2 * PowerPC floating point and SPE emulation helpers for QEMU.
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/helper-proto.h"
22 #include "exec/exec-all.h"
24 #include "fpu/softfloat.h"
26 static inline float128
float128_snan_to_qnan(float128 x
)
30 r
.high
= x
.high
| 0x0000800000000000;
35 #define float64_snan_to_qnan(x) ((x) | 0x0008000000000000ULL)
36 #define float32_snan_to_qnan(x) ((x) | 0x00400000)
37 #define float16_snan_to_qnan(x) ((x) | 0x0200)
39 static inline float32
bfp32_neg(float32 a
)
41 if (unlikely(float32_is_any_nan(a
))) {
44 return float32_chs(a
);
48 static inline bool fp_exceptions_enabled(CPUPPCState
*env
)
50 #ifdef CONFIG_USER_ONLY
53 return (env
->msr
& ((1U << MSR_FE0
) | (1U << MSR_FE1
))) != 0;
57 /*****************************************************************************/
58 /* Floating point operations helpers */
61 * This is the non-arithmatic conversion that happens e.g. on loads.
62 * In the Power ISA pseudocode, this is called DOUBLE.
64 uint64_t helper_todouble(uint32_t arg
)
66 uint32_t abs_arg
= arg
& 0x7fffffff;
69 if (likely(abs_arg
>= 0x00800000)) {
70 if (unlikely(extract32(arg
, 23, 8) == 0xff)) {
72 ret
= (uint64_t)extract32(arg
, 31, 1) << 63;
73 ret
|= (uint64_t)0x7ff << 52;
74 ret
|= (uint64_t)extract32(arg
, 0, 23) << 29;
76 /* Normalized operand. */
77 ret
= (uint64_t)extract32(arg
, 30, 2) << 62;
78 ret
|= ((extract32(arg
, 30, 1) ^ 1) * (uint64_t)7) << 59;
79 ret
|= (uint64_t)extract32(arg
, 0, 30) << 29;
82 /* Zero or Denormalized operand. */
83 ret
= (uint64_t)extract32(arg
, 31, 1) << 63;
84 if (unlikely(abs_arg
!= 0)) {
86 * Denormalized operand.
87 * Shift fraction so that the msb is in the implicit bit position.
88 * Thus, shift is in the range [1:23].
90 int shift
= clz32(abs_arg
) - 8;
92 * The first 3 terms compute the float64 exponent. We then bias
93 * this result by -1 so that we can swallow the implicit bit below.
95 int exp
= -126 - shift
+ 1023 - 1;
97 ret
|= (uint64_t)exp
<< 52;
98 ret
+= (uint64_t)abs_arg
<< (52 - 23 + shift
);
105 * This is the non-arithmatic conversion that happens e.g. on stores.
106 * In the Power ISA pseudocode, this is called SINGLE.
108 uint32_t helper_tosingle(uint64_t arg
)
110 int exp
= extract64(arg
, 52, 11);
113 if (likely(exp
> 896)) {
114 /* No denormalization required (includes Inf, NaN). */
115 ret
= extract64(arg
, 62, 2) << 30;
116 ret
|= extract64(arg
, 29, 30);
119 * Zero or Denormal result. If the exponent is in bounds for
120 * a single-precision denormal result, extract the proper
121 * bits. If the input is not zero, and the exponent is out of
122 * bounds, then the result is undefined; this underflows to
125 ret
= extract64(arg
, 63, 1) << 31;
126 if (unlikely(exp
>= 874)) {
127 /* Denormal result. */
128 ret
|= ((1ULL << 52) | extract64(arg
, 0, 52)) >> (896 + 30 - exp
);
134 static inline int ppc_float32_get_unbiased_exp(float32 f
)
136 return ((f
>> 23) & 0xFF) - 127;
139 static inline int ppc_float64_get_unbiased_exp(float64 f
)
141 return ((f
>> 52) & 0x7FF) - 1023;
144 #define COMPUTE_FPRF(tp) \
145 void helper_compute_fprf_##tp(CPUPPCState *env, tp arg) \
147 bool neg = tp##_is_neg(arg); \
149 if (likely(tp##_is_normal(arg))) { \
150 fprf = neg ? 0x08 << FPSCR_FPRF : 0x04 << FPSCR_FPRF; \
151 } else if (tp##_is_zero(arg)) { \
152 fprf = neg ? 0x12 << FPSCR_FPRF : 0x02 << FPSCR_FPRF; \
153 } else if (tp##_is_zero_or_denormal(arg)) { \
154 fprf = neg ? 0x18 << FPSCR_FPRF : 0x14 << FPSCR_FPRF; \
155 } else if (tp##_is_infinity(arg)) { \
156 fprf = neg ? 0x09 << FPSCR_FPRF : 0x05 << FPSCR_FPRF; \
158 float_status dummy = { }; /* snan_bit_is_one = 0 */ \
