 DO_VSTR64_SG(vstrd_sg_os_ud, ADDR_ADD_OSD, false)
362 DO_VLDR_SG(vldrw_sg_wb_uw, ldl, 4, uint32_t, uint32_t, ADDR_ADD, true)
363 DO_VLDR64_SG(vldrd_sg_wb_ud, ADDR_ADD, true)
364 DO_VSTR_SG(vstrw_sg_wb_uw, stl, 4, uint32_t, ADDR_ADD, true)
365 DO_VSTR64_SG(vstrd_sg_wb_ud, ADDR_ADD, true)
368 * Deinterleaving loads/interleaving stores.
370 * For these helpers we are passed the index of the first Qreg
371 * (VLD2/VST2 will also access Qn+1, VLD4/VST4 access Qn .. Qn+3)
372 * and the value of the base address register Rn.
373 * The helpers are specialized for pattern and element size, so
374 * for instance vld42h is VLD4 with pattern 2, element size MO_16.
376 * These insns are beatwise but not predicated, so we must honour ECI,
377 * but need not look at mve_element_mask().
379 * The pseudocode implements these insns with multiple memory accesses
380 * of the element size, but rules R_VVVG and R_FXDM permit us to make
381 * one 32-bit memory access per beat.
383 #define DO_VLD4B(OP, O1, O2, O3, O4) \
384 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
385 uint32_t base) \
387 int beat, e; \
388 uint16_t mask = mve_eci_mask(env); \
389 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
390 uint32_t addr, data; \
391 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
392 if ((mask & 1) == 0) { \
393 /* ECI says skip this beat */ \
394 continue; \
396 addr = base + off[beat] * 4; \
397 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \
398 for (e = 0; e < 4; e++, data >>= 8) { \
399 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
400 qd[H1(off[beat])] = data; \
405 #define DO_VLD4H(OP, O1, O2) \
406 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
407 uint32_t base) \
409 int beat; \
410 uint16_t mask = mve_eci_mask(env); \
411 static const uint8_t off[4] = { O1, O1, O2, O2 }; \
412 uint32_t addr, data; \
413 int y; /* y counts 0 2 0 2 */ \
414 uint16_t *qd; \
415 for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) { \
416 if ((mask & 1) == 0) { \
417 /* ECI says skip this beat */ \
418 continue; \
420 addr = base + off[beat] * 8 + (beat & 1) * 4; \
421 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \
422 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y); \
423 qd[H2(off[beat])] = data; \
424 data >>= 16; \
425 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1); \
426 qd[H2(off[beat])] = data; \
430 #define DO_VLD4W(OP, O1, O2, O3, O4) \
431 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
432 uint32_t base) \
434 int beat; \
435 uint16_t mask = mve_eci_mask(env); \
436 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
437 uint32_t addr, data; \
438 uint32_t *qd; \
439 int y; \
440 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
441 if ((mask & 1) == 0) { \
442 /* ECI says skip this beat */ \
443 continue; \
445 addr = base + off[beat] * 4; \
446 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \
447 y = (beat + (O1 & 2)) & 3; \
448 qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y); \
449 qd[H4(off[beat] >> 2)] = data; \
453 DO_VLD4B(vld40b, 0, 1, 10, 11)
454 DO_VLD4B(vld41b, 2, 3, 12, 13)
455 DO_VLD4B(vld42b, 4, 5, 14, 15)
456 DO_VLD4B(vld43b, 6, 7, 8, 9)
458 DO_VLD4H(vld40h, 0, 5)
459 DO_VLD4H(vld41h, 1, 6)
460 DO_VLD4H(vld42h, 2, 7)
461 DO_VLD4H(vld43h, 3, 4)
463 DO_VLD4W(vld40w, 0, 1, 10, 11)
464 DO_VLD4W(vld41w, 2, 3, 12, 13)
465 DO_VLD4W(vld42w, 4, 5, 14, 15)
466 DO_VLD4W(vld43w, 6, 7, 8, 9)
468 #define DO_VLD2B(OP, O1, O2, O3, O4) \
469 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
470 uint32_t base) \
472 int beat, e; \
473 uint16_t mask = mve_eci_mask(env); \
474 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
475 uint32_t addr, data; \
476 uint8_t *qd; \
477 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
478 if ((mask & 1) == 0) { \
479 /* ECI says skip this beat */ \
480 continue; \
482 addr = base + off[beat] * 2; \
483 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \
484 for (e = 0; e < 4; e++, data >>= 8) { \
485 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1)); \
486 qd[H1(off[beat] + (e >> 1))] = data; \
491 #define DO_VLD2H(OP, O1, O2, O3, O4) \
492 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
493 uint32_t base) \
495 int beat; \
496 uint16_t mask = mve_eci_mask(env); \
497 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
498 uint32_t addr, data; \
499 int e; \
500 uint16_t *qd; \
501 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
502 if ((mask & 1) == 0) { \
503 /* ECI says skip this beat */ \
504 continue; \
506 addr = base + off[beat] * 4; \
507 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \
508 for (e = 0; e < 2; e++, data >>= 16) { \
509 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e); \
510 qd[H2(off[beat])] = data; \
515 #define DO_VLD2W(OP, O1, O2, O3, O4) \
516 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
517 uint32_t base) \
519 int beat; \
520 uint16_t mask = mve_eci_mask(env); \
521 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
522 uint32_t addr, data; \
523 uint32_t *qd; \
524 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
525 if ((mask & 1) == 0) { \
526 /* ECI says skip this beat */ \
527 continue; \
529 addr = base + off[beat]; \
530 data = cpu_ldl_le_data_ra(env, addr, GETPC()); \
531 qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1)); \
532 qd[H4(off[beat] >> 3)] = data; \
536 DO_VLD2B(vld20b, 0, 2, 12, 14)
537 DO_VLD2B(vld21b, 4, 6, 8, 10)
539 DO_VLD2H(vld20h, 0, 1, 6, 7)
540 DO_VLD2H(vld21h, 2, 3, 4, 5)
542 DO_VLD2W(vld20w, 0, 4, 24, 28)
543 DO_VLD2W(vld21w, 8, 12, 16, 20)
545 #define DO_VST4B(OP, O1, O2, O3, O4) \
546 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
547 uint32_t base) \
549 int beat, e; \
550 uint16_t mask = mve_eci_mask(env); \
551 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
552 uint32_t addr, data; \
553 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
554 if ((mask & 1) == 0) { \
555 /* ECI says skip this beat */ \
556 continue; \
558 addr = base + off[beat] * 4; \
559 data = 0; \
560 for (e = 3; e >= 0; e--) { \
561 uint8_t *qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + e); \
562 data = (data << 8) | qd[H1(off[beat])]; \
564 cpu_stl_le_data_ra(env, addr, data, GETPC()); \
568 #define DO_VST4H(OP, O1, O2) \
569 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
570 uint32_t base) \
572 int beat; \
573 uint16_t mask = mve_eci_mask(env); \
574 static const uint8_t off[4] = { O1, O1, O2, O2 }; \
575 uint32_t addr, data; \
576 int y; /* y counts 0 2 0 2 */ \
577 uint16_t *qd; \
578 for (beat = 0, y = 0; beat < 4; beat++, mask >>= 4, y ^= 2) { \
579 if ((mask & 1) == 0) { \
580 /* ECI says skip this beat */ \
581 continue; \
583 addr = base + off[beat] * 8 + (beat & 1) * 4; \
584 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y); \
585 data = qd[H2(off[beat])]; \
586 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + y + 1); \
587 data |= qd[H2(off[beat])] << 16; \
588 cpu_stl_le_data_ra(env, addr, data, GETPC()); \
592 #define DO_VST4W(OP, O1, O2, O3, O4) \
593 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
594 uint32_t base) \
596 int beat; \
597 uint16_t mask = mve_eci_mask(env); \
598 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
599 uint32_t addr, data; \
600 uint32_t *qd; \
601 int y; \
602 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
603 if ((mask & 1) == 0) { \
604 /* ECI says skip this beat */ \
605 continue; \
607 addr = base + off[beat] * 4; \
608 y = (beat + (O1 & 2)) & 3; \
609 qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + y); \
610 data = qd[H4(off[beat] >> 2)]; \
611 cpu_stl_le_data_ra(env, addr, data, GETPC()); \
615 DO_VST4B(vst40b, 0, 1, 10, 11)
616 DO_VST4B(vst41b, 2, 3, 12, 13)
617 DO_VST4B(vst42b, 4, 5, 14, 15)
618 DO_VST4B(vst43b, 6, 7, 8, 9)
620 DO_VST4H(vst40h, 0, 5)
621 DO_VST4H(vst41h, 1, 6)
622 DO_VST4H(vst42h, 2, 7)
623 DO_VST4H(vst43h, 3, 4)
625 DO_VST4W(vst40w, 0, 1, 10, 11)
626 DO_VST4W(vst41w, 2, 3, 12, 13)
627 DO_VST4W(vst42w, 4, 5, 14, 15)
628 DO_VST4W(vst43w, 6, 7, 8, 9)
630 #define DO_VST2B(OP, O1, O2, O3, O4) \
631 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
632 uint32_t base) \
634 int beat, e; \
635 uint16_t mask = mve_eci_mask(env); \
636 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
637 uint32_t addr, data; \
638 uint8_t *qd; \
639 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
640 if ((mask & 1) == 0) { \
641 /* ECI says skip this beat */ \
642 continue; \
644 addr = base + off[beat] * 2; \
645 data = 0; \
646 for (e = 3; e >= 0; e--) { \
647 qd = (uint8_t *)aa32_vfp_qreg(env, qnidx + (e & 1)); \
648 data = (data << 8) | qd[H1(off[beat] + (e >> 1))]; \
650 cpu_stl_le_data_ra(env, addr, data, GETPC()); \
654 #define DO_VST2H(OP, O1, O2, O3, O4) \
655 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
656 uint32_t base) \
658 int beat; \
659 uint16_t mask = mve_eci_mask(env); \
660 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
661 uint32_t addr, data; \
662 int e; \
663 uint16_t *qd; \
664 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
665 if ((mask & 1) == 0) { \
666 /* ECI says skip this beat */ \
667 continue; \
669 addr = base + off[beat] * 4; \
670 data = 0; \
671 for (e = 1; e >= 0; e--) { \
672 qd = (uint16_t *)aa32_vfp_qreg(env, qnidx + e); \
673 data = (data << 16) | qd[H2(off[beat])]; \
675 cpu_stl_le_data_ra(env, addr, data, GETPC()); \
679 #define DO_VST2W(OP, O1, O2, O3, O4) \
680 void HELPER(mve_##OP)(CPUARMState *env, uint32_t qnidx, \
681 uint32_t base) \
683 int beat; \
684 uint16_t mask = mve_eci_mask(env); \
685 static const uint8_t off[4] = { O1, O2, O3, O4 }; \
686 uint32_t addr, data; \
687 uint32_t *qd; \
688 for (beat = 0; beat < 4; beat++, mask >>= 4) { \
689 if ((mask & 1) == 0) { \
690 /* ECI says skip this beat */ \
691 continue; \
693 addr = base + off[beat]; \
694 qd = (uint32_t *)aa32_vfp_qreg(env, qnidx + (beat & 1)); \
695 data = qd[H4(off[beat] >> 3)]; \
696 cpu_stl_le_data_ra(env, addr, data, GETPC()); \
700 DO_VST2B(vst20b, 0, 2, 12, 14)
701 DO_VST2B(vst21b, 4, 6, 8, 10)
703 DO_VST2H(vst20h, 0, 1, 6, 7)
704 DO_VST2H(vst21h, 2, 3, 4, 5)
706 DO_VST2W(vst20w, 0, 4, 24, 28)
707 DO_VST2W(vst21w, 8, 12, 16, 20)
710 * The mergemask(D, R, M) macro performs the operation "*D = R" but
711 * storing only the bytes which correspond to 1 bits in M,
712 * leaving other bytes in *D unchanged. We use _Generic
713 * to select the correct implementation based on the type of D.
716 static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask)
718 if (mask & 1) {
719 *d = r;
723 static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask)
725 mergemask_ub((uint8_t *)d, r, mask);
728 static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask)
730 uint16_t bmask = expand_pred_b(mask);
731 *d = (*d & ~bmask) | (r & bmask);
734 static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask)
736 mergemask_uh((uint16_t *)d, r, mask);
739 static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask)
741 uint32_t bmask = expand_pred_b(mask);
742 *d = (*d & ~bmask) | (r & bmask);
745 static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask)
747 mergemask_uw((uint32_t *)d, r, mask);
750 static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask)
752 uint64_t bmask = expand_pred_b(mask);
753 *d = (*d & ~bmask) | (r & bmask);
756 static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask)
758 mergemask_uq((uint64_t *)d, r, mask);
761 #define mergemask(D, R, M) \
762 _Generic(D, \
763 uint8_t *: mergemask_ub, \
764 int8_t *: mergemask_sb, \
765 uint16_t *: mergemask_uh, \
766 int16_t *: mergemask_sh, \
767 uint32_t *: mergemask_uw, \
768 int32_t *: mergemask_sw, \
769 uint64_t *: mergemask_uq, \
770 int64_t *: mergemask_sq)(D, R, M)
772 void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val)
775 * The generated code already replicated an 8 or 16 bit constant
776 * into the 32-bit value, so we only need to write the 32-bit
777 * value to all elements of the Qreg, allowing for predication.
