Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / target / i386 / kvm / kvm.c
blobe6f94900f3c1841804f8665a7d3220aada2f7b57
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include "qapi/visitor.h"
19 #include <math.h>
20 #include <sys/ioctl.h>
21 #include <sys/utsname.h>
22 #include <sys/syscall.h>
23 #include <sys/resource.h>
24 #include <sys/time.h>
26 #include <linux/kvm.h>
27 #include <linux/kvm_para.h>
28 #include "standard-headers/asm-x86/kvm_para.h"
29 #include "hw/xen/interface/arch-x86/cpuid.h"
31 #include "cpu.h"
32 #include "host-cpu.h"
33 #include "vmsr_energy.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "sysemu/kvm_int.h"
37 #include "sysemu/runstate.h"
38 #include "kvm_i386.h"
39 #include "../confidential-guest.h"
40 #include "sev.h"
41 #include "xen-emu.h"
42 #include "hyperv.h"
43 #include "hyperv-proto.h"
45 #include "gdbstub/enums.h"
46 #include "qemu/host-utils.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/ratelimit.h"
49 #include "qemu/config-file.h"
50 #include "qemu/error-report.h"
51 #include "qemu/memalign.h"
52 #include "hw/i386/x86.h"
53 #include "hw/i386/kvm/xen_evtchn.h"
54 #include "hw/i386/pc.h"
55 #include "hw/i386/apic.h"
56 #include "hw/i386/apic_internal.h"
57 #include "hw/i386/apic-msidef.h"
58 #include "hw/i386/intel_iommu.h"
59 #include "hw/i386/topology.h"
60 #include "hw/i386/x86-iommu.h"
61 #include "hw/i386/e820_memory_layout.h"
63 #include "hw/xen/xen.h"
65 #include "hw/pci/pci.h"
66 #include "hw/pci/msi.h"
67 #include "hw/pci/msix.h"
68 #include "migration/blocker.h"
69 #include "exec/memattrs.h"
70 #include "trace.h"
72 #include CONFIG_DEVICES
74 //#define DEBUG_KVM
76 #ifdef DEBUG_KVM
77 #define DPRINTF(fmt, ...) \
78 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
79 #else
80 #define DPRINTF(fmt, ...) \
81 do { } while (0)
82 #endif
85 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
86 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
87 * Since these must be part of guest physical memory, we need to allocate
88 * them, both by setting their start addresses in the kernel and by
89 * creating a corresponding e820 entry. We need 4 pages before the BIOS,
90 * so this value allows up to 16M BIOSes.
92 #define KVM_IDENTITY_BASE 0xfeffc000
94 /* From arch/x86/kvm/lapic.h */
95 #define KVM_APIC_BUS_CYCLE_NS 1
96 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
98 #define MSR_KVM_WALL_CLOCK 0x11
99 #define MSR_KVM_SYSTEM_TIME 0x12
101 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
102 * 255 kvm_msr_entry structs */
103 #define MSR_BUF_SIZE 4096
105 typedef bool QEMURDMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t *val);
106 typedef bool QEMUWRMSRHandler(X86CPU *cpu, uint32_t msr, uint64_t val);
107 typedef struct {
108 uint32_t msr;
109 QEMURDMSRHandler *rdmsr;
110 QEMUWRMSRHandler *wrmsr;
111 } KVMMSRHandlers;
113 static void kvm_init_msrs(X86CPU *cpu);
114 static bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
115 QEMUWRMSRHandler *wrmsr);
117 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
118 KVM_CAP_INFO(SET_TSS_ADDR),
119 KVM_CAP_INFO(EXT_CPUID),
120 KVM_CAP_INFO(MP_STATE),
121 KVM_CAP_INFO(SIGNAL_MSI),
122 KVM_CAP_INFO(IRQ_ROUTING),
123 KVM_CAP_INFO(DEBUGREGS),
124 KVM_CAP_INFO(XSAVE),
125 KVM_CAP_INFO(VCPU_EVENTS),
126 KVM_CAP_INFO(X86_ROBUST_SINGLESTEP),
127 KVM_CAP_INFO(MCE),
128 KVM_CAP_INFO(ADJUST_CLOCK),
129 KVM_CAP_INFO(SET_IDENTITY_MAP_ADDR),
130 KVM_CAP_LAST_INFO
133 static bool has_msr_star;
134 static bool has_msr_hsave_pa;
135 static bool has_msr_tsc_aux;
136 static bool has_msr_tsc_adjust;
137 static bool has_msr_tsc_deadline;
138 static bool has_msr_feature_control;
139 static bool has_msr_misc_enable;
140 static bool has_msr_smbase;
141 static bool has_msr_bndcfgs;
142 static int lm_capable_kernel;
143 static bool has_msr_hv_hypercall;
144 static bool has_msr_hv_crash;
145 static bool has_msr_hv_reset;
146 static bool has_msr_hv_vpindex;
147 static bool hv_vpindex_settable;
148 static bool has_msr_hv_runtime;
149 static bool has_msr_hv_synic;
150 static bool has_msr_hv_stimer;
151 static bool has_msr_hv_frequencies;
152 static bool has_msr_hv_reenlightenment;
153 static bool has_msr_hv_syndbg_options;
154 static bool has_msr_xss;
155 static bool has_msr_umwait;
156 static bool has_msr_spec_ctrl;
157 static bool has_tsc_scale_msr;
158 static bool has_msr_tsx_ctrl;
159 static bool has_msr_virt_ssbd;
160 static bool has_msr_smi_count;
161 static bool has_msr_arch_capabs;
162 static bool has_msr_core_capabs;
163 static bool has_msr_vmx_vmfunc;
164 static bool has_msr_ucode_rev;
165 static bool has_msr_vmx_procbased_ctls2;
166 static bool has_msr_perf_capabs;
167 static bool has_msr_pkrs;
169 static uint32_t has_architectural_pmu_version;
170 static uint32_t num_architectural_pmu_gp_counters;
171 static uint32_t num_architectural_pmu_fixed_counters;
173 static int has_xsave2;
174 static int has_xcrs;
175 static int has_sregs2;
176 static int has_exception_payload;
177 static int has_triple_fault_event;
179 static bool has_msr_mcg_ext_ctl;
181 static struct kvm_cpuid2 *cpuid_cache;
182 static struct kvm_cpuid2 *hv_cpuid_cache;
183 static struct kvm_msr_list *kvm_feature_msrs;
185 static KVMMSRHandlers msr_handlers[KVM_MSR_FILTER_MAX_RANGES];
187 #define BUS_LOCK_SLICE_TIME 1000000000ULL /* ns */
188 static RateLimit bus_lock_ratelimit_ctrl;
189 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value);
191 static const char *vm_type_name[] = {
192 [KVM_X86_DEFAULT_VM] = "default",
193 [KVM_X86_SEV_VM] = "SEV",
194 [KVM_X86_SEV_ES_VM] = "SEV-ES",
195 [KVM_X86_SNP_VM] = "SEV-SNP",
198 bool kvm_is_vm_type_supported(int type)
200 uint32_t machine_types;
203 * old KVM doesn't support KVM_CAP_VM_TYPES but KVM_X86_DEFAULT_VM
204 * is always supported
206 if (type == KVM_X86_DEFAULT_VM) {
207 return true;
210 machine_types = kvm_check_extension(KVM_STATE(current_machine->accelerator),
211 KVM_CAP_VM_TYPES);
212 return !!(machine_types & BIT(type));
215 int kvm_get_vm_type(MachineState *ms)
217 int kvm_type = KVM_X86_DEFAULT_VM;
219 if (ms->cgs) {
220 if (!object_dynamic_cast(OBJECT(ms->cgs), TYPE_X86_CONFIDENTIAL_GUEST)) {
221 error_report("configuration type %s not supported for x86 guests",
222 object_get_typename(OBJECT(ms->cgs)));
223 exit(1);
225 kvm_type = x86_confidential_guest_kvm_type(
226 X86_CONFIDENTIAL_GUEST(ms->cgs));
229 if (!kvm_is_vm_type_supported(kvm_type)) {
230 error_report("vm-type %s not supported by KVM", vm_type_name[kvm_type]);
231 exit(1);
234 return kvm_type;
237 bool kvm_enable_hypercall(uint64_t enable_mask)
239 KVMState *s = KVM_STATE(current_accel());
241 return !kvm_vm_enable_cap(s, KVM_CAP_EXIT_HYPERCALL, 0, enable_mask);
244 bool kvm_has_smm(void)
246 return kvm_vm_check_extension(kvm_state, KVM_CAP_X86_SMM);
249 bool kvm_has_adjust_clock_stable(void)
251 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
253 return (ret & KVM_CLOCK_TSC_STABLE);
256 bool kvm_has_exception_payload(void)
258 return has_exception_payload;
261 static bool kvm_x2apic_api_set_flags(uint64_t flags)
263 KVMState *s = KVM_STATE(current_accel());
265 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
268 #define MEMORIZE(fn, _result) \
269 ({ \
270 static bool _memorized; \
272 if (_memorized) { \
273 return _result; \
275 _memorized = true; \
276 _result = fn; \
279 static bool has_x2apic_api;
281 bool kvm_has_x2apic_api(void)
283 return has_x2apic_api;
286 bool kvm_enable_x2apic(void)
288 return MEMORIZE(
289 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
290 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
291 has_x2apic_api);
294 bool kvm_hv_vpindex_settable(void)
296 return hv_vpindex_settable;
299 static int kvm_get_tsc(CPUState *cs)
301 X86CPU *cpu = X86_CPU(cs);
302 CPUX86State *env = &cpu->env;
303 uint64_t value;
304 int ret;
306 if (env->tsc_valid) {
307 return 0;
310 env->tsc_valid = !runstate_is_running();
312 ret = kvm_get_one_msr(cpu, MSR_IA32_TSC, &value);
313 if (ret < 0) {
314 return ret;
317 env->tsc = value;
318 return 0;
321 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
323 kvm_get_tsc(cpu);
326 void kvm_synchronize_all_tsc(void)
328 CPUState *cpu;
330 if (kvm_enabled()) {
331 CPU_FOREACH(cpu) {
332 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
337 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
339 struct kvm_cpuid2 *cpuid;
340 int r, size;
342 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
343 cpuid = g_malloc0(size);
344 cpuid->nent = max;
345 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
346 if (r == 0 && cpuid->nent >= max) {
347 r = -E2BIG;
349 if (r < 0) {
350 if (r == -E2BIG) {
351 g_free(cpuid);
352 return NULL;
353 } else {
354 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
355 strerror(-r));
356 exit(1);
359 return cpuid;
362 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
363 * for all entries.
365 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
367 struct kvm_cpuid2 *cpuid;
368 int max = 1;
370 if (cpuid_cache != NULL) {
371 return cpuid_cache;
373 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
374 max *= 2;
376 cpuid_cache = cpuid;
377 return cpuid;
380 static bool host_tsx_broken(void)
382 int family, model, stepping;\
383 char vendor[CPUID_VENDOR_SZ + 1];
385 host_cpu_vendor_fms(vendor, &family, &model, &stepping);
387 /* Check if we are running on a Haswell host known to have broken TSX */
388 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
389 (family == 6) &&
390 ((model == 63 && stepping < 4) ||
391 model == 60 || model == 69 || model == 70);
394 /* Returns the value for a specific register on the cpuid entry
396 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
398 uint32_t ret = 0;
399 switch (reg) {
400 case R_EAX:
401 ret = entry->eax;
402 break;
403 case R_EBX:
404 ret = entry->ebx;
405 break;
406 case R_ECX:
407 ret = entry->ecx;
408 break;
409 case R_EDX:
410 ret = entry->edx;
411 break;
413 return ret;
416 /* Find matching entry for function/index on kvm_cpuid2 struct
418 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
419 uint32_t function,
420 uint32_t index)
422 int i;
423 for (i = 0; i < cpuid->nent; ++i) {
424 if (cpuid->entries[i].function == function &&
425 cpuid->entries[i].index == index) {
426 return &cpuid->entries[i];
429 /* not found: */
430 return NULL;
433 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
434 uint32_t index, int reg)
436 struct kvm_cpuid2 *cpuid;
437 uint32_t ret = 0;
438 uint32_t cpuid_1_edx, unused;
439 uint64_t bitmask;
441 cpuid = get_supported_cpuid(s);
443 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
444 if (entry) {
445 ret = cpuid_entry_get_reg(entry, reg);
448 /* Fixups for the data returned by KVM, below */
450 if (function == 1 && reg == R_EDX) {
451 /* KVM before 2.6.30 misreports the following features */
452 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
453 /* KVM never reports CPUID_HT but QEMU can support when vcpus > 1 */
454 ret |= CPUID_HT;
455 } else if (function == 1 && reg == R_ECX) {
456 /* We can set the hypervisor flag, even if KVM does not return it on
457 * GET_SUPPORTED_CPUID
459 ret |= CPUID_EXT_HYPERVISOR;
460 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
461 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
462 * and the irqchip is in the kernel.
464 if (kvm_irqchip_in_kernel() &&
465 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
466 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
469 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
470 * without the in-kernel irqchip
472 if (!kvm_irqchip_in_kernel()) {
473 ret &= ~CPUID_EXT_X2APIC;
476 if (enable_cpu_pm) {
477 int disable_exits = kvm_check_extension(s,
478 KVM_CAP_X86_DISABLE_EXITS);
480 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
481 ret |= CPUID_EXT_MONITOR;
484 } else if (function == 6 && reg == R_EAX) {
485 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
486 } else if (function == 7 && index == 0 && reg == R_EBX) {
487 /* Not new instructions, just an optimization. */
488 uint32_t ebx;
489 host_cpuid(7, 0, &unused, &ebx, &unused, &unused);
490 ret |= ebx & CPUID_7_0_EBX_ERMS;
492 if (host_tsx_broken()) {
493 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
495 } else if (function == 7 && index == 0 && reg == R_EDX) {
496 /* Not new instructions, just an optimization. */
497 uint32_t edx;
498 host_cpuid(7, 0, &unused, &unused, &unused, &edx);
499 ret |= edx & CPUID_7_0_EDX_FSRM;
502 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
503 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
504 * returned by KVM_GET_MSR_INDEX_LIST.
506 if (!has_msr_arch_capabs) {
507 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
509 } else if (function == 7 && index == 1 && reg == R_EAX) {
510 /* Not new instructions, just an optimization. */
511 uint32_t eax;
512 host_cpuid(7, 1, &eax, &unused, &unused, &unused);
513 ret |= eax & (CPUID_7_1_EAX_FZRM | CPUID_7_1_EAX_FSRS | CPUID_7_1_EAX_FSRC);
514 } else if (function == 7 && index == 2 && reg == R_EDX) {
515 uint32_t edx;
516 host_cpuid(7, 2, &unused, &unused, &unused, &edx);
517 ret |= edx & CPUID_7_2_EDX_MCDT_NO;
518 } else if (function == 0xd && index == 0 &&
519 (reg == R_EAX || reg == R_EDX)) {
521 * The value returned by KVM_GET_SUPPORTED_CPUID does not include
522 * features that still have to be enabled with the arch_prctl
523 * system call. QEMU needs the full value, which is retrieved
524 * with KVM_GET_DEVICE_ATTR.
526 struct kvm_device_attr attr = {
527 .group = 0,
528 .attr = KVM_X86_XCOMP_GUEST_SUPP,
529 .addr = (unsigned long) &bitmask
532 bool sys_attr = kvm_check_extension(s, KVM_CAP_SYS_ATTRIBUTES);
533 if (!sys_attr) {
534 return ret;
537 int rc = kvm_ioctl(s, KVM_GET_DEVICE_ATTR, &attr);
538 if (rc < 0) {
539 if (rc != -ENXIO) {
540 warn_report("KVM_GET_DEVICE_ATTR(0, KVM_X86_XCOMP_GUEST_SUPP) "
541 "error: %d", rc);
543 return ret;
545 ret = (reg == R_EAX) ? bitmask : bitmask >> 32;
546 } else if (function == 0x80000001 && reg == R_ECX) {
548 * It's safe to enable TOPOEXT even if it's not returned by
549 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
550 * us to keep CPU models including TOPOEXT runnable on older kernels.
552 ret |= CPUID_EXT3_TOPOEXT;
553 } else if (function == 0x80000001 && reg == R_EDX) {
554 /* On Intel, kvm returns cpuid according to the Intel spec,
555 * so add missing bits according to the AMD spec:
557 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
558 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
559 } else if (function == 0x80000007 && reg == R_EBX) {
560 ret |= CPUID_8000_0007_EBX_OVERFLOW_RECOV | CPUID_8000_0007_EBX_SUCCOR;
561 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
562 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
563 * be enabled without the in-kernel irqchip
565 if (!kvm_irqchip_in_kernel()) {
566 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
568 if (kvm_irqchip_is_split()) {
569 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
571 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
572 ret |= 1U << KVM_HINTS_REALTIME;
575 if (current_machine->cgs) {
576 ret = x86_confidential_guest_mask_cpuid_features(
577 X86_CONFIDENTIAL_GUEST(current_machine->cgs),
578 function, index, reg, ret);
580 return ret;
583 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
585 struct {
586 struct kvm_msrs info;
587 struct kvm_msr_entry entries[1];
588 } msr_data = {};
589 uint64_t value;
590 uint32_t ret, can_be_one, must_be_one;
592 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
593 return 0;
596 /* Check if requested MSR is supported feature MSR */
597 int i;
598 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
599 if (kvm_feature_msrs->indices[i] == index) {
600 break;
602 if (i == kvm_feature_msrs->nmsrs) {
603 return 0; /* if the feature MSR is not supported, simply return 0 */
606 msr_data.info.nmsrs = 1;
607 msr_data.entries[0].index = index;
609 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
610 if (ret != 1) {
611 error_report("KVM get MSR (index=0x%x) feature failed, %s",
612 index, strerror(-ret));
613 exit(1);
616 value = msr_data.entries[0].data;
617 switch (index) {
618 case MSR_IA32_VMX_PROCBASED_CTLS2:
619 if (!has_msr_vmx_procbased_ctls2) {
620 /* KVM forgot to add these bits for some time, do this ourselves. */
621 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
622 CPUID_XSAVE_XSAVES) {
623 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
625 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
626 CPUID_EXT_RDRAND) {
627 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
629 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
630 CPUID_7_0_EBX_INVPCID) {
631 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
633 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
634 CPUID_7_0_EBX_RDSEED) {
635 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
637 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
638 CPUID_EXT2_RDTSCP) {
639 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
642 /* fall through */
643 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
644 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
645 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
646 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
648 * Return true for bits that can be one, but do not have to be one.
649 * The SDM tells us which bits could have a "must be one" setting,
650 * so we can do the opposite transformation in make_vmx_msr_value.
652 must_be_one = (uint32_t)value;
653 can_be_one = (uint32_t)(value >> 32);
654 return can_be_one & ~must_be_one;
656 default:
657 return value;
661 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
662 int *max_banks)
664 *max_banks = kvm_check_extension(s, KVM_CAP_MCE);
665 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
668 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
670 CPUState *cs = CPU(cpu);
671 CPUX86State *env = &cpu->env;
672 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_EN | MCI_STATUS_MISCV |
673 MCI_STATUS_ADDRV;
674 uint64_t mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
675 int flags = 0;
677 if (!IS_AMD_CPU(env)) {
678 status |= MCI_STATUS_S | MCI_STATUS_UC;
679 if (code == BUS_MCEERR_AR) {
680 status |= MCI_STATUS_AR | 0x134;
681 mcg_status |= MCG_STATUS_EIPV;
682 } else {
683 status |= 0xc0;
685 } else {
686 if (code == BUS_MCEERR_AR) {
687 status |= MCI_STATUS_UC | MCI_STATUS_POISON;
688 mcg_status |= MCG_STATUS_EIPV;
689 } else {
690 /* Setting the POISON bit for deferred errors indicates to the
691 * guest kernel that the address provided by the MCE is valid
692 * and usable which will ensure that the guest kernel will send
693 * a SIGBUS_AO signal to the guest process. This allows for
694 * more desirable behavior in the case that the guest process
695 * with poisoned memory has set the MCE_KILL_EARLY prctl flag
696 * which indicates that the process would prefer to handle or
697 * shutdown due to the poisoned memory condition before the
698 * memory has been accessed.
700 * While the POISON bit would not be set in a deferred error
701 * sent from hardware, the bit is not meaningful for deferred
702 * errors and can be reused in this scenario.
704 status |= MCI_STATUS_DEFERRED | MCI_STATUS_POISON;
708 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
709 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
710 * guest kernel back into env->mcg_ext_ctl.
712 cpu_synchronize_state(cs);
713 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
714 mcg_status |= MCG_STATUS_LMCE;
715 flags = 0;
718 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
719 (MCM_ADDR_PHYS << 6) | 0xc, flags);
722 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
724 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
726 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
727 &mff);
730 static void hardware_memory_error(void *host_addr)
732 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
733 error_report("QEMU got Hardware memory error at addr %p", host_addr);
734 exit(1);
737 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
739 X86CPU *cpu = X86_CPU(c);
740 CPUX86State *env = &cpu->env;
741 ram_addr_t ram_addr;
742 hwaddr paddr;
744 /* If we get an action required MCE, it has been injected by KVM
745 * while the VM was running. An action optional MCE instead should
746 * be coming from the main thread, which qemu_init_sigbus identifies
747 * as the "early kill" thread.
749 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
751 if ((env->mcg_cap & MCG_SER_P) && addr) {
752 ram_addr = qemu_ram_addr_from_host(addr);
753 if (ram_addr != RAM_ADDR_INVALID &&
754 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
755 kvm_hwpoison_page_add(ram_addr);
756 kvm_mce_inject(cpu, paddr, code);
759 * Use different logging severity based on error type.
760 * If there is additional MCE reporting on the hypervisor, QEMU VA
761 * could be another source to identify the PA and MCE details.
763 if (code == BUS_MCEERR_AR) {
764 error_report("Guest MCE Memory Error at QEMU addr %p and "
765 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
766 addr, paddr, "BUS_MCEERR_AR");
767 } else {
768 warn_report("Guest MCE Memory Error at QEMU addr %p and "
769 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
770 addr, paddr, "BUS_MCEERR_AO");
773 return;
776 if (code == BUS_MCEERR_AO) {
777 warn_report("Hardware memory error at addr %p of type %s "
778 "for memory used by QEMU itself instead of guest system!",
779 addr, "BUS_MCEERR_AO");
783 if (code == BUS_MCEERR_AR) {
784 hardware_memory_error(addr);
787 /* Hope we are lucky for AO MCE, just notify a event */
788 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
791 static void kvm_queue_exception(CPUX86State *env,
792 int32_t exception_nr,
793 uint8_t exception_has_payload,
794 uint64_t exception_payload)
796 assert(env->exception_nr == -1);
797 assert(!env->exception_pending);
798 assert(!env->exception_injected);
799 assert(!env->exception_has_payload);
801 env->exception_nr = exception_nr;
803 if (has_exception_payload) {
804 env->exception_pending = 1;
806 env->exception_has_payload = exception_has_payload;
807 env->exception_payload = exception_payload;
808 } else {
809 env->exception_injected = 1;
811 if (exception_nr == EXCP01_DB) {
812 assert(exception_has_payload);
813 env->dr[6] = exception_payload;
814 } else if (exception_nr == EXCP0E_PAGE) {
815 assert(exception_has_payload);
816 env->cr[2] = exception_payload;
817 } else {
818 assert(!exception_has_payload);
823 static void cpu_update_state(void *opaque, bool running, RunState state)
825 CPUX86State *env = opaque;
827 if (running) {
828 env->tsc_valid = false;
832 unsigned long kvm_arch_vcpu_id(CPUState *cs)
834 X86CPU *cpu = X86_CPU(cs);
835 return cpu->apic_id;
838 #ifndef KVM_CPUID_SIGNATURE_NEXT
839 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
840 #endif
842 static bool hyperv_enabled(X86CPU *cpu)
844 return kvm_check_extension(kvm_state, KVM_CAP_HYPERV) > 0 &&
845 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
846 cpu->hyperv_features || cpu->hyperv_passthrough);
850 * Check whether target_freq is within conservative
851 * ntp correctable bounds (250ppm) of freq
853 static inline bool freq_within_bounds(int freq, int target_freq)
855 int max_freq = freq + (freq * 250 / 1000000);
856 int min_freq = freq - (freq * 250 / 1000000);
858 if (target_freq >= min_freq && target_freq <= max_freq) {
859 return true;
862 return false;
865 static int kvm_arch_set_tsc_khz(CPUState *cs)
867 X86CPU *cpu = X86_CPU(cs);
868 CPUX86State *env = &cpu->env;
869 int r, cur_freq;
870 bool set_ioctl = false;
872 if (!env->tsc_khz) {
873 return 0;
876 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
877 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
880 * If TSC scaling is supported, attempt to set TSC frequency.