159 if (tp##_is_signaling_nan(arg, &dummy)) { \
160 fprf = 0x00 << FPSCR_FPRF; \
162 fprf = 0x11 << FPSCR_FPRF; \
165 env->fpscr = (env->fpscr & ~FP_FPRF) | fprf; \
168 COMPUTE_FPRF(float16
)
169 COMPUTE_FPRF(float32
)
170 COMPUTE_FPRF(float64
)
171 COMPUTE_FPRF(float128
)
173 /* Floating-point invalid operations exception */
174 static void finish_invalid_op_excp(CPUPPCState
*env
, int op
, uintptr_t retaddr
)
176 /* Update the floating-point invalid operation summary */
178 /* Update the floating-point exception summary */
180 if (env
->fpscr
& FP_VE
) {
181 /* Update the floating-point enabled exception summary */
182 env
->fpscr
|= FP_FEX
;
183 if (fp_exceptions_enabled(env
)) {
184 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
185 POWERPC_EXCP_FP
| op
, retaddr
);
190 static void finish_invalid_op_arith(CPUPPCState
*env
, int op
,
191 bool set_fpcc
, uintptr_t retaddr
)
193 env
->fpscr
&= ~(FP_FR
| FP_FI
);
194 if (!(env
->fpscr
& FP_VE
)) {
196 env
->fpscr
&= ~FP_FPCC
;
197 env
->fpscr
|= (FP_C
| FP_FU
);
200 finish_invalid_op_excp(env
, op
, retaddr
);
204 static void float_invalid_op_vxsnan(CPUPPCState
*env
, uintptr_t retaddr
)
206 env
->fpscr
|= FP_VXSNAN
;
207 finish_invalid_op_excp(env
, POWERPC_EXCP_FP_VXSNAN
, retaddr
);
210 /* Magnitude subtraction of infinities */
211 static void float_invalid_op_vxisi(CPUPPCState
*env
, bool set_fpcc
,
214 env
->fpscr
|= FP_VXISI
;
215 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXISI
, set_fpcc
, retaddr
);
218 /* Division of infinity by infinity */
219 static void float_invalid_op_vxidi(CPUPPCState
*env
, bool set_fpcc
,
222 env
->fpscr
|= FP_VXIDI
;
223 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXIDI
, set_fpcc
, retaddr
);
226 /* Division of zero by zero */
227 static void float_invalid_op_vxzdz(CPUPPCState
*env
, bool set_fpcc
,
230 env
->fpscr
|= FP_VXZDZ
;
231 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXZDZ
, set_fpcc
, retaddr
);
234 /* Multiplication of zero by infinity */
235 static void float_invalid_op_vximz(CPUPPCState
*env
, bool set_fpcc
,
238 env
->fpscr
|= FP_VXIMZ
;
239 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXIMZ
, set_fpcc
, retaddr
);
242 /* Square root of a negative number */
243 static void float_invalid_op_vxsqrt(CPUPPCState
*env
, bool set_fpcc
,
246 env
->fpscr
|= FP_VXSQRT
;
247 finish_invalid_op_arith(env
, POWERPC_EXCP_FP_VXSQRT
, set_fpcc
, retaddr
);
250 /* Ordered comparison of NaN */
251 static void float_invalid_op_vxvc(CPUPPCState
*env
, bool set_fpcc
,
254 env
->fpscr
|= FP_VXVC
;
256 env
->fpscr
&= ~FP_FPCC
;
257 env
->fpscr
|= (FP_C
| FP_FU
);
259 /* Update the floating-point invalid operation summary */
261 /* Update the floating-point exception summary */
263 /* We must update the target FPR before raising the exception */
264 if (env
->fpscr
& FP_VE
) {
265 CPUState
*cs
= env_cpu(env
);
267 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
268 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_VXVC
;
269 /* Update the floating-point enabled exception summary */
270 env
->fpscr
|= FP_FEX
;
271 /* Exception is deferred */
275 /* Invalid conversion */
276 static void float_invalid_op_vxcvi(CPUPPCState
*env
, bool set_fpcc
,
279 env
->fpscr
|= FP_VXCVI
;
280 env
->fpscr
&= ~(FP_FR
| FP_FI
);
281 if (!(env
->fpscr
& FP_VE
)) {
283 env
->fpscr
&= ~FP_FPCC
;
284 env
->fpscr
|= (FP_C
| FP_FU
);
287 finish_invalid_op_excp(env
, POWERPC_EXCP_FP_VXCVI
, retaddr
);
290 static inline void float_zero_divide_excp(CPUPPCState
*env
, uintptr_t raddr
)
293 env
->fpscr
&= ~(FP_FR
| FP_FI
);
294 /* Update the floating-point exception summary */