779 uint32_t *d = vd;
780 uint16_t mask = mve_element_mask(env);
781 unsigned e;
782 for (e = 0; e < 16 / 4; e++, mask >>= 4) {
783 mergemask(&d[H4(e)], val, mask);
785 mve_advance_vpt(env);
788 #define DO_1OP(OP, ESIZE, TYPE, FN) \
789 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \
791 TYPE *d = vd, *m = vm; \
792 uint16_t mask = mve_element_mask(env); \
793 unsigned e; \
794 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
795 mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask); \
797 mve_advance_vpt(env); \
800 #define DO_CLS_B(N) (clrsb32(N) - 24)
801 #define DO_CLS_H(N) (clrsb32(N) - 16)
803 DO_1OP(vclsb, 1, int8_t, DO_CLS_B)
804 DO_1OP(vclsh, 2, int16_t, DO_CLS_H)
805 DO_1OP(vclsw, 4, int32_t, clrsb32)
807 #define DO_CLZ_B(N) (clz32(N) - 24)
808 #define DO_CLZ_H(N) (clz32(N) - 16)
810 DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B)
811 DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H)
812 DO_1OP(vclzw, 4, uint32_t, clz32)
814 DO_1OP(vrev16b, 2, uint16_t, bswap16)
815 DO_1OP(vrev32b, 4, uint32_t, bswap32)
816 DO_1OP(vrev32h, 4, uint32_t, hswap32)
817 DO_1OP(vrev64b, 8, uint64_t, bswap64)
818 DO_1OP(vrev64h, 8, uint64_t, hswap64)
819 DO_1OP(vrev64w, 8, uint64_t, wswap64)
821 #define DO_NOT(N) (~(N))
823 DO_1OP(vmvn, 8, uint64_t, DO_NOT)
825 #define DO_ABS(N) ((N) < 0 ? -(N) : (N))
826 #define DO_FABSH(N) ((N) & dup_const(MO_16, 0x7fff))
827 #define DO_FABSS(N) ((N) & dup_const(MO_32, 0x7fffffff))
829 DO_1OP(vabsb, 1, int8_t, DO_ABS)
830 DO_1OP(vabsh, 2, int16_t, DO_ABS)
831 DO_1OP(vabsw, 4, int32_t, DO_ABS)
833 /* We can do these 64 bits at a time */
834 DO_1OP(vfabsh, 8, uint64_t, DO_FABSH)
835 DO_1OP(vfabss, 8, uint64_t, DO_FABSS)
837 #define DO_NEG(N) (-(N))
838 #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000))
839 #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000))
841 DO_1OP(vnegb, 1, int8_t, DO_NEG)
842 DO_1OP(vnegh, 2, int16_t, DO_NEG)
843 DO_1OP(vnegw, 4, int32_t, DO_NEG)
845 /* We can do these 64 bits at a time */
846 DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH)
847 DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS)
850 * 1 operand immediates: Vda is destination and possibly also one source.
851 * All these insns work at 64-bit widths.
853 #define DO_1OP_IMM(OP, FN) \
854 void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm) \
856 uint64_t *da = vda; \
857 uint16_t mask = mve_element_mask(env); \
858 unsigned e; \
859 for (e = 0; e < 16 / 8; e++, mask >>= 8) { \
860 mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask); \
862 mve_advance_vpt(env); \
865 #define DO_MOVI(N, I) (I)
866 #define DO_ANDI(N, I) ((N) & (I))
867 #define DO_ORRI(N, I) ((N) | (I))
869 DO_1OP_IMM(vmovi, DO_MOVI)
870 DO_1OP_IMM(vandi, DO_ANDI)
871 DO_1OP_IMM(vorri, DO_ORRI)
873 #define DO_2OP(OP, ESIZE, TYPE, FN) \
874 void HELPER(glue(mve_, OP))(CPUARMState *env, \
875 void *vd, void *vn, void *vm) \
877 TYPE *d = vd, *n = vn, *m = vm; \
878 uint16_t mask = mve_element_mask(env); \
879 unsigned e; \
880 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
881 mergemask(&d[H##ESIZE(e)], \
882 FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask); \
884 mve_advance_vpt(env); \
887 /* provide unsigned 2-op helpers for all sizes */
888 #define DO_2OP_U(OP, FN) \
889 DO_2OP(OP##b, 1, uint8_t, FN) \
890 DO_2OP(OP##h, 2, uint16_t, FN) \
891 DO_2OP(OP##w, 4, uint32_t, FN)
893 /* provide signed 2-op helpers for all sizes */
894 #define DO_2OP_S(OP, FN) \
895 DO_2OP(OP##b, 1, int8_t, FN) \
896 DO_2OP(OP##h, 2, int16_t, FN) \
897 DO_2OP(OP##w, 4, int32_t, FN)
900 * "Long" operations where two half-sized inputs (taken from either the
901 * top or the bottom of the input vector) produce a double-width result.
902 * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output.
904 #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \
905 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
907 LTYPE *d = vd; \
908 TYPE *n = vn, *m = vm; \
909 uint16_t mask = mve_element_mask(env); \
910 unsigned le; \
911 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
912 LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], \
913 m[H##ESIZE(le * 2 + TOP)]); \
914 mergemask(&d[H##LESIZE(le)], r, mask); \
916 mve_advance_vpt(env); \
919 #define DO_2OP_SAT(OP, ESIZE, TYPE, FN) \
920 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
922 TYPE *d = vd, *n = vn, *m = vm; \
923 uint16_t mask = mve_element_mask(env); \
924 unsigned e; \
925 bool qc = false; \
926 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
927 bool sat = false; \
928 TYPE r_ = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat); \
929 mergemask(&d[H##ESIZE(e)], r_, mask); \
930 qc |= sat & mask & 1; \
932 if (qc) { \
933 env->vfp.qc[0] = qc; \
935 mve_advance_vpt(env); \
938 /* provide unsigned 2-op helpers for all sizes */
939 #define DO_2OP_SAT_U(OP, FN) \
940 DO_2OP_SAT(OP##b, 1, uint8_t, FN) \
941 DO_2OP_SAT(OP##h, 2, uint16_t, FN) \
942 DO_2OP_SAT(OP##w, 4, uint32_t, FN)
944 /* provide signed 2-op helpers for all sizes */
945 #define DO_2OP_SAT_S(OP, FN) \
946 DO_2OP_SAT(OP##b, 1, int8_t, FN) \
947 DO_2OP_SAT(OP##h, 2, int16_t, FN) \
948 DO_2OP_SAT(OP##w, 4, int32_t, FN)
950 #define DO_AND(N, M) ((N) & (M))
951 #define DO_BIC(N, M) ((N) & ~(M))
952 #define DO_ORR(N, M) ((N) | (M))
953 #define DO_ORN(N, M) ((N) | ~(M))
954 #define DO_EOR(N, M) ((N) ^ (M))
956 DO_2OP(vand, 8, uint64_t, DO_AND)
957 DO_2OP(vbic, 8, uint64_t, DO_BIC)
958 DO_2OP(vorr, 8, uint64_t, DO_ORR)
959 DO_2OP(vorn, 8, uint64_t, DO_ORN)
960 DO_2OP(veor, 8, uint64_t, DO_EOR)
962 #define DO_ADD(N, M) ((N) + (M))
963 #define DO_SUB(N, M) ((N) - (M))
964 #define DO_MUL(N, M) ((N) * (M))
966 DO_2OP_U(vadd, DO_ADD)
967 DO_2OP_U(vsub, DO_SUB)
968 DO_2OP_U(vmul, DO_MUL)
970 DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL)
971 DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL)
972 DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL)
973 DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL)
974 DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL)
975 DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL)
977 DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL)
978 DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL)
979 DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL)
980 DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL)
981 DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL)
982 DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL)
985 * Polynomial multiply. We can always do this generating 64 bits
986 * of the result at a time, so we don't need to use DO_2OP_L.
988 DO_2OP(vmullpbh, 8, uint64_t, clmul_8x4_even)
989 DO_2OP(vmullpth, 8, uint64_t, clmul_8x4_odd)
990 DO_2OP(vmullpbw, 8, uint64_t, clmul_16x2_even)
991 DO_2OP(vmullptw, 8, uint64_t, clmul_16x2_odd)
994 * Because the computation type is at least twice as large as required,
995 * these work for both signed and unsigned source types.
997 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
999 return (n * m) >> 8;
1002 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
1004 return (n * m) >> 16;
1007 static inline uint32_t do_mulh_w(int64_t n, int64_t m)
1009 return (n * m) >> 32;
1012 static inline uint8_t do_rmulh_b(int32_t n, int32_t m)
1014 return (n * m + (1U << 7)) >> 8;
1017 static inline uint16_t do_rmulh_h(int32_t n, int32_t m)
1019 return (n * m + (1U << 15)) >> 16;
1022 static inline uint32_t do_rmulh_w(int64_t n, int64_t m)
1024 return (n * m + (1U << 31)) >> 32;
1027 DO_2OP(vmulhsb, 1, int8_t, do_mulh_b)
1028 DO_2OP(vmulhsh, 2, int16_t, do_mulh_h)
1029 DO_2OP(vmulhsw, 4, int32_t, do_mulh_w)
1030 DO_2OP(vmulhub, 1, uint8_t, do_mulh_b)
1031 DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h)
1032 DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w)
1034 DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b)
1035 DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h)
1036 DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w)
1037 DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b)
1038 DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h)
1039 DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w)
1041 #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
1042 #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
1044 DO_2OP_S(vmaxs, DO_MAX)
1045 DO_2OP_U(vmaxu, DO_MAX)
1046 DO_2OP_S(vmins, DO_MIN)
1047 DO_2OP_U(vminu, DO_MIN)
1049 #define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N))
1051 DO_2OP_S(vabds, DO_ABD)
1052 DO_2OP_U(vabdu, DO_ABD)
1054 static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m)
1056 return ((uint64_t)n + m) >> 1;
1059 static inline int32_t do_vhadd_s(int32_t n, int32_t m)
1061 return ((int64_t)n + m) >> 1;
1064 static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m)
1066 return ((uint64_t)n - m) >> 1;
1069 static inline int32_t do_vhsub_s(int32_t n, int32_t m)
1071 return ((int64_t)n - m) >> 1;
1074 DO_2OP_S(vhadds, do_vhadd_s)
1075 DO_2OP_U(vhaddu, do_vhadd_u)
1076 DO_2OP_S(vhsubs, do_vhsub_s)
1077 DO_2OP_U(vhsubu, do_vhsub_u)
1079 #define DO_VSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1080 #define DO_VSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, false, NULL)
1081 #define DO_VRSHLS(N, M) do_sqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1082 #define DO_VRSHLU(N, M) do_uqrshl_bhs(N, (int8_t)(M), sizeof(N) * 8, true, NULL)
1084 DO_2OP_S(vshls, DO_VSHLS)
1085 DO_2OP_U(vshlu, DO_VSHLU)
1086 DO_2OP_S(vrshls, DO_VRSHLS)
1087 DO_2OP_U(vrshlu, DO_VRSHLU)
1089 #define DO_RHADD_S(N, M) (((int64_t)(N) + (M) + 1) >> 1)
1090 #define DO_RHADD_U(N, M) (((uint64_t)(N) + (M) + 1) >> 1)
1092 DO_2OP_S(vrhadds, DO_RHADD_S)
1093 DO_2OP_U(vrhaddu, DO_RHADD_U)
1095 static void do_vadc(CPUARMState *env, uint32_t *d, uint32_t *n, uint32_t *m,
1096 uint32_t inv, uint32_t carry_in, bool update_flags)
1098 uint16_t mask = mve_element_mask(env);
1099 unsigned e;
1101 /* If any additions trigger, we will update flags. */
1102 if (mask & 0x1111) {
1103 update_flags = true;
1106 for (e = 0; e < 16 / 4; e++, mask >>= 4) {
1107 uint64_t r = carry_in;
1108 r += n[H4(e)];
1109 r += m[H4(e)] ^ inv;
1110 if (mask & 1) {
1111 carry_in = r >> 32;
1113 mergemask(&d[H4(e)], r, mask);
1116 if (update_flags) {
1117 /* Store C, clear NZV. */
1118 env->vfp.fpsr &= ~FPSR_NZCV_MASK;
1119 env->vfp.fpsr |= carry_in * FPSR_C;
1121 mve_advance_vpt(env);
1124 void HELPER(mve_vadc)(CPUARMState *env, void *vd, void *vn, void *vm)
1126 bool carry_in = env->vfp.fpsr & FPSR_C;
1127 do_vadc(env, vd, vn, vm, 0, carry_in, false);
1130 void HELPER(mve_vsbc)(CPUARMState *env, void *vd, void *vn, void *vm)
1132 bool carry_in = env->vfp.fpsr & FPSR_C;
1133 do_vadc(env, vd, vn, vm, -1, carry_in, false);
1137 void HELPER(mve_vadci)(CPUARMState *env, void *vd, void *vn, void *vm)
1139 do_vadc(env, vd, vn, vm, 0, 0, true);
1142 void HELPER(mve_vsbci)(CPUARMState *env, void *vd, void *vn, void *vm)
1144 do_vadc(env, vd, vn, vm, -1, 1, true);
1147 #define DO_VCADD(OP, ESIZE, TYPE, FN0, FN1) \
1148 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \
1150 TYPE *d = vd, *n = vn, *m = vm; \
1151 uint16_t mask = mve_element_mask(env); \
1152 unsigned e; \
1153 TYPE r[16 / ESIZE]; \
1154 /* Calculate all results first to avoid overwriting inputs */ \
1155 for (e = 0; e < 16 / ESIZE; e++) { \
1156 if (!(e & 1)) { \
1157 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)]); \
1158 } else { \
1159 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)]); \
1162 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1163 mergemask(&d[H##ESIZE(e)], r[e], mask); \
1165 mve_advance_vpt(env); \
1168 #define DO_VCADD_ALL(OP, FN0, FN1) \
1169 DO_VCADD(OP##b, 1, int8_t, FN0, FN1) \
1170 DO_VCADD(OP##h, 2, int16_t, FN0, FN1) \
1171 DO_VCADD(OP##w, 4, int32_t, FN0, FN1)
1173 DO_VCADD_ALL(vcadd90, DO_SUB, DO_ADD)
1174 DO_VCADD_ALL(vcadd270, DO_ADD, DO_SUB)
1175 DO_VCADD_ALL(vhcadd90, do_vhsub_s, do_vhadd_s)
1176 DO_VCADD_ALL(vhcadd270, do_vhadd_s, do_vhsub_s)
1178 static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s)
1180 if (val > max) {
1181 *s = true;
1182 return max;
1183 } else if (val < min) {
1184 *s = true;
1185 return min;
1187 return val;
1190 #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s)
1191 #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s)
1192 #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s)
1194 #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s)
1195 #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s)
1196 #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s)
1198 #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s)
1199 #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s)
1200 #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s)
1202 #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s)
1203 #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s)
1204 #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s)
1207 * For QDMULH and QRDMULH we simplify "double and shift by esize" into
1208 * "shift by esize-1", adjusting the QRDMULH rounding constant to match.