882 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
883 set_ioctl = true;
887 * If desired TSC frequency is within bounds of NTP correction,
888 * attempt to set TSC frequency.
890 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
891 set_ioctl = true;
894 r = set_ioctl ?
895 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
896 -ENOTSUP;
898 if (r < 0) {
899 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
900 * TSC frequency doesn't match the one we want.
902 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
903 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
904 -ENOTSUP;
905 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
906 warn_report("TSC frequency mismatch between "
907 "VM (%" PRId64 " kHz) and host (%d kHz), "
908 "and TSC scaling unavailable",
909 env->tsc_khz, cur_freq);
910 return r;
914 return 0;
917 static bool tsc_is_stable_and_known(CPUX86State *env)
919 if (!env->tsc_khz) {
920 return false;
922 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
923 || env->user_tsc_khz;
926 #define DEFAULT_EVMCS_VERSION ((1 << 8) | 1)
928 static struct {
929 const char *desc;
930 struct {
931 uint32_t func;
932 int reg;
933 uint32_t bits;
934 } flags[2];
935 uint64_t dependencies;
936 } kvm_hyperv_properties[] = {
937 [HYPERV_FEAT_RELAXED] = {
938 .desc = "relaxed timing (hv-relaxed)",
939 .flags = {
940 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
941 .bits = HV_RELAXED_TIMING_RECOMMENDED}
944 [HYPERV_FEAT_VAPIC] = {
945 .desc = "virtual APIC (hv-vapic)",
946 .flags = {
947 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
948 .bits = HV_APIC_ACCESS_AVAILABLE}
951 [HYPERV_FEAT_TIME] = {
952 .desc = "clocksources (hv-time)",
953 .flags = {
954 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
955 .bits = HV_TIME_REF_COUNT_AVAILABLE | HV_REFERENCE_TSC_AVAILABLE}
958 [HYPERV_FEAT_CRASH] = {
959 .desc = "crash MSRs (hv-crash)",
960 .flags = {
961 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
962 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
965 [HYPERV_FEAT_RESET] = {
966 .desc = "reset MSR (hv-reset)",
967 .flags = {
968 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
969 .bits = HV_RESET_AVAILABLE}
972 [HYPERV_FEAT_VPINDEX] = {
973 .desc = "VP_INDEX MSR (hv-vpindex)",
974 .flags = {
975 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
976 .bits = HV_VP_INDEX_AVAILABLE}
979 [HYPERV_FEAT_RUNTIME] = {
980 .desc = "VP_RUNTIME MSR (hv-runtime)",
981 .flags = {
982 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
983 .bits = HV_VP_RUNTIME_AVAILABLE}
986 [HYPERV_FEAT_SYNIC] = {
987 .desc = "synthetic interrupt controller (hv-synic)",
988 .flags = {
989 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
990 .bits = HV_SYNIC_AVAILABLE}
993 [HYPERV_FEAT_STIMER] = {
994 .desc = "synthetic timers (hv-stimer)",
995 .flags = {
996 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
997 .bits = HV_SYNTIMERS_AVAILABLE}
999 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
1001 [HYPERV_FEAT_FREQUENCIES] = {
1002 .desc = "frequency MSRs (hv-frequencies)",
1003 .flags = {
1004 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1005 .bits = HV_ACCESS_FREQUENCY_MSRS},
1006 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1007 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
1010 [HYPERV_FEAT_REENLIGHTENMENT] = {
1011 .desc = "reenlightenment MSRs (hv-reenlightenment)",
1012 .flags = {
1013 {.func = HV_CPUID_FEATURES, .reg = R_EAX,
1014 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
1017 [HYPERV_FEAT_TLBFLUSH] = {
1018 .desc = "paravirtualized TLB flush (hv-tlbflush)",
1019 .flags = {
1020 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1021 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
1022 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1024 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1026 [HYPERV_FEAT_EVMCS] = {
1027 .desc = "enlightened VMCS (hv-evmcs)",
1028 .flags = {
1029 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1030 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
1032 .dependencies = BIT(HYPERV_FEAT_VAPIC)
1034 [HYPERV_FEAT_IPI] = {
1035 .desc = "paravirtualized IPI (hv-ipi)",
1036 .flags = {
1037 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1038 .bits = HV_CLUSTER_IPI_RECOMMENDED |
1039 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
1041 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
1043 [HYPERV_FEAT_STIMER_DIRECT] = {
1044 .desc = "direct mode synthetic timers (hv-stimer-direct)",
1045 .flags = {
1046 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1047 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
1049 .dependencies = BIT(HYPERV_FEAT_STIMER)
1051 [HYPERV_FEAT_AVIC] = {
1052 .desc = "AVIC/APICv support (hv-avic/hv-apicv)",
1053 .flags = {
1054 {.func = HV_CPUID_ENLIGHTMENT_INFO, .reg = R_EAX,
1055 .bits = HV_DEPRECATING_AEOI_RECOMMENDED}
1058 #ifdef CONFIG_SYNDBG
1059 [HYPERV_FEAT_SYNDBG] = {
1060 .desc = "Enable synthetic kernel debugger channel (hv-syndbg)",
1061 .flags = {
1062 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1063 .bits = HV_FEATURE_DEBUG_MSRS_AVAILABLE}
1065 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_RELAXED)
1067 #endif
1068 [HYPERV_FEAT_MSR_BITMAP] = {
1069 .desc = "enlightened MSR-Bitmap (hv-emsr-bitmap)",
1070 .flags = {
1071 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1072 .bits = HV_NESTED_MSR_BITMAP}
1075 [HYPERV_FEAT_XMM_INPUT] = {
1076 .desc = "XMM fast hypercall input (hv-xmm-input)",
1077 .flags = {
1078 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1079 .bits = HV_HYPERCALL_XMM_INPUT_AVAILABLE}
1082 [HYPERV_FEAT_TLBFLUSH_EXT] = {
1083 .desc = "Extended gva ranges for TLB flush hypercalls (hv-tlbflush-ext)",
1084 .flags = {
1085 {.func = HV_CPUID_FEATURES, .reg = R_EDX,
1086 .bits = HV_EXT_GVA_RANGES_FLUSH_AVAILABLE}
1088 .dependencies = BIT(HYPERV_FEAT_TLBFLUSH)
1090 [HYPERV_FEAT_TLBFLUSH_DIRECT] = {
1091 .desc = "direct TLB flush (hv-tlbflush-direct)",
1092 .flags = {
1093 {.func = HV_CPUID_NESTED_FEATURES, .reg = R_EAX,
1094 .bits = HV_NESTED_DIRECT_FLUSH}
1096 .dependencies = BIT(HYPERV_FEAT_VAPIC)
1100 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max,
1101 bool do_sys_ioctl)
1103 struct kvm_cpuid2 *cpuid;
1104 int r, size;
1106 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
1107 cpuid = g_malloc0(size);
1108 cpuid->nent = max;
1110 if (do_sys_ioctl) {
1111 r = kvm_ioctl(kvm_state, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1112 } else {
1113 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
1115 if (r == 0 && cpuid->nent >= max) {
1116 r = -E2BIG;
1118 if (r < 0) {
1119 if (r == -E2BIG) {
1120 g_free(cpuid);
1121 return NULL;
1122 } else {
1123 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
1124 strerror(-r));
1125 exit(1);
1128 return cpuid;
1132 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
1133 * for all entries.
1135 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
1137 struct kvm_cpuid2 *cpuid;
1138 /* 0x40000000..0x40000005, 0x4000000A, 0x40000080..0x40000082 leaves */
1139 int max = 11;
1140 int i;
1141 bool do_sys_ioctl;
1143 do_sys_ioctl =
1144 kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID) > 0;
1147 * Non-empty KVM context is needed when KVM_CAP_SYS_HYPERV_CPUID is
1148 * unsupported, kvm_hyperv_expand_features() checks for that.
1150 assert(do_sys_ioctl || cs->kvm_state);
1153 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
1154 * -E2BIG, however, it doesn't report back the right size. Keep increasing
1155 * it and re-trying until we succeed.
1157 while ((cpuid = try_get_hv_cpuid(cs, max, do_sys_ioctl)) == NULL) {
1158 max++;
1162 * KVM_GET_SUPPORTED_HV_CPUID does not set EVMCS CPUID bit before
1163 * KVM_CAP_HYPERV_ENLIGHTENED_VMCS is enabled but we want to get the
1164 * information early, just check for the capability and set the bit
1165 * manually.
1167 if (!do_sys_ioctl && kvm_check_extension(cs->kvm_state,
1168 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1169 for (i = 0; i < cpuid->nent; i++) {
1170 if (cpuid->entries[i].function == HV_CPUID_ENLIGHTMENT_INFO) {
1171 cpuid->entries[i].eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1176 return cpuid;
1180 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
1181 * leaves from KVM_CAP_HYPERV* and present MSRs data.
1183 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
1185 X86CPU *cpu = X86_CPU(cs);
1186 struct kvm_cpuid2 *cpuid;
1187 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
1189 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
1190 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
1191 cpuid->nent = 2;
1193 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
1194 entry_feat = &cpuid->entries[0];
1195 entry_feat->function = HV_CPUID_FEATURES;
1197 entry_recomm = &cpuid->entries[1];
1198 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1199 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1201 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1202 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1203 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1204 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1205 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1206 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1209 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1210 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1211 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1214 if (has_msr_hv_frequencies) {
1215 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1216 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1219 if (has_msr_hv_crash) {
1220 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1223 if (has_msr_hv_reenlightenment) {
1224 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1227 if (has_msr_hv_reset) {
1228 entry_feat->eax |= HV_RESET_AVAILABLE;
1231 if (has_msr_hv_vpindex) {
1232 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1235 if (has_msr_hv_runtime) {
1236 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1239 if (has_msr_hv_synic) {
1240 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1241 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1243 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1244 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1248 if (has_msr_hv_stimer) {
1249 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1252 if (has_msr_hv_syndbg_options) {
1253 entry_feat->edx |= HV_GUEST_DEBUGGING_AVAILABLE;
1254 entry_feat->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1255 entry_feat->ebx |= HV_PARTITION_DEBUGGING_ALLOWED;
1258 if (kvm_check_extension(cs->kvm_state,
1259 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1260 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1261 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1264 if (kvm_check_extension(cs->kvm_state,
1265 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1266 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1269 if (kvm_check_extension(cs->kvm_state,
1270 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1271 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1272 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1275 return cpuid;
1278 static uint32_t hv_cpuid_get_host(CPUState *cs, uint32_t func, int reg)
1280 struct kvm_cpuid_entry2 *entry;
1281 struct kvm_cpuid2 *cpuid;
1283 if (hv_cpuid_cache) {
1284 cpuid = hv_cpuid_cache;
1285 } else {
1286 if (kvm_check_extension(kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1287 cpuid = get_supported_hv_cpuid(cs);
1288 } else {
1290 * 'cs->kvm_state' may be NULL when Hyper-V features are expanded
1291 * before KVM context is created but this is only done when
1292 * KVM_CAP_SYS_HYPERV_CPUID is supported and it implies
1293 * KVM_CAP_HYPERV_CPUID.
1295 assert(cs->kvm_state);
1297 cpuid = get_supported_hv_cpuid_legacy(cs);
1299 hv_cpuid_cache = cpuid;
1302 if (!cpuid) {
1303 return 0;
1306 entry = cpuid_find_entry(cpuid, func, 0);
1307 if (!entry) {
1308 return 0;
1311 return cpuid_entry_get_reg(entry, reg);
1314 static bool hyperv_feature_supported(CPUState *cs, int feature)
1316 uint32_t func, bits;
1317 int i, reg;
1319 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1321 func = kvm_hyperv_properties[feature].flags[i].func;
1322 reg = kvm_hyperv_properties[feature].flags[i].reg;
1323 bits = kvm_hyperv_properties[feature].flags[i].bits;
1325 if (!func) {
1326 continue;
1329 if ((hv_cpuid_get_host(cs, func, reg) & bits) != bits) {
1330 return false;
1334 return true;
1337 /* Checks that all feature dependencies are enabled */
1338 static bool hv_feature_check_deps(X86CPU *cpu, int feature, Error **errp)
1340 uint64_t deps;
1341 int dep_feat;
1343 deps = kvm_hyperv_properties[feature].dependencies;
1344 while (deps) {
1345 dep_feat = ctz64(deps);
1346 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1347 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1348 kvm_hyperv_properties[feature].desc,
1349 kvm_hyperv_properties[dep_feat].desc);
1350 return false;
1352 deps &= ~(1ull << dep_feat);
1355 return true;
1358 static uint32_t hv_build_cpuid_leaf(CPUState *cs, uint32_t func, int reg)
1360 X86CPU *cpu = X86_CPU(cs);
1361 uint32_t r = 0;
1362 int i, j;
1364 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties); i++) {
1365 if (!hyperv_feat_enabled(cpu, i)) {
1366 continue;
1369 for (j = 0; j < ARRAY_SIZE(kvm_hyperv_properties[i].flags); j++) {
1370 if (kvm_hyperv_properties[i].flags[j].func != func) {
1371 continue;
1373 if (kvm_hyperv_properties[i].flags[j].reg != reg) {
1374 continue;
1377 r |= kvm_hyperv_properties[i].flags[j].bits;
1381 /* HV_CPUID_NESTED_FEATURES.EAX also encodes the supported eVMCS range */
1382 if (func == HV_CPUID_NESTED_FEATURES && reg == R_EAX) {
1383 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1384 r |= DEFAULT_EVMCS_VERSION;
1388 return r;
1392 * Expand Hyper-V CPU features. In partucular, check that all the requested
1393 * features are supported by the host and the sanity of the configuration
1394 * (that all the required dependencies are included). Also, this takes care
1395 * of 'hv_passthrough' mode and fills the environment with all supported
1396 * Hyper-V features.
1398 bool kvm_hyperv_expand_features(X86CPU *cpu, Error **errp)
1400 CPUState *cs = CPU(cpu);
1401 Error *local_err = NULL;
1402 int feat;
1404 if (!hyperv_enabled(cpu))
1405 return true;
1408 * When kvm_hyperv_expand_features is called at CPU feature expansion
1409 * time per-CPU kvm_state is not available yet so we can only proceed
1410 * when KVM_CAP_SYS_HYPERV_CPUID is supported.
1412 if (!cs->kvm_state &&
1413 !kvm_check_extension(kvm_state, KVM_CAP_SYS_HYPERV_CPUID))
1414 return true;
1416 if (cpu->hyperv_passthrough) {
1417 cpu->hyperv_vendor_id[0] =
1418 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EBX);
1419 cpu->hyperv_vendor_id[1] =
1420 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_ECX);
1421 cpu->hyperv_vendor_id[2] =
1422 hv_cpuid_get_host(cs, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, R_EDX);
1423 cpu->hyperv_vendor = g_realloc(cpu->hyperv_vendor,
1424 sizeof(cpu->hyperv_vendor_id) + 1);
1425 memcpy(cpu->hyperv_vendor, cpu->hyperv_vendor_id,
1426 sizeof(cpu->hyperv_vendor_id));
1427 cpu->hyperv_vendor[sizeof(cpu->hyperv_vendor_id)] = 0;
1429 cpu->hyperv_interface_id[0] =
1430 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EAX);
1431 cpu->hyperv_interface_id[1] =
1432 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EBX);
1433 cpu->hyperv_interface_id[2] =
1434 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_ECX);
1435 cpu->hyperv_interface_id[3] =
1436 hv_cpuid_get_host(cs, HV_CPUID_INTERFACE, R_EDX);
1438 cpu->hyperv_ver_id_build =
1439 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EAX);
1440 cpu->hyperv_ver_id_major =
1441 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) >> 16;
1442 cpu->hyperv_ver_id_minor =
1443 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EBX) & 0xffff;
1444 cpu->hyperv_ver_id_sp =
1445 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_ECX);
1446 cpu->hyperv_ver_id_sb =
1447 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) >> 24;
1448 cpu->hyperv_ver_id_sn =
1449 hv_cpuid_get_host(cs, HV_CPUID_VERSION, R_EDX) & 0xffffff;
1451 cpu->hv_max_vps = hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS,
1452 R_EAX);
1453 cpu->hyperv_limits[0] =
1454 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EBX);
1455 cpu->hyperv_limits[1] =
1456 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_ECX);
1457 cpu->hyperv_limits[2] =
1458 hv_cpuid_get_host(cs, HV_CPUID_IMPLEMENT_LIMITS, R_EDX);
1460 cpu->hyperv_spinlock_attempts =
1461 hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EBX);
1464 * Mark feature as enabled in 'cpu->hyperv_features' as
1465 * hv_build_cpuid_leaf() uses this info to build guest CPUIDs.
1467 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1468 if (hyperv_feature_supported(cs, feat)) {
1469 cpu->hyperv_features |= BIT(feat);
1472 } else {
1473 /* Check features availability and dependencies */
1474 for (feat = 0; feat < ARRAY_SIZE(kvm_hyperv_properties); feat++) {
1475 /* If the feature was not requested skip it. */
1476 if (!hyperv_feat_enabled(cpu, feat)) {
1477 continue;
1480 /* Check if the feature is supported by KVM */
1481 if (!hyperv_feature_supported(cs, feat)) {
1482 error_setg(errp, "Hyper-V %s is not supported by kernel",
1483 kvm_hyperv_properties[feat].desc);
1484 return false;
1487 /* Check dependencies */
1488 if (!hv_feature_check_deps(cpu, feat, &local_err)) {
1489 error_propagate(errp, local_err);
1490 return false;
1495 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1496 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1497 !cpu->hyperv_synic_kvm_only &&
1498 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1499 error_setg(errp, "Hyper-V %s requires Hyper-V %s",
1500 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1501 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1502 return false;
1505 return true;
1509 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent.
1511 static int hyperv_fill_cpuids(CPUState *cs,
1512 struct kvm_cpuid_entry2 *cpuid_ent)
1514 X86CPU *cpu = X86_CPU(cs);
1515 struct kvm_cpuid_entry2 *c;
1516 uint32_t signature[3];
1517 uint32_t cpuid_i = 0, max_cpuid_leaf = 0;
1518 uint32_t nested_eax =
1519 hv_build_cpuid_leaf(cs, HV_CPUID_NESTED_FEATURES, R_EAX);
1521 max_cpuid_leaf = nested_eax ? HV_CPUID_NESTED_FEATURES :
1522 HV_CPUID_IMPLEMENT_LIMITS;
1524 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1525 max_cpuid_leaf =
1526 MAX(max_cpuid_leaf, HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
1529 c = &cpuid_ent[cpuid_i++];
1530 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1531 c->eax = max_cpuid_leaf;
1532 c->ebx = cpu->hyperv_vendor_id[0];
1533 c->ecx = cpu->hyperv_vendor_id[1];
1534 c->edx = cpu->hyperv_vendor_id[2];
1536 c = &cpuid_ent[cpuid_i++];
1537 c->function = HV_CPUID_INTERFACE;
1538 c->eax = cpu->hyperv_interface_id[0];
1539 c->ebx = cpu->hyperv_interface_id[1];
1540 c->ecx = cpu->hyperv_interface_id[2];
1541 c->edx = cpu->hyperv_interface_id[3];
1543 c = &cpuid_ent[cpuid_i++];
1544 c->function = HV_CPUID_VERSION;
1545 c->eax = cpu->hyperv_ver_id_build;
1546 c->ebx = (uint32_t)cpu->hyperv_ver_id_major << 16 |
1547 cpu->hyperv_ver_id_minor;
1548 c->ecx = cpu->hyperv_ver_id_sp;
1549 c->edx = (uint32_t)cpu->hyperv_ver_id_sb << 24 |
1550 (cpu->hyperv_ver_id_sn & 0xffffff);
1552 c = &cpuid_ent[cpuid_i++];
1553 c->function = HV_CPUID_FEATURES;
1554 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EAX);
1555 c->ebx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EBX);
1556 c->edx = hv_build_cpuid_leaf(cs, HV_CPUID_FEATURES, R_EDX);
1558 /* Unconditionally required with any Hyper-V enlightenment */
1559 c->eax |= HV_HYPERCALL_AVAILABLE;
1561 /* SynIC and Vmbus devices require messages/signals hypercalls */
1562 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1563 !cpu->hyperv_synic_kvm_only) {
1564 c->ebx |= HV_POST_MESSAGES | HV_SIGNAL_EVENTS;
1568 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1569 c->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1571 c = &cpuid_ent[cpuid_i++];
1572 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1573 c->eax = hv_build_cpuid_leaf(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX);
1574 c->ebx = cpu->hyperv_spinlock_attempts;
1576 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1577 !hyperv_feat_enabled(cpu, HYPERV_FEAT_AVIC)) {
1578 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
1581 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1582 c->eax |= HV_NO_NONARCH_CORESHARING;
1583 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1584 c->eax |= hv_cpuid_get_host(cs, HV_CPUID_ENLIGHTMENT_INFO, R_EAX) &
1585 HV_NO_NONARCH_CORESHARING;
1588 c = &cpuid_ent[cpuid_i++];
1589 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1590 c->eax = cpu->hv_max_vps;
1591 c->ebx = cpu->hyperv_limits[0];
1592 c->ecx = cpu->hyperv_limits[1];
1593 c->edx = cpu->hyperv_limits[2];
1595 if (nested_eax) {
1596 uint32_t function;
1598 /* Create zeroed 0x40000006..0x40000009 leaves */
1599 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1600 function < HV_CPUID_NESTED_FEATURES; function++) {
1601 c = &cpuid_ent[cpuid_i++];
1602 c->function = function;
1605 c = &cpuid_ent[cpuid_i++];
1606 c->function = HV_CPUID_NESTED_FEATURES;
1607 c->eax = nested_eax;
1610 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG)) {
1611 c = &cpuid_ent[cpuid_i++];
1612 c->function = HV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS;
1613 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1614 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1615 memcpy(signature, "Microsoft VS", 12);
1616 c->eax = 0;
1617 c->ebx = signature[0];
1618 c->ecx = signature[1];
1619 c->edx = signature[2];
1621 c = &cpuid_ent[cpuid_i++];
1622 c->function = HV_CPUID_SYNDBG_INTERFACE;
1623 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
1624 c->eax = signature[0];
1625 c->ebx = 0;
1626 c->ecx = 0;
1627 c->edx = 0;
1629 c = &cpuid_ent[cpuid_i++];
1630 c->function = HV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
1631 c->eax = HV_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
1632 c->ebx = 0;
1633 c->ecx = 0;
1634 c->edx = 0;
1637 return cpuid_i;
1640 static Error *hv_passthrough_mig_blocker;
1641 static Error *hv_no_nonarch_cs_mig_blocker;
1643 /* Checks that the exposed eVMCS version range is supported by KVM */
1644 static bool evmcs_version_supported(uint16_t evmcs_version,
1645 uint16_t supported_evmcs_version)
1647 uint8_t min_version = evmcs_version & 0xff;
1648 uint8_t max_version = evmcs_version >> 8;
1649 uint8_t min_supported_version = supported_evmcs_version & 0xff;
1650 uint8_t max_supported_version = supported_evmcs_version >> 8;
1652 return (min_version >= min_supported_version) &&
1653 (max_version <= max_supported_version);
1656 static int hyperv_init_vcpu(X86CPU *cpu)
1658 CPUState *cs = CPU(cpu);
1659 Error *local_err = NULL;
1660 int ret;
1662 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1663 error_setg(&hv_passthrough_mig_blocker,
1664 "'hv-passthrough' CPU flag prevents migration, use explicit"
1665 " set of hv-* flags instead");
1666 ret = migrate_add_blocker(&hv_passthrough_mig_blocker, &local_err);
1667 if (ret < 0) {
1668 error_report_err(local_err);
1669 return ret;
1673 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1674 hv_no_nonarch_cs_mig_blocker == NULL) {
1675 error_setg(&hv_no_nonarch_cs_mig_blocker,
1676 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1677 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1678 " make sure SMT is disabled and/or that vCPUs are properly"
1679 " pinned)");
1680 ret = migrate_add_blocker(&hv_no_nonarch_cs_mig_blocker, &local_err);
1681 if (ret < 0) {
1682 error_report_err(local_err);
1683 return ret;
1687 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1689 * the kernel doesn't support setting vp_index; assert that its value
1690 * is in sync
1692 uint64_t value;
1694 ret = kvm_get_one_msr(cpu, HV_X64_MSR_VP_INDEX, &value);
1695 if (ret < 0) {
1696 return ret;
1699 if (value != hyperv_vp_index(CPU(cpu))) {
1700 error_report("kernel's vp_index != QEMU's vp_index");
1701 return -ENXIO;
1705 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1706 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1707 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1708 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1709 if (ret < 0) {
1710 error_report("failed to turn on HyperV SynIC in KVM: %s",
1711 strerror(-ret));
1712 return ret;
1715 if (!cpu->hyperv_synic_kvm_only) {
1716 ret = hyperv_x86_synic_add(cpu);
1717 if (ret < 0) {
1718 error_report("failed to create HyperV SynIC: %s",
1719 strerror(-ret));
1720 return ret;
1725 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1726 uint16_t evmcs_version = DEFAULT_EVMCS_VERSION;
1727 uint16_t supported_evmcs_version;
1729 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1730 (uintptr_t)&supported_evmcs_version);
1733 * KVM is required to support EVMCS ver.1. as that's what 'hv-evmcs'
1734 * option sets. Note: we hardcode the maximum supported eVMCS version
1735 * to '1' as well so 'hv-evmcs' feature is migratable even when (and if)
1736 * ver.2 is implemented. A new option (e.g. 'hv-evmcs=2') will then have
1737 * to be added.
1739 if (ret < 0) {
1740 error_report("Hyper-V %s is not supported by kernel",
1741 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1742 return ret;
1745 if (!evmcs_version_supported(evmcs_version, supported_evmcs_version)) {
1746 error_report("eVMCS version range [%d..%d] is not supported by "
1747 "kernel (supported: [%d..%d])", evmcs_version & 0xff,
1748 evmcs_version >> 8, supported_evmcs_version & 0xff,
1749 supported_evmcs_version >> 8);
1750 return -ENOTSUP;
1754 if (cpu->hyperv_enforce_cpuid) {
1755 ret = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENFORCE_CPUID, 0, 1);
1756 if (ret < 0) {
1757 error_report("failed to enable KVM_CAP_HYPERV_ENFORCE_CPUID: %s",
1758 strerror(-ret));
1759 return ret;
1763 /* Skip SynIC and VP_INDEX since they are hard deps already */
1764 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_STIMER) &&
1765 hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC) &&
1766 hyperv_feat_enabled(cpu, HYPERV_FEAT_RUNTIME)) {
1767 hyperv_x86_set_vmbus_recommended_features_enabled();
1770 return 0;
1773 static Error *invtsc_mig_blocker;
1775 #define KVM_MAX_CPUID_ENTRIES 100
1777 static void kvm_init_xsave(CPUX86State *env)
1779 if (has_xsave2) {
1780 env->xsave_buf_len = QEMU_ALIGN_UP(has_xsave2, 4096);
1781 } else {
1782 env->xsave_buf_len = sizeof(struct kvm_xsave);
1785 env->xsave_buf = qemu_memalign(4096, env->xsave_buf_len);
1786 memset(env->xsave_buf, 0, env->xsave_buf_len);
1788 * The allocated storage must be large enough for all of the
1789 * possible XSAVE state components.
1791 assert(kvm_arch_get_supported_cpuid(kvm_state, 0xd, 0, R_ECX) <=
1792 env->xsave_buf_len);
1795 static void kvm_init_nested_state(CPUX86State *env)
1797 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1798 uint32_t size;
1800 if (!env->nested_state) {
1801 return;
1804 size = env->nested_state->size;
1806 memset(env->nested_state, 0, size);
1807 env->nested_state->size = size;
1809 if (cpu_has_vmx(env)) {
1810 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1811 vmx_hdr = &env->nested_state->hdr.vmx;
1812 vmx_hdr->vmxon_pa = -1ull;
1813 vmx_hdr->vmcs12_pa = -1ull;
1814 } else if (cpu_has_svm(env)) {
1815 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1819 static uint32_t kvm_x86_build_cpuid(CPUX86State *env,
1820 struct kvm_cpuid_entry2 *entries,
1821 uint32_t cpuid_i)
1823 uint32_t limit, i, j;
1824 uint32_t unused;
1825 struct kvm_cpuid_entry2 *c;
1827 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1829 for (i = 0; i <= limit; i++) {
1830 j = 0;
1831 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1832 goto full;
1834 c = &entries[cpuid_i++];
1835 switch (i) {
1836 case 2: {
1837 /* Keep reading function 2 till all the input is received */
1838 int times;
1840 c->function = i;
1841 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1842 KVM_CPUID_FLAG_STATE_READ_NEXT;
1843 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1844 times = c->eax & 0xff;
1846 for (j = 1; j < times; ++j) {
1847 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1848 goto full;
1850 c = &entries[cpuid_i++];
1851 c->function = i;
1852 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1853 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1855 break;
1857 case 0x1f:
1858 if (!x86_has_extended_topo(env->avail_cpu_topo)) {
1859 cpuid_i--;
1860 break;
1862 /* fallthrough */
1863 case 4:
1864 case 0xb:
1865 case 0xd:
1866 for (j = 0; ; j++) {
1867 if (i == 0xd && j == 64) {
1868 break;
1871 c->function = i;
1872 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1873 c->index = j;
1874 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1876 if (i == 4 && c->eax == 0) {
1877 break;
1879 if (i == 0xb && !(c->ecx & 0xff00)) {
1880 break;
1882 if (i == 0x1f && !(c->ecx & 0xff00)) {
1883 break;
1885 if (i == 0xd && c->eax == 0) {
1886 continue;
1888 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1889 goto full;
1891 c = &entries[cpuid_i++];
1893 break;
1894 case 0x12:
1895 for (j = 0; ; j++) {
1896 c->function = i;
1897 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1898 c->index = j;
1899 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1901 if (j > 1 && (c->eax & 0xf) != 1) {
1902 break;
1905 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1906 goto full;
1908 c = &entries[cpuid_i++];
1910 break;
1911 case 0x7:
1912 case 0x14:
1913 case 0x1d:
1914 case 0x1e: {
1915 uint32_t times;
1917 c->function = i;
1918 c->index = 0;
1919 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1920 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1921 times = c->eax;
1923 for (j = 1; j <= times; ++j) {
1924 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1925 goto full;
1927 c = &entries[cpuid_i++];
1928 c->function = i;
1929 c->index = j;
1930 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1931 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1933 break;
1935 default:
1936 c->function = i;
1937 c->flags = 0;
1938 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1939 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1941 * KVM already returns all zeroes if a CPUID entry is missing,
1942 * so we can omit it and avoid hitting KVM's 80-entry limit.
1944 cpuid_i--;
1946 break;
1950 if (limit >= 0x0a) {
1951 uint32_t eax, edx;
1953 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1955 has_architectural_pmu_version = eax & 0xff;
1956 if (has_architectural_pmu_version > 0) {
1957 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1959 /* Shouldn't be more than 32, since that's the number of bits
1960 * available in EBX to tell us _which_ counters are available.
1961 * Play it safe.
1963 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1964 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1967 if (has_architectural_pmu_version > 1) {
1968 num_architectural_pmu_fixed_counters = edx & 0x1f;
1970 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1971 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1977 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1979 for (i = 0x80000000; i <= limit; i++) {
1980 j = 0;
1981 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1982 goto full;
1984 c = &entries[cpuid_i++];
1986 switch (i) {
1987 case 0x8000001d:
1988 /* Query for all AMD cache information leaves */
1989 for (j = 0; ; j++) {
1990 c->function = i;
1991 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1992 c->index = j;
1993 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1995 if (c->eax == 0) {
1996 break;
1998 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1999 goto full;
2001 c = &entries[cpuid_i++];
2003 break;
2004 default:
2005 c->function = i;
2006 c->flags = 0;
2007 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2008 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
2010 * KVM already returns all zeroes if a CPUID entry is missing,
2011 * so we can omit it and avoid hitting KVM's 80-entry limit.
2013 cpuid_i--;
2015 break;
2019 /* Call Centaur's CPUID instructions they are supported. */
2020 if (env->cpuid_xlevel2 > 0) {
2021 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
2023 for (i = 0xC0000000; i <= limit; i++) {
2024 j = 0;
2025 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
2026 goto full;
2028 c = &entries[cpuid_i++];
2030 c->function = i;
2031 c->flags = 0;
2032 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
2036 return cpuid_i;
2038 full:
2039 fprintf(stderr, "cpuid_data is full, no space for "
2040 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
2041 abort();
2044 int kvm_arch_init_vcpu(CPUState *cs)
2046 struct {
2047 struct kvm_cpuid2 cpuid;
2048 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
2049 } cpuid_data;
2051 * The kernel defines these structs with padding fields so there
2052 * should be no extra padding in our cpuid_data struct.
2054 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
2055 sizeof(struct kvm_cpuid2) +
2056 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
2058 X86CPU *cpu = X86_CPU(cs);
2059 CPUX86State *env = &cpu->env;
2060 uint32_t cpuid_i;
2061 struct kvm_cpuid_entry2 *c;
2062 uint32_t signature[3];
2063 int kvm_base = KVM_CPUID_SIGNATURE;
2064 int max_nested_state_len;
2065 int r;
2066 Error *local_err = NULL;
2068 memset(&cpuid_data, 0, sizeof(cpuid_data));
2070 cpuid_i = 0;
2072 has_xsave2 = kvm_check_extension(cs->kvm_state, KVM_CAP_XSAVE2);
2074 r = kvm_arch_set_tsc_khz(cs);
2075 if (r < 0) {
2076 return r;
2079 /* vcpu's TSC frequency is either specified by user, or following
2080 * the value used by KVM if the former is not present. In the
2081 * latter case, we query it from KVM and record in env->tsc_khz,
2082 * so that vcpu's TSC frequency can be migrated later via this field.
2084 if (!env->tsc_khz) {
2085 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
2086 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
2087 -ENOTSUP;
2088 if (r > 0) {
2089 env->tsc_khz = r;
2093 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
2096 * kvm_hyperv_expand_features() is called here for the second time in case
2097 * KVM_CAP_SYS_HYPERV_CPUID is not supported. While we can't possibly handle
2098 * 'query-cpu-model-expansion' in this case as we don't have a KVM vCPU to
2099 * check which Hyper-V enlightenments are supported and which are not, we
2100 * can still proceed and check/expand Hyper-V enlightenments here so legacy
2101 * behavior is preserved.
2103 if (!kvm_hyperv_expand_features(cpu, &local_err)) {
2104 error_report_err(local_err);
2105 return -ENOSYS;
2108 if (hyperv_enabled(cpu)) {
2109 r = hyperv_init_vcpu(cpu);
2110 if (r) {
2111 return r;
2114 cpuid_i = hyperv_fill_cpuids(cs, cpuid_data.entries);
2115 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
2116 has_msr_hv_hypercall = true;
2119 if (cs->kvm_state->xen_version) {
2120 #ifdef CONFIG_XEN_EMU
2121 struct kvm_cpuid_entry2 *xen_max_leaf;
2123 memcpy(signature, "XenVMMXenVMM", 12);
2125 xen_max_leaf = c = &cpuid_data.entries[cpuid_i++];
2126 c->function = kvm_base + XEN_CPUID_SIGNATURE;
2127 c->eax = kvm_base + XEN_CPUID_TIME;
2128 c->ebx = signature[0];
2129 c->ecx = signature[1];
2130 c->edx = signature[2];
2132 c = &cpuid_data.entries[cpuid_i++];
2133 c->function = kvm_base + XEN_CPUID_VENDOR;
2134 c->eax = cs->kvm_state->xen_version;
2135 c->ebx = 0;
2136 c->ecx = 0;
2137 c->edx = 0;
2139 c = &cpuid_data.entries[cpuid_i++];
2140 c->function = kvm_base + XEN_CPUID_HVM_MSR;
2141 /* Number of hypercall-transfer pages */
2142 c->eax = 1;
2143 /* Hypercall MSR base address */
2144 if (hyperv_enabled(cpu)) {
2145 c->ebx = XEN_HYPERCALL_MSR_HYPERV;
2146 kvm_xen_init(cs->kvm_state, c->ebx);
2147 } else {
2148 c->ebx = XEN_HYPERCALL_MSR;
2150 c->ecx = 0;
2151 c->edx = 0;
2153 c = &cpuid_data.entries[cpuid_i++];
2154 c->function = kvm_base + XEN_CPUID_TIME;
2155 c->eax = ((!!tsc_is_stable_and_known(env) << 1) |
2156 (!!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP) << 2));
2157 /* default=0 (emulate if necessary) */
2158 c->ebx = 0;
2159 /* guest tsc frequency */
2160 c->ecx = env->user_tsc_khz;
2161 /* guest tsc incarnation (migration count) */
2162 c->edx = 0;
2164 c = &cpuid_data.entries[cpuid_i++];
2165 c->function = kvm_base + XEN_CPUID_HVM;
2166 xen_max_leaf->eax = kvm_base + XEN_CPUID_HVM;
2167 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 5)) {
2168 c->function = kvm_base + XEN_CPUID_HVM;
2170 if (cpu->xen_vapic) {
2171 c->eax |= XEN_HVM_CPUID_APIC_ACCESS_VIRT;
2172 c->eax |= XEN_HVM_CPUID_X2APIC_VIRT;
2175 c->eax |= XEN_HVM_CPUID_IOMMU_MAPPINGS;
2177 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 6)) {
2178 c->eax |= XEN_HVM_CPUID_VCPU_ID_PRESENT;
2179 c->ebx = cs->cpu_index;
2182 if (cs->kvm_state->xen_version >= XEN_VERSION(4, 17)) {
2183 c->eax |= XEN_HVM_CPUID_UPCALL_VECTOR;
2187 r = kvm_xen_init_vcpu(cs);
2188 if (r) {
2189 return r;
2192 kvm_base += 0x100;
2193 #else /* CONFIG_XEN_EMU */
2194 /* This should never happen as kvm_arch_init() would have died first. */
2195 fprintf(stderr, "Cannot enable Xen CPUID without Xen support\n");
2196 abort();
2197 #endif
2198 } else if (cpu->expose_kvm) {
2199 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
2200 c = &cpuid_data.entries[cpuid_i++];
2201 c->function = KVM_CPUID_SIGNATURE | kvm_base;
2202 c->eax = KVM_CPUID_FEATURES | kvm_base;
2203 c->ebx = signature[0];
2204 c->ecx = signature[1];
2205 c->edx = signature[2];
2207 c = &cpuid_data.entries[cpuid_i++];
2208 c->function = KVM_CPUID_FEATURES | kvm_base;
2209 c->eax = env->features[FEAT_KVM];
2210 c->edx = env->features[FEAT_KVM_HINTS];
2213 if (cpu->kvm_pv_enforce_cpuid) {
2214 r = kvm_vcpu_enable_cap(cs, KVM_CAP_ENFORCE_PV_FEATURE_CPUID, 0, 1);
2215 if (r < 0) {
2216 fprintf(stderr,
2217 "failed to enable KVM_CAP_ENFORCE_PV_FEATURE_CPUID: %s",
2218 strerror(-r));
2219 abort();
2223 cpuid_i = kvm_x86_build_cpuid(env, cpuid_data.entries, cpuid_i);
2224 cpuid_data.cpuid.nent = cpuid_i;
2226 if (((env->cpuid_version >> 8)&0xF) >= 6
2227 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
2228 (CPUID_MCE | CPUID_MCA)) {
2229 uint64_t mcg_cap, unsupported_caps;
2230 int banks;
2231 int ret;
2233 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
2234 if (ret < 0) {
2235 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
2236 return ret;
2239 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
2240 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
2241 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
2242 return -ENOTSUP;
2245 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
2246 if (unsupported_caps) {
2247 if (unsupported_caps & MCG_LMCE_P) {
2248 error_report("kvm: LMCE not supported");
2249 return -ENOTSUP;
2251 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
2252 unsupported_caps);
2255 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
2256 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
2257 if (ret < 0) {
2258 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
2259 return ret;
2263 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
2265 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
2266 if (c) {
2267 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
2268 !!(c->ecx & CPUID_EXT_SMX);
2271 c = cpuid_find_entry(&cpuid_data.cpuid, 7, 0);
2272 if (c && (c->ebx & CPUID_7_0_EBX_SGX)) {
2273 has_msr_feature_control = true;
2276 if (env->mcg_cap & MCG_LMCE_P) {
2277 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
2280 if (!env->user_tsc_khz) {
2281 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
2282 invtsc_mig_blocker == NULL) {
2283 error_setg(&invtsc_mig_blocker,
2284 "State blocked by non-migratable CPU device"
2285 " (invtsc flag)");
2286 r = migrate_add_blocker(&invtsc_mig_blocker, &local_err);
2287 if (r < 0) {
2288 error_report_err(local_err);
2289 return r;
2294 if (cpu->vmware_cpuid_freq
2295 /* Guests depend on 0x40000000 to detect this feature, so only expose
2296 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
2297 && cpu->expose_kvm
2298 && kvm_base == KVM_CPUID_SIGNATURE
2299 /* TSC clock must be stable and known for this feature. */
2300 && tsc_is_stable_and_known(env)) {
2302 c = &cpuid_data.entries[cpuid_i++];
2303 c->function = KVM_CPUID_SIGNATURE | 0x10;
2304 c->eax = env->tsc_khz;
2305 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
2306 c->ecx = c->edx = 0;
2308 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
2309 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
2312 cpuid_data.cpuid.nent = cpuid_i;
2314 cpuid_data.cpuid.padding = 0;
2315 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
2316 if (r) {
2317 goto fail;
2319 kvm_init_xsave(env);
2321 max_nested_state_len = kvm_max_nested_state_length();
2322 if (max_nested_state_len > 0) {
2323 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
2325 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
2326 env->nested_state = g_malloc0(max_nested_state_len);
2327 env->nested_state->size = max_nested_state_len;
2329 kvm_init_nested_state(env);
2333 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
2335 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
2336 has_msr_tsc_aux = false;
2339 kvm_init_msrs(cpu);
2341 return 0;
2343 fail:
2344 migrate_del_blocker(&invtsc_mig_blocker);
2346 return r;
2349 int kvm_arch_destroy_vcpu(CPUState *cs)
2351 X86CPU *cpu = X86_CPU(cs);
2352 CPUX86State *env = &cpu->env;
2354 g_free(env->xsave_buf);
2356 g_free(cpu->kvm_msr_buf);
2357 cpu->kvm_msr_buf = NULL;
2359 g_free(env->nested_state);
2360 env->nested_state = NULL;
2362 qemu_del_vm_change_state_handler(cpu->vmsentry);
2364 return 0;
2367 void kvm_arch_reset_vcpu(X86CPU *cpu)
2369 CPUX86State *env = &cpu->env;
2371 env->xcr0 = 1;
2372 if (kvm_irqchip_in_kernel()) {
2373 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
2374 KVM_MP_STATE_UNINITIALIZED;
2375 } else {
2376 env->mp_state = KVM_MP_STATE_RUNNABLE;
2379 /* enabled by default */
2380 env->poll_control_msr = 1;
2382 kvm_init_nested_state(env);
2384 sev_es_set_reset_vector(CPU(cpu));
2387 void kvm_arch_after_reset_vcpu(X86CPU *cpu)
2389 CPUX86State *env = &cpu->env;
2390 int i;
2393 * Reset SynIC after all other devices have been reset to let them remove
2394 * their SINT routes first.
2396 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2397 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
2398 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
2401 hyperv_x86_synic_reset(cpu);
2405 void kvm_arch_do_init_vcpu(X86CPU *cpu)
2407 CPUX86State *env = &cpu->env;
2409 /* APs get directly into wait-for-SIPI state. */
2410 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
2411 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
2415 static int kvm_get_supported_feature_msrs(KVMState *s)
2417 int ret = 0;
2419 if (kvm_feature_msrs != NULL) {
2420 return 0;
2423 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
2424 return 0;
2427 struct kvm_msr_list msr_list;
2429 msr_list.nmsrs = 0;
2430 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
2431 if (ret < 0 && ret != -E2BIG) {
2432 error_report("Fetch KVM feature MSR list failed: %s",
2433 strerror(-ret));
2434 return ret;
2437 assert(msr_list.nmsrs > 0);
2438 kvm_feature_msrs = g_malloc0(sizeof(msr_list) +
2439 msr_list.nmsrs * sizeof(msr_list.indices[0]));
2441 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
2442 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
2444 if (ret < 0) {
2445 error_report("Fetch KVM feature MSR list failed: %s",
2446 strerror(-ret));
2447 g_free(kvm_feature_msrs);
2448 kvm_feature_msrs = NULL;
2449 return ret;
2452 return 0;
2455 static int kvm_get_supported_msrs(KVMState *s)
2457 int ret = 0;
2458 struct kvm_msr_list msr_list, *kvm_msr_list;
2461 * Obtain MSR list from KVM. These are the MSRs that we must
2462 * save/restore.
2464 msr_list.nmsrs = 0;
2465 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
2466 if (ret < 0 && ret != -E2BIG) {
2467 return ret;
2470 * Old kernel modules had a bug and could write beyond the provided
2471 * memory. Allocate at least a safe amount of 1K.