1210 #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \
1211 INT8_MIN, INT8_MAX, s)
1212 #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \
1213 INT16_MIN, INT16_MAX, s)
1214 #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \
1215 INT32_MIN, INT32_MAX, s)
1217 #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \
1218 INT8_MIN, INT8_MAX, s)
1219 #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \
1220 INT16_MIN, INT16_MAX, s)
1221 #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \
1222 INT32_MIN, INT32_MAX, s)
1224 DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B)
1225 DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H)
1226 DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W)
1228 DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B)
1229 DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H)
1230 DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W)
1232 DO_2OP_SAT(vqaddub, 1, uint8_t, DO_UQADD_B)
1233 DO_2OP_SAT(vqadduh, 2, uint16_t, DO_UQADD_H)
1234 DO_2OP_SAT(vqadduw, 4, uint32_t, DO_UQADD_W)
1235 DO_2OP_SAT(vqaddsb, 1, int8_t, DO_SQADD_B)
1236 DO_2OP_SAT(vqaddsh, 2, int16_t, DO_SQADD_H)
1237 DO_2OP_SAT(vqaddsw, 4, int32_t, DO_SQADD_W)
1239 DO_2OP_SAT(vqsubub, 1, uint8_t, DO_UQSUB_B)
1240 DO_2OP_SAT(vqsubuh, 2, uint16_t, DO_UQSUB_H)
1241 DO_2OP_SAT(vqsubuw, 4, uint32_t, DO_UQSUB_W)
1242 DO_2OP_SAT(vqsubsb, 1, int8_t, DO_SQSUB_B)
1243 DO_2OP_SAT(vqsubsh, 2, int16_t, DO_SQSUB_H)
1244 DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W)
1247 * This wrapper fixes up the impedance mismatch between do_sqrshl_bhs()
1248 * and friends wanting a uint32_t* sat and our needing a bool*.
1250 #define WRAP_QRSHL_HELPER(FN, N, M, ROUND, satp) \
1251 ({ \
1252 uint32_t su32 = 0; \
1253 typeof(N) qrshl_ret = FN(N, (int8_t)(M), sizeof(N) * 8, ROUND, &su32); \
1254 if (su32) { \
1255 *satp = true; \
1257 qrshl_ret; \
1260 #define DO_SQSHL_OP(N, M, satp) \
1261 WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, false, satp)
1262 #define DO_UQSHL_OP(N, M, satp) \
1263 WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, false, satp)
1264 #define DO_SQRSHL_OP(N, M, satp) \
1265 WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp)
1266 #define DO_UQRSHL_OP(N, M, satp) \
1267 WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp)
1268 #define DO_SUQSHL_OP(N, M, satp) \
1269 WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp)
1271 DO_2OP_SAT_S(vqshls, DO_SQSHL_OP)
1272 DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP)
1273 DO_2OP_SAT_S(vqrshls, DO_SQRSHL_OP)
1274 DO_2OP_SAT_U(vqrshlu, DO_UQRSHL_OP)
1277 * Multiply add dual returning high half
1278 * The 'FN' here takes four inputs A, B, C, D, a 0/1 indicator of
1279 * whether to add the rounding constant, and the pointer to the
1280 * saturation flag, and should do "(A * B + C * D) * 2 + rounding constant",
1281 * saturate to twice the input size and return the high half; or
1282 * (A * B - C * D) etc for VQDMLSDH.
1284 #define DO_VQDMLADH_OP(OP, ESIZE, TYPE, XCHG, ROUND, FN) \
1285 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
1286 void *vm) \
1288 TYPE *d = vd, *n = vn, *m = vm; \
1289 uint16_t mask = mve_element_mask(env); \
1290 unsigned e; \
1291 bool qc = false; \
1292 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1293 bool sat = false; \
1294 if ((e & 1) == XCHG) { \
1295 TYPE vqdmladh_ret = FN(n[H##ESIZE(e)], \
1296 m[H##ESIZE(e - XCHG)], \
1297 n[H##ESIZE(e + (1 - 2 * XCHG))], \
1298 m[H##ESIZE(e + (1 - XCHG))], \
1299 ROUND, &sat); \
1300 mergemask(&d[H##ESIZE(e)], vqdmladh_ret, mask); \
1301 qc |= sat & mask & 1; \
1304 if (qc) { \
1305 env->vfp.qc[0] = qc; \
1307 mve_advance_vpt(env); \
1310 static int8_t do_vqdmladh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1311 int round, bool *sat)
1313 int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 7);
1314 return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1317 static int16_t do_vqdmladh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1318 int round, bool *sat)
1320 int64_t r = ((int64_t)a * b + (int64_t)c * d) * 2 + (round << 15);
1321 return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1324 static int32_t do_vqdmladh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1325 int round, bool *sat)
1327 int64_t m1 = (int64_t)a * b;
1328 int64_t m2 = (int64_t)c * d;
1329 int64_t r;
1331 * Architecturally we should do the entire add, double, round
1332 * and then check for saturation. We do three saturating adds,
1333 * but we need to be careful about the order. If the first
1334 * m1 + m2 saturates then it's impossible for the *2+rc to
1335 * bring it back into the non-saturated range. However, if
1336 * m1 + m2 is negative then it's possible that doing the doubling
1337 * would take the intermediate result below INT64_MAX and the
1338 * addition of the rounding constant then brings it back in range.
1339 * So we add half the rounding constant before doubling rather
1340 * than adding the rounding constant after the doubling.
1342 if (sadd64_overflow(m1, m2, &r) ||
1343 sadd64_overflow(r, (round << 30), &r) ||
1344 sadd64_overflow(r, r, &r)) {
1345 *sat = true;
1346 return r < 0 ? INT32_MAX : INT32_MIN;
1348 return r >> 32;
1351 static int8_t do_vqdmlsdh_b(int8_t a, int8_t b, int8_t c, int8_t d,
1352 int round, bool *sat)
1354 int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 7);
1355 return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1358 static int16_t do_vqdmlsdh_h(int16_t a, int16_t b, int16_t c, int16_t d,
1359 int round, bool *sat)
1361 int64_t r = ((int64_t)a * b - (int64_t)c * d) * 2 + (round << 15);
1362 return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1365 static int32_t do_vqdmlsdh_w(int32_t a, int32_t b, int32_t c, int32_t d,
1366 int round, bool *sat)
1368 int64_t m1 = (int64_t)a * b;
1369 int64_t m2 = (int64_t)c * d;
1370 int64_t r;
1371 /* The same ordering issue as in do_vqdmladh_w applies here too */
1372 if (ssub64_overflow(m1, m2, &r) ||
1373 sadd64_overflow(r, (round << 30), &r) ||
1374 sadd64_overflow(r, r, &r)) {
1375 *sat = true;
1376 return r < 0 ? INT32_MAX : INT32_MIN;
1378 return r >> 32;
1381 DO_VQDMLADH_OP(vqdmladhb, 1, int8_t, 0, 0, do_vqdmladh_b)
1382 DO_VQDMLADH_OP(vqdmladhh, 2, int16_t, 0, 0, do_vqdmladh_h)
1383 DO_VQDMLADH_OP(vqdmladhw, 4, int32_t, 0, 0, do_vqdmladh_w)
1384 DO_VQDMLADH_OP(vqdmladhxb, 1, int8_t, 1, 0, do_vqdmladh_b)
1385 DO_VQDMLADH_OP(vqdmladhxh, 2, int16_t, 1, 0, do_vqdmladh_h)
1386 DO_VQDMLADH_OP(vqdmladhxw, 4, int32_t, 1, 0, do_vqdmladh_w)
1388 DO_VQDMLADH_OP(vqrdmladhb, 1, int8_t, 0, 1, do_vqdmladh_b)
1389 DO_VQDMLADH_OP(vqrdmladhh, 2, int16_t, 0, 1, do_vqdmladh_h)
1390 DO_VQDMLADH_OP(vqrdmladhw, 4, int32_t, 0, 1, do_vqdmladh_w)
1391 DO_VQDMLADH_OP(vqrdmladhxb, 1, int8_t, 1, 1, do_vqdmladh_b)
1392 DO_VQDMLADH_OP(vqrdmladhxh, 2, int16_t, 1, 1, do_vqdmladh_h)
1393 DO_VQDMLADH_OP(vqrdmladhxw, 4, int32_t, 1, 1, do_vqdmladh_w)
1395 DO_VQDMLADH_OP(vqdmlsdhb, 1, int8_t, 0, 0, do_vqdmlsdh_b)
1396 DO_VQDMLADH_OP(vqdmlsdhh, 2, int16_t, 0, 0, do_vqdmlsdh_h)
1397 DO_VQDMLADH_OP(vqdmlsdhw, 4, int32_t, 0, 0, do_vqdmlsdh_w)
1398 DO_VQDMLADH_OP(vqdmlsdhxb, 1, int8_t, 1, 0, do_vqdmlsdh_b)
1399 DO_VQDMLADH_OP(vqdmlsdhxh, 2, int16_t, 1, 0, do_vqdmlsdh_h)
1400 DO_VQDMLADH_OP(vqdmlsdhxw, 4, int32_t, 1, 0, do_vqdmlsdh_w)
1402 DO_VQDMLADH_OP(vqrdmlsdhb, 1, int8_t, 0, 1, do_vqdmlsdh_b)
1403 DO_VQDMLADH_OP(vqrdmlsdhh, 2, int16_t, 0, 1, do_vqdmlsdh_h)
1404 DO_VQDMLADH_OP(vqrdmlsdhw, 4, int32_t, 0, 1, do_vqdmlsdh_w)
1405 DO_VQDMLADH_OP(vqrdmlsdhxb, 1, int8_t, 1, 1, do_vqdmlsdh_b)
1406 DO_VQDMLADH_OP(vqrdmlsdhxh, 2, int16_t, 1, 1, do_vqdmlsdh_h)
1407 DO_VQDMLADH_OP(vqrdmlsdhxw, 4, int32_t, 1, 1, do_vqdmlsdh_w)
1409 #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN) \
1410 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
1411 uint32_t rm) \
1413 TYPE *d = vd, *n = vn; \
1414 TYPE m = rm; \
1415 uint16_t mask = mve_element_mask(env); \
1416 unsigned e; \
1417 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1418 mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask); \
1420 mve_advance_vpt(env); \
1423 #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN) \
1424 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
1425 uint32_t rm) \
1427 TYPE *d = vd, *n = vn; \
1428 TYPE m = rm; \
1429 uint16_t mask = mve_element_mask(env); \
1430 unsigned e; \
1431 bool qc = false; \
1432 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1433 bool sat = false; \
1434 mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat), \
1435 mask); \
1436 qc |= sat & mask & 1; \
1438 if (qc) { \
1439 env->vfp.qc[0] = qc; \
1441 mve_advance_vpt(env); \
1444 /* "accumulating" version where FN takes d as well as n and m */
1445 #define DO_2OP_ACC_SCALAR(OP, ESIZE, TYPE, FN) \
1446 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
1447 uint32_t rm) \
1449 TYPE *d = vd, *n = vn; \
1450 TYPE m = rm; \
1451 uint16_t mask = mve_element_mask(env); \
1452 unsigned e; \
1453 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1454 mergemask(&d[H##ESIZE(e)], \
1455 FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m), mask); \
1457 mve_advance_vpt(env); \
1460 #define DO_2OP_SAT_ACC_SCALAR(OP, ESIZE, TYPE, FN) \
1461 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
1462 uint32_t rm) \
1464 TYPE *d = vd, *n = vn; \
1465 TYPE m = rm; \
1466 uint16_t mask = mve_element_mask(env); \
1467 unsigned e; \
1468 bool qc = false; \
1469 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1470 bool sat = false; \
1471 mergemask(&d[H##ESIZE(e)], \
1472 FN(d[H##ESIZE(e)], n[H##ESIZE(e)], m, &sat), \
1473 mask); \
1474 qc |= sat & mask & 1; \
1476 if (qc) { \
1477 env->vfp.qc[0] = qc; \
1479 mve_advance_vpt(env); \
1482 /* provide unsigned 2-op scalar helpers for all sizes */
1483 #define DO_2OP_SCALAR_U(OP, FN) \
1484 DO_2OP_SCALAR(OP##b, 1, uint8_t, FN) \
1485 DO_2OP_SCALAR(OP##h, 2, uint16_t, FN) \
1486 DO_2OP_SCALAR(OP##w, 4, uint32_t, FN)
1487 #define DO_2OP_SCALAR_S(OP, FN) \
1488 DO_2OP_SCALAR(OP##b, 1, int8_t, FN) \
1489 DO_2OP_SCALAR(OP##h, 2, int16_t, FN) \
1490 DO_2OP_SCALAR(OP##w, 4, int32_t, FN)
1492 #define DO_2OP_ACC_SCALAR_U(OP, FN) \
1493 DO_2OP_ACC_SCALAR(OP##b, 1, uint8_t, FN) \
1494 DO_2OP_ACC_SCALAR(OP##h, 2, uint16_t, FN) \
1495 DO_2OP_ACC_SCALAR(OP##w, 4, uint32_t, FN)
1497 DO_2OP_SCALAR_U(vadd_scalar, DO_ADD)
1498 DO_2OP_SCALAR_U(vsub_scalar, DO_SUB)
1499 DO_2OP_SCALAR_U(vmul_scalar, DO_MUL)
1500 DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s)
1501 DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u)
1502 DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s)
1503 DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u)
1505 DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B)
1506 DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H)
1507 DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W)
1508 DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B)
1509 DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H)
1510 DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W)
1512 DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B)
1513 DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H)
1514 DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W)
1515 DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B)
1516 DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H)
1517 DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W)
1519 DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B)
1520 DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H)
1521 DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W)
1522 DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B)
1523 DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H)
1524 DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W)
1526 static int8_t do_vqdmlah_b(int8_t a, int8_t b, int8_t c, int round, bool *sat)
1528 int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 8) + (round << 7);
1529 return do_sat_bhw(r, INT16_MIN, INT16_MAX, sat) >> 8;
1532 static int16_t do_vqdmlah_h(int16_t a, int16_t b, int16_t c,
1533 int round, bool *sat)
1535 int64_t r = (int64_t)a * b * 2 + ((int64_t)c << 16) + (round << 15);
1536 return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat) >> 16;
1539 static int32_t do_vqdmlah_w(int32_t a, int32_t b, int32_t c,
1540 int round, bool *sat)
1543 * Architecturally we should do the entire add, double, round
1544 * and then check for saturation. We do three saturating adds,
1545 * but we need to be careful about the order. If the first
1546 * m1 + m2 saturates then it's impossible for the *2+rc to
1547 * bring it back into the non-saturated range. However, if
1548 * m1 + m2 is negative then it's possible that doing the doubling
1549 * would take the intermediate result below INT64_MAX and the
1550 * addition of the rounding constant then brings it back in range.
1551 * So we add half the rounding constant and half the "c << esize"
1552 * before doubling rather than adding the rounding constant after
1553 * the doubling.