2473 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
2474 msr_list.nmsrs *
2475 sizeof(msr_list.indices[0])));
2477 kvm_msr_list->nmsrs = msr_list.nmsrs;
2478 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2479 if (ret >= 0) {
2480 int i;
2482 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2483 switch (kvm_msr_list->indices[i]) {
2484 case MSR_STAR:
2485 has_msr_star = true;
2486 break;
2487 case MSR_VM_HSAVE_PA:
2488 has_msr_hsave_pa = true;
2489 break;
2490 case MSR_TSC_AUX:
2491 has_msr_tsc_aux = true;
2492 break;
2493 case MSR_TSC_ADJUST:
2494 has_msr_tsc_adjust = true;
2495 break;
2496 case MSR_IA32_TSCDEADLINE:
2497 has_msr_tsc_deadline = true;
2498 break;
2499 case MSR_IA32_SMBASE:
2500 has_msr_smbase = true;
2501 break;
2502 case MSR_SMI_COUNT:
2503 has_msr_smi_count = true;
2504 break;
2505 case MSR_IA32_MISC_ENABLE:
2506 has_msr_misc_enable = true;
2507 break;
2508 case MSR_IA32_BNDCFGS:
2509 has_msr_bndcfgs = true;
2510 break;
2511 case MSR_IA32_XSS:
2512 has_msr_xss = true;
2513 break;
2514 case MSR_IA32_UMWAIT_CONTROL:
2515 has_msr_umwait = true;
2516 break;
2517 case HV_X64_MSR_CRASH_CTL:
2518 has_msr_hv_crash = true;
2519 break;
2520 case HV_X64_MSR_RESET:
2521 has_msr_hv_reset = true;
2522 break;
2523 case HV_X64_MSR_VP_INDEX:
2524 has_msr_hv_vpindex = true;
2525 break;
2526 case HV_X64_MSR_VP_RUNTIME:
2527 has_msr_hv_runtime = true;
2528 break;
2529 case HV_X64_MSR_SCONTROL:
2530 has_msr_hv_synic = true;
2531 break;
2532 case HV_X64_MSR_STIMER0_CONFIG:
2533 has_msr_hv_stimer = true;
2534 break;
2535 case HV_X64_MSR_TSC_FREQUENCY:
2536 has_msr_hv_frequencies = true;
2537 break;
2538 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2539 has_msr_hv_reenlightenment = true;
2540 break;
2541 case HV_X64_MSR_SYNDBG_OPTIONS:
2542 has_msr_hv_syndbg_options = true;
2543 break;
2544 case MSR_IA32_SPEC_CTRL:
2545 has_msr_spec_ctrl = true;
2546 break;
2547 case MSR_AMD64_TSC_RATIO:
2548 has_tsc_scale_msr = true;
2549 break;
2550 case MSR_IA32_TSX_CTRL:
2551 has_msr_tsx_ctrl = true;
2552 break;
2553 case MSR_VIRT_SSBD:
2554 has_msr_virt_ssbd = true;
2555 break;
2556 case MSR_IA32_ARCH_CAPABILITIES:
2557 has_msr_arch_capabs = true;
2558 break;
2559 case MSR_IA32_CORE_CAPABILITY:
2560 has_msr_core_capabs = true;
2561 break;
2562 case MSR_IA32_PERF_CAPABILITIES:
2563 has_msr_perf_capabs = true;
2564 break;
2565 case MSR_IA32_VMX_VMFUNC:
2566 has_msr_vmx_vmfunc = true;
2567 break;
2568 case MSR_IA32_UCODE_REV:
2569 has_msr_ucode_rev = true;
2570 break;
2571 case MSR_IA32_VMX_PROCBASED_CTLS2:
2572 has_msr_vmx_procbased_ctls2 = true;
2573 break;
2574 case MSR_IA32_PKRS:
2575 has_msr_pkrs = true;
2576 break;
2581 g_free(kvm_msr_list);
2583 return ret;
2586 static bool kvm_rdmsr_core_thread_count(X86CPU *cpu,
2587 uint32_t msr,
2588 uint64_t *val)
2590 CPUState *cs = CPU(cpu);
2592 *val = cs->nr_threads * cs->nr_cores; /* thread count, bits 15..0 */
2593 *val |= ((uint32_t)cs->nr_cores << 16); /* core count, bits 31..16 */
2595 return true;
2598 static bool kvm_rdmsr_rapl_power_unit(X86CPU *cpu,
2599 uint32_t msr,
2600 uint64_t *val)
2603 CPUState *cs = CPU(cpu);
2605 *val = cs->kvm_state->msr_energy.msr_unit;
2607 return true;
2610 static bool kvm_rdmsr_pkg_power_limit(X86CPU *cpu,
2611 uint32_t msr,
2612 uint64_t *val)
2615 CPUState *cs = CPU(cpu);
2617 *val = cs->kvm_state->msr_energy.msr_limit;
2619 return true;
2622 static bool kvm_rdmsr_pkg_power_info(X86CPU *cpu,
2623 uint32_t msr,
2624 uint64_t *val)
2627 CPUState *cs = CPU(cpu);
2629 *val = cs->kvm_state->msr_energy.msr_info;
2631 return true;
2634 static bool kvm_rdmsr_pkg_energy_status(X86CPU *cpu,
2635 uint32_t msr,
2636 uint64_t *val)
2639 CPUState *cs = CPU(cpu);
2640 *val = cs->kvm_state->msr_energy.msr_value[cs->cpu_index];
2642 return true;
2645 static Notifier smram_machine_done;
2646 static KVMMemoryListener smram_listener;
2647 static AddressSpace smram_address_space;
2648 static MemoryRegion smram_as_root;
2649 static MemoryRegion smram_as_mem;
2651 static void register_smram_listener(Notifier *n, void *unused)
2653 MemoryRegion *smram =
2654 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2656 /* Outer container... */
2657 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2658 memory_region_set_enabled(&smram_as_root, true);
2660 /* ... with two regions inside: normal system memory with low
2661 * priority, and...
2663 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2664 get_system_memory(), 0, ~0ull);
2665 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2666 memory_region_set_enabled(&smram_as_mem, true);
2668 if (smram) {
2669 /* ... SMRAM with higher priority */
2670 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2671 memory_region_set_enabled(smram, true);
2674 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2675 kvm_memory_listener_register(kvm_state, &smram_listener,
2676 &smram_address_space, 1, "kvm-smram");
2679 static void *kvm_msr_energy_thread(void *data)
2681 KVMState *s = data;
2682 struct KVMMsrEnergy *vmsr = &s->msr_energy;
2684 g_autofree vmsr_package_energy_stat *pkg_stat = NULL;
2685 g_autofree vmsr_thread_stat *thd_stat = NULL;
2686 g_autofree CPUState *cpu = NULL;
2687 g_autofree unsigned int *vpkgs_energy_stat = NULL;
2688 unsigned int num_threads = 0;
2690 X86CPUTopoIDs topo_ids;
2692 rcu_register_thread();
2694 /* Allocate memory for each package energy status */
2695 pkg_stat = g_new0(vmsr_package_energy_stat, vmsr->host_topo.maxpkgs);
2697 /* Allocate memory for thread stats */
2698 thd_stat = g_new0(vmsr_thread_stat, 1);
2700 /* Allocate memory for holding virtual package energy counter */
2701 vpkgs_energy_stat = g_new0(unsigned int, vmsr->guest_vsockets);
2703 /* Populate the max tick of each packages */
2704 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2706 * Max numbers of ticks per package
2707 * Time in second * Number of ticks/second * Number of cores/package
2708 * ex: 100 ticks/second/CPU, 12 CPUs per Package gives 1200 ticks max
2710 vmsr->host_topo.maxticks[i] = (MSR_ENERGY_THREAD_SLEEP_US / 1000000)
2711 * sysconf(_SC_CLK_TCK)
2712 * vmsr->host_topo.pkg_cpu_count[i];
2715 while (true) {
2716 /* Get all qemu threads id */
2717 g_autofree pid_t *thread_ids
2718 = vmsr_get_thread_ids(vmsr->pid, &num_threads);
2720 if (thread_ids == NULL) {
2721 goto clean;
2724 thd_stat = g_renew(vmsr_thread_stat, thd_stat, num_threads);
2725 /* Unlike g_new0, g_renew0 function doesn't exist yet... */
2726 memset(thd_stat, 0, num_threads * sizeof(vmsr_thread_stat));
2728 /* Populate all the thread stats */
2729 for (int i = 0; i < num_threads; i++) {
2730 thd_stat[i].utime = g_new0(unsigned long long, 2);
2731 thd_stat[i].stime = g_new0(unsigned long long, 2);
2732 thd_stat[i].thread_id = thread_ids[i];
2733 vmsr_read_thread_stat(vmsr->pid,
2734 thd_stat[i].thread_id,
2735 &thd_stat[i].utime[0],
2736 &thd_stat[i].stime[0],
2737 &thd_stat[i].cpu_id);
2738 thd_stat[i].pkg_id =
2739 vmsr_get_physical_package_id(thd_stat[i].cpu_id);
2742 /* Retrieve all packages power plane energy counter */
2743 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2744 for (int j = 0; j < num_threads; j++) {
2746 * Use the first thread we found that ran on the CPU
2747 * of the package to read the packages energy counter
2749 if (thd_stat[j].pkg_id == i) {
2750 pkg_stat[i].e_start =
2751 vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2752 thd_stat[j].cpu_id,
2753 thd_stat[j].thread_id,
2754 s->msr_energy.sioc);
2755 break;
2760 /* Sleep a short period while the other threads are working */
2761 usleep(MSR_ENERGY_THREAD_SLEEP_US);
2764 * Retrieve all packages power plane energy counter
2765 * Calculate the delta of all packages
2767 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2768 for (int j = 0; j < num_threads; j++) {
2770 * Use the first thread we found that ran on the CPU
2771 * of the package to read the packages energy counter
2773 if (thd_stat[j].pkg_id == i) {
2774 pkg_stat[i].e_end =
2775 vmsr_read_msr(MSR_PKG_ENERGY_STATUS,
2776 thd_stat[j].cpu_id,
2777 thd_stat[j].thread_id,
2778 s->msr_energy.sioc);
2780 * Prevent the case we have migrate the VM
2781 * during the sleep period or any other cases
2782 * were energy counter might be lower after
2783 * the sleep period.
2785 if (pkg_stat[i].e_end > pkg_stat[i].e_start) {
2786 pkg_stat[i].e_delta =
2787 pkg_stat[i].e_end - pkg_stat[i].e_start;
2788 } else {
2789 pkg_stat[i].e_delta = 0;
2791 break;
2796 /* Delta of ticks spend by each thread between the sample */
2797 for (int i = 0; i < num_threads; i++) {
2798 vmsr_read_thread_stat(vmsr->pid,
2799 thd_stat[i].thread_id,
2800 &thd_stat[i].utime[1],
2801 &thd_stat[i].stime[1],
2802 &thd_stat[i].cpu_id);
2804 if (vmsr->pid < 0) {
2806 * We don't count the dead thread
2807 * i.e threads that existed before the sleep
2808 * and not anymore
2810 thd_stat[i].delta_ticks = 0;
2811 } else {
2812 vmsr_delta_ticks(thd_stat, i);
2817 * Identify the vcpu threads
2818 * Calculate the number of vcpu per package
2820 CPU_FOREACH(cpu) {
2821 for (int i = 0; i < num_threads; i++) {
2822 if (cpu->thread_id == thd_stat[i].thread_id) {
2823 thd_stat[i].is_vcpu = true;
2824 thd_stat[i].vcpu_id = cpu->cpu_index;
2825 pkg_stat[thd_stat[i].pkg_id].nb_vcpu++;
2826 thd_stat[i].acpi_id = kvm_arch_vcpu_id(cpu);
2827 break;
2832 /* Retrieve the virtual package number of each vCPU */
2833 for (int i = 0; i < vmsr->guest_cpu_list->len; i++) {
2834 for (int j = 0; j < num_threads; j++) {
2835 if ((thd_stat[j].acpi_id ==
2836 vmsr->guest_cpu_list->cpus[i].arch_id)
2837 && (thd_stat[j].is_vcpu == true)) {
2838 x86_topo_ids_from_apicid(thd_stat[j].acpi_id,
2839 &vmsr->guest_topo_info, &topo_ids);
2840 thd_stat[j].vpkg_id = topo_ids.pkg_id;
2845 /* Calculate the total energy of all non-vCPU thread */
2846 for (int i = 0; i < num_threads; i++) {
2847 if ((thd_stat[i].is_vcpu != true) &&
2848 (thd_stat[i].delta_ticks > 0)) {
2849 double temp;
2850 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2851 thd_stat[i].delta_ticks,
2852 vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2853 pkg_stat[thd_stat[i].pkg_id].e_ratio
2854 += (uint64_t)lround(temp);
2858 /* Calculate the ratio per non-vCPU thread of each package */
2859 for (int i = 0; i < vmsr->host_topo.maxpkgs; i++) {
2860 if (pkg_stat[i].nb_vcpu > 0) {
2861 pkg_stat[i].e_ratio = pkg_stat[i].e_ratio / pkg_stat[i].nb_vcpu;
2866 * Calculate the energy for each Package:
2867 * Energy Package = sum of each vCPU energy that belongs to the package
2869 for (int i = 0; i < num_threads; i++) {
2870 if ((thd_stat[i].is_vcpu == true) && \
2871 (thd_stat[i].delta_ticks > 0)) {
2872 double temp;
2873 temp = vmsr_get_ratio(pkg_stat[thd_stat[i].pkg_id].e_delta,
2874 thd_stat[i].delta_ticks,
2875 vmsr->host_topo.maxticks[thd_stat[i].pkg_id]);
2876 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2877 (uint64_t)lround(temp);
2878 vpkgs_energy_stat[thd_stat[i].vpkg_id] +=
2879 pkg_stat[thd_stat[i].pkg_id].e_ratio;
2884 * Finally populate the vmsr register of each vCPU with the total
2885 * package value to emulate the real hardware where each CPU return the
2886 * value of the package it belongs.
2888 for (int i = 0; i < num_threads; i++) {
2889 if ((thd_stat[i].is_vcpu == true) && \
2890 (thd_stat[i].delta_ticks > 0)) {
2891 vmsr->msr_value[thd_stat[i].vcpu_id] = \
2892 vpkgs_energy_stat[thd_stat[i].vpkg_id];
2896 /* Freeing memory before zeroing the pointer */
2897 for (int i = 0; i < num_threads; i++) {
2898 g_free(thd_stat[i].utime);
2899 g_free(thd_stat[i].stime);
2903 clean:
2904 rcu_unregister_thread();
2905 return NULL;
2908 static int kvm_msr_energy_thread_init(KVMState *s, MachineState *ms)
2910 MachineClass *mc = MACHINE_GET_CLASS(ms);
2911 struct KVMMsrEnergy *r = &s->msr_energy;
2912 int ret = 0;
2915 * Sanity check
2916 * 1. Host cpu must be Intel cpu
2917 * 2. RAPL must be enabled on the Host
2919 if (!is_host_cpu_intel()) {
2920 error_report("The RAPL feature can only be enabled on hosts "
2921 "with Intel CPU models");
2922 ret = 1;
2923 goto out;
2926 if (!is_rapl_enabled()) {
2927 ret = 1;
2928 goto out;
2931 /* Retrieve the virtual topology */
2932 vmsr_init_topo_info(&r->guest_topo_info, ms);
2934 /* Retrieve the number of vcpu */
2935 r->guest_vcpus = ms->smp.cpus;
2937 /* Retrieve the number of virtual sockets */
2938 r->guest_vsockets = ms->smp.sockets;
2940 /* Allocate register memory (MSR_PKG_STATUS) for each vcpu */
2941 r->msr_value = g_new0(uint64_t, r->guest_vcpus);
2943 /* Retrieve the CPUArchIDlist */
2944 r->guest_cpu_list = mc->possible_cpu_arch_ids(ms);
2946 /* Max number of cpus on the Host */
2947 r->host_topo.maxcpus = vmsr_get_maxcpus();
2948 if (r->host_topo.maxcpus == 0) {
2949 error_report("host max cpus = 0");
2950 ret = 1;
2951 goto out;
2954 /* Max number of packages on the host */
2955 r->host_topo.maxpkgs = vmsr_get_max_physical_package(r->host_topo.maxcpus);
2956 if (r->host_topo.maxpkgs == 0) {
2957 error_report("host max pkgs = 0");
2958 ret = 1;
2959 goto out;
2962 /* Allocate memory for each package on the host */
2963 r->host_topo.pkg_cpu_count = g_new0(unsigned int, r->host_topo.maxpkgs);
2964 r->host_topo.maxticks = g_new0(unsigned int, r->host_topo.maxpkgs);
2966 vmsr_count_cpus_per_package(r->host_topo.pkg_cpu_count,
2967 r->host_topo.maxpkgs);
2968 for (int i = 0; i < r->host_topo.maxpkgs; i++) {
2969 if (r->host_topo.pkg_cpu_count[i] == 0) {
2970 error_report("cpu per packages = 0 on package_%d", i);
2971 ret = 1;
2972 goto out;
2976 /* Get QEMU PID*/
2977 r->pid = getpid();
2979 /* Compute the socket path if necessary */
2980 if (s->msr_energy.socket_path == NULL) {
2981 s->msr_energy.socket_path = vmsr_compute_default_paths();
2984 /* Open socket with vmsr helper */
2985 s->msr_energy.sioc = vmsr_open_socket(s->msr_energy.socket_path);
2987 if (s->msr_energy.sioc == NULL) {
2988 error_report("vmsr socket opening failed");
2989 ret = 1;
2990 goto out;
2993 /* Those MSR values should not change */
2994 r->msr_unit = vmsr_read_msr(MSR_RAPL_POWER_UNIT, 0, r->pid,
2995 s->msr_energy.sioc);
2996 r->msr_limit = vmsr_read_msr(MSR_PKG_POWER_LIMIT, 0, r->pid,
2997 s->msr_energy.sioc);
2998 r->msr_info = vmsr_read_msr(MSR_PKG_POWER_INFO, 0, r->pid,
2999 s->msr_energy.sioc);
3000 if (r->msr_unit == 0 || r->msr_limit == 0 || r->msr_info == 0) {
3001 error_report("can't read any virtual msr");
3002 ret = 1;
3003 goto out;
3006 qemu_thread_create(&r->msr_thr, "kvm-msr",
3007 kvm_msr_energy_thread,
3008 s, QEMU_THREAD_JOINABLE);
3009 out:
3010 return ret;
3013 int kvm_arch_get_default_type(MachineState *ms)
3015 return 0;
3018 static int kvm_vm_enable_exception_payload(KVMState *s)
3020 int ret = 0;
3021 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
3022 if (has_exception_payload) {
3023 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
3024 if (ret < 0) {
3025 error_report("kvm: Failed to enable exception payload cap: %s",
3026 strerror(-ret));
3030 return ret;
3033 static int kvm_vm_enable_triple_fault_event(KVMState *s)
3035 int ret = 0;
3036 has_triple_fault_event = \
3037 kvm_check_extension(s,
3038 KVM_CAP_X86_TRIPLE_FAULT_EVENT);
3039 if (has_triple_fault_event) {
3040 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_TRIPLE_FAULT_EVENT, 0, true);
3041 if (ret < 0) {
3042 error_report("kvm: Failed to enable triple fault event cap: %s",
3043 strerror(-ret));
3046 return ret;
3049 static int kvm_vm_set_identity_map_addr(KVMState *s, uint64_t identity_base)
3051 return kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
3054 static int kvm_vm_set_nr_mmu_pages(KVMState *s)
3056 uint64_t shadow_mem;
3057 int ret = 0;
3058 shadow_mem = object_property_get_int(OBJECT(s),
3059 "kvm-shadow-mem",
3060 &error_abort);
3061 if (shadow_mem != -1) {
3062 shadow_mem /= 4096;
3063 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
3065 return ret;
3068 static int kvm_vm_set_tss_addr(KVMState *s, uint64_t tss_base)
3070 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, tss_base);
3073 static int kvm_vm_enable_disable_exits(KVMState *s)
3075 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
3076 /* Work around for kernel header with a typo. TODO: fix header and drop. */
3077 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
3078 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
3079 #endif
3080 if (disable_exits) {
3081 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
3082 KVM_X86_DISABLE_EXITS_HLT |
3083 KVM_X86_DISABLE_EXITS_PAUSE |
3084 KVM_X86_DISABLE_EXITS_CSTATE);
3087 return kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
3088 disable_exits);
3091 static int kvm_vm_enable_bus_lock_exit(KVMState *s)
3093 int ret = 0;
3094 ret = kvm_check_extension(s, KVM_CAP_X86_BUS_LOCK_EXIT);
3095 if (!(ret & KVM_BUS_LOCK_DETECTION_EXIT)) {
3096 error_report("kvm: bus lock detection unsupported");
3097 return -ENOTSUP;
3099 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_BUS_LOCK_EXIT, 0,
3100 KVM_BUS_LOCK_DETECTION_EXIT);
3101 if (ret < 0) {
3102 error_report("kvm: Failed to enable bus lock detection cap: %s",
3103 strerror(-ret));
3106 return ret;
3109 static int kvm_vm_enable_notify_vmexit(KVMState *s)
3111 int ret = 0;
3112 if (s->notify_vmexit != NOTIFY_VMEXIT_OPTION_DISABLE) {
3113 uint64_t notify_window_flags =
3114 ((uint64_t)s->notify_window << 32) |
3115 KVM_X86_NOTIFY_VMEXIT_ENABLED |
3116 KVM_X86_NOTIFY_VMEXIT_USER;
3117 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_NOTIFY_VMEXIT, 0,
3118 notify_window_flags);
3119 if (ret < 0) {
3120 error_report("kvm: Failed to enable notify vmexit cap: %s",
3121 strerror(-ret));
3124 return ret;
3127 static int kvm_vm_enable_userspace_msr(KVMState *s)
3129 int ret = kvm_vm_enable_cap(s, KVM_CAP_X86_USER_SPACE_MSR, 0,
3130 KVM_MSR_EXIT_REASON_FILTER);
3131 if (ret < 0) {
3132 error_report("Could not enable user space MSRs: %s",
3133 strerror(-ret));
3134 exit(1);
3137 if (!kvm_filter_msr(s, MSR_CORE_THREAD_COUNT,
3138 kvm_rdmsr_core_thread_count, NULL)) {
3139 error_report("Could not install MSR_CORE_THREAD_COUNT handler!");
3140 exit(1);
3143 return 0;
3146 static void kvm_vm_enable_energy_msrs(KVMState *s)
3148 bool r;
3149 if (s->msr_energy.enable == true) {
3150 r = kvm_filter_msr(s, MSR_RAPL_POWER_UNIT,
3151 kvm_rdmsr_rapl_power_unit, NULL);
3152 if (!r) {
3153 error_report("Could not install MSR_RAPL_POWER_UNIT \
3154 handler");
3155 exit(1);
3158 r = kvm_filter_msr(s, MSR_PKG_POWER_LIMIT,
3159 kvm_rdmsr_pkg_power_limit, NULL);
3160 if (!r) {
3161 error_report("Could not install MSR_PKG_POWER_LIMIT \
3162 handler");
3163 exit(1);
3166 r = kvm_filter_msr(s, MSR_PKG_POWER_INFO,
3167 kvm_rdmsr_pkg_power_info, NULL);
3168 if (!r) {
3169 error_report("Could not install MSR_PKG_POWER_INFO \
3170 handler");
3171 exit(1);
3173 r = kvm_filter_msr(s, MSR_PKG_ENERGY_STATUS,
3174 kvm_rdmsr_pkg_energy_status, NULL);
3175 if (!r) {
3176 error_report("Could not install MSR_PKG_ENERGY_STATUS \
3177 handler");
3178 exit(1);
3181 return;
3184 int kvm_arch_init(MachineState *ms, KVMState *s)
3186 int ret;
3187 struct utsname utsname;
3188 Error *local_err = NULL;
3191 * Initialize SEV context, if required
3193 * If no memory encryption is requested (ms->cgs == NULL) this is
3194 * a no-op.
3196 * It's also a no-op if a non-SEV confidential guest support
3197 * mechanism is selected. SEV is the only mechanism available to
3198 * select on x86 at present, so this doesn't arise, but if new
3199 * mechanisms are supported in future (e.g. TDX), they'll need
3200 * their own initialization either here or elsewhere.
3202 if (ms->cgs) {
3203 ret = confidential_guest_kvm_init(ms->cgs, &local_err);
3204 if (ret < 0) {
3205 error_report_err(local_err);
3206 return ret;
3210 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
3211 has_sregs2 = kvm_check_extension(s, KVM_CAP_SREGS2) > 0;
3213 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
3215 ret = kvm_vm_enable_exception_payload(s);
3216 if (ret < 0) {
3217 return ret;
3220 ret = kvm_vm_enable_triple_fault_event(s);
3221 if (ret < 0) {
3222 return ret;
3225 if (s->xen_version) {
3226 #ifdef CONFIG_XEN_EMU
3227 if (!object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE)) {
3228 error_report("kvm: Xen support only available in PC machine");
3229 return -ENOTSUP;
3231 /* hyperv_enabled() doesn't work yet. */
3232 uint32_t msr = XEN_HYPERCALL_MSR;
3233 ret = kvm_xen_init(s, msr);
3234 if (ret < 0) {
3235 return ret;
3237 #else
3238 error_report("kvm: Xen support not enabled in qemu");
3239 return -ENOTSUP;
3240 #endif
3243 ret = kvm_get_supported_msrs(s);
3244 if (ret < 0) {
3245 return ret;
3248 kvm_get_supported_feature_msrs(s);
3250 uname(&utsname);
3251 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
3253 ret = kvm_vm_set_identity_map_addr(s, KVM_IDENTITY_BASE);
3254 if (ret < 0) {
3255 return ret;
3258 /* Set TSS base one page after EPT identity map. */
3259 ret = kvm_vm_set_tss_addr(s, KVM_IDENTITY_BASE + 0x1000);
3260 if (ret < 0) {
3261 return ret;
3264 /* Tell fw_cfg to notify the BIOS to reserve the range. */
3265 e820_add_entry(KVM_IDENTITY_BASE, 0x4000, E820_RESERVED);
3267 ret = kvm_vm_set_nr_mmu_pages(s);
3268 if (ret < 0) {
3269 return ret;
3272 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
3273 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
3274 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
3275 smram_machine_done.notify = register_smram_listener;
3276 qemu_add_machine_init_done_notifier(&smram_machine_done);
3279 if (enable_cpu_pm) {
3280 ret = kvm_vm_enable_disable_exits(s);
3281 if (ret < 0) {
3282 error_report("kvm: guest stopping CPU not supported: %s",
3283 strerror(-ret));
3287 if (object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE)) {
3288 X86MachineState *x86ms = X86_MACHINE(ms);
3290 if (x86ms->bus_lock_ratelimit > 0) {
3291 ret = kvm_vm_enable_bus_lock_exit(s);
3292 if (ret < 0) {
3293 return ret;
3295 ratelimit_init(&bus_lock_ratelimit_ctrl);
3296 ratelimit_set_speed(&bus_lock_ratelimit_ctrl,
3297 x86ms->bus_lock_ratelimit, BUS_LOCK_SLICE_TIME);
3301 if (kvm_check_extension(s, KVM_CAP_X86_NOTIFY_VMEXIT)) {
3302 ret = kvm_vm_enable_notify_vmexit(s);
3303 if (ret < 0) {
3304 return ret;
3308 if (kvm_vm_check_extension(s, KVM_CAP_X86_USER_SPACE_MSR)) {
3309 ret = kvm_vm_enable_userspace_msr(s);
3310 if (ret < 0) {
3311 return ret;
3314 if (s->msr_energy.enable == true) {
3315 kvm_vm_enable_energy_msrs(s);
3316 if (kvm_msr_energy_thread_init(s, ms)) {
3317 error_report("kvm : error RAPL feature requirement not met");
3318 exit(1);
3323 return 0;
3326 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3328 lhs->selector = rhs->selector;
3329 lhs->base = rhs->base;
3330 lhs->limit = rhs->limit;
3331 lhs->type = 3;
3332 lhs->present = 1;
3333 lhs->dpl = 3;
3334 lhs->db = 0;
3335 lhs->s = 1;
3336 lhs->l = 0;
3337 lhs->g = 0;
3338 lhs->avl = 0;
3339 lhs->unusable = 0;
3342 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
3344 unsigned flags = rhs->flags;
3345 lhs->selector = rhs->selector;
3346 lhs->base = rhs->base;
3347 lhs->limit = rhs->limit;
3348 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
3349 lhs->present = (flags & DESC_P_MASK) != 0;
3350 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
3351 lhs->db = (flags >> DESC_B_SHIFT) & 1;
3352 lhs->s = (flags & DESC_S_MASK) != 0;
3353 lhs->l = (flags >> DESC_L_SHIFT) & 1;
3354 lhs->g = (flags & DESC_G_MASK) != 0;
3355 lhs->avl = (flags & DESC_AVL_MASK) != 0;
3356 lhs->unusable = !lhs->present;
3357 lhs->padding = 0;
3360 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
3362 lhs->selector = rhs->selector;
3363 lhs->base = rhs->base;
3364 lhs->limit = rhs->limit;
3365 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
3366 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
3367 (rhs->dpl << DESC_DPL_SHIFT) |
3368 (rhs->db << DESC_B_SHIFT) |
3369 (rhs->s * DESC_S_MASK) |
3370 (rhs->l << DESC_L_SHIFT) |
3371 (rhs->g * DESC_G_MASK) |
3372 (rhs->avl * DESC_AVL_MASK);
3375 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
3377 if (set) {
3378 *kvm_reg = *qemu_reg;
3379 } else {
3380 *qemu_reg = *kvm_reg;
3384 static int kvm_getput_regs(X86CPU *cpu, int set)
3386 CPUX86State *env = &cpu->env;
3387 struct kvm_regs regs;
3388 int ret = 0;
3390 if (!set) {
3391 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
3392 if (ret < 0) {
3393 return ret;
3397 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
3398 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
3399 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
3400 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
3401 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
3402 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
3403 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
3404 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
3405 #ifdef TARGET_X86_64
3406 kvm_getput_reg(&regs.r8, &env->regs[8], set);
3407 kvm_getput_reg(&regs.r9, &env->regs[9], set);
3408 kvm_getput_reg(&regs.r10, &env->regs[10], set);
3409 kvm_getput_reg(&regs.r11, &env->regs[11], set);
3410 kvm_getput_reg(&regs.r12, &env->regs[12], set);
3411 kvm_getput_reg(&regs.r13, &env->regs[13], set);
3412 kvm_getput_reg(&regs.r14, &env->regs[14], set);
3413 kvm_getput_reg(&regs.r15, &env->regs[15], set);
3414 #endif
3416 kvm_getput_reg(&regs.rflags, &env->eflags, set);
3417 kvm_getput_reg(&regs.rip, &env->eip, set);
3419 if (set) {
3420 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
3423 return ret;
3426 static int kvm_put_xsave(X86CPU *cpu)
3428 CPUX86State *env = &cpu->env;
3429 void *xsave = env->xsave_buf;
3431 x86_cpu_xsave_all_areas(cpu, xsave, env->xsave_buf_len);
3433 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
3436 static int kvm_put_xcrs(X86CPU *cpu)
3438 CPUX86State *env = &cpu->env;
3439 struct kvm_xcrs xcrs = {};
3441 if (!has_xcrs) {
3442 return 0;
3445 xcrs.nr_xcrs = 1;
3446 xcrs.flags = 0;
3447 xcrs.xcrs[0].xcr = 0;
3448 xcrs.xcrs[0].value = env->xcr0;
3449 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
3452 static int kvm_put_sregs(X86CPU *cpu)
3454 CPUX86State *env = &cpu->env;
3455 struct kvm_sregs sregs;
3458 * The interrupt_bitmap is ignored because KVM_SET_SREGS is
3459 * always followed by KVM_SET_VCPU_EVENTS.
3461 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
3463 if ((env->eflags & VM_MASK)) {
3464 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3465 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3466 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3467 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3468 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3469 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3470 } else {
3471 set_seg(&sregs.cs, &env->segs[R_CS]);
3472 set_seg(&sregs.ds, &env->segs[R_DS]);
3473 set_seg(&sregs.es, &env->segs[R_ES]);
3474 set_seg(&sregs.fs, &env->segs[R_FS]);
3475 set_seg(&sregs.gs, &env->segs[R_GS]);
3476 set_seg(&sregs.ss, &env->segs[R_SS]);
3479 set_seg(&sregs.tr, &env->tr);
3480 set_seg(&sregs.ldt, &env->ldt);
3482 sregs.idt.limit = env->idt.limit;
3483 sregs.idt.base = env->idt.base;
3484 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3485 sregs.gdt.limit = env->gdt.limit;
3486 sregs.gdt.base = env->gdt.base;
3487 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3489 sregs.cr0 = env->cr[0];
3490 sregs.cr2 = env->cr[2];
3491 sregs.cr3 = env->cr[3];
3492 sregs.cr4 = env->cr[4];
3494 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3495 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3497 sregs.efer = env->efer;
3499 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
3502 static int kvm_put_sregs2(X86CPU *cpu)
3504 CPUX86State *env = &cpu->env;
3505 struct kvm_sregs2 sregs;
3506 int i;
3508 sregs.flags = 0;
3510 if ((env->eflags & VM_MASK)) {
3511 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
3512 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
3513 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
3514 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
3515 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
3516 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
3517 } else {
3518 set_seg(&sregs.cs, &env->segs[R_CS]);
3519 set_seg(&sregs.ds, &env->segs[R_DS]);
3520 set_seg(&sregs.es, &env->segs[R_ES]);
3521 set_seg(&sregs.fs, &env->segs[R_FS]);
3522 set_seg(&sregs.gs, &env->segs[R_GS]);
3523 set_seg(&sregs.ss, &env->segs[R_SS]);
3526 set_seg(&sregs.tr, &env->tr);
3527 set_seg(&sregs.ldt, &env->ldt);
3529 sregs.idt.limit = env->idt.limit;
3530 sregs.idt.base = env->idt.base;
3531 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
3532 sregs.gdt.limit = env->gdt.limit;
3533 sregs.gdt.base = env->gdt.base;
3534 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
3536 sregs.cr0 = env->cr[0];
3537 sregs.cr2 = env->cr[2];
3538 sregs.cr3 = env->cr[3];
3539 sregs.cr4 = env->cr[4];
3541 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
3542 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
3544 sregs.efer = env->efer;
3546 if (env->pdptrs_valid) {
3547 for (i = 0; i < 4; i++) {
3548 sregs.pdptrs[i] = env->pdptrs[i];
3550 sregs.flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
3553 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS2, &sregs);
3557 static void kvm_msr_buf_reset(X86CPU *cpu)
3559 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
3562 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
3564 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
3565 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
3566 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
3568 assert((void *)(entry + 1) <= limit);
3570 entry->index = index;
3571 entry->reserved = 0;
3572 entry->data = value;
3573 msrs->nmsrs++;
3576 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
3578 kvm_msr_buf_reset(cpu);
3579 kvm_msr_entry_add(cpu, index, value);
3581 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3584 static int kvm_get_one_msr(X86CPU *cpu, int index, uint64_t *value)
3586 int ret;
3587 struct {
3588 struct kvm_msrs info;
3589 struct kvm_msr_entry entries[1];
3590 } msr_data = {
3591 .info.nmsrs = 1,
3592 .entries[0].index = index,
3595 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
3596 if (ret < 0) {
3597 return ret;
3599 assert(ret == 1);
3600 *value = msr_data.entries[0].data;
3601 return ret;
3603 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
3605 int ret;
3607 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
3608 assert(ret == 1);
3611 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
3613 CPUX86State *env = &cpu->env;
3614 int ret;
3616 if (!has_msr_tsc_deadline) {
3617 return 0;
3620 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
3621 if (ret < 0) {
3622 return ret;
3625 assert(ret == 1);
3626 return 0;
3630 * Provide a separate write service for the feature control MSR in order to
3631 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
3632 * before writing any other state because forcibly leaving nested mode
3633 * invalidates the VCPU state.
3635 static int kvm_put_msr_feature_control(X86CPU *cpu)
3637 int ret;
3639 if (!has_msr_feature_control) {
3640 return 0;
3643 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
3644 cpu->env.msr_ia32_feature_control);
3645 if (ret < 0) {
3646 return ret;
3649 assert(ret == 1);
3650 return 0;
3653 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
3655 uint32_t default1, can_be_one, can_be_zero;
3656 uint32_t must_be_one;
3658 switch (index) {
3659 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3660 default1 = 0x00000016;
3661 break;
3662 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3663 default1 = 0x0401e172;
3664 break;
3665 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3666 default1 = 0x000011ff;
3667 break;
3668 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3669 default1 = 0x00036dff;
3670 break;
3671 case MSR_IA32_VMX_PROCBASED_CTLS2:
3672 default1 = 0;
3673 break;
3674 default:
3675 abort();
3678 /* If a feature bit is set, the control can be either set or clear.
3679 * Otherwise the value is limited to either 0 or 1 by default1.
3681 can_be_one = features | default1;
3682 can_be_zero = features | ~default1;
3683 must_be_one = ~can_be_zero;
3686 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
3687 * Bit 32:63 -> 1 if the control bit can be one.
3689 return must_be_one | (((uint64_t)can_be_one) << 32);
3692 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
3694 uint64_t kvm_vmx_basic =
3695 kvm_arch_get_supported_msr_feature(kvm_state,
3696 MSR_IA32_VMX_BASIC);
3698 if (!kvm_vmx_basic) {
3699 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
3700 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
3702 return;
3705 uint64_t kvm_vmx_misc =
3706 kvm_arch_get_supported_msr_feature(kvm_state,
3707 MSR_IA32_VMX_MISC);
3708 uint64_t kvm_vmx_ept_vpid =
3709 kvm_arch_get_supported_msr_feature(kvm_state,
3710 MSR_IA32_VMX_EPT_VPID_CAP);
3713 * If the guest is 64-bit, a value of 1 is allowed for the host address
3714 * space size vmexit control.
3716 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
3717 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
3720 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
3721 * not change them for backwards compatibility.
3723 uint64_t fixed_vmx_basic = kvm_vmx_basic &
3724 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
3725 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
3726 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
3729 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
3730 * change in the future but are always zero for now, clear them to be
3731 * future proof. Bits 32-63 in theory could change, though KVM does
3732 * not support dual-monitor treatment and probably never will; mask
3733 * them out as well.
3735 uint64_t fixed_vmx_misc = kvm_vmx_misc &
3736 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
3737 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
3740 * EPT memory types should not change either, so we do not bother
3741 * adding features for them.
3743 uint64_t fixed_vmx_ept_mask =
3744 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
3745 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
3746 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
3748 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3749 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
3750 f[FEAT_VMX_PROCBASED_CTLS]));
3751 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3752 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
3753 f[FEAT_VMX_PINBASED_CTLS]));
3754 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
3755 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
3756 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
3757 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3758 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
3759 f[FEAT_VMX_ENTRY_CTLS]));
3760 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
3761 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
3762 f[FEAT_VMX_SECONDARY_CTLS]));
3763 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
3764 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
3765 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
3766 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
3767 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
3768 f[FEAT_VMX_MISC] | fixed_vmx_misc);
3769 if (has_msr_vmx_vmfunc) {
3770 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
3774 * Just to be safe, write these with constant values. The CRn_FIXED1
3775 * MSRs are generated by KVM based on the vCPU's CPUID.
3777 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
3778 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
3779 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
3780 CR4_VMXE_MASK);
3782 if (f[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3783 /* FRED injected-event data (0x2052). */
3784 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x52);
3785 } else if (f[FEAT_VMX_EXIT_CTLS] &
3786 VMX_VM_EXIT_ACTIVATE_SECONDARY_CONTROLS) {
3787 /* Secondary VM-exit controls (0x2044). */
3788 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x44);
3789 } else if (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_TSC_SCALING) {
3790 /* TSC multiplier (0x2032). */
3791 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x32);
3792 } else {
3793 /* Preemption timer (0x482E). */
3794 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM, 0x2E);
3798 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
3800 uint64_t kvm_perf_cap =
3801 kvm_arch_get_supported_msr_feature(kvm_state,
3802 MSR_IA32_PERF_CAPABILITIES);
3804 if (kvm_perf_cap) {
3805 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
3806 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
3810 static int kvm_buf_set_msrs(X86CPU *cpu)
3812 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
3813 if (ret < 0) {
3814 return ret;
3817 if (ret < cpu->kvm_msr_buf->nmsrs) {
3818 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3819 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
3820 (uint32_t)e->index, (uint64_t)e->data);
3823 assert(ret == cpu->kvm_msr_buf->nmsrs);
3824 return 0;
3827 static void kvm_init_msrs(X86CPU *cpu)
3829 CPUX86State *env = &cpu->env;
3831 kvm_msr_buf_reset(cpu);
3832 if (has_msr_arch_capabs) {
3833 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
3834 env->features[FEAT_ARCH_CAPABILITIES]);
3837 if (has_msr_core_capabs) {
3838 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
3839 env->features[FEAT_CORE_CAPABILITY]);
3842 if (has_msr_perf_capabs && cpu->enable_pmu) {
3843 kvm_msr_entry_add_perf(cpu, env->features);
3846 if (has_msr_ucode_rev) {
3847 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
3851 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
3852 * all kernels with MSR features should have them.
3854 if (kvm_feature_msrs && cpu_has_vmx(env)) {
3855 kvm_msr_entry_add_vmx(cpu, env->features);
3858 assert(kvm_buf_set_msrs(cpu) == 0);
3861 static int kvm_put_msrs(X86CPU *cpu, int level)
3863 CPUX86State *env = &cpu->env;
3864 int i;
3866 kvm_msr_buf_reset(cpu);
3868 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
3869 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
3870 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
3871 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
3872 if (has_msr_star) {
3873 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
3875 if (has_msr_hsave_pa) {
3876 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
3878 if (has_msr_tsc_aux) {
3879 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
3881 if (has_msr_tsc_adjust) {
3882 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
3884 if (has_msr_misc_enable) {
3885 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
3886 env->msr_ia32_misc_enable);
3888 if (has_msr_smbase) {
3889 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
3891 if (has_msr_smi_count) {
3892 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
3894 if (has_msr_pkrs) {
3895 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
3897 if (has_msr_bndcfgs) {
3898 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
3900 if (has_msr_xss) {
3901 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
3903 if (has_msr_umwait) {
3904 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
3906 if (has_msr_spec_ctrl) {
3907 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
3909 if (has_tsc_scale_msr) {
3910 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, env->amd_tsc_scale_msr);
3913 if (has_msr_tsx_ctrl) {
3914 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
3916 if (has_msr_virt_ssbd) {
3917 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
3920 #ifdef TARGET_X86_64
3921 if (lm_capable_kernel) {
3922 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
3923 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
3924 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
3925 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
3926 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
3927 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, env->fred_rsp0);
3928 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, env->fred_rsp1);
3929 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, env->fred_rsp2);
3930 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, env->fred_rsp3);
3931 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, env->fred_stklvls);
3932 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, env->fred_ssp1);
3933 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, env->fred_ssp2);
3934 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, env->fred_ssp3);
3935 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, env->fred_config);
3938 #endif
3941 * The following MSRs have side effects on the guest or are too heavy
3942 * for normal writeback. Limit them to reset or full state updates.
3944 if (level >= KVM_PUT_RESET_STATE) {
3945 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
3946 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
3947 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
3948 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3949 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
3951 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3952 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
3954 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3955 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
3957 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3958 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
3961 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3962 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
3965 if (has_architectural_pmu_version > 0) {
3966 if (has_architectural_pmu_version > 1) {
3967 /* Stop the counter. */
3968 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3969 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3972 /* Set the counter values. */
3973 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3974 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
3975 env->msr_fixed_counters[i]);
3977 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3978 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
3979 env->msr_gp_counters[i]);
3980 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
3981 env->msr_gp_evtsel[i]);
3983 if (has_architectural_pmu_version > 1) {
3984 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
3985 env->msr_global_status);
3986 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
3987 env->msr_global_ovf_ctrl);
3989 /* Now start the PMU. */
3990 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
3991 env->msr_fixed_ctr_ctrl);
3992 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
3993 env->msr_global_ctrl);
3997 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
3998 * only sync them to KVM on the first cpu
4000 if (current_cpu == first_cpu) {
4001 if (has_msr_hv_hypercall) {
4002 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
4003 env->msr_hv_guest_os_id);
4004 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
4005 env->msr_hv_hypercall);
4007 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4008 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
4009 env->msr_hv_tsc);
4011 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4012 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
4013 env->msr_hv_reenlightenment_control);
4014 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
4015 env->msr_hv_tsc_emulation_control);
4016 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
4017 env->msr_hv_tsc_emulation_status);
4019 #ifdef CONFIG_SYNDBG
4020 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNDBG) &&
4021 has_msr_hv_syndbg_options) {
4022 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS,
4023 hyperv_syndbg_query_options());
4025 #endif
4027 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4028 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
4029 env->msr_hv_vapic);
4031 if (has_msr_hv_crash) {
4032 int j;
4034 for (j = 0; j < HV_CRASH_PARAMS; j++)
4035 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
4036 env->msr_hv_crash_params[j]);
4038 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
4040 if (has_msr_hv_runtime) {
4041 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
4043 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
4044 && hv_vpindex_settable) {
4045 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
4046 hyperv_vp_index(CPU(cpu)));
4048 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4049 int j;
4051 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
4053 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
4054 env->msr_hv_synic_control);
4055 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
4056 env->msr_hv_synic_evt_page);
4057 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
4058 env->msr_hv_synic_msg_page);
4060 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
4061 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
4062 env->msr_hv_synic_sint[j]);
4065 if (has_msr_hv_stimer) {
4066 int j;
4068 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
4069 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
4070 env->msr_hv_stimer_config[j]);
4073 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
4074 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
4075 env->msr_hv_stimer_count[j]);
4078 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4079 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
4081 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
4082 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
4083 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
4084 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
4085 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
4086 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
4087 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
4088 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
4089 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
4090 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
4091 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
4092 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
4093 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4094 /* The CPU GPs if we write to a bit above the physical limit of
4095 * the host CPU (and KVM emulates that)
4097 uint64_t mask = env->mtrr_var[i].mask;
4098 mask &= phys_mask;
4100 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
4101 env->mtrr_var[i].base);
4102 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
4105 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4106 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
4107 0x14, 1, R_EAX) & 0x7;
4109 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
4110 env->msr_rtit_ctrl);
4111 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
4112 env->msr_rtit_status);
4113 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
4114 env->msr_rtit_output_base);
4115 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
4116 env->msr_rtit_output_mask);
4117 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
4118 env->msr_rtit_cr3_match);
4119 for (i = 0; i < addr_num; i++) {
4120 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
4121 env->msr_rtit_addrs[i]);
4125 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4126 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0,
4127 env->msr_ia32_sgxlepubkeyhash[0]);
4128 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1,
4129 env->msr_ia32_sgxlepubkeyhash[1]);
4130 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2,
4131 env->msr_ia32_sgxlepubkeyhash[2]);
4132 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3,
4133 env->msr_ia32_sgxlepubkeyhash[3]);
4136 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4137 kvm_msr_entry_add(cpu, MSR_IA32_XFD,
4138 env->msr_xfd);
4139 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR,
4140 env->msr_xfd_err);
4143 if (kvm_enabled() && cpu->enable_pmu &&
4144 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4145 uint64_t depth;
4146 int ret;
4149 * Only migrate Arch LBR states when the host Arch LBR depth
4150 * equals that of source guest's, this is to avoid mismatch
4151 * of guest/host config for the msr hence avoid unexpected
4152 * misbehavior.