1555 int64_t m1 = (int64_t)a * b;
1556 int64_t m2 = (int64_t)c << 31;
1557 int64_t r;
1558 if (sadd64_overflow(m1, m2, &r) ||
1559 sadd64_overflow(r, (round << 30), &r) ||
1560 sadd64_overflow(r, r, &r)) {
1561 *sat = true;
1562 return r < 0 ? INT32_MAX : INT32_MIN;
1564 return r >> 32;
1568 * The *MLAH insns are vector * scalar + vector;
1569 * the *MLASH insns are vector * vector + scalar
1571 #define DO_VQDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 0, S)
1572 #define DO_VQDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 0, S)
1573 #define DO_VQDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 0, S)
1574 #define DO_VQRDMLAH_B(D, N, M, S) do_vqdmlah_b(N, M, D, 1, S)
1575 #define DO_VQRDMLAH_H(D, N, M, S) do_vqdmlah_h(N, M, D, 1, S)
1576 #define DO_VQRDMLAH_W(D, N, M, S) do_vqdmlah_w(N, M, D, 1, S)
1578 #define DO_VQDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 0, S)
1579 #define DO_VQDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 0, S)
1580 #define DO_VQDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 0, S)
1581 #define DO_VQRDMLASH_B(D, N, M, S) do_vqdmlah_b(N, D, M, 1, S)
1582 #define DO_VQRDMLASH_H(D, N, M, S) do_vqdmlah_h(N, D, M, 1, S)
1583 #define DO_VQRDMLASH_W(D, N, M, S) do_vqdmlah_w(N, D, M, 1, S)
1585 DO_2OP_SAT_ACC_SCALAR(vqdmlahb, 1, int8_t, DO_VQDMLAH_B)
1586 DO_2OP_SAT_ACC_SCALAR(vqdmlahh, 2, int16_t, DO_VQDMLAH_H)
1587 DO_2OP_SAT_ACC_SCALAR(vqdmlahw, 4, int32_t, DO_VQDMLAH_W)
1588 DO_2OP_SAT_ACC_SCALAR(vqrdmlahb, 1, int8_t, DO_VQRDMLAH_B)
1589 DO_2OP_SAT_ACC_SCALAR(vqrdmlahh, 2, int16_t, DO_VQRDMLAH_H)
1590 DO_2OP_SAT_ACC_SCALAR(vqrdmlahw, 4, int32_t, DO_VQRDMLAH_W)
1592 DO_2OP_SAT_ACC_SCALAR(vqdmlashb, 1, int8_t, DO_VQDMLASH_B)
1593 DO_2OP_SAT_ACC_SCALAR(vqdmlashh, 2, int16_t, DO_VQDMLASH_H)
1594 DO_2OP_SAT_ACC_SCALAR(vqdmlashw, 4, int32_t, DO_VQDMLASH_W)
1595 DO_2OP_SAT_ACC_SCALAR(vqrdmlashb, 1, int8_t, DO_VQRDMLASH_B)
1596 DO_2OP_SAT_ACC_SCALAR(vqrdmlashh, 2, int16_t, DO_VQRDMLASH_H)
1597 DO_2OP_SAT_ACC_SCALAR(vqrdmlashw, 4, int32_t, DO_VQRDMLASH_W)
1599 /* Vector by scalar plus vector */
1600 #define DO_VMLA(D, N, M) ((N) * (M) + (D))
1602 DO_2OP_ACC_SCALAR_U(vmla, DO_VMLA)
1604 /* Vector by vector plus scalar */
1605 #define DO_VMLAS(D, N, M) ((N) * (D) + (M))
1607 DO_2OP_ACC_SCALAR_U(vmlas, DO_VMLAS)
1610 * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the
1611 * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type.
1612 * SATMASK specifies which bits of the predicate mask matter for determining
1613 * whether to propagate a saturation indication into FPSCR.QC -- for
1614 * the 16x16->32 case we must check only the bit corresponding to the T or B
1615 * half that we used, but for the 32x32->64 case we propagate if the mask
1616 * bit is set for either half.
1618 #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
1619 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
1620 uint32_t rm) \
1622 LTYPE *d = vd; \
1623 TYPE *n = vn; \
1624 TYPE m = rm; \
1625 uint16_t mask = mve_element_mask(env); \
1626 unsigned le; \
1627 bool qc = false; \
1628 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
1629 bool sat = false; \
1630 LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat); \
1631 mergemask(&d[H##LESIZE(le)], r, mask); \
1632 qc |= sat && (mask & SATMASK); \
1634 if (qc) { \
1635 env->vfp.qc[0] = qc; \
1637 mve_advance_vpt(env); \
1640 static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat)
1642 int64_t r = ((int64_t)n * m) * 2;
1643 return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat);
1646 static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat)
1648 /* The multiply can't overflow, but the doubling might */
1649 int64_t r = (int64_t)n * m;
1650 if (r > INT64_MAX / 2) {
1651 *sat = true;
1652 return INT64_MAX;
1653 } else if (r < INT64_MIN / 2) {
1654 *sat = true;
1655 return INT64_MIN;
1656 } else {
1657 return r * 2;
1661 #define SATMASK16B 1
1662 #define SATMASK16T (1 << 2)
1663 #define SATMASK32 ((1 << 4) | 1)
1665 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \
1666 do_qdmullh, SATMASK16B)
1667 DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \
1668 do_qdmullw, SATMASK32)
1669 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \
1670 do_qdmullh, SATMASK16T)
1671 DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \
1672 do_qdmullw, SATMASK32)
1675 * Long saturating ops
1677 #define DO_2OP_SAT_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \
1678 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \
1679 void *vm) \
1681 LTYPE *d = vd; \
1682 TYPE *n = vn, *m = vm; \
1683 uint16_t mask = mve_element_mask(env); \
1684 unsigned le; \
1685 bool qc = false; \
1686 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
1687 bool sat = false; \
1688 LTYPE op1 = n[H##ESIZE(le * 2 + TOP)]; \
1689 LTYPE op2 = m[H##ESIZE(le * 2 + TOP)]; \
1690 mergemask(&d[H##LESIZE(le)], FN(op1, op2, &sat), mask); \
1691 qc |= sat && (mask & SATMASK); \
1693 if (qc) { \
1694 env->vfp.qc[0] = qc; \
1696 mve_advance_vpt(env); \
1699 DO_2OP_SAT_L(vqdmullbh, 0, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16B)
1700 DO_2OP_SAT_L(vqdmullbw, 0, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1701 DO_2OP_SAT_L(vqdmullth, 1, 2, int16_t, 4, int32_t, do_qdmullh, SATMASK16T)
1702 DO_2OP_SAT_L(vqdmulltw, 1, 4, int32_t, 8, int64_t, do_qdmullw, SATMASK32)
1704 static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m)
1706 m &= 0xff;
1707 if (m == 0) {
1708 return 0;
1710 n = revbit8(n);
1711 if (m < 8) {
1712 n >>= 8 - m;
1714 return n;
1717 static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m)
1719 m &= 0xff;
1720 if (m == 0) {
1721 return 0;
1723 n = revbit16(n);
1724 if (m < 16) {
1725 n >>= 16 - m;
1727 return n;
1730 static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m)
1732 m &= 0xff;
1733 if (m == 0) {
1734 return 0;
1736 n = revbit32(n);
1737 if (m < 32) {
1738 n >>= 32 - m;
1740 return n;
1743 DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb)
1744 DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh)
1745 DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw)
1748 * Multiply add long dual accumulate ops.
1750 #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
1751 uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1752 void *vm, uint64_t a) \
1754 uint16_t mask = mve_element_mask(env); \
1755 unsigned e; \
1756 TYPE *n = vn, *m = vm; \
1757 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1758 if (mask & 1) { \
1759 if (e & 1) { \
1760 a ODDACC \
1761 (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1762 } else { \
1763 a EVENACC \
1764 (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1768 mve_advance_vpt(env); \
1769 return a; \
1772 DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=)
1773 DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=)
1774 DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=)
1775 DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=)
1777 DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=)
1778 DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=)
1780 DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=)
1781 DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=)
1782 DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=)
1783 DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=)
1786 * Multiply add dual accumulate ops
1788 #define DO_DAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \
1789 uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1790 void *vm, uint32_t a) \
1792 uint16_t mask = mve_element_mask(env); \
1793 unsigned e; \
1794 TYPE *n = vn, *m = vm; \
1795 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1796 if (mask & 1) { \
1797 if (e & 1) { \
1798 a ODDACC \
1799 n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \
1800 } else { \
1801 a EVENACC \
1802 n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \
1806 mve_advance_vpt(env); \
1807 return a; \
1810 #define DO_DAV_S(INSN, XCHG, EVENACC, ODDACC) \
1811 DO_DAV(INSN##b, 1, int8_t, XCHG, EVENACC, ODDACC) \
1812 DO_DAV(INSN##h, 2, int16_t, XCHG, EVENACC, ODDACC) \
1813 DO_DAV(INSN##w, 4, int32_t, XCHG, EVENACC, ODDACC)
1815 #define DO_DAV_U(INSN, XCHG, EVENACC, ODDACC) \
1816 DO_DAV(INSN##b, 1, uint8_t, XCHG, EVENACC, ODDACC) \
1817 DO_DAV(INSN##h, 2, uint16_t, XCHG, EVENACC, ODDACC) \
1818 DO_DAV(INSN##w, 4, uint32_t, XCHG, EVENACC, ODDACC)
1820 DO_DAV_S(vmladavs, false, +=, +=)
1821 DO_DAV_U(vmladavu, false, +=, +=)
1822 DO_DAV_S(vmlsdav, false, +=, -=)
1823 DO_DAV_S(vmladavsx, true, +=, +=)
1824 DO_DAV_S(vmlsdavx, true, +=, -=)
1827 * Rounding multiply add long dual accumulate high. In the pseudocode
1828 * this is implemented with a 72-bit internal accumulator value of which
1829 * the top 64 bits are returned. We optimize this to avoid having to
1830 * use 128-bit arithmetic -- we can do this because the 74-bit accumulator
1831 * is squashed back into 64-bits after each beat.
1833 #define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB) \
1834 uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1835 void *vm, uint64_t a) \
1837 uint16_t mask = mve_element_mask(env); \
1838 unsigned e; \
1839 TYPE *n = vn, *m = vm; \
1840 for (e = 0; e < 16 / 4; e++, mask >>= 4) { \
1841 if (mask & 1) { \
1842 LTYPE mul; \
1843 if (e & 1) { \
1844 mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)]; \
1845 if (SUB) { \
1846 mul = -mul; \
1848 } else { \
1849 mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)]; \
1851 mul = (mul >> 8) + ((mul >> 7) & 1); \
1852 a += mul; \
1855 mve_advance_vpt(env); \
1856 return a; \
1859 DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false)
1860 DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false)
1862 DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false)
1864 DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true)
1865 DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true)
1867 /* Vector add across vector */
1868 #define DO_VADDV(OP, ESIZE, TYPE) \
1869 uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1870 uint32_t ra) \
1872 uint16_t mask = mve_element_mask(env); \
1873 unsigned e; \
1874 TYPE *m = vm; \
1875 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1876 if (mask & 1) { \
1877 ra += m[H##ESIZE(e)]; \
1880 mve_advance_vpt(env); \
1881 return ra; \
1884 DO_VADDV(vaddvsb, 1, int8_t)
1885 DO_VADDV(vaddvsh, 2, int16_t)
1886 DO_VADDV(vaddvsw, 4, int32_t)
1887 DO_VADDV(vaddvub, 1, uint8_t)
1888 DO_VADDV(vaddvuh, 2, uint16_t)
1889 DO_VADDV(vaddvuw, 4, uint32_t)
1892 * Vector max/min across vector. Unlike VADDV, we must
1893 * read ra as the element size, not its full width.
1894 * We work with int64_t internally for simplicity.
1896 #define DO_VMAXMINV(OP, ESIZE, TYPE, RATYPE, FN) \
1897 uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1898 uint32_t ra_in) \
1900 uint16_t mask = mve_element_mask(env); \
1901 unsigned e; \
1902 TYPE *m = vm; \
1903 int64_t ra = (RATYPE)ra_in; \
1904 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1905 if (mask & 1) { \
1906 ra = FN(ra, m[H##ESIZE(e)]); \
1909 mve_advance_vpt(env); \
1910 return ra; \
1913 #define DO_VMAXMINV_U(INSN, FN) \
1914 DO_VMAXMINV(INSN##b, 1, uint8_t, uint8_t, FN) \
1915 DO_VMAXMINV(INSN##h, 2, uint16_t, uint16_t, FN) \
1916 DO_VMAXMINV(INSN##w, 4, uint32_t, uint32_t, FN)
1917 #define DO_VMAXMINV_S(INSN, FN) \
1918 DO_VMAXMINV(INSN##b, 1, int8_t, int8_t, FN) \
1919 DO_VMAXMINV(INSN##h, 2, int16_t, int16_t, FN) \
1920 DO_VMAXMINV(INSN##w, 4, int32_t, int32_t, FN)
1923 * Helpers for max and min of absolute values across vector:
1924 * note that we only take the absolute value of 'm', not 'n'
1926 static int64_t do_maxa(int64_t n, int64_t m)
1928 if (m < 0) {
1929 m = -m;
1931 return MAX(n, m);
1934 static int64_t do_mina(int64_t n, int64_t m)
1936 if (m < 0) {
1937 m = -m;
1939 return MIN(n, m);
1942 DO_VMAXMINV_S(vmaxvs, DO_MAX)
1943 DO_VMAXMINV_U(vmaxvu, DO_MAX)
1944 DO_VMAXMINV_S(vminvs, DO_MIN)
1945 DO_VMAXMINV_U(vminvu, DO_MIN)
1947 * VMAXAV, VMINAV treat the general purpose input as unsigned
1948 * and the vector elements as signed.