4154 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4156 if (ret == 1 && !!depth && depth == env->msr_lbr_depth) {
4157 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, env->msr_lbr_ctl);
4158 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, env->msr_lbr_depth);
4160 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4161 if (!env->lbr_records[i].from) {
4162 continue;
4164 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i,
4165 env->lbr_records[i].from);
4166 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i,
4167 env->lbr_records[i].to);
4168 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i,
4169 env->lbr_records[i].info);
4174 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
4175 * kvm_put_msr_feature_control. */
4178 if (env->mcg_cap) {
4179 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
4180 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
4181 if (has_msr_mcg_ext_ctl) {
4182 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
4184 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4185 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
4189 return kvm_buf_set_msrs(cpu);
4193 static int kvm_get_xsave(X86CPU *cpu)
4195 CPUX86State *env = &cpu->env;
4196 void *xsave = env->xsave_buf;
4197 unsigned long type;
4198 int ret;
4200 type = has_xsave2 ? KVM_GET_XSAVE2 : KVM_GET_XSAVE;
4201 ret = kvm_vcpu_ioctl(CPU(cpu), type, xsave);
4202 if (ret < 0) {
4203 return ret;
4205 x86_cpu_xrstor_all_areas(cpu, xsave, env->xsave_buf_len);
4207 return 0;
4210 static int kvm_get_xcrs(X86CPU *cpu)
4212 CPUX86State *env = &cpu->env;
4213 int i, ret;
4214 struct kvm_xcrs xcrs;
4216 if (!has_xcrs) {
4217 return 0;
4220 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
4221 if (ret < 0) {
4222 return ret;
4225 for (i = 0; i < xcrs.nr_xcrs; i++) {
4226 /* Only support xcr0 now */
4227 if (xcrs.xcrs[i].xcr == 0) {
4228 env->xcr0 = xcrs.xcrs[i].value;
4229 break;
4232 return 0;
4235 static int kvm_get_sregs(X86CPU *cpu)
4237 CPUX86State *env = &cpu->env;
4238 struct kvm_sregs sregs;
4239 int ret;
4241 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
4242 if (ret < 0) {
4243 return ret;
4247 * The interrupt_bitmap is ignored because KVM_GET_SREGS is
4248 * always preceded by KVM_GET_VCPU_EVENTS.
4251 get_seg(&env->segs[R_CS], &sregs.cs);
4252 get_seg(&env->segs[R_DS], &sregs.ds);
4253 get_seg(&env->segs[R_ES], &sregs.es);
4254 get_seg(&env->segs[R_FS], &sregs.fs);
4255 get_seg(&env->segs[R_GS], &sregs.gs);
4256 get_seg(&env->segs[R_SS], &sregs.ss);
4258 get_seg(&env->tr, &sregs.tr);
4259 get_seg(&env->ldt, &sregs.ldt);
4261 env->idt.limit = sregs.idt.limit;
4262 env->idt.base = sregs.idt.base;
4263 env->gdt.limit = sregs.gdt.limit;
4264 env->gdt.base = sregs.gdt.base;
4266 env->cr[0] = sregs.cr0;
4267 env->cr[2] = sregs.cr2;
4268 env->cr[3] = sregs.cr3;
4269 env->cr[4] = sregs.cr4;
4271 env->efer = sregs.efer;
4272 if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4273 env->cr[0] & CR0_PG_MASK) {
4274 env->efer |= MSR_EFER_LMA;
4277 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4278 x86_update_hflags(env);
4280 return 0;
4283 static int kvm_get_sregs2(X86CPU *cpu)
4285 CPUX86State *env = &cpu->env;
4286 struct kvm_sregs2 sregs;
4287 int i, ret;
4289 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS2, &sregs);
4290 if (ret < 0) {
4291 return ret;
4294 get_seg(&env->segs[R_CS], &sregs.cs);
4295 get_seg(&env->segs[R_DS], &sregs.ds);
4296 get_seg(&env->segs[R_ES], &sregs.es);
4297 get_seg(&env->segs[R_FS], &sregs.fs);
4298 get_seg(&env->segs[R_GS], &sregs.gs);
4299 get_seg(&env->segs[R_SS], &sregs.ss);
4301 get_seg(&env->tr, &sregs.tr);
4302 get_seg(&env->ldt, &sregs.ldt);
4304 env->idt.limit = sregs.idt.limit;
4305 env->idt.base = sregs.idt.base;
4306 env->gdt.limit = sregs.gdt.limit;
4307 env->gdt.base = sregs.gdt.base;
4309 env->cr[0] = sregs.cr0;
4310 env->cr[2] = sregs.cr2;
4311 env->cr[3] = sregs.cr3;
4312 env->cr[4] = sregs.cr4;
4314 env->efer = sregs.efer;
4315 if (sev_es_enabled() && env->efer & MSR_EFER_LME &&
4316 env->cr[0] & CR0_PG_MASK) {
4317 env->efer |= MSR_EFER_LMA;
4320 env->pdptrs_valid = sregs.flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
4322 if (env->pdptrs_valid) {
4323 for (i = 0; i < 4; i++) {
4324 env->pdptrs[i] = sregs.pdptrs[i];
4328 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
4329 x86_update_hflags(env);
4331 return 0;
4334 static int kvm_get_msrs(X86CPU *cpu)
4336 CPUX86State *env = &cpu->env;
4337 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
4338 int ret, i;
4339 uint64_t mtrr_top_bits;
4341 kvm_msr_buf_reset(cpu);
4343 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
4344 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
4345 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
4346 kvm_msr_entry_add(cpu, MSR_PAT, 0);
4347 if (has_msr_star) {
4348 kvm_msr_entry_add(cpu, MSR_STAR, 0);
4350 if (has_msr_hsave_pa) {
4351 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
4353 if (has_msr_tsc_aux) {
4354 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
4356 if (has_msr_tsc_adjust) {
4357 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
4359 if (has_msr_tsc_deadline) {
4360 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
4362 if (has_msr_misc_enable) {
4363 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
4365 if (has_msr_smbase) {
4366 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
4368 if (has_msr_smi_count) {
4369 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
4371 if (has_msr_feature_control) {
4372 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
4374 if (has_msr_pkrs) {
4375 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
4377 if (has_msr_bndcfgs) {
4378 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
4380 if (has_msr_xss) {
4381 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
4383 if (has_msr_umwait) {
4384 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
4386 if (has_msr_spec_ctrl) {
4387 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
4389 if (has_tsc_scale_msr) {
4390 kvm_msr_entry_add(cpu, MSR_AMD64_TSC_RATIO, 0);
4393 if (has_msr_tsx_ctrl) {
4394 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
4396 if (has_msr_virt_ssbd) {
4397 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
4399 if (!env->tsc_valid) {
4400 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
4401 env->tsc_valid = !runstate_is_running();
4404 #ifdef TARGET_X86_64
4405 if (lm_capable_kernel) {
4406 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
4407 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
4408 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
4409 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
4410 if (env->features[FEAT_7_1_EAX] & CPUID_7_1_EAX_FRED) {
4411 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP0, 0);
4412 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP1, 0);
4413 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP2, 0);
4414 kvm_msr_entry_add(cpu, MSR_IA32_FRED_RSP3, 0);
4415 kvm_msr_entry_add(cpu, MSR_IA32_FRED_STKLVLS, 0);
4416 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP1, 0);
4417 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP2, 0);
4418 kvm_msr_entry_add(cpu, MSR_IA32_FRED_SSP3, 0);
4419 kvm_msr_entry_add(cpu, MSR_IA32_FRED_CONFIG, 0);
4422 #endif
4423 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
4424 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
4425 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
4426 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
4428 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
4429 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
4431 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
4432 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
4434 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
4435 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
4437 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
4438 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
4440 if (has_architectural_pmu_version > 0) {
4441 if (has_architectural_pmu_version > 1) {
4442 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
4443 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
4444 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
4445 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
4447 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
4448 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
4450 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
4451 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
4452 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
4456 if (env->mcg_cap) {
4457 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
4458 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
4459 if (has_msr_mcg_ext_ctl) {
4460 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
4462 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
4463 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
4467 if (has_msr_hv_hypercall) {
4468 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
4469 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
4471 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
4472 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
4474 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
4475 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
4477 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
4478 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
4479 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
4480 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
4482 if (has_msr_hv_syndbg_options) {
4483 kvm_msr_entry_add(cpu, HV_X64_MSR_SYNDBG_OPTIONS, 0);
4485 if (has_msr_hv_crash) {
4486 int j;
4488 for (j = 0; j < HV_CRASH_PARAMS; j++) {
4489 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
4492 if (has_msr_hv_runtime) {
4493 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
4495 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
4496 uint32_t msr;
4498 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
4499 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
4500 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
4501 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
4502 kvm_msr_entry_add(cpu, msr, 0);
4505 if (has_msr_hv_stimer) {
4506 uint32_t msr;
4508 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
4509 msr++) {
4510 kvm_msr_entry_add(cpu, msr, 0);
4513 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
4514 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
4515 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
4516 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
4517 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
4518 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
4519 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
4520 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
4521 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
4522 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
4523 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
4524 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
4525 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
4526 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
4527 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
4528 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
4532 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
4533 int addr_num =
4534 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
4536 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
4537 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
4538 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
4539 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
4540 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
4541 for (i = 0; i < addr_num; i++) {
4542 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
4546 if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_SGX_LC) {
4547 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH0, 0);
4548 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH1, 0);
4549 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH2, 0);
4550 kvm_msr_entry_add(cpu, MSR_IA32_SGXLEPUBKEYHASH3, 0);
4553 if (env->features[FEAT_XSAVE] & CPUID_D_1_EAX_XFD) {
4554 kvm_msr_entry_add(cpu, MSR_IA32_XFD, 0);
4555 kvm_msr_entry_add(cpu, MSR_IA32_XFD_ERR, 0);
4558 if (kvm_enabled() && cpu->enable_pmu &&
4559 (env->features[FEAT_7_0_EDX] & CPUID_7_0_EDX_ARCH_LBR)) {
4560 uint64_t depth;
4562 ret = kvm_get_one_msr(cpu, MSR_ARCH_LBR_DEPTH, &depth);
4563 if (ret == 1 && depth == ARCH_LBR_NR_ENTRIES) {
4564 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_CTL, 0);
4565 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_DEPTH, 0);
4567 for (i = 0; i < ARCH_LBR_NR_ENTRIES; i++) {
4568 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_FROM_0 + i, 0);
4569 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_TO_0 + i, 0);
4570 kvm_msr_entry_add(cpu, MSR_ARCH_LBR_INFO_0 + i, 0);
4575 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
4576 if (ret < 0) {
4577 return ret;
4580 if (ret < cpu->kvm_msr_buf->nmsrs) {
4581 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
4582 error_report("error: failed to get MSR 0x%" PRIx32,
4583 (uint32_t)e->index);
4586 assert(ret == cpu->kvm_msr_buf->nmsrs);
4588 * MTRR masks: Each mask consists of 5 parts
4589 * a 10..0: must be zero
4590 * b 11 : valid bit
4591 * c n-1.12: actual mask bits
4592 * d 51..n: reserved must be zero
4593 * e 63.52: reserved must be zero
4595 * 'n' is the number of physical bits supported by the CPU and is
4596 * apparently always <= 52. We know our 'n' but don't know what
4597 * the destinations 'n' is; it might be smaller, in which case
4598 * it masks (c) on loading. It might be larger, in which case
4599 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
4600 * we're migrating to.
4603 if (cpu->fill_mtrr_mask) {
4604 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
4605 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
4606 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
4607 } else {
4608 mtrr_top_bits = 0;
4611 for (i = 0; i < ret; i++) {
4612 uint32_t index = msrs[i].index;
4613 switch (index) {
4614 case MSR_IA32_SYSENTER_CS:
4615 env->sysenter_cs = msrs[i].data;
4616 break;
4617 case MSR_IA32_SYSENTER_ESP:
4618 env->sysenter_esp = msrs[i].data;
4619 break;
4620 case MSR_IA32_SYSENTER_EIP:
4621 env->sysenter_eip = msrs[i].data;
4622 break;
4623 case MSR_PAT:
4624 env->pat = msrs[i].data;
4625 break;
4626 case MSR_STAR:
4627 env->star = msrs[i].data;
4628 break;
4629 #ifdef TARGET_X86_64
4630 case MSR_CSTAR:
4631 env->cstar = msrs[i].data;
4632 break;
4633 case MSR_KERNELGSBASE:
4634 env->kernelgsbase = msrs[i].data;
4635 break;
4636 case MSR_FMASK:
4637 env->fmask = msrs[i].data;
4638 break;
4639 case MSR_LSTAR:
4640 env->lstar = msrs[i].data;
4641 break;
4642 case MSR_IA32_FRED_RSP0:
4643 env->fred_rsp0 = msrs[i].data;
4644 break;
4645 case MSR_IA32_FRED_RSP1:
4646 env->fred_rsp1 = msrs[i].data;
4647 break;
4648 case MSR_IA32_FRED_RSP2:
4649 env->fred_rsp2 = msrs[i].data;
4650 break;
4651 case MSR_IA32_FRED_RSP3:
4652 env->fred_rsp3 = msrs[i].data;
4653 break;
4654 case MSR_IA32_FRED_STKLVLS:
4655 env->fred_stklvls = msrs[i].data;
4656 break;
4657 case MSR_IA32_FRED_SSP1:
4658 env->fred_ssp1 = msrs[i].data;
4659 break;
4660 case MSR_IA32_FRED_SSP2:
4661 env->fred_ssp2 = msrs[i].data;
4662 break;
4663 case MSR_IA32_FRED_SSP3:
4664 env->fred_ssp3 = msrs[i].data;
4665 break;
4666 case MSR_IA32_FRED_CONFIG:
4667 env->fred_config = msrs[i].data;
4668 break;
4669 #endif
4670 case MSR_IA32_TSC:
4671 env->tsc = msrs[i].data;
4672 break;
4673 case MSR_TSC_AUX:
4674 env->tsc_aux = msrs[i].data;
4675 break;
4676 case MSR_TSC_ADJUST:
4677 env->tsc_adjust = msrs[i].data;
4678 break;
4679 case MSR_IA32_TSCDEADLINE:
4680 env->tsc_deadline = msrs[i].data;
4681 break;
4682 case MSR_VM_HSAVE_PA:
4683 env->vm_hsave = msrs[i].data;
4684 break;
4685 case MSR_KVM_SYSTEM_TIME:
4686 env->system_time_msr = msrs[i].data;
4687 break;
4688 case MSR_KVM_WALL_CLOCK:
4689 env->wall_clock_msr = msrs[i].data;
4690 break;
4691 case MSR_MCG_STATUS:
4692 env->mcg_status = msrs[i].data;
4693 break;
4694 case MSR_MCG_CTL:
4695 env->mcg_ctl = msrs[i].data;
4696 break;
4697 case MSR_MCG_EXT_CTL:
4698 env->mcg_ext_ctl = msrs[i].data;
4699 break;
4700 case MSR_IA32_MISC_ENABLE:
4701 env->msr_ia32_misc_enable = msrs[i].data;
4702 break;
4703 case MSR_IA32_SMBASE:
4704 env->smbase = msrs[i].data;
4705 break;
4706 case MSR_SMI_COUNT:
4707 env->msr_smi_count = msrs[i].data;
4708 break;
4709 case MSR_IA32_FEATURE_CONTROL:
4710 env->msr_ia32_feature_control = msrs[i].data;
4711 break;
4712 case MSR_IA32_BNDCFGS:
4713 env->msr_bndcfgs = msrs[i].data;
4714 break;
4715 case MSR_IA32_XSS:
4716 env->xss = msrs[i].data;
4717 break;
4718 case MSR_IA32_UMWAIT_CONTROL:
4719 env->umwait = msrs[i].data;
4720 break;
4721 case MSR_IA32_PKRS:
4722 env->pkrs = msrs[i].data;
4723 break;
4724 default:
4725 if (msrs[i].index >= MSR_MC0_CTL &&
4726 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
4727 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
4729 break;
4730 case MSR_KVM_ASYNC_PF_EN:
4731 env->async_pf_en_msr = msrs[i].data;
4732 break;
4733 case MSR_KVM_ASYNC_PF_INT:
4734 env->async_pf_int_msr = msrs[i].data;
4735 break;
4736 case MSR_KVM_PV_EOI_EN:
4737 env->pv_eoi_en_msr = msrs[i].data;
4738 break;
4739 case MSR_KVM_STEAL_TIME:
4740 env->steal_time_msr = msrs[i].data;
4741 break;
4742 case MSR_KVM_POLL_CONTROL: {
4743 env->poll_control_msr = msrs[i].data;
4744 break;
4746 case MSR_CORE_PERF_FIXED_CTR_CTRL:
4747 env->msr_fixed_ctr_ctrl = msrs[i].data;
4748 break;
4749 case MSR_CORE_PERF_GLOBAL_CTRL:
4750 env->msr_global_ctrl = msrs[i].data;
4751 break;
4752 case MSR_CORE_PERF_GLOBAL_STATUS:
4753 env->msr_global_status = msrs[i].data;
4754 break;
4755 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
4756 env->msr_global_ovf_ctrl = msrs[i].data;
4757 break;
4758 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
4759 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
4760 break;
4761 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
4762 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
4763 break;
4764 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
4765 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
4766 break;
4767 case HV_X64_MSR_HYPERCALL:
4768 env->msr_hv_hypercall = msrs[i].data;
4769 break;
4770 case HV_X64_MSR_GUEST_OS_ID:
4771 env->msr_hv_guest_os_id = msrs[i].data;
4772 break;
4773 case HV_X64_MSR_APIC_ASSIST_PAGE:
4774 env->msr_hv_vapic = msrs[i].data;
4775 break;
4776 case HV_X64_MSR_REFERENCE_TSC:
4777 env->msr_hv_tsc = msrs[i].data;
4778 break;
4779 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4780 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
4781 break;
4782 case HV_X64_MSR_VP_RUNTIME:
4783 env->msr_hv_runtime = msrs[i].data;
4784 break;
4785 case HV_X64_MSR_SCONTROL:
4786 env->msr_hv_synic_control = msrs[i].data;
4787 break;
4788 case HV_X64_MSR_SIEFP:
4789 env->msr_hv_synic_evt_page = msrs[i].data;
4790 break;
4791 case HV_X64_MSR_SIMP:
4792 env->msr_hv_synic_msg_page = msrs[i].data;
4793 break;
4794 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
4795 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
4796 break;
4797 case HV_X64_MSR_STIMER0_CONFIG:
4798 case HV_X64_MSR_STIMER1_CONFIG:
4799 case HV_X64_MSR_STIMER2_CONFIG:
4800 case HV_X64_MSR_STIMER3_CONFIG:
4801 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
4802 msrs[i].data;
4803 break;
4804 case HV_X64_MSR_STIMER0_COUNT:
4805 case HV_X64_MSR_STIMER1_COUNT:
4806 case HV_X64_MSR_STIMER2_COUNT:
4807 case HV_X64_MSR_STIMER3_COUNT:
4808 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
4809 msrs[i].data;
4810 break;
4811 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4812 env->msr_hv_reenlightenment_control = msrs[i].data;
4813 break;
4814 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4815 env->msr_hv_tsc_emulation_control = msrs[i].data;
4816 break;
4817 case HV_X64_MSR_TSC_EMULATION_STATUS:
4818 env->msr_hv_tsc_emulation_status = msrs[i].data;
4819 break;
4820 case HV_X64_MSR_SYNDBG_OPTIONS:
4821 env->msr_hv_syndbg_options = msrs[i].data;
4822 break;
4823 case MSR_MTRRdefType:
4824 env->mtrr_deftype = msrs[i].data;
4825 break;
4826 case MSR_MTRRfix64K_00000:
4827 env->mtrr_fixed[0] = msrs[i].data;
4828 break;
4829 case MSR_MTRRfix16K_80000:
4830 env->mtrr_fixed[1] = msrs[i].data;
4831 break;
4832 case MSR_MTRRfix16K_A0000:
4833 env->mtrr_fixed[2] = msrs[i].data;
4834 break;
4835 case MSR_MTRRfix4K_C0000:
4836 env->mtrr_fixed[3] = msrs[i].data;
4837 break;
4838 case MSR_MTRRfix4K_C8000:
4839 env->mtrr_fixed[4] = msrs[i].data;
4840 break;
4841 case MSR_MTRRfix4K_D0000:
4842 env->mtrr_fixed[5] = msrs[i].data;
4843 break;
4844 case MSR_MTRRfix4K_D8000:
4845 env->mtrr_fixed[6] = msrs[i].data;
4846 break;
4847 case MSR_MTRRfix4K_E0000:
4848 env->mtrr_fixed[7] = msrs[i].data;
4849 break;
4850 case MSR_MTRRfix4K_E8000:
4851 env->mtrr_fixed[8] = msrs[i].data;
4852 break;
4853 case MSR_MTRRfix4K_F0000:
4854 env->mtrr_fixed[9] = msrs[i].data;
4855 break;
4856 case MSR_MTRRfix4K_F8000:
4857 env->mtrr_fixed[10] = msrs[i].data;
4858 break;
4859 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
4860 if (index & 1) {
4861 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
4862 mtrr_top_bits;
4863 } else {
4864 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
4866 break;
4867 case MSR_IA32_SPEC_CTRL:
4868 env->spec_ctrl = msrs[i].data;
4869 break;
4870 case MSR_AMD64_TSC_RATIO:
4871 env->amd_tsc_scale_msr = msrs[i].data;
4872 break;
4873 case MSR_IA32_TSX_CTRL:
4874 env->tsx_ctrl = msrs[i].data;
4875 break;
4876 case MSR_VIRT_SSBD:
4877 env->virt_ssbd = msrs[i].data;
4878 break;
4879 case MSR_IA32_RTIT_CTL:
4880 env->msr_rtit_ctrl = msrs[i].data;
4881 break;
4882 case MSR_IA32_RTIT_STATUS:
4883 env->msr_rtit_status = msrs[i].data;
4884 break;
4885 case MSR_IA32_RTIT_OUTPUT_BASE:
4886 env->msr_rtit_output_base = msrs[i].data;
4887 break;
4888 case MSR_IA32_RTIT_OUTPUT_MASK:
4889 env->msr_rtit_output_mask = msrs[i].data;
4890 break;
4891 case MSR_IA32_RTIT_CR3_MATCH:
4892 env->msr_rtit_cr3_match = msrs[i].data;
4893 break;
4894 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
4895 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
4896 break;
4897 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
4898 env->msr_ia32_sgxlepubkeyhash[index - MSR_IA32_SGXLEPUBKEYHASH0] =
4899 msrs[i].data;
4900 break;
4901 case MSR_IA32_XFD:
4902 env->msr_xfd = msrs[i].data;
4903 break;
4904 case MSR_IA32_XFD_ERR:
4905 env->msr_xfd_err = msrs[i].data;
4906 break;
4907 case MSR_ARCH_LBR_CTL:
4908 env->msr_lbr_ctl = msrs[i].data;
4909 break;
4910 case MSR_ARCH_LBR_DEPTH:
4911 env->msr_lbr_depth = msrs[i].data;
4912 break;
4913 case MSR_ARCH_LBR_FROM_0 ... MSR_ARCH_LBR_FROM_0 + 31:
4914 env->lbr_records[index - MSR_ARCH_LBR_FROM_0].from = msrs[i].data;
4915 break;
4916 case MSR_ARCH_LBR_TO_0 ... MSR_ARCH_LBR_TO_0 + 31:
4917 env->lbr_records[index - MSR_ARCH_LBR_TO_0].to = msrs[i].data;
4918 break;
4919 case MSR_ARCH_LBR_INFO_0 ... MSR_ARCH_LBR_INFO_0 + 31:
4920 env->lbr_records[index - MSR_ARCH_LBR_INFO_0].info = msrs[i].data;
4921 break;
4925 return 0;
4928 static int kvm_put_mp_state(X86CPU *cpu)
4930 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
4932 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
4935 static int kvm_get_mp_state(X86CPU *cpu)
4937 CPUState *cs = CPU(cpu);
4938 CPUX86State *env = &cpu->env;
4939 struct kvm_mp_state mp_state;
4940 int ret;
4942 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
4943 if (ret < 0) {
4944 return ret;
4946 env->mp_state = mp_state.mp_state;
4947 if (kvm_irqchip_in_kernel()) {
4948 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
4950 return 0;
4953 static int kvm_get_apic(X86CPU *cpu)
4955 DeviceState *apic = cpu->apic_state;
4956 struct kvm_lapic_state kapic;
4957 int ret;
4959 if (apic && kvm_irqchip_in_kernel()) {
4960 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
4961 if (ret < 0) {
4962 return ret;
4965 kvm_get_apic_state(apic, &kapic);
4967 return 0;
4970 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
4972 CPUState *cs = CPU(cpu);
4973 CPUX86State *env = &cpu->env;
4974 struct kvm_vcpu_events events = {};
4976 events.flags = 0;
4978 if (has_exception_payload) {
4979 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4980 events.exception.pending = env->exception_pending;
4981 events.exception_has_payload = env->exception_has_payload;
4982 events.exception_payload = env->exception_payload;
4984 events.exception.nr = env->exception_nr;
4985 events.exception.injected = env->exception_injected;
4986 events.exception.has_error_code = env->has_error_code;
4987 events.exception.error_code = env->error_code;
4989 events.interrupt.injected = (env->interrupt_injected >= 0);
4990 events.interrupt.nr = env->interrupt_injected;
4991 events.interrupt.soft = env->soft_interrupt;
4993 events.nmi.injected = env->nmi_injected;
4994 events.nmi.pending = env->nmi_pending;
4995 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
4997 events.sipi_vector = env->sipi_vector;
4999 if (has_msr_smbase) {
5000 events.flags |= KVM_VCPUEVENT_VALID_SMM;
5001 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
5002 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
5003 if (kvm_irqchip_in_kernel()) {
5004 /* As soon as these are moved to the kernel, remove them
5005 * from cs->interrupt_request.