1950 DO_VMAXMINV(vmaxavb, 1, int8_t, uint8_t, do_maxa)
1951 DO_VMAXMINV(vmaxavh, 2, int16_t, uint16_t, do_maxa)
1952 DO_VMAXMINV(vmaxavw, 4, int32_t, uint32_t, do_maxa)
1953 DO_VMAXMINV(vminavb, 1, int8_t, uint8_t, do_mina)
1954 DO_VMAXMINV(vminavh, 2, int16_t, uint16_t, do_mina)
1955 DO_VMAXMINV(vminavw, 4, int32_t, uint32_t, do_mina)
1957 #define DO_VABAV(OP, ESIZE, TYPE) \
1958 uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
1959 void *vm, uint32_t ra) \
1961 uint16_t mask = mve_element_mask(env); \
1962 unsigned e; \
1963 TYPE *m = vm, *n = vn; \
1964 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
1965 if (mask & 1) { \
1966 int64_t n0 = n[H##ESIZE(e)]; \
1967 int64_t m0 = m[H##ESIZE(e)]; \
1968 uint32_t r = n0 >= m0 ? (n0 - m0) : (m0 - n0); \
1969 ra += r; \
1972 mve_advance_vpt(env); \
1973 return ra; \
1976 DO_VABAV(vabavsb, 1, int8_t)
1977 DO_VABAV(vabavsh, 2, int16_t)
1978 DO_VABAV(vabavsw, 4, int32_t)
1979 DO_VABAV(vabavub, 1, uint8_t)
1980 DO_VABAV(vabavuh, 2, uint16_t)
1981 DO_VABAV(vabavuw, 4, uint32_t)
1983 #define DO_VADDLV(OP, TYPE, LTYPE) \
1984 uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
1985 uint64_t ra) \
1987 uint16_t mask = mve_element_mask(env); \
1988 unsigned e; \
1989 TYPE *m = vm; \
1990 for (e = 0; e < 16 / 4; e++, mask >>= 4) { \
1991 if (mask & 1) { \
1992 ra += (LTYPE)m[H4(e)]; \
1995 mve_advance_vpt(env); \
1996 return ra; \
1999 DO_VADDLV(vaddlv_s, int32_t, int64_t)
2000 DO_VADDLV(vaddlv_u, uint32_t, uint64_t)
2002 /* Shifts by immediate */
2003 #define DO_2SHIFT(OP, ESIZE, TYPE, FN) \
2004 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
2005 void *vm, uint32_t shift) \
2007 TYPE *d = vd, *m = vm; \
2008 uint16_t mask = mve_element_mask(env); \
2009 unsigned e; \
2010 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2011 mergemask(&d[H##ESIZE(e)], \
2012 FN(m[H##ESIZE(e)], shift), mask); \
2014 mve_advance_vpt(env); \
2017 #define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN) \
2018 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
2019 void *vm, uint32_t shift) \
2021 TYPE *d = vd, *m = vm; \
2022 uint16_t mask = mve_element_mask(env); \
2023 unsigned e; \
2024 bool qc = false; \
2025 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2026 bool sat = false; \
2027 mergemask(&d[H##ESIZE(e)], \
2028 FN(m[H##ESIZE(e)], shift, &sat), mask); \
2029 qc |= sat & mask & 1; \
2031 if (qc) { \
2032 env->vfp.qc[0] = qc; \
2034 mve_advance_vpt(env); \
2037 /* provide unsigned 2-op shift helpers for all sizes */
2038 #define DO_2SHIFT_U(OP, FN) \
2039 DO_2SHIFT(OP##b, 1, uint8_t, FN) \
2040 DO_2SHIFT(OP##h, 2, uint16_t, FN) \
2041 DO_2SHIFT(OP##w, 4, uint32_t, FN)
2042 #define DO_2SHIFT_S(OP, FN) \
2043 DO_2SHIFT(OP##b, 1, int8_t, FN) \
2044 DO_2SHIFT(OP##h, 2, int16_t, FN) \
2045 DO_2SHIFT(OP##w, 4, int32_t, FN)
2047 #define DO_2SHIFT_SAT_U(OP, FN) \
2048 DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN) \
2049 DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN) \
2050 DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN)
2051 #define DO_2SHIFT_SAT_S(OP, FN) \
2052 DO_2SHIFT_SAT(OP##b, 1, int8_t, FN) \
2053 DO_2SHIFT_SAT(OP##h, 2, int16_t, FN) \
2054 DO_2SHIFT_SAT(OP##w, 4, int32_t, FN)
2056 DO_2SHIFT_U(vshli_u, DO_VSHLU)
2057 DO_2SHIFT_S(vshli_s, DO_VSHLS)
2058 DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP)
2059 DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP)
2060 DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP)
2061 DO_2SHIFT_U(vrshli_u, DO_VRSHLU)
2062 DO_2SHIFT_S(vrshli_s, DO_VRSHLS)
2063 DO_2SHIFT_SAT_U(vqrshli_u, DO_UQRSHL_OP)
2064 DO_2SHIFT_SAT_S(vqrshli_s, DO_SQRSHL_OP)
2066 /* Shift-and-insert; we always work with 64 bits at a time */
2067 #define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN) \
2068 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
2069 void *vm, uint32_t shift) \
2071 uint64_t *d = vd, *m = vm; \
2072 uint16_t mask; \
2073 uint64_t shiftmask; \
2074 unsigned e; \
2075 if (shift == ESIZE * 8) { \
2076 /* \
2077 * Only VSRI can shift by <dt>; it should mean "don't \
2078 * update the destination". The generic logic can't handle \
2079 * this because it would try to shift by an out-of-range \
2080 * amount, so special case it here. \
2081 */ \
2082 goto done; \
2084 assert(shift < ESIZE * 8); \
2085 mask = mve_element_mask(env); \
2086 /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */ \
2087 shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift)); \
2088 for (e = 0; e < 16 / 8; e++, mask >>= 8) { \
2089 uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) | \
2090 (d[H8(e)] & ~shiftmask); \
2091 mergemask(&d[H8(e)], r, mask); \
2093 done: \
2094 mve_advance_vpt(env); \
2097 #define DO_SHL(N, SHIFT) ((N) << (SHIFT))
2098 #define DO_SHR(N, SHIFT) ((N) >> (SHIFT))
2099 #define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT))
2100 #define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT))
2102 DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK)
2103 DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK)
2104 DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK)
2105 DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK)
2106 DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK)
2107 DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK)
2110 * Long shifts taking half-sized inputs from top or bottom of the input
2111 * vector and producing a double-width result. ESIZE, TYPE are for
2112 * the input, and LESIZE, LTYPE for the output.
2113 * Unlike the normal shift helpers, we do not handle negative shift counts,
2114 * because the long shift is strictly left-only.
2116 #define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE) \
2117 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
2118 void *vm, uint32_t shift) \
2120 LTYPE *d = vd; \
2121 TYPE *m = vm; \
2122 uint16_t mask = mve_element_mask(env); \
2123 unsigned le; \
2124 assert(shift <= 16); \
2125 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2126 LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift; \
2127 mergemask(&d[H##LESIZE(le)], r, mask); \
2129 mve_advance_vpt(env); \
2132 #define DO_VSHLL_ALL(OP, TOP) \
2133 DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t) \
2134 DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t) \
2135 DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t) \
2136 DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t) \
2138 DO_VSHLL_ALL(vshllb, false)
2139 DO_VSHLL_ALL(vshllt, true)
2142 * Narrowing right shifts, taking a double sized input, shifting it
2143 * and putting the result in either the top or bottom half of the output.
2144 * ESIZE, TYPE are the output, and LESIZE, LTYPE the input.
2146 #define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \
2147 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
2148 void *vm, uint32_t shift) \
2150 LTYPE *m = vm; \
2151 TYPE *d = vd; \
2152 uint16_t mask = mve_element_mask(env); \
2153 unsigned le; \
2154 mask >>= ESIZE * TOP; \
2155 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2156 TYPE r = FN(m[H##LESIZE(le)], shift); \
2157 mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask); \
2159 mve_advance_vpt(env); \
2162 #define DO_VSHRN_ALL(OP, FN) \
2163 DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN) \
2164 DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN) \
2165 DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN) \
2166 DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN)
2168 static inline uint64_t do_urshr(uint64_t x, unsigned sh)
2170 if (likely(sh < 64)) {
2171 return (x >> sh) + ((x >> (sh - 1)) & 1);
2172 } else if (sh == 64) {
2173 return x >> 63;
2174 } else {
2175 return 0;
2179 static inline int64_t do_srshr(int64_t x, unsigned sh)
2181 if (likely(sh < 64)) {
2182 return (x >> sh) + ((x >> (sh - 1)) & 1);
2183 } else {
2184 /* Rounding the sign bit always produces 0. */
2185 return 0;
2189 DO_VSHRN_ALL(vshrn, DO_SHR)
2190 DO_VSHRN_ALL(vrshrn, do_urshr)
2192 static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max,
2193 bool *satp)
2195 if (val > max) {
2196 *satp = true;
2197 return max;
2198 } else if (val < min) {
2199 *satp = true;
2200 return min;
2201 } else {
2202 return val;
2206 /* Saturating narrowing right shifts */
2207 #define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \
2208 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \
2209 void *vm, uint32_t shift) \
2211 LTYPE *m = vm; \
2212 TYPE *d = vd; \
2213 uint16_t mask = mve_element_mask(env); \
2214 bool qc = false; \
2215 unsigned le; \
2216 mask >>= ESIZE * TOP; \
2217 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2218 bool sat = false; \
2219 TYPE r = FN(m[H##LESIZE(le)], shift, &sat); \
2220 mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask); \
2221 qc |= sat & mask & 1; \
2223 if (qc) { \
2224 env->vfp.qc[0] = qc; \
2226 mve_advance_vpt(env); \
2229 #define DO_VSHRN_SAT_UB(BOP, TOP, FN) \
2230 DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN) \
2231 DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2233 #define DO_VSHRN_SAT_UH(BOP, TOP, FN) \
2234 DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN) \
2235 DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2237 #define DO_VSHRN_SAT_SB(BOP, TOP, FN) \
2238 DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN) \
2239 DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2241 #define DO_VSHRN_SAT_SH(BOP, TOP, FN) \
2242 DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN) \
2243 DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2245 #define DO_SHRN_SB(N, M, SATP) \
2246 do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP)
2247 #define DO_SHRN_UB(N, M, SATP) \
2248 do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2249 #define DO_SHRUN_B(N, M, SATP) \
2250 do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP)
2252 #define DO_SHRN_SH(N, M, SATP) \
2253 do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP)
2254 #define DO_SHRN_UH(N, M, SATP) \
2255 do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2256 #define DO_SHRUN_H(N, M, SATP) \
2257 do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP)
2259 #define DO_RSHRN_SB(N, M, SATP) \
2260 do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP)
2261 #define DO_RSHRN_UB(N, M, SATP) \
2262 do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP)
2263 #define DO_RSHRUN_B(N, M, SATP) \
2264 do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP)
2266 #define DO_RSHRN_SH(N, M, SATP) \
2267 do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP)
2268 #define DO_RSHRN_UH(N, M, SATP) \
2269 do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP)
2270 #define DO_RSHRUN_H(N, M, SATP) \
2271 do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP)
2273 DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB)
2274 DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH)
2275 DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB)
2276 DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH)
2277 DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B)
2278 DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H)
2280 DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB)
2281 DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH)
2282 DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB)
2283 DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH)
2284 DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B)
2285 DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H)
2287 #define DO_VMOVN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE) \
2288 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \
2290 LTYPE *m = vm; \
2291 TYPE *d = vd; \
2292 uint16_t mask = mve_element_mask(env); \
2293 unsigned le; \
2294 mask >>= ESIZE * TOP; \
2295 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2296 mergemask(&d[H##ESIZE(le * 2 + TOP)], \
2297 m[H##LESIZE(le)], mask); \
2299 mve_advance_vpt(env); \
2302 DO_VMOVN(vmovnbb, false, 1, uint8_t, 2, uint16_t)
2303 DO_VMOVN(vmovnbh, false, 2, uint16_t, 4, uint32_t)
2304 DO_VMOVN(vmovntb, true, 1, uint8_t, 2, uint16_t)
2305 DO_VMOVN(vmovnth, true, 2, uint16_t, 4, uint32_t)
2307 #define DO_VMOVN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \
2308 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \
2310 LTYPE *m = vm; \
2311 TYPE *d = vd; \
2312 uint16_t mask = mve_element_mask(env); \
2313 bool qc = false; \
2314 unsigned le; \
2315 mask >>= ESIZE * TOP; \
2316 for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \
2317 bool sat = false; \
2318 TYPE r = FN(m[H##LESIZE(le)], &sat); \
2319 mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask); \
2320 qc |= sat & mask & 1; \
2322 if (qc) { \
2323 env->vfp.qc[0] = qc; \
2325 mve_advance_vpt(env); \
2328 #define DO_VMOVN_SAT_UB(BOP, TOP, FN) \
2329 DO_VMOVN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN) \
2330 DO_VMOVN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN)
2332 #define DO_VMOVN_SAT_UH(BOP, TOP, FN) \
2333 DO_VMOVN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN) \
2334 DO_VMOVN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN)
2336 #define DO_VMOVN_SAT_SB(BOP, TOP, FN) \
2337 DO_VMOVN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN) \
2338 DO_VMOVN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN)
2340 #define DO_VMOVN_SAT_SH(BOP, TOP, FN) \
2341 DO_VMOVN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN) \
2342 DO_VMOVN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN)
2344 #define DO_VQMOVN_SB(N, SATP) \
2345 do_sat_bhs((int64_t)(N), INT8_MIN, INT8_MAX, SATP)
2346 #define DO_VQMOVN_UB(N, SATP) \
2347 do_sat_bhs((uint64_t)(N), 0, UINT8_MAX, SATP)
2348 #define DO_VQMOVUN_B(N, SATP) \
2349 do_sat_bhs((int64_t)(N), 0, UINT8_MAX, SATP)
2351 #define DO_VQMOVN_SH(N, SATP) \
2352 do_sat_bhs((int64_t)(N), INT16_MIN, INT16_MAX, SATP)
2353 #define DO_VQMOVN_UH(N, SATP) \
2354 do_sat_bhs((uint64_t)(N), 0, UINT16_MAX, SATP)
2355 #define DO_VQMOVUN_H(N, SATP) \
2356 do_sat_bhs((int64_t)(N), 0, UINT16_MAX, SATP)
2358 DO_VMOVN_SAT_SB(vqmovnbsb, vqmovntsb, DO_VQMOVN_SB)
2359 DO_VMOVN_SAT_SH(vqmovnbsh, vqmovntsh, DO_VQMOVN_SH)
2360 DO_VMOVN_SAT_UB(vqmovnbub, vqmovntub, DO_VQMOVN_UB)
2361 DO_VMOVN_SAT_UH(vqmovnbuh, vqmovntuh, DO_VQMOVN_UH)
2362 DO_VMOVN_SAT_SB(vqmovunbb, vqmovuntb, DO_VQMOVUN_B)
2363 DO_VMOVN_SAT_SH(vqmovunbh, vqmovunth, DO_VQMOVUN_H)
2365 uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm,
2366 uint32_t shift)
2368 uint32_t *d = vd;
2369 uint16_t mask = mve_element_mask(env);
2370 unsigned e;
2371 uint32_t r;
2374 * For each 32-bit element, we shift it left, bringing in the
2375 * low 'shift' bits of rdm at the bottom. Bits shifted out at
2376 * the top become the new rdm, if the predicate mask permits.
2377 * The final rdm value is returned to update the register.
2378 * shift == 0 here means "shift by 32 bits".