5007 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
5008 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
5009 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
5010 } else {
5011 /* Keep these in cs->interrupt_request. */
5012 events.smi.pending = 0;
5013 events.smi.latched_init = 0;
5017 if (level >= KVM_PUT_RESET_STATE) {
5018 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
5019 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
5020 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
5024 if (has_triple_fault_event) {
5025 events.flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5026 events.triple_fault.pending = env->triple_fault_pending;
5029 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
5032 static int kvm_get_vcpu_events(X86CPU *cpu)
5034 CPUX86State *env = &cpu->env;
5035 struct kvm_vcpu_events events;
5036 int ret;
5038 memset(&events, 0, sizeof(events));
5039 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
5040 if (ret < 0) {
5041 return ret;
5044 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5045 env->exception_pending = events.exception.pending;
5046 env->exception_has_payload = events.exception_has_payload;
5047 env->exception_payload = events.exception_payload;
5048 } else {
5049 env->exception_pending = 0;
5050 env->exception_has_payload = false;
5052 env->exception_injected = events.exception.injected;
5053 env->exception_nr =
5054 (env->exception_pending || env->exception_injected) ?
5055 events.exception.nr : -1;
5056 env->has_error_code = events.exception.has_error_code;
5057 env->error_code = events.exception.error_code;
5059 env->interrupt_injected =
5060 events.interrupt.injected ? events.interrupt.nr : -1;
5061 env->soft_interrupt = events.interrupt.soft;
5063 env->nmi_injected = events.nmi.injected;
5064 env->nmi_pending = events.nmi.pending;
5065 if (events.nmi.masked) {
5066 env->hflags2 |= HF2_NMI_MASK;
5067 } else {
5068 env->hflags2 &= ~HF2_NMI_MASK;
5071 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
5072 if (events.smi.smm) {
5073 env->hflags |= HF_SMM_MASK;
5074 } else {
5075 env->hflags &= ~HF_SMM_MASK;
5077 if (events.smi.pending) {
5078 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5079 } else {
5080 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
5082 if (events.smi.smm_inside_nmi) {
5083 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
5084 } else {
5085 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
5087 if (events.smi.latched_init) {
5088 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5089 } else {
5090 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
5094 if (events.flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5095 env->triple_fault_pending = events.triple_fault.pending;
5098 env->sipi_vector = events.sipi_vector;
5100 return 0;
5103 static int kvm_put_debugregs(X86CPU *cpu)
5105 CPUX86State *env = &cpu->env;
5106 struct kvm_debugregs dbgregs;
5107 int i;
5109 memset(&dbgregs, 0, sizeof(dbgregs));
5110 for (i = 0; i < 4; i++) {
5111 dbgregs.db[i] = env->dr[i];
5113 dbgregs.dr6 = env->dr[6];
5114 dbgregs.dr7 = env->dr[7];
5115 dbgregs.flags = 0;
5117 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
5120 static int kvm_get_debugregs(X86CPU *cpu)
5122 CPUX86State *env = &cpu->env;
5123 struct kvm_debugregs dbgregs;
5124 int i, ret;
5126 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
5127 if (ret < 0) {
5128 return ret;
5130 for (i = 0; i < 4; i++) {
5131 env->dr[i] = dbgregs.db[i];
5133 env->dr[4] = env->dr[6] = dbgregs.dr6;
5134 env->dr[5] = env->dr[7] = dbgregs.dr7;
5136 return 0;
5139 static int kvm_put_nested_state(X86CPU *cpu)
5141 CPUX86State *env = &cpu->env;
5142 int max_nested_state_len = kvm_max_nested_state_length();
5144 if (!env->nested_state) {
5145 return 0;
5149 * Copy flags that are affected by reset from env->hflags and env->hflags2.
5151 if (env->hflags & HF_GUEST_MASK) {
5152 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
5153 } else {
5154 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
5157 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
5158 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
5159 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
5160 } else {
5161 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
5164 assert(env->nested_state->size <= max_nested_state_len);
5165 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
5168 static int kvm_get_nested_state(X86CPU *cpu)
5170 CPUX86State *env = &cpu->env;
5171 int max_nested_state_len = kvm_max_nested_state_length();
5172 int ret;
5174 if (!env->nested_state) {
5175 return 0;
5179 * It is possible that migration restored a smaller size into
5180 * nested_state->hdr.size than what our kernel support.
5181 * We preserve migration origin nested_state->hdr.size for
5182 * call to KVM_SET_NESTED_STATE but wish that our next call
5183 * to KVM_GET_NESTED_STATE will use max size our kernel support.
5185 env->nested_state->size = max_nested_state_len;
5187 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
5188 if (ret < 0) {
5189 return ret;
5193 * Copy flags that are affected by reset to env->hflags and env->hflags2.
5195 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
5196 env->hflags |= HF_GUEST_MASK;
5197 } else {
5198 env->hflags &= ~HF_GUEST_MASK;
5201 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
5202 if (cpu_has_svm(env)) {
5203 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
5204 env->hflags2 |= HF2_GIF_MASK;
5205 } else {
5206 env->hflags2 &= ~HF2_GIF_MASK;
5210 return ret;
5213 int kvm_arch_put_registers(CPUState *cpu, int level, Error **errp)
5215 X86CPU *x86_cpu = X86_CPU(cpu);
5216 int ret;
5218 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
5221 * Put MSR_IA32_FEATURE_CONTROL first, this ensures the VM gets out of VMX
5222 * root operation upon vCPU reset. kvm_put_msr_feature_control() should also
5223 * precede kvm_put_nested_state() when 'real' nested state is set.
5225 if (level >= KVM_PUT_RESET_STATE) {
5226 ret = kvm_put_msr_feature_control(x86_cpu);
5227 if (ret < 0) {
5228 error_setg_errno(errp, -ret, "Failed to set feature control MSR");
5229 return ret;
5233 /* must be before kvm_put_nested_state so that EFER.SVME is set */
5234 ret = has_sregs2 ? kvm_put_sregs2(x86_cpu) : kvm_put_sregs(x86_cpu);
5235 if (ret < 0) {
5236 error_setg_errno(errp, -ret, "Failed to set special registers");
5237 return ret;
5240 if (level >= KVM_PUT_RESET_STATE) {
5241 ret = kvm_put_nested_state(x86_cpu);
5242 if (ret < 0) {
5243 error_setg_errno(errp, -ret, "Failed to set nested state");
5244 return ret;
5248 if (level == KVM_PUT_FULL_STATE) {
5249 /* We don't check for kvm_arch_set_tsc_khz() errors here,
5250 * because TSC frequency mismatch shouldn't abort migration,
5251 * unless the user explicitly asked for a more strict TSC
5252 * setting (e.g. using an explicit "tsc-freq" option).
5254 kvm_arch_set_tsc_khz(cpu);
5257 #ifdef CONFIG_XEN_EMU
5258 if (xen_mode == XEN_EMULATE && level == KVM_PUT_FULL_STATE) {
5259 ret = kvm_put_xen_state(cpu);
5260 if (ret < 0) {
5261 error_setg_errno(errp, -ret, "Failed to set Xen state");
5262 return ret;
5265 #endif
5267 ret = kvm_getput_regs(x86_cpu, 1);
5268 if (ret < 0) {
5269 error_setg_errno(errp, -ret, "Failed to set general purpose registers");
5270 return ret;
5272 ret = kvm_put_xsave(x86_cpu);
5273 if (ret < 0) {
5274 error_setg_errno(errp, -ret, "Failed to set XSAVE");
5275 return ret;
5277 ret = kvm_put_xcrs(x86_cpu);
5278 if (ret < 0) {
5279 error_setg_errno(errp, -ret, "Failed to set XCRs");
5280 return ret;
5282 ret = kvm_put_msrs(x86_cpu, level);
5283 if (ret < 0) {
5284 error_setg_errno(errp, -ret, "Failed to set MSRs");
5285 return ret;
5287 ret = kvm_put_vcpu_events(x86_cpu, level);
5288 if (ret < 0) {
5289 error_setg_errno(errp, -ret, "Failed to set vCPU events");
5290 return ret;
5292 if (level >= KVM_PUT_RESET_STATE) {
5293 ret = kvm_put_mp_state(x86_cpu);
5294 if (ret < 0) {
5295 error_setg_errno(errp, -ret, "Failed to set MP state");
5296 return ret;
5300 ret = kvm_put_tscdeadline_msr(x86_cpu);
5301 if (ret < 0) {
5302 error_setg_errno(errp, -ret, "Failed to set TSC deadline MSR");
5303 return ret;
5305 ret = kvm_put_debugregs(x86_cpu);
5306 if (ret < 0) {
5307 error_setg_errno(errp, -ret, "Failed to set debug registers");
5308 return ret;
5310 return 0;
5313 int kvm_arch_get_registers(CPUState *cs, Error **errp)
5315 X86CPU *cpu = X86_CPU(cs);
5316 int ret;
5318 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
5320 ret = kvm_get_vcpu_events(cpu);
5321 if (ret < 0) {
5322 error_setg_errno(errp, -ret, "Failed to get vCPU events");
5323 goto out;
5326 * KVM_GET_MPSTATE can modify CS and RIP, call it before
5327 * KVM_GET_REGS and KVM_GET_SREGS.
5329 ret = kvm_get_mp_state(cpu);
5330 if (ret < 0) {
5331 error_setg_errno(errp, -ret, "Failed to get MP state");
5332 goto out;
5334 ret = kvm_getput_regs(cpu, 0);
5335 if (ret < 0) {
5336 error_setg_errno(errp, -ret, "Failed to get general purpose registers");
5337 goto out;
5339 ret = kvm_get_xsave(cpu);
5340 if (ret < 0) {
5341 error_setg_errno(errp, -ret, "Failed to get XSAVE");
5342 goto out;
5344 ret = kvm_get_xcrs(cpu);
5345 if (ret < 0) {
5346 error_setg_errno(errp, -ret, "Failed to get XCRs");
5347 goto out;
5349 ret = has_sregs2 ? kvm_get_sregs2(cpu) : kvm_get_sregs(cpu);
5350 if (ret < 0) {
5351 error_setg_errno(errp, -ret, "Failed to get special registers");
5352 goto out;
5354 ret = kvm_get_msrs(cpu);
5355 if (ret < 0) {
5356 error_setg_errno(errp, -ret, "Failed to get MSRs");
5357 goto out;
5359 ret = kvm_get_apic(cpu);
5360 if (ret < 0) {
5361 error_setg_errno(errp, -ret, "Failed to get APIC");
5362 goto out;
5364 ret = kvm_get_debugregs(cpu);
5365 if (ret < 0) {
5366 error_setg_errno(errp, -ret, "Failed to get debug registers");
5367 goto out;
5369 ret = kvm_get_nested_state(cpu);
5370 if (ret < 0) {
5371 error_setg_errno(errp, -ret, "Failed to get nested state");
5372 goto out;
5374 #ifdef CONFIG_XEN_EMU
5375 if (xen_mode == XEN_EMULATE) {
5376 ret = kvm_get_xen_state(cs);
5377 if (ret < 0) {
5378 error_setg_errno(errp, -ret, "Failed to get Xen state");
5379 goto out;
5382 #endif
5383 ret = 0;
5384 out:
5385 cpu_sync_bndcs_hflags(&cpu->env);
5386 return ret;
5389 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
5391 X86CPU *x86_cpu = X86_CPU(cpu);
5392 CPUX86State *env = &x86_cpu->env;
5393 int ret;
5395 /* Inject NMI */
5396 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
5397 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
5398 bql_lock();
5399 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
5400 bql_unlock();
5401 DPRINTF("injected NMI\n");
5402 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
5403 if (ret < 0) {
5404 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
5405 strerror(-ret));
5408 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
5409 bql_lock();
5410 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
5411 bql_unlock();
5412 DPRINTF("injected SMI\n");
5413 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
5414 if (ret < 0) {
5415 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
5416 strerror(-ret));
5421 if (!kvm_pic_in_kernel()) {
5422 bql_lock();
5425 /* Force the VCPU out of its inner loop to process any INIT requests
5426 * or (for userspace APIC, but it is cheap to combine the checks here)
5427 * pending TPR access reports.
5429 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
5430 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
5431 !(env->hflags & HF_SMM_MASK)) {
5432 cpu->exit_request = 1;
5434 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
5435 cpu->exit_request = 1;
5439 if (!kvm_pic_in_kernel()) {
5440 /* Try to inject an interrupt if the guest can accept it */
5441 if (run->ready_for_interrupt_injection &&
5442 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
5443 (env->eflags & IF_MASK)) {
5444 int irq;
5446 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
5447 irq = cpu_get_pic_interrupt(env);
5448 if (irq >= 0) {
5449 struct kvm_interrupt intr;
5451 intr.irq = irq;
5452 DPRINTF("injected interrupt %d\n", irq);
5453 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
5454 if (ret < 0) {
5455 fprintf(stderr,
5456 "KVM: injection failed, interrupt lost (%s)\n",
5457 strerror(-ret));
5462 /* If we have an interrupt but the guest is not ready to receive an
5463 * interrupt, request an interrupt window exit. This will
5464 * cause a return to userspace as soon as the guest is ready to
5465 * receive interrupts. */
5466 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
5467 run->request_interrupt_window = 1;
5468 } else {
5469 run->request_interrupt_window = 0;
5472 DPRINTF("setting tpr\n");
5473 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
5475 bql_unlock();
5479 static void kvm_rate_limit_on_bus_lock(void)
5481 uint64_t delay_ns = ratelimit_calculate_delay(&bus_lock_ratelimit_ctrl, 1);
5483 if (delay_ns) {
5484 g_usleep(delay_ns / SCALE_US);
5488 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
5490 X86CPU *x86_cpu = X86_CPU(cpu);
5491 CPUX86State *env = &x86_cpu->env;
5493 if (run->flags & KVM_RUN_X86_SMM) {
5494 env->hflags |= HF_SMM_MASK;
5495 } else {
5496 env->hflags &= ~HF_SMM_MASK;
5498 if (run->if_flag) {
5499 env->eflags |= IF_MASK;
5500 } else {
5501 env->eflags &= ~IF_MASK;
5503 if (run->flags & KVM_RUN_X86_BUS_LOCK) {
5504 kvm_rate_limit_on_bus_lock();
5507 #ifdef CONFIG_XEN_EMU
5509 * If the callback is asserted as a GSI (or PCI INTx) then check if
5510 * vcpu_info->evtchn_upcall_pending has been cleared, and deassert
5511 * the callback IRQ if so. Ideally we could hook into the PIC/IOAPIC
5512 * EOI and only resample then, exactly how the VFIO eventfd pairs
5513 * are designed to work for level triggered interrupts.
5515 if (x86_cpu->env.xen_callback_asserted) {
5516 kvm_xen_maybe_deassert_callback(cpu);
5518 #endif
5520 /* We need to protect the apic state against concurrent accesses from
5521 * different threads in case the userspace irqchip is used. */
5522 if (!kvm_irqchip_in_kernel()) {
5523 bql_lock();
5525 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
5526 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
5527 if (!kvm_irqchip_in_kernel()) {
5528 bql_unlock();
5530 return cpu_get_mem_attrs(env);
5533 int kvm_arch_process_async_events(CPUState *cs)
5535 X86CPU *cpu = X86_CPU(cs);
5536 CPUX86State *env = &cpu->env;
5538 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
5539 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
5540 assert(env->mcg_cap);
5542 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
5544 kvm_cpu_synchronize_state(cs);
5546 if (env->exception_nr == EXCP08_DBLE) {
5547 /* this means triple fault */
5548 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
5549 cs->exit_request = 1;
5550 return 0;
5552 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
5553 env->has_error_code = 0;
5555 cs->halted = 0;
5556 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
5557 env->mp_state = KVM_MP_STATE_RUNNABLE;
5561 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
5562 !(env->hflags & HF_SMM_MASK)) {
5563 kvm_cpu_synchronize_state(cs);
5564 do_cpu_init(cpu);
5567 if (kvm_irqchip_in_kernel()) {
5568 return 0;
5571 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
5572 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
5573 apic_poll_irq(cpu->apic_state);
5575 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5576 (env->eflags & IF_MASK)) ||
5577 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5578 cs->halted = 0;
5580 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
5581 kvm_cpu_synchronize_state(cs);
5582 do_cpu_sipi(cpu);
5584 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
5585 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
5586 kvm_cpu_synchronize_state(cs);
5587 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
5588 env->tpr_access_type);
5591 return cs->halted;
5594 static int kvm_handle_halt(X86CPU *cpu)
5596 CPUState *cs = CPU(cpu);
5597 CPUX86State *env = &cpu->env;
5599 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
5600 (env->eflags & IF_MASK)) &&
5601 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
5602 cs->halted = 1;
5603 return EXCP_HLT;
5606 return 0;
5609 static int kvm_handle_tpr_access(X86CPU *cpu)
5611 CPUState *cs = CPU(cpu);
5612 struct kvm_run *run = cs->kvm_run;
5614 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
5615 run->tpr_access.is_write ? TPR_ACCESS_WRITE
5616 : TPR_ACCESS_READ);
5617 return 1;
5620 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5622 static const uint8_t int3 = 0xcc;
5624 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
5625 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
5626 return -EINVAL;
5628 return 0;
5631 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
5633 uint8_t int3;
5635 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0)) {
5636 return -EINVAL;
5638 if (int3 != 0xcc) {
5639 return 0;
5641 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
5642 return -EINVAL;
5644 return 0;
5647 static struct {
5648 target_ulong addr;
5649 int len;
5650 int type;
5651 } hw_breakpoint[4];
5653 static int nb_hw_breakpoint;
5655 static int find_hw_breakpoint(target_ulong addr, int len, int type)
5657 int n;
5659 for (n = 0; n < nb_hw_breakpoint; n++) {
5660 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
5661 (hw_breakpoint[n].len == len || len == -1)) {
5662 return n;
5665 return -1;
5668 int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
5670 switch (type) {
5671 case GDB_BREAKPOINT_HW:
5672 len = 1;
5673 break;
5674 case GDB_WATCHPOINT_WRITE:
5675 case GDB_WATCHPOINT_ACCESS:
5676 switch (len) {
5677 case 1:
5678 break;
5679 case 2:
5680 case 4:
5681 case 8:
5682 if (addr & (len - 1)) {
5683 return -EINVAL;
5685 break;
5686 default:
5687 return -EINVAL;
5689 break;
5690 default:
5691 return -ENOSYS;
5694 if (nb_hw_breakpoint == 4) {
5695 return -ENOBUFS;
5697 if (find_hw_breakpoint(addr, len, type) >= 0) {
5698 return -EEXIST;
5700 hw_breakpoint[nb_hw_breakpoint].addr = addr;
5701 hw_breakpoint[nb_hw_breakpoint].len = len;
5702 hw_breakpoint[nb_hw_breakpoint].type = type;
5703 nb_hw_breakpoint++;
5705 return 0;
5708 int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
5710 int n;
5712 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
5713 if (n < 0) {
5714 return -ENOENT;
5716 nb_hw_breakpoint--;
5717 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
5719 return 0;
5722 void kvm_arch_remove_all_hw_breakpoints(void)
5724 nb_hw_breakpoint = 0;
5727 static CPUWatchpoint hw_watchpoint;
5729 static int kvm_handle_debug(X86CPU *cpu,
5730 struct kvm_debug_exit_arch *arch_info)
5732 CPUState *cs = CPU(cpu);
5733 CPUX86State *env = &cpu->env;
5734 int ret = 0;
5735 int n;
5737 if (arch_info->exception == EXCP01_DB) {
5738 if (arch_info->dr6 & DR6_BS) {
5739 if (cs->singlestep_enabled) {
5740 ret = EXCP_DEBUG;
5742 } else {
5743 for (n = 0; n < 4; n++) {
5744 if (arch_info->dr6 & (1 << n)) {
5745 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
5746 case 0x0:
5747 ret = EXCP_DEBUG;
5748 break;
5749 case 0x1:
5750 ret = EXCP_DEBUG;
5751 cs->watchpoint_hit = &hw_watchpoint;
5752 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5753 hw_watchpoint.flags = BP_MEM_WRITE;
5754 break;
5755 case 0x3:
5756 ret = EXCP_DEBUG;
5757 cs->watchpoint_hit = &hw_watchpoint;
5758 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
5759 hw_watchpoint.flags = BP_MEM_ACCESS;
5760 break;
5765 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
5766 ret = EXCP_DEBUG;
5768 if (ret == 0) {
5769 cpu_synchronize_state(cs);
5770 assert(env->exception_nr == -1);
5772 /* pass to guest */
5773 kvm_queue_exception(env, arch_info->exception,
5774 arch_info->exception == EXCP01_DB,
5775 arch_info->dr6);
5776 env->has_error_code = 0;
5779 return ret;
5782 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
5784 const uint8_t type_code[] = {
5785 [GDB_BREAKPOINT_HW] = 0x0,
5786 [GDB_WATCHPOINT_WRITE] = 0x1,
5787 [GDB_WATCHPOINT_ACCESS] = 0x3
5789 const uint8_t len_code[] = {
5790 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
5792 int n;
5794 if (kvm_sw_breakpoints_active(cpu)) {
5795 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
5797 if (nb_hw_breakpoint > 0) {
5798 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
5799 dbg->arch.debugreg[7] = 0x0600;
5800 for (n = 0; n < nb_hw_breakpoint; n++) {
5801 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
5802 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
5803 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
5804 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
5809 static bool kvm_install_msr_filters(KVMState *s)
5811 uint64_t zero = 0;
5812 struct kvm_msr_filter filter = {
5813 .flags = KVM_MSR_FILTER_DEFAULT_ALLOW,
5815 int r, i, j = 0;
5817 for (i = 0; i < KVM_MSR_FILTER_MAX_RANGES; i++) {
5818 KVMMSRHandlers *handler = &msr_handlers[i];
5819 if (handler->msr) {
5820 struct kvm_msr_filter_range *range = &filter.ranges[j++];
5822 *range = (struct kvm_msr_filter_range) {
5823 .flags = 0,
5824 .nmsrs = 1,
5825 .base = handler->msr,
5826 .bitmap = (__u8 *)&zero,
5829 if (handler->rdmsr) {
5830 range->flags |= KVM_MSR_FILTER_READ;
5833 if (handler->wrmsr) {
5834 range->flags |= KVM_MSR_FILTER_WRITE;
5839 r = kvm_vm_ioctl(s, KVM_X86_SET_MSR_FILTER, &filter);
5840 if (r) {
5841 return false;
5844 return true;
5847 static bool kvm_filter_msr(KVMState *s, uint32_t msr, QEMURDMSRHandler *rdmsr,
5848 QEMUWRMSRHandler *wrmsr)
5850 int i;
5852 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5853 if (!msr_handlers[i].msr) {
5854 msr_handlers[i] = (KVMMSRHandlers) {
5855 .msr = msr,
5856 .rdmsr = rdmsr,
5857 .wrmsr = wrmsr,
5860 if (!kvm_install_msr_filters(s)) {
5861 msr_handlers[i] = (KVMMSRHandlers) { };
5862 return false;
5865 return true;
5869 return false;
5872 static int kvm_handle_rdmsr(X86CPU *cpu, struct kvm_run *run)
5874 int i;
5875 bool r;
5877 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5878 KVMMSRHandlers *handler = &msr_handlers[i];
5879 if (run->msr.index == handler->msr) {
5880 if (handler->rdmsr) {
5881 r = handler->rdmsr(cpu, handler->msr,
5882 (uint64_t *)&run->msr.data);
5883 run->msr.error = r ? 0 : 1;
5884 return 0;
5889 g_assert_not_reached();
5892 static int kvm_handle_wrmsr(X86CPU *cpu, struct kvm_run *run)
5894 int i;
5895 bool r;
5897 for (i = 0; i < ARRAY_SIZE(msr_handlers); i++) {
5898 KVMMSRHandlers *handler = &msr_handlers[i];
5899 if (run->msr.index == handler->msr) {
5900 if (handler->wrmsr) {
5901 r = handler->wrmsr(cpu, handler->msr, run->msr.data);
5902 run->msr.error = r ? 0 : 1;
5903 return 0;
5908 g_assert_not_reached();
5911 static bool has_sgx_provisioning;
5913 static bool __kvm_enable_sgx_provisioning(KVMState *s)
5915 int fd, ret;
5917 if (!kvm_vm_check_extension(s, KVM_CAP_SGX_ATTRIBUTE)) {
5918 return false;
5921 fd = qemu_open_old("/dev/sgx_provision", O_RDONLY);
5922 if (fd < 0) {
5923 return false;
5926 ret = kvm_vm_enable_cap(s, KVM_CAP_SGX_ATTRIBUTE, 0, fd);
5927 if (ret) {
5928 error_report("Could not enable SGX PROVISIONKEY: %s", strerror(-ret));
5929 exit(1);
5931 close(fd);
5932 return true;
5935 bool kvm_enable_sgx_provisioning(KVMState *s)
5937 return MEMORIZE(__kvm_enable_sgx_provisioning(s), has_sgx_provisioning);
5940 static bool host_supports_vmx(void)
5942 uint32_t ecx, unused;
5944 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
5945 return ecx & CPUID_EXT_VMX;
5949 * Currently the handling here only supports use of KVM_HC_MAP_GPA_RANGE
5950 * to service guest-initiated memory attribute update requests so that
5951 * KVM_SET_MEMORY_ATTRIBUTES can update whether or not a page should be
5952 * backed by the private memory pool provided by guest_memfd, and as such
5953 * is only applicable to guest_memfd-backed guests (e.g. SNP/TDX).