2380 if (shift == 0) {
2381 for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2382 r = rdm;
2383 if (mask & 1) {
2384 rdm = d[H4(e)];
2386 mergemask(&d[H4(e)], r, mask);
2388 } else {
2389 uint32_t shiftmask = MAKE_64BIT_MASK(0, shift);
2391 for (e = 0; e < 16 / 4; e++, mask >>= 4) {
2392 r = (d[H4(e)] << shift) | (rdm & shiftmask);
2393 if (mask & 1) {
2394 rdm = d[H4(e)] >> (32 - shift);
2396 mergemask(&d[H4(e)], r, mask);
2399 mve_advance_vpt(env);
2400 return rdm;
2403 uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2405 return do_sqrshl_d(n, -(int8_t)shift, false, NULL);
2408 uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift)
2410 return do_uqrshl_d(n, (int8_t)shift, false, NULL);
2413 uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2415 return do_sqrshl_d(n, (int8_t)shift, false, &env->QF);
2418 uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2420 return do_uqrshl_d(n, (int8_t)shift, false, &env->QF);
2423 uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift)
2425 return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF);
2428 uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift)
2430 return do_uqrshl_d(n, (int8_t)shift, true, &env->QF);
2433 /* Operate on 64-bit values, but saturate at 48 bits */
2434 static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift,
2435 bool round, uint32_t *sat)
2437 int64_t val, extval;
2439 if (shift <= -48) {
2440 /* Rounding the sign bit always produces 0. */
2441 if (round) {
2442 return 0;
2444 return src >> 63;
2445 } else if (shift < 0) {
2446 if (round) {
2447 src >>= -shift - 1;
2448 val = (src >> 1) + (src & 1);
2449 } else {
2450 val = src >> -shift;
2452 extval = sextract64(val, 0, 48);
2453 if (!sat || val == extval) {
2454 return extval;
2456 } else if (shift < 48) {
2457 extval = sextract64(src << shift, 0, 48);
2458 if (!sat || src == (extval >> shift)) {
2459 return extval;
2461 } else if (!sat || src == 0) {
2462 return 0;
2465 *sat = 1;
2466 return src >= 0 ? MAKE_64BIT_MASK(0, 47) : MAKE_64BIT_MASK(47, 17);
2469 /* Operate on 64-bit values, but saturate at 48 bits */
2470 static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift,
2471 bool round, uint32_t *sat)
2473 uint64_t val, extval;
2475 if (shift <= -(48 + round)) {
2476 return 0;
2477 } else if (shift < 0) {
2478 if (round) {
2479 val = src >> (-shift - 1);
2480 val = (val >> 1) + (val & 1);
2481 } else {
2482 val = src >> -shift;
2484 extval = extract64(val, 0, 48);
2485 if (!sat || val == extval) {
2486 return extval;
2488 } else if (shift < 48) {
2489 extval = extract64(src << shift, 0, 48);
2490 if (!sat || src == (extval >> shift)) {
2491 return extval;
2493 } else if (!sat || src == 0) {
2494 return 0;
2497 *sat = 1;
2498 return MAKE_64BIT_MASK(0, 48);
2501 uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift)
2503 return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF);
2506 uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift)
2508 return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF);
2511 uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2513 return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2516 uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2518 return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF);
2521 uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift)
2523 return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF);
2526 uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift)
2528 return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF);
2531 #define DO_VIDUP(OP, ESIZE, TYPE, FN) \
2532 uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd, \
2533 uint32_t offset, uint32_t imm) \
2535 TYPE *d = vd; \
2536 uint16_t mask = mve_element_mask(env); \
2537 unsigned e; \
2538 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2539 mergemask(&d[H##ESIZE(e)], offset, mask); \
2540 offset = FN(offset, imm); \
2542 mve_advance_vpt(env); \
2543 return offset; \
2546 #define DO_VIWDUP(OP, ESIZE, TYPE, FN) \
2547 uint32_t HELPER(mve_##OP)(CPUARMState *env, void *vd, \
2548 uint32_t offset, uint32_t wrap, \
2549 uint32_t imm) \
2551 TYPE *d = vd; \
2552 uint16_t mask = mve_element_mask(env); \
2553 unsigned e; \
2554 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2555 mergemask(&d[H##ESIZE(e)], offset, mask); \
2556 offset = FN(offset, wrap, imm); \
2558 mve_advance_vpt(env); \
2559 return offset; \
2562 #define DO_VIDUP_ALL(OP, FN) \
2563 DO_VIDUP(OP##b, 1, int8_t, FN) \
2564 DO_VIDUP(OP##h, 2, int16_t, FN) \
2565 DO_VIDUP(OP##w, 4, int32_t, FN)
2567 #define DO_VIWDUP_ALL(OP, FN) \
2568 DO_VIWDUP(OP##b, 1, int8_t, FN) \
2569 DO_VIWDUP(OP##h, 2, int16_t, FN) \
2570 DO_VIWDUP(OP##w, 4, int32_t, FN)
2572 static uint32_t do_add_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2574 offset += imm;
2575 if (offset == wrap) {
2576 offset = 0;
2578 return offset;
2581 static uint32_t do_sub_wrap(uint32_t offset, uint32_t wrap, uint32_t imm)
2583 if (offset == 0) {
2584 offset = wrap;
2586 offset -= imm;
2587 return offset;
2590 DO_VIDUP_ALL(vidup, DO_ADD)
2591 DO_VIWDUP_ALL(viwdup, do_add_wrap)
2592 DO_VIWDUP_ALL(vdwdup, do_sub_wrap)
2595 * Vector comparison.
2596 * P0 bits for non-executed beats (where eci_mask is 0) are unchanged.
2597 * P0 bits for predicated lanes in executed beats (where mask is 0) are 0.
2598 * P0 bits otherwise are updated with the results of the comparisons.
2599 * We must also keep unchanged the MASK fields at the top of v7m.vpr.
2601 #define DO_VCMP(OP, ESIZE, TYPE, FN) \
2602 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm) \
2604 TYPE *n = vn, *m = vm; \
2605 uint16_t mask = mve_element_mask(env); \
2606 uint16_t eci_mask = mve_eci_mask(env); \
2607 uint16_t beatpred = 0; \
2608 uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \
2609 unsigned e; \
2610 for (e = 0; e < 16 / ESIZE; e++) { \
2611 bool r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)]); \
2612 /* Comparison sets 0/1 bits for each byte in the element */ \
2613 beatpred |= r * emask; \
2614 emask <<= ESIZE; \
2616 beatpred &= mask; \
2617 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \
2618 (beatpred & eci_mask); \
2619 mve_advance_vpt(env); \
2622 #define DO_VCMP_SCALAR(OP, ESIZE, TYPE, FN) \
2623 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
2624 uint32_t rm) \
2626 TYPE *n = vn; \
2627 uint16_t mask = mve_element_mask(env); \
2628 uint16_t eci_mask = mve_eci_mask(env); \
2629 uint16_t beatpred = 0; \
2630 uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \
2631 unsigned e; \
2632 for (e = 0; e < 16 / ESIZE; e++) { \
2633 bool r = FN(n[H##ESIZE(e)], (TYPE)rm); \
2634 /* Comparison sets 0/1 bits for each byte in the element */ \
2635 beatpred |= r * emask; \
2636 emask <<= ESIZE; \
2638 beatpred &= mask; \
2639 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \
2640 (beatpred & eci_mask); \
2641 mve_advance_vpt(env); \
2644 #define DO_VCMP_S(OP, FN) \
2645 DO_VCMP(OP##b, 1, int8_t, FN) \
2646 DO_VCMP(OP##h, 2, int16_t, FN) \
2647 DO_VCMP(OP##w, 4, int32_t, FN) \
2648 DO_VCMP_SCALAR(OP##_scalarb, 1, int8_t, FN) \
2649 DO_VCMP_SCALAR(OP##_scalarh, 2, int16_t, FN) \
2650 DO_VCMP_SCALAR(OP##_scalarw, 4, int32_t, FN)
2652 #define DO_VCMP_U(OP, FN) \
2653 DO_VCMP(OP##b, 1, uint8_t, FN) \
2654 DO_VCMP(OP##h, 2, uint16_t, FN) \
2655 DO_VCMP(OP##w, 4, uint32_t, FN) \
2656 DO_VCMP_SCALAR(OP##_scalarb, 1, uint8_t, FN) \
2657 DO_VCMP_SCALAR(OP##_scalarh, 2, uint16_t, FN) \
2658 DO_VCMP_SCALAR(OP##_scalarw, 4, uint32_t, FN)
2660 #define DO_EQ(N, M) ((N) == (M))
2661 #define DO_NE(N, M) ((N) != (M))
2662 #define DO_EQ(N, M) ((N) == (M))
2663 #define DO_EQ(N, M) ((N) == (M))
2664 #define DO_GE(N, M) ((N) >= (M))
2665 #define DO_LT(N, M) ((N) < (M))
2666 #define DO_GT(N, M) ((N) > (M))
2667 #define DO_LE(N, M) ((N) <= (M))
2669 DO_VCMP_U(vcmpeq, DO_EQ)
2670 DO_VCMP_U(vcmpne, DO_NE)
2671 DO_VCMP_U(vcmpcs, DO_GE)
2672 DO_VCMP_U(vcmphi, DO_GT)
2673 DO_VCMP_S(vcmpge, DO_GE)
2674 DO_VCMP_S(vcmplt, DO_LT)
2675 DO_VCMP_S(vcmpgt, DO_GT)
2676 DO_VCMP_S(vcmple, DO_LE)
2678 void HELPER(mve_vpsel)(CPUARMState *env, void *vd, void *vn, void *vm)
2681 * Qd[n] = VPR.P0[n] ? Qn[n] : Qm[n]
2682 * but note that whether bytes are written to Qd is still subject
2683 * to (all forms of) predication in the usual way.
2685 uint64_t *d = vd, *n = vn, *m = vm;
2686 uint16_t mask = mve_element_mask(env);
2687 uint16_t p0 = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0);
2688 unsigned e;
2689 for (e = 0; e < 16 / 8; e++, mask >>= 8, p0 >>= 8) {
2690 uint64_t r = m[H8(e)];
2691 mergemask(&r, n[H8(e)], p0);
2692 mergemask(&d[H8(e)], r, mask);
2694 mve_advance_vpt(env);
2697 void HELPER(mve_vpnot)(CPUARMState *env)
2700 * P0 bits for unexecuted beats (where eci_mask is 0) are unchanged.
2701 * P0 bits for predicated lanes in executed bits (where mask is 0) are 0.
2702 * P0 bits otherwise are inverted.
2703 * (This is the same logic as VCMP.)
2704 * This insn is itself subject to predication and to beat-wise execution,
2705 * and after it executes VPT state advances in the usual way.
2707 uint16_t mask = mve_element_mask(env);
2708 uint16_t eci_mask = mve_eci_mask(env);
2709 uint16_t beatpred = ~env->v7m.vpr & mask;
2710 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (beatpred & eci_mask);
2711 mve_advance_vpt(env);
2715 * VCTP: P0 unexecuted bits unchanged, predicated bits zeroed,
2716 * otherwise set according to value of Rn. The calculation of
2717 * newmask here works in the same way as the calculation of the
2718 * ltpmask in mve_element_mask(), but we have pre-calculated
2719 * the masklen in the generated code.
2721 void HELPER(mve_vctp)(CPUARMState *env, uint32_t masklen)
2723 uint16_t mask = mve_element_mask(env);
2724 uint16_t eci_mask = mve_eci_mask(env);
2725 uint16_t newmask;
2727 assert(masklen <= 16);
2728 newmask = masklen ? MAKE_64BIT_MASK(0, masklen) : 0;
2729 newmask &= mask;
2730 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | (newmask & eci_mask);
2731 mve_advance_vpt(env);
2734 #define DO_1OP_SAT(OP, ESIZE, TYPE, FN) \
2735 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \
2737 TYPE *d = vd, *m = vm; \
2738 uint16_t mask = mve_element_mask(env); \
2739 unsigned e; \
2740 bool qc = false; \
2741 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2742 bool sat = false; \
2743 mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)], &sat), mask); \
2744 qc |= sat & mask & 1; \
2746 if (qc) { \
2747 env->vfp.qc[0] = qc; \
2749 mve_advance_vpt(env); \
2752 #define DO_VQABS_B(N, SATP) \
2753 do_sat_bhs(DO_ABS((int64_t)N), INT8_MIN, INT8_MAX, SATP)
2754 #define DO_VQABS_H(N, SATP) \
2755 do_sat_bhs(DO_ABS((int64_t)N), INT16_MIN, INT16_MAX, SATP)
2756 #define DO_VQABS_W(N, SATP) \
2757 do_sat_bhs(DO_ABS((int64_t)N), INT32_MIN, INT32_MAX, SATP)
2759 #define DO_VQNEG_B(N, SATP) do_sat_bhs(-(int64_t)N, INT8_MIN, INT8_MAX, SATP)
2760 #define DO_VQNEG_H(N, SATP) do_sat_bhs(-(int64_t)N, INT16_MIN, INT16_MAX, SATP)
2761 #define DO_VQNEG_W(N, SATP) do_sat_bhs(-(int64_t)N, INT32_MIN, INT32_MAX, SATP)
2763 DO_1OP_SAT(vqabsb, 1, int8_t, DO_VQABS_B)
2764 DO_1OP_SAT(vqabsh, 2, int16_t, DO_VQABS_H)
2765 DO_1OP_SAT(vqabsw, 4, int32_t, DO_VQABS_W)
2767 DO_1OP_SAT(vqnegb, 1, int8_t, DO_VQNEG_B)
2768 DO_1OP_SAT(vqnegh, 2, int16_t, DO_VQNEG_H)
2769 DO_1OP_SAT(vqnegw, 4, int32_t, DO_VQNEG_W)
2772 * VMAXA, VMINA: vd is unsigned; vm is signed, and we take its
2773 * absolute value; we then do an unsigned comparison.
2775 #define DO_VMAXMINA(OP, ESIZE, STYPE, UTYPE, FN) \
2776 void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \
2778 UTYPE *d = vd; \
2779 STYPE *m = vm; \
2780 uint16_t mask = mve_element_mask(env); \
2781 unsigned e; \
2782 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2783 UTYPE r = DO_ABS(m[H##ESIZE(e)]); \
2784 r = FN(d[H##ESIZE(e)], r); \
2785 mergemask(&d[H##ESIZE(e)], r, mask); \
2787 mve_advance_vpt(env); \
2790 DO_VMAXMINA(vmaxab, 1, int8_t, uint8_t, DO_MAX)
2791 DO_VMAXMINA(vmaxah, 2, int16_t, uint16_t, DO_MAX)
2792 DO_VMAXMINA(vmaxaw, 4, int32_t, uint32_t, DO_MAX)
2793 DO_VMAXMINA(vminab, 1, int8_t, uint8_t, DO_MIN)
2794 DO_VMAXMINA(vminah, 2, int16_t, uint16_t, DO_MIN)
2795 DO_VMAXMINA(vminaw, 4, int32_t, uint32_t, DO_MIN)
2798 * 2-operand floating point. Note that if an element is partially
2799 * predicated we must do the FP operation to update the non-predicated
2800 * bytes, but we must be careful to avoid updating the FP exception
2801 * state unless byte 0 of the element was unpredicated.
2803 #define DO_2OP_FP(OP, ESIZE, TYPE, FN) \
2804 void HELPER(glue(mve_, OP))(CPUARMState *env, \
2805 void *vd, void *vn, void *vm) \
2807 TYPE *d = vd, *n = vn, *m = vm; \
2808 TYPE r; \
2809 uint16_t mask = mve_element_mask(env); \
2810 unsigned e; \
2811 float_status *fpst; \
2812 float_status scratch_fpst; \
2813 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2814 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
2815 continue; \
2817 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
2818 &env->vfp.standard_fp_status; \
2819 if (!(mask & 1)) { \
2820 /* We need the result but without updating flags */ \
2821 scratch_fpst = *fpst; \
2822 fpst = &scratch_fpst; \
2824 r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst); \
2825 mergemask(&d[H##ESIZE(e)], r, mask); \
2827 mve_advance_vpt(env); \
2830 #define DO_2OP_FP_ALL(OP, FN) \
2831 DO_2OP_FP(OP##h, 2, float16, float16_##FN) \
2832 DO_2OP_FP(OP##s, 4, float32, float32_##FN)
2834 DO_2OP_FP_ALL(vfadd, add)
2835 DO_2OP_FP_ALL(vfsub, sub)
2836 DO_2OP_FP_ALL(vfmul, mul)
2838 static inline float16 float16_abd(float16 a, float16 b, float_status *s)
2840 return float16_abs(float16_sub(a, b, s));
2843 static inline float32 float32_abd(float32 a, float32 b, float_status *s)
2845 return float32_abs(float32_sub(a, b, s));
2848 DO_2OP_FP_ALL(vfabd, abd)
2849 DO_2OP_FP_ALL(vmaxnm, maxnum)
2850 DO_2OP_FP_ALL(vminnm, minnum)
2852 static inline float16 float16_maxnuma(float16 a, float16 b, float_status *s)
2854 return float16_maxnum(float16_abs(a), float16_abs(b), s);
2857 static inline float32 float32_maxnuma(float32 a, float32 b, float_status *s)
2859 return float32_maxnum(float32_abs(a), float32_abs(b), s);
2862 static inline float16 float16_minnuma(float16 a, float16 b, float_status *s)
2864 return float16_minnum(float16_abs(a), float16_abs(b), s);
2867 static inline float32 float32_minnuma(float32 a, float32 b, float_status *s)
2869 return float32_minnum(float32_abs(a), float32_abs(b), s);
2872 DO_2OP_FP_ALL(vmaxnma, maxnuma)
2873 DO_2OP_FP_ALL(vminnma, minnuma)
2875 #define DO_VCADD_FP(OP, ESIZE, TYPE, FN0, FN1) \
2876 void HELPER(glue(mve_, OP))(CPUARMState *env, \
2877 void *vd, void *vn, void *vm) \
2879 TYPE *d = vd, *n = vn, *m = vm; \
2880 TYPE r[16 / ESIZE]; \
2881 uint16_t tm, mask = mve_element_mask(env); \
2882 unsigned e; \
2883 float_status *fpst; \
2884 float_status scratch_fpst; \
2885 /* Calculate all results first to avoid overwriting inputs */ \
2886 for (e = 0, tm = mask; e < 16 / ESIZE; e++, tm >>= ESIZE) { \
2887 if ((tm & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
2888 r[e] = 0; \
2889 continue; \
2891 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
2892 &env->vfp.standard_fp_status; \
2893 if (!(tm & 1)) { \
2894 /* We need the result but without updating flags */ \
2895 scratch_fpst = *fpst; \
2896 fpst = &scratch_fpst; \
2898 if (!(e & 1)) { \
2899 r[e] = FN0(n[H##ESIZE(e)], m[H##ESIZE(e + 1)], fpst); \
2900 } else { \
2901 r[e] = FN1(n[H##ESIZE(e)], m[H##ESIZE(e - 1)], fpst); \
2904 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2905 mergemask(&d[H##ESIZE(e)], r[e], mask); \
2907 mve_advance_vpt(env); \
2910 DO_VCADD_FP(vfcadd90h, 2, float16, float16_sub, float16_add)
2911 DO_VCADD_FP(vfcadd90s, 4, float32, float32_sub, float32_add)
2912 DO_VCADD_FP(vfcadd270h, 2, float16, float16_add, float16_sub)
2913 DO_VCADD_FP(vfcadd270s, 4, float32, float32_add, float32_sub)
2915 #define DO_VFMA(OP, ESIZE, TYPE, CHS) \
2916 void HELPER(glue(mve_, OP))(CPUARMState *env, \
2917 void *vd, void *vn, void *vm) \
2919 TYPE *d = vd, *n = vn, *m = vm; \
2920 TYPE r; \
2921 uint16_t mask = mve_element_mask(env); \
2922 unsigned e; \
2923 float_status *fpst; \
2924 float_status scratch_fpst; \
2925 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
2926 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
2927 continue; \
2929 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
2930 &env->vfp.standard_fp_status; \
2931 if (!(mask & 1)) { \
2932 /* We need the result but without updating flags */ \
2933 scratch_fpst = *fpst; \
2934 fpst = &scratch_fpst; \
2936 r = n[H##ESIZE(e)]; \
2937 if (CHS) { \
2938 r = TYPE##_chs(r); \
2940 r = TYPE##_muladd(r, m[H##ESIZE(e)], d[H##ESIZE(e)], \
2941 0, fpst); \
2942 mergemask(&d[H##ESIZE(e)], r, mask); \
2944 mve_advance_vpt(env); \
2947 DO_VFMA(vfmah, 2, float16, false)
2948 DO_VFMA(vfmas, 4, float32, false)
2949 DO_VFMA(vfmsh, 2, float16, true)
2950 DO_VFMA(vfmss, 4, float32, true)
2952 #define DO_VCMLA(OP, ESIZE, TYPE, ROT, FN) \
2953 void HELPER(glue(mve_, OP))(CPUARMState *env, \
2954 void *vd, void *vn, void *vm) \
2956 TYPE *d = vd, *n = vn, *m = vm; \
2957 TYPE r0, r1, e1, e2, e3, e4; \
2958 uint16_t mask = mve_element_mask(env); \
2959 unsigned e; \
2960 float_status *fpst0, *fpst1; \
2961 float_status scratch_fpst; \
2962 /* We loop through pairs of elements at a time */ \
2963 for (e = 0; e < 16 / ESIZE; e += 2, mask >>= ESIZE * 2) { \
2964 if ((mask & MAKE_64BIT_MASK(0, ESIZE * 2)) == 0) { \
2965 continue; \
2967 fpst0 = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
2968 &env->vfp.standard_fp_status; \
2969 fpst1 = fpst0; \
2970 if (!(mask & 1)) { \
2971 scratch_fpst = *fpst0; \
2972 fpst0 = &scratch_fpst; \
2974 if (!(mask & (1 << ESIZE))) { \
2975 scratch_fpst = *fpst1; \
2976 fpst1 = &scratch_fpst; \
2978 switch (ROT) { \
2979 case 0: \
2980 e1 = m[H##ESIZE(e)]; \
2981 e2 = n[H##ESIZE(e)]; \
2982 e3 = m[H##ESIZE(e + 1)]; \
2983 e4 = n[H##ESIZE(e)]; \
2984 break; \
2985 case 1: \
2986 e1 = TYPE##_chs(m[H##ESIZE(e + 1)]); \
2987 e2 = n[H##ESIZE(e + 1)]; \
2988 e3 = m[H##ESIZE(e)]; \
2989 e4 = n[H##ESIZE(e + 1)]; \
2990 break; \
2991 case 2: \
2992 e1 = TYPE##_chs(m[H##ESIZE(e)]); \
2993 e2 = n[H##ESIZE(e)]; \
2994 e3 = TYPE##_chs(m[H##ESIZE(e + 1)]); \
2995 e4 = n[H##ESIZE(e)]; \
2996 break; \
2997 case 3: \
2998 e1 = m[H##ESIZE(e + 1)]; \
2999 e2 = n[H##ESIZE(e + 1)]; \
3000 e3 = TYPE##_chs(m[H##ESIZE(e)]); \
3001 e4 = n[H##ESIZE(e + 1)]; \
3002 break; \
3003 default: \
3004 g_assert_not_reached(); \
3006 r0 = FN(e2, e1, d[H##ESIZE(e)], fpst0); \
3007 r1 = FN(e4, e3, d[H##ESIZE(e + 1)], fpst1); \
3008 mergemask(&d[H##ESIZE(e)], r0, mask); \
3009 mergemask(&d[H##ESIZE(e + 1)], r1, mask >> ESIZE); \
3011 mve_advance_vpt(env); \
3014 #define DO_VCMULH(N, M, D, S) float16_mul(N, M, S)
3015 #define DO_VCMULS(N, M, D, S) float32_mul(N, M, S)
3017 #define DO_VCMLAH(N, M, D, S) float16_muladd(N, M, D, 0, S)
3018 #define DO_VCMLAS(N, M, D, S) float32_muladd(N, M, D, 0, S)
3020 DO_VCMLA(vcmul0h, 2, float16, 0, DO_VCMULH)
3021 DO_VCMLA(vcmul0s, 4, float32, 0, DO_VCMULS)
3022 DO_VCMLA(vcmul90h, 2, float16, 1, DO_VCMULH)
3023 DO_VCMLA(vcmul90s, 4, float32, 1, DO_VCMULS)
3024 DO_VCMLA(vcmul180h, 2, float16, 2, DO_VCMULH)
3025 DO_VCMLA(vcmul180s, 4, float32, 2, DO_VCMULS)
3026 DO_VCMLA(vcmul270h, 2, float16, 3, DO_VCMULH)
3027 DO_VCMLA(vcmul270s, 4, float32, 3, DO_VCMULS)
3029 DO_VCMLA(vcmla0h, 2, float16, 0, DO_VCMLAH)
3030 DO_VCMLA(vcmla0s, 4, float32, 0, DO_VCMLAS)
3031 DO_VCMLA(vcmla90h, 2, float16, 1, DO_VCMLAH)
3032 DO_VCMLA(vcmla90s, 4, float32, 1, DO_VCMLAS)
3033 DO_VCMLA(vcmla180h, 2, float16, 2, DO_VCMLAH)
3034 DO_VCMLA(vcmla180s, 4, float32, 2, DO_VCMLAS)
3035 DO_VCMLA(vcmla270h, 2, float16, 3, DO_VCMLAH)
3036 DO_VCMLA(vcmla270s, 4, float32, 3, DO_VCMLAS)
3038 #define DO_2OP_FP_SCALAR(OP, ESIZE, TYPE, FN) \
3039 void HELPER(glue(mve_, OP))(CPUARMState *env, \
3040 void *vd, void *vn, uint32_t rm) \
3042 TYPE *d = vd, *n = vn; \
3043 TYPE r, m = rm; \
3044 uint16_t mask = mve_element_mask(env); \
3045 unsigned e; \
3046 float_status *fpst; \
3047 float_status scratch_fpst; \
3048 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
3049 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
3050 continue; \
3052 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
3053 &env->vfp.standard_fp_status; \
3054 if (!(mask & 1)) { \
3055 /* We need the result but without updating flags */ \
3056 scratch_fpst = *fpst; \
3057 fpst = &scratch_fpst; \
3059 r = FN(n[H##ESIZE(e)], m, fpst); \
3060 mergemask(&d[H##ESIZE(e)], r, mask); \
3062 mve_advance_vpt(env); \
3065 #define DO_2OP_FP_SCALAR_ALL(OP, FN) \
3066 DO_2OP_FP_SCALAR(OP##h, 2, float16, float16_##FN) \
3067 DO_2OP_FP_SCALAR(OP##s, 4, float32, float32_##FN)
3069 DO_2OP_FP_SCALAR_ALL(vfadd_scalar, add)
3070 DO_2OP_FP_SCALAR_ALL(vfsub_scalar, sub)
3071 DO_2OP_FP_SCALAR_ALL(vfmul_scalar, mul)
3073 #define DO_2OP_FP_ACC_SCALAR(OP, ESIZE, TYPE, FN) \
3074 void HELPER(glue(mve_, OP))(CPUARMState *env, \
3075 void *vd, void *vn, uint32_t rm) \
3077 TYPE *d = vd, *n = vn; \
3078 TYPE r, m = rm; \
3079 uint16_t mask = mve_element_mask(env); \
3080 unsigned e; \
3081 float_status *fpst; \
3082 float_status scratch_fpst; \
3083 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
3084 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
3085 continue; \
3087 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
3088 &env->vfp.standard_fp_status; \
3089 if (!(mask & 1)) { \
3090 /* We need the result but without updating flags */ \
3091 scratch_fpst = *fpst; \
3092 fpst = &scratch_fpst; \
3094 r = FN(n[H##ESIZE(e)], m, d[H##ESIZE(e)], 0, fpst); \
3095 mergemask(&d[H##ESIZE(e)], r, mask); \
3097 mve_advance_vpt(env); \
3100 /* VFMAS is vector * vector + scalar, so swap op2 and op3 */
3101 #define DO_VFMAS_SCALARH(N, M, D, F, S) float16_muladd(N, D, M, F, S)
3102 #define DO_VFMAS_SCALARS(N, M, D, F, S) float32_muladd(N, D, M, F, S)
3104 /* VFMA is vector * scalar + vector */
3105 DO_2OP_FP_ACC_SCALAR(vfma_scalarh, 2, float16, float16_muladd)
3106 DO_2OP_FP_ACC_SCALAR(vfma_scalars, 4, float32, float32_muladd)
3107 DO_2OP_FP_ACC_SCALAR(vfmas_scalarh, 2, float16, DO_VFMAS_SCALARH)
3108 DO_2OP_FP_ACC_SCALAR(vfmas_scalars, 4, float32, DO_VFMAS_SCALARS)
3110 /* Floating point max/min across vector. */
3111 #define DO_FP_VMAXMINV(OP, ESIZE, TYPE, ABS, FN) \
3112 uint32_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \
3113 uint32_t ra_in) \
3115 uint16_t mask = mve_element_mask(env); \
3116 unsigned e; \
3117 TYPE *m = vm; \
3118 TYPE ra = (TYPE)ra_in; \
3119 float_status *fpst = (ESIZE == 2) ? \
3120 &env->vfp.standard_fp_status_f16 : \
3121 &env->vfp.standard_fp_status; \
3122 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
3123 if (mask & 1) { \
3124 TYPE v = m[H##ESIZE(e)]; \
3125 if (TYPE##_is_signaling_nan(ra, fpst)) { \
3126 ra = TYPE##_silence_nan(ra, fpst); \
3127 float_raise(float_flag_invalid, fpst); \
3129 if (TYPE##_is_signaling_nan(v, fpst)) { \
3130 v = TYPE##_silence_nan(v, fpst); \
3131 float_raise(float_flag_invalid, fpst); \
3133 if (ABS) { \
3134 v = TYPE##_abs(v); \
3136 ra = FN(ra, v, fpst); \
3139 mve_advance_vpt(env); \
3140 return ra; \
3143 #define NOP(X) (X)
3145 DO_FP_VMAXMINV(vmaxnmvh, 2, float16, false, float16_maxnum)
3146 DO_FP_VMAXMINV(vmaxnmvs, 4, float32, false, float32_maxnum)
3147 DO_FP_VMAXMINV(vminnmvh, 2, float16, false, float16_minnum)
3148 DO_FP_VMAXMINV(vminnmvs, 4, float32, false, float32_minnum)
3149 DO_FP_VMAXMINV(vmaxnmavh, 2, float16, true, float16_maxnum)
3150 DO_FP_VMAXMINV(vmaxnmavs, 4, float32, true, float32_maxnum)
3151 DO_FP_VMAXMINV(vminnmavh, 2, float16, true, float16_minnum)
3152 DO_FP_VMAXMINV(vminnmavs, 4, float32, true, float32_minnum)
3154 /* FP compares; note that all comparisons signal InvalidOp for QNaNs */
3155 #define DO_VCMP_FP(OP, ESIZE, TYPE, FN) \
3156 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, void *vm) \
3158 TYPE *n = vn, *m = vm; \
3159 uint16_t mask = mve_element_mask(env); \
3160 uint16_t eci_mask = mve_eci_mask(env); \
3161 uint16_t beatpred = 0; \
3162 uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \
3163 unsigned e; \
3164 float_status *fpst; \
3165 float_status scratch_fpst; \
3166 bool r; \
3167 for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) { \
3168 if ((mask & emask) == 0) { \
3169 continue; \
3171 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
3172 &env->vfp.standard_fp_status; \
3173 if (!(mask & (1 << (e * ESIZE)))) { \
3174 /* We need the result but without updating flags */ \
3175 scratch_fpst = *fpst; \
3176 fpst = &scratch_fpst; \
3178 r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], fpst); \
3179 /* Comparison sets 0/1 bits for each byte in the element */ \
3180 beatpred |= r * emask; \
3182 beatpred &= mask; \
3183 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \
3184 (beatpred & eci_mask); \
3185 mve_advance_vpt(env); \
3188 #define DO_VCMP_FP_SCALAR(OP, ESIZE, TYPE, FN) \
3189 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \
3190 uint32_t rm) \
3192 TYPE *n = vn; \
3193 uint16_t mask = mve_element_mask(env); \
3194 uint16_t eci_mask = mve_eci_mask(env); \
3195 uint16_t beatpred = 0; \
3196 uint16_t emask = MAKE_64BIT_MASK(0, ESIZE); \
3197 unsigned e; \
3198 float_status *fpst; \
3199 float_status scratch_fpst; \
3200 bool r; \
3201 for (e = 0; e < 16 / ESIZE; e++, emask <<= ESIZE) { \
3202 if ((mask & emask) == 0) { \
3203 continue; \
3205 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
3206 &env->vfp.standard_fp_status; \
3207 if (!(mask & (1 << (e * ESIZE)))) { \
3208 /* We need the result but without updating flags */ \
3209 scratch_fpst = *fpst; \
3210 fpst = &scratch_fpst; \
3212 r = FN(n[H##ESIZE(e)], (TYPE)rm, fpst); \
3213 /* Comparison sets 0/1 bits for each byte in the element */ \
3214 beatpred |= r * emask; \
3216 beatpred &= mask; \
3217 env->v7m.vpr = (env->v7m.vpr & ~(uint32_t)eci_mask) | \
3218 (beatpred & eci_mask); \
3219 mve_advance_vpt(env); \
3222 #define DO_VCMP_FP_BOTH(VOP, SOP, ESIZE, TYPE, FN) \
3223 DO_VCMP_FP(VOP, ESIZE, TYPE, FN) \
3224 DO_VCMP_FP_SCALAR(SOP, ESIZE, TYPE, FN)
3227 * Some care is needed here to get the correct result for the unordered case.