5955 * Other other use-cases for KVM_HC_MAP_GPA_RANGE, such as for SEV live
5956 * migration, are not implemented here currently.
5958 * For the guest_memfd use-case, these exits will generally be synthesized
5959 * by KVM based on platform-specific hypercalls, like GHCB requests in the
5960 * case of SEV-SNP, and not issued directly within the guest though the
5961 * KVM_HC_MAP_GPA_RANGE hypercall. So in this case, KVM_HC_MAP_GPA_RANGE is
5962 * not actually advertised to guests via the KVM CPUID feature bit, as
5963 * opposed to SEV live migration where it would be. Since it is unlikely the
5964 * SEV live migration use-case would be useful for guest-memfd backed guests,
5965 * because private/shared page tracking is already provided through other
5966 * means, these 2 use-cases should be treated as being mutually-exclusive.
5968 static int kvm_handle_hc_map_gpa_range(struct kvm_run *run)
5970 uint64_t gpa, size, attributes;
5972 if (!machine_require_guest_memfd(current_machine))
5973 return -EINVAL;
5975 gpa = run->hypercall.args[0];
5976 size = run->hypercall.args[1] * TARGET_PAGE_SIZE;
5977 attributes = run->hypercall.args[2];
5979 trace_kvm_hc_map_gpa_range(gpa, size, attributes, run->hypercall.flags);
5981 return kvm_convert_memory(gpa, size, attributes & KVM_MAP_GPA_RANGE_ENCRYPTED);
5984 static int kvm_handle_hypercall(struct kvm_run *run)
5986 if (run->hypercall.nr == KVM_HC_MAP_GPA_RANGE)
5987 return kvm_handle_hc_map_gpa_range(run);
5989 return -EINVAL;
5992 #define VMX_INVALID_GUEST_STATE 0x80000021
5994 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
5996 X86CPU *cpu = X86_CPU(cs);
5997 uint64_t code;
5998 int ret;
5999 bool ctx_invalid;
6000 KVMState *state;
6002 switch (run->exit_reason) {
6003 case KVM_EXIT_HLT:
6004 DPRINTF("handle_hlt\n");
6005 bql_lock();
6006 ret = kvm_handle_halt(cpu);
6007 bql_unlock();
6008 break;
6009 case KVM_EXIT_SET_TPR:
6010 ret = 0;
6011 break;
6012 case KVM_EXIT_TPR_ACCESS:
6013 bql_lock();
6014 ret = kvm_handle_tpr_access(cpu);
6015 bql_unlock();
6016 break;
6017 case KVM_EXIT_FAIL_ENTRY:
6018 code = run->fail_entry.hardware_entry_failure_reason;
6019 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
6020 code);
6021 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
6022 fprintf(stderr,
6023 "\nIf you're running a guest on an Intel machine without "
6024 "unrestricted mode\n"
6025 "support, the failure can be most likely due to the guest "
6026 "entering an invalid\n"
6027 "state for Intel VT. For example, the guest maybe running "
6028 "in big real mode\n"
6029 "which is not supported on less recent Intel processors."
6030 "\n\n");
6032 ret = -1;
6033 break;
6034 case KVM_EXIT_EXCEPTION:
6035 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
6036 run->ex.exception, run->ex.error_code);
6037 ret = -1;
6038 break;
6039 case KVM_EXIT_DEBUG:
6040 DPRINTF("kvm_exit_debug\n");
6041 bql_lock();
6042 ret = kvm_handle_debug(cpu, &run->debug.arch);
6043 bql_unlock();
6044 break;
6045 case KVM_EXIT_HYPERV:
6046 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
6047 break;
6048 case KVM_EXIT_IOAPIC_EOI:
6049 ioapic_eoi_broadcast(run->eoi.vector);
6050 ret = 0;
6051 break;
6052 case KVM_EXIT_X86_BUS_LOCK:
6053 /* already handled in kvm_arch_post_run */
6054 ret = 0;
6055 break;
6056 case KVM_EXIT_NOTIFY:
6057 ctx_invalid = !!(run->notify.flags & KVM_NOTIFY_CONTEXT_INVALID);
6058 state = KVM_STATE(current_accel());
6059 if (ctx_invalid ||
6060 state->notify_vmexit == NOTIFY_VMEXIT_OPTION_INTERNAL_ERROR) {
6061 warn_report("KVM internal error: Encountered a notify exit "
6062 "with invalid context in guest.");
6063 ret = -1;
6064 } else {
6065 warn_report_once("KVM: Encountered a notify exit with valid "
6066 "context in guest. "
6067 "The guest could be misbehaving.");
6068 ret = 0;
6070 break;
6071 case KVM_EXIT_X86_RDMSR:
6072 /* We only enable MSR filtering, any other exit is bogus */
6073 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6074 ret = kvm_handle_rdmsr(cpu, run);
6075 break;
6076 case KVM_EXIT_X86_WRMSR:
6077 /* We only enable MSR filtering, any other exit is bogus */
6078 assert(run->msr.reason == KVM_MSR_EXIT_REASON_FILTER);
6079 ret = kvm_handle_wrmsr(cpu, run);
6080 break;
6081 #ifdef CONFIG_XEN_EMU
6082 case KVM_EXIT_XEN:
6083 ret = kvm_xen_handle_exit(cpu, &run->xen);
6084 break;
6085 #endif
6086 case KVM_EXIT_HYPERCALL:
6087 ret = kvm_handle_hypercall(run);
6088 break;
6089 default:
6090 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
6091 ret = -1;
6092 break;
6095 return ret;
6098 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
6100 X86CPU *cpu = X86_CPU(cs);
6101 CPUX86State *env = &cpu->env;
6103 kvm_cpu_synchronize_state(cs);
6104 return !(env->cr[0] & CR0_PE_MASK) ||
6105 ((env->segs[R_CS].selector & 3) != 3);
6108 void kvm_arch_init_irq_routing(KVMState *s)
6110 /* We know at this point that we're using the in-kernel
6111 * irqchip, so we can use irqfds, and on x86 we know
6112 * we can use msi via irqfd and GSI routing.
6114 kvm_msi_via_irqfd_allowed = true;
6115 kvm_gsi_routing_allowed = true;
6117 if (kvm_irqchip_is_split()) {
6118 KVMRouteChange c = kvm_irqchip_begin_route_changes(s);
6119 int i;
6121 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
6122 MSI routes for signaling interrupts to the local apics. */
6123 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
6124 if (kvm_irqchip_add_msi_route(&c, 0, NULL) < 0) {
6125 error_report("Could not enable split IRQ mode.");
6126 exit(1);
6129 kvm_irqchip_commit_route_changes(&c);
6133 int kvm_arch_irqchip_create(KVMState *s)
6135 int ret;
6136 if (kvm_kernel_irqchip_split()) {
6137 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
6138 if (ret) {
6139 error_report("Could not enable split irqchip mode: %s",
6140 strerror(-ret));
6141 exit(1);
6142 } else {
6143 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
6144 kvm_split_irqchip = true;
6145 return 1;
6147 } else {
6148 return 0;
6152 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
6154 CPUX86State *env;
6155 uint64_t ext_id;
6157 if (!first_cpu) {
6158 return address;
6160 env = &X86_CPU(first_cpu)->env;
6161 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
6162 return address;
6166 * If the remappable format bit is set, or the upper bits are
6167 * already set in address_hi, or the low extended bits aren't
6168 * there anyway, do nothing.
6170 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
6171 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
6172 return address;
6175 address &= ~ext_id;
6176 address |= ext_id << 35;
6177 return address;
6180 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
6181 uint64_t address, uint32_t data, PCIDevice *dev)
6183 X86IOMMUState *iommu = x86_iommu_get_default();
6185 if (iommu) {
6186 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
6188 if (class->int_remap) {
6189 int ret;
6190 MSIMessage src, dst;
6192 src.address = route->u.msi.address_hi;
6193 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
6194 src.address |= route->u.msi.address_lo;
6195 src.data = route->u.msi.data;
6197 ret = class->int_remap(iommu, &src, &dst, dev ? \
6198 pci_requester_id(dev) : \
6199 X86_IOMMU_SID_INVALID);
6200 if (ret) {
6201 trace_kvm_x86_fixup_msi_error(route->gsi);
6202 return 1;
6206 * Handled untranslated compatibility format interrupt with
6207 * extended destination ID in the low bits 11-5. */
6208 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
6210 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
6211 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
6212 route->u.msi.data = dst.data;
6213 return 0;
6217 #ifdef CONFIG_XEN_EMU
6218 if (xen_mode == XEN_EMULATE) {
6219 int handled = xen_evtchn_translate_pirq_msi(route, address, data);
6222 * If it was a PIRQ and successfully routed (handled == 0) or it was
6223 * an error (handled < 0), return. If it wasn't a PIRQ, keep going.
6225 if (handled <= 0) {
6226 return handled;
6229 #endif
6231 address = kvm_swizzle_msi_ext_dest_id(address);
6232 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
6233 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
6234 return 0;
6237 typedef struct MSIRouteEntry MSIRouteEntry;
6239 struct MSIRouteEntry {
6240 PCIDevice *dev; /* Device pointer */
6241 int vector; /* MSI/MSIX vector index */
6242 int virq; /* Virtual IRQ index */
6243 QLIST_ENTRY(MSIRouteEntry) list;
6246 /* List of used GSI routes */
6247 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
6248 QLIST_HEAD_INITIALIZER(msi_route_list);
6250 void kvm_update_msi_routes_all(void *private, bool global,
6251 uint32_t index, uint32_t mask)
6253 int cnt = 0, vector;
6254 MSIRouteEntry *entry;
6255 MSIMessage msg;
6256 PCIDevice *dev;
6258 /* TODO: explicit route update */
6259 QLIST_FOREACH(entry, &msi_route_list, list) {
6260 cnt++;
6261 vector = entry->vector;
6262 dev = entry->dev;
6263 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
6264 msg = msix_get_message(dev, vector);
6265 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
6266 msg = msi_get_message(dev, vector);
6267 } else {
6269 * Either MSI/MSIX is disabled for the device, or the
6270 * specific message was masked out. Skip this one.
6272 continue;
6274 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
6276 kvm_irqchip_commit_routes(kvm_state);
6277 trace_kvm_x86_update_msi_routes(cnt);
6280 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
6281 int vector, PCIDevice *dev)
6283 static bool notify_list_inited = false;
6284 MSIRouteEntry *entry;
6286 if (!dev) {
6287 /* These are (possibly) IOAPIC routes only used for split
6288 * kernel irqchip mode, while what we are housekeeping are
6289 * PCI devices only. */
6290 return 0;
6293 entry = g_new0(MSIRouteEntry, 1);
6294 entry->dev = dev;
6295 entry->vector = vector;
6296 entry->virq = route->gsi;
6297 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
6299 trace_kvm_x86_add_msi_route(route->gsi);
6301 if (!notify_list_inited) {
6302 /* For the first time we do add route, add ourselves into
6303 * IOMMU's IEC notify list if needed. */
6304 X86IOMMUState *iommu = x86_iommu_get_default();
6305 if (iommu) {
6306 x86_iommu_iec_register_notifier(iommu,
6307 kvm_update_msi_routes_all,
6308 NULL);
6310 notify_list_inited = true;
6312 return 0;
6315 int kvm_arch_release_virq_post(int virq)
6317 MSIRouteEntry *entry, *next;
6318 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
6319 if (entry->virq == virq) {
6320 trace_kvm_x86_remove_msi_route(virq);
6321 QLIST_REMOVE(entry, list);
6322 g_free(entry);
6323 break;
6326 return 0;
6329 int kvm_arch_msi_data_to_gsi(uint32_t data)
6331 abort();
6334 bool kvm_has_waitpkg(void)
6336 return has_msr_umwait;
6339 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025
6341 void kvm_request_xsave_components(X86CPU *cpu, uint64_t mask)
6343 KVMState *s = kvm_state;
6344 uint64_t supported;
6346 mask &= XSTATE_DYNAMIC_MASK;
6347 if (!mask) {
6348 return;
6351 * Just ignore bits that are not in CPUID[EAX=0xD,ECX=0].
6352 * ARCH_REQ_XCOMP_GUEST_PERM would fail, and QEMU has warned
6353 * about them already because they are not supported features.
6355 supported = kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EAX);
6356 supported |= (uint64_t)kvm_arch_get_supported_cpuid(s, 0xd, 0, R_EDX) << 32;
6357 mask &= supported;
6359 while (mask) {
6360 int bit = ctz64(mask);
6361 int rc = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_GUEST_PERM, bit);
6362 if (rc) {
6364 * Older kernel version (<5.17) do not support
6365 * ARCH_REQ_XCOMP_GUEST_PERM, but also do not return
6366 * any dynamic feature from kvm_arch_get_supported_cpuid.
6368 warn_report("prctl(ARCH_REQ_XCOMP_GUEST_PERM) failure "
6369 "for feature bit %d", bit);
6371 mask &= ~BIT_ULL(bit);
6375 static int kvm_arch_get_notify_vmexit(Object *obj, Error **errp)
6377 KVMState *s = KVM_STATE(obj);
6378 return s->notify_vmexit;
6381 static void kvm_arch_set_notify_vmexit(Object *obj, int value, Error **errp)
6383 KVMState *s = KVM_STATE(obj);
6385 if (s->fd != -1) {
6386 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6387 return;
6390 s->notify_vmexit = value;
6393 static void kvm_arch_get_notify_window(Object *obj, Visitor *v,
6394 const char *name, void *opaque,
6395 Error **errp)
6397 KVMState *s = KVM_STATE(obj);
6398 uint32_t value = s->notify_window;
6400 visit_type_uint32(v, name, &value, errp);
6403 static void kvm_arch_set_notify_window(Object *obj, Visitor *v,
6404 const char *name, void *opaque,
6405 Error **errp)
6407 KVMState *s = KVM_STATE(obj);
6408 uint32_t value;
6410 if (s->fd != -1) {
6411 error_setg(errp, "Cannot set properties after the accelerator has been initialized");
6412 return;
6415 if (!visit_type_uint32(v, name, &value, errp)) {
6416 return;
6419 s->notify_window = value;
6422 static void kvm_arch_get_xen_version(Object *obj, Visitor *v,
6423 const char *name, void *opaque,
6424 Error **errp)
6426 KVMState *s = KVM_STATE(obj);
6427 uint32_t value = s->xen_version;
6429 visit_type_uint32(v, name, &value, errp);
6432 static void kvm_arch_set_xen_version(Object *obj, Visitor *v,
6433 const char *name, void *opaque,
6434 Error **errp)
6436 KVMState *s = KVM_STATE(obj);
6437 Error *error = NULL;
6438 uint32_t value;
6440 visit_type_uint32(v, name, &value, &error);
6441 if (error) {
6442 error_propagate(errp, error);
6443 return;
6446 s->xen_version = value;
6447 if (value && xen_mode == XEN_DISABLED) {
6448 xen_mode = XEN_EMULATE;
6452 static void kvm_arch_get_xen_gnttab_max_frames(Object *obj, Visitor *v,
6453 const char *name, void *opaque,
6454 Error **errp)
6456 KVMState *s = KVM_STATE(obj);
6457 uint16_t value = s->xen_gnttab_max_frames;
6459 visit_type_uint16(v, name, &value, errp);
6462 static void kvm_arch_set_xen_gnttab_max_frames(Object *obj, Visitor *v,
6463 const char *name, void *opaque,
6464 Error **errp)
6466 KVMState *s = KVM_STATE(obj);
6467 Error *error = NULL;
6468 uint16_t value;
6470 visit_type_uint16(v, name, &value, &error);
6471 if (error) {
6472 error_propagate(errp, error);
6473 return;
6476 s->xen_gnttab_max_frames = value;
6479 static void kvm_arch_get_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6480 const char *name, void *opaque,
6481 Error **errp)
6483 KVMState *s = KVM_STATE(obj);
6484 uint16_t value = s->xen_evtchn_max_pirq;
6486 visit_type_uint16(v, name, &value, errp);
6489 static void kvm_arch_set_xen_evtchn_max_pirq(Object *obj, Visitor *v,
6490 const char *name, void *opaque,
6491 Error **errp)
6493 KVMState *s = KVM_STATE(obj);
6494 Error *error = NULL;
6495 uint16_t value;
6497 visit_type_uint16(v, name, &value, &error);
6498 if (error) {
6499 error_propagate(errp, error);
6500 return;
6503 s->xen_evtchn_max_pirq = value;
6506 void kvm_arch_accel_class_init(ObjectClass *oc)
6508 object_class_property_add_enum(oc, "notify-vmexit", "NotifyVMexitOption",
6509 &NotifyVmexitOption_lookup,
6510 kvm_arch_get_notify_vmexit,
6511 kvm_arch_set_notify_vmexit);
6512 object_class_property_set_description(oc, "notify-vmexit",
6513 "Enable notify VM exit");
6515 object_class_property_add(oc, "notify-window", "uint32",
6516 kvm_arch_get_notify_window,
6517 kvm_arch_set_notify_window,
6518 NULL, NULL);
6519 object_class_property_set_description(oc, "notify-window",
6520 "Clock cycles without an event window "
6521 "after which a notification VM exit occurs");
6523 object_class_property_add(oc, "xen-version", "uint32",
6524 kvm_arch_get_xen_version,
6525 kvm_arch_set_xen_version,
6526 NULL, NULL);
6527 object_class_property_set_description(oc, "xen-version",
6528 "Xen version to be emulated "
6529 "(in XENVER_version form "
6530 "e.g. 0x4000a for 4.10)");
6532 object_class_property_add(oc, "xen-gnttab-max-frames", "uint16",
6533 kvm_arch_get_xen_gnttab_max_frames,
6534 kvm_arch_set_xen_gnttab_max_frames,
6535 NULL, NULL);
6536 object_class_property_set_description(oc, "xen-gnttab-max-frames",
6537 "Maximum number of grant table frames");
6539 object_class_property_add(oc, "xen-evtchn-max-pirq", "uint16",
6540 kvm_arch_get_xen_evtchn_max_pirq,
6541 kvm_arch_set_xen_evtchn_max_pirq,
6542 NULL, NULL);
6543 object_class_property_set_description(oc, "xen-evtchn-max-pirq",
6544 "Maximum number of Xen PIRQs");
6547 void kvm_set_max_apic_id(uint32_t max_apic_id)
6549 kvm_vm_enable_cap(kvm_state, KVM_CAP_MAX_VCPU_ID, 0, max_apic_id);