3228 * Architecturally EQ, GE and GT are defined to be false for unordered, but
3229 * the NE, LT and LE comparisons are defined as simple logical inverses of
3230 * EQ, GE and GT and so they must return true for unordered. The softfloat
3231 * comparison functions float*_{eq,le,lt} all return false for unordered.
3233 #define DO_GE16(X, Y, S) float16_le(Y, X, S)
3234 #define DO_GE32(X, Y, S) float32_le(Y, X, S)
3235 #define DO_GT16(X, Y, S) float16_lt(Y, X, S)
3236 #define DO_GT32(X, Y, S) float32_lt(Y, X, S)
3238 DO_VCMP_FP_BOTH(vfcmpeqh, vfcmpeq_scalarh, 2, float16, float16_eq)
3239 DO_VCMP_FP_BOTH(vfcmpeqs, vfcmpeq_scalars, 4, float32, float32_eq)
3241 DO_VCMP_FP_BOTH(vfcmpneh, vfcmpne_scalarh, 2, float16, !float16_eq)
3242 DO_VCMP_FP_BOTH(vfcmpnes, vfcmpne_scalars, 4, float32, !float32_eq)
3244 DO_VCMP_FP_BOTH(vfcmpgeh, vfcmpge_scalarh, 2, float16, DO_GE16)
3245 DO_VCMP_FP_BOTH(vfcmpges, vfcmpge_scalars, 4, float32, DO_GE32)
3247 DO_VCMP_FP_BOTH(vfcmplth, vfcmplt_scalarh, 2, float16, !DO_GE16)
3248 DO_VCMP_FP_BOTH(vfcmplts, vfcmplt_scalars, 4, float32, !DO_GE32)
3250 DO_VCMP_FP_BOTH(vfcmpgth, vfcmpgt_scalarh, 2, float16, DO_GT16)
3251 DO_VCMP_FP_BOTH(vfcmpgts, vfcmpgt_scalars, 4, float32, DO_GT32)
3253 DO_VCMP_FP_BOTH(vfcmpleh, vfcmple_scalarh, 2, float16, !DO_GT16)
3254 DO_VCMP_FP_BOTH(vfcmples, vfcmple_scalars, 4, float32, !DO_GT32)
3256 #define DO_VCVT_FIXED(OP, ESIZE, TYPE, FN) \
3257 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm, \
3258 uint32_t shift) \
3260 TYPE *d = vd, *m = vm; \
3261 TYPE r; \
3262 uint16_t mask = mve_element_mask(env); \
3263 unsigned e; \
3264 float_status *fpst; \
3265 float_status scratch_fpst; \
3266 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
3267 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
3268 continue; \
3270 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
3271 &env->vfp.standard_fp_status; \
3272 if (!(mask & 1)) { \
3273 /* We need the result but without updating flags */ \
3274 scratch_fpst = *fpst; \
3275 fpst = &scratch_fpst; \
3277 r = FN(m[H##ESIZE(e)], shift, fpst); \
3278 mergemask(&d[H##ESIZE(e)], r, mask); \
3280 mve_advance_vpt(env); \
3283 DO_VCVT_FIXED(vcvt_sh, 2, int16_t, helper_vfp_shtoh)
3284 DO_VCVT_FIXED(vcvt_uh, 2, uint16_t, helper_vfp_uhtoh)
3285 DO_VCVT_FIXED(vcvt_hs, 2, int16_t, helper_vfp_toshh_round_to_zero)
3286 DO_VCVT_FIXED(vcvt_hu, 2, uint16_t, helper_vfp_touhh_round_to_zero)
3287 DO_VCVT_FIXED(vcvt_sf, 4, int32_t, helper_vfp_sltos)
3288 DO_VCVT_FIXED(vcvt_uf, 4, uint32_t, helper_vfp_ultos)
3289 DO_VCVT_FIXED(vcvt_fs, 4, int32_t, helper_vfp_tosls_round_to_zero)
3290 DO_VCVT_FIXED(vcvt_fu, 4, uint32_t, helper_vfp_touls_round_to_zero)
3292 /* VCVT with specified rmode */
3293 #define DO_VCVT_RMODE(OP, ESIZE, TYPE, FN) \
3294 void HELPER(glue(mve_, OP))(CPUARMState *env, \
3295 void *vd, void *vm, uint32_t rmode) \
3297 TYPE *d = vd, *m = vm; \
3298 TYPE r; \
3299 uint16_t mask = mve_element_mask(env); \
3300 unsigned e; \
3301 float_status *fpst; \
3302 float_status scratch_fpst; \
3303 float_status *base_fpst = (ESIZE == 2) ? \
3304 &env->vfp.standard_fp_status_f16 : \
3305 &env->vfp.standard_fp_status; \
3306 uint32_t prev_rmode = get_float_rounding_mode(base_fpst); \
3307 set_float_rounding_mode(rmode, base_fpst); \
3308 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
3309 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
3310 continue; \
3312 fpst = base_fpst; \
3313 if (!(mask & 1)) { \
3314 /* We need the result but without updating flags */ \
3315 scratch_fpst = *fpst; \
3316 fpst = &scratch_fpst; \
3318 r = FN(m[H##ESIZE(e)], 0, fpst); \
3319 mergemask(&d[H##ESIZE(e)], r, mask); \
3321 set_float_rounding_mode(prev_rmode, base_fpst); \
3322 mve_advance_vpt(env); \
3325 DO_VCVT_RMODE(vcvt_rm_sh, 2, uint16_t, helper_vfp_toshh)
3326 DO_VCVT_RMODE(vcvt_rm_uh, 2, uint16_t, helper_vfp_touhh)
3327 DO_VCVT_RMODE(vcvt_rm_ss, 4, uint32_t, helper_vfp_tosls)
3328 DO_VCVT_RMODE(vcvt_rm_us, 4, uint32_t, helper_vfp_touls)
3330 #define DO_VRINT_RM_H(M, F, S) helper_rinth(M, S)
3331 #define DO_VRINT_RM_S(M, F, S) helper_rints(M, S)
3333 DO_VCVT_RMODE(vrint_rm_h, 2, uint16_t, DO_VRINT_RM_H)
3334 DO_VCVT_RMODE(vrint_rm_s, 4, uint32_t, DO_VRINT_RM_S)
3337 * VCVT between halfprec and singleprec. As usual for halfprec
3338 * conversions, FZ16 is ignored and AHP is observed.
3340 static void do_vcvt_sh(CPUARMState *env, void *vd, void *vm, int top)
3342 uint16_t *d = vd;
3343 uint32_t *m = vm;
3344 uint16_t r;
3345 uint16_t mask = mve_element_mask(env);
3346 bool ieee = !(env->vfp.fpcr & FPCR_AHP);
3347 unsigned e;
3348 float_status *fpst;
3349 float_status scratch_fpst;
3350 float_status *base_fpst = &env->vfp.standard_fp_status;
3351 bool old_fz = get_flush_to_zero(base_fpst);
3352 set_flush_to_zero(false, base_fpst);
3353 for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3354 if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3355 continue;
3357 fpst = base_fpst;
3358 if (!(mask & 1)) {
3359 /* We need the result but without updating flags */
3360 scratch_fpst = *fpst;
3361 fpst = &scratch_fpst;
3363 r = float32_to_float16(m[H4(e)], ieee, fpst);
3364 mergemask(&d[H2(e * 2 + top)], r, mask >> (top * 2));
3366 set_flush_to_zero(old_fz, base_fpst);
3367 mve_advance_vpt(env);
3370 static void do_vcvt_hs(CPUARMState *env, void *vd, void *vm, int top)
3372 uint32_t *d = vd;
3373 uint16_t *m = vm;
3374 uint32_t r;
3375 uint16_t mask = mve_element_mask(env);
3376 bool ieee = !(env->vfp.fpcr & FPCR_AHP);
3377 unsigned e;
3378 float_status *fpst;
3379 float_status scratch_fpst;
3380 float_status *base_fpst = &env->vfp.standard_fp_status;
3381 bool old_fiz = get_flush_inputs_to_zero(base_fpst);
3382 set_flush_inputs_to_zero(false, base_fpst);
3383 for (e = 0; e < 16 / 4; e++, mask >>= 4) {
3384 if ((mask & MAKE_64BIT_MASK(0, 4)) == 0) {
3385 continue;
3387 fpst = base_fpst;
3388 if (!(mask & (1 << (top * 2)))) {
3389 /* We need the result but without updating flags */
3390 scratch_fpst = *fpst;
3391 fpst = &scratch_fpst;
3393 r = float16_to_float32(m[H2(e * 2 + top)], ieee, fpst);
3394 mergemask(&d[H4(e)], r, mask);
3396 set_flush_inputs_to_zero(old_fiz, base_fpst);
3397 mve_advance_vpt(env);
3400 void HELPER(mve_vcvtb_sh)(CPUARMState *env, void *vd, void *vm)
3402 do_vcvt_sh(env, vd, vm, 0);
3404 void HELPER(mve_vcvtt_sh)(CPUARMState *env, void *vd, void *vm)
3406 do_vcvt_sh(env, vd, vm, 1);
3408 void HELPER(mve_vcvtb_hs)(CPUARMState *env, void *vd, void *vm)
3410 do_vcvt_hs(env, vd, vm, 0);
3412 void HELPER(mve_vcvtt_hs)(CPUARMState *env, void *vd, void *vm)
3414 do_vcvt_hs(env, vd, vm, 1);
3417 #define DO_1OP_FP(OP, ESIZE, TYPE, FN) \
3418 void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vm) \
3420 TYPE *d = vd, *m = vm; \
3421 TYPE r; \
3422 uint16_t mask = mve_element_mask(env); \
3423 unsigned e; \
3424 float_status *fpst; \
3425 float_status scratch_fpst; \
3426 for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \
3427 if ((mask & MAKE_64BIT_MASK(0, ESIZE)) == 0) { \
3428 continue; \
3430 fpst = (ESIZE == 2) ? &env->vfp.standard_fp_status_f16 : \
3431 &env->vfp.standard_fp_status; \
3432 if (!(mask & 1)) { \
3433 /* We need the result but without updating flags */ \
3434 scratch_fpst = *fpst; \
3435 fpst = &scratch_fpst; \
3437 r = FN(m[H##ESIZE(e)], fpst); \
3438 mergemask(&d[H##ESIZE(e)], r, mask); \
3440 mve_advance_vpt(env); \
3443 DO_1OP_FP(vrintx_h, 2, float16, float16_round_to_int)
3444 DO_1OP_FP(vrintx_s, 4, float32, float32_round_to_int)