296 if (env
->fpscr
& FP_ZE
) {
297 /* Update the floating-point enabled exception summary */
298 env
->fpscr
|= FP_FEX
;
299 if (fp_exceptions_enabled(env
)) {
300 raise_exception_err_ra(env
, POWERPC_EXCP_PROGRAM
,
301 POWERPC_EXCP_FP
| POWERPC_EXCP_FP_ZX
,
307 static inline int float_overflow_excp(CPUPPCState
*env
)
309 CPUState
*cs
= env_cpu(env
);
312 /* Update the floating-point exception summary */
315 bool overflow_enabled
= !!(env
->fpscr
& FP_OE
);
316 if (overflow_enabled
) {
317 /* Update the floating-point enabled exception summary */
318 env
->fpscr
|= FP_FEX
;
319 /* We must update the target FPR before raising the exception */
320 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
321 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_OX
;
324 return overflow_enabled
? 0 : float_flag_inexact
;
327 static inline void float_underflow_excp(CPUPPCState
*env
)
329 CPUState
*cs
= env_cpu(env
);
332 /* Update the floating-point exception summary */
334 if (env
->fpscr
& FP_UE
) {
335 /* Update the floating-point enabled exception summary */
336 env
->fpscr
|= FP_FEX
;
337 /* We must update the target FPR before raising the exception */
338 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
339 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_UX
;
343 static inline void float_inexact_excp(CPUPPCState
*env
)
345 CPUState
*cs
= env_cpu(env
);
348 /* Update the floating-point exception summary */
350 if (env
->fpscr
& FP_XE
) {
351 /* Update the floating-point enabled exception summary */
352 env
->fpscr
|= FP_FEX
;
353 /* We must update the target FPR before raising the exception */
354 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
355 env
->error_code
= POWERPC_EXCP_FP
| POWERPC_EXCP_FP_XX
;
359 void helper_fpscr_clrbit(CPUPPCState
*env
, uint32_t bit
)
361 uint32_t mask
= 1u << bit
;
362 if (env
->fpscr
& mask
) {
363 ppc_store_fpscr(env
, env
->fpscr
& ~(target_ulong
)mask
);
367 void helper_fpscr_setbit(CPUPPCState
*env
, uint32_t bit
)
369 uint32_t mask
= 1u << bit
;
370 if (!(env
->fpscr
& mask
)) {
371 ppc_store_fpscr(env
, env
->fpscr
| mask
);
375 void helper_store_fpscr(CPUPPCState
*env
, uint64_t val
, uint32_t nibbles
)
377 target_ulong mask
= 0;
380 /* TODO: push this extension back to translation time */
381 for (i
= 0; i
< sizeof(target_ulong
) * 2; i
++) {
382 if (nibbles
& (1 << i
)) {
383 mask
|= (target_ulong
) 0xf << (4 * i
);
386 val
= (val
& mask
) | (env
->fpscr
& ~mask
);
387 ppc_store_fpscr(env
, val
);
390 static void do_fpscr_check_status(CPUPPCState
*env
, uintptr_t raddr
)
392 CPUState
*cs
= env_cpu(env
);
393 target_ulong fpscr
= env
->fpscr
;
396 if ((fpscr
& FP_OX
) && (fpscr
& FP_OE
)) {
397 error
= POWERPC_EXCP_FP_OX
;
398 } else if ((fpscr
& FP_UX
) && (fpscr
& FP_UE
)) {
399 error
= POWERPC_EXCP_FP_UX
;
400 } else if ((fpscr
& FP_XX
) && (fpscr
& FP_XE
)) {
401 error
= POWERPC_EXCP_FP_XX
;
402 } else if ((fpscr
& FP_ZX
) && (fpscr
& FP_ZE
)) {
403 error
= POWERPC_EXCP_FP_ZX
;
404 } else if (fpscr
& FP_VE
) {
405 if (fpscr
& FP_VXSOFT
) {
406 error
= POWERPC_EXCP_FP_VXSOFT
;
407 } else if (fpscr
& FP_VXSNAN
) {
408 error
= POWERPC_EXCP_FP_VXSNAN
;
409 } else if (fpscr
& FP_VXISI
) {
410 error
= POWERPC_EXCP_FP_VXISI
;
411 } else if (fpscr
& FP_VXIDI
) {
412 error
= POWERPC_EXCP_FP_VXIDI
;
413 } else if (fpscr
& FP_VXZDZ
) {
414 error
= POWERPC_EXCP_FP_VXZDZ
;
415 } else if (fpscr
& FP_VXIMZ
) {
416 error
= POWERPC_EXCP_FP_VXIMZ
;
417 } else if (fpscr
& FP_VXVC
) {
418 error
= POWERPC_EXCP_FP_VXVC
;
419 } else if (fpscr
& FP_VXSQRT
) {
420 error
= POWERPC_EXCP_FP_VXSQRT
;
421 } else if (fpscr
& FP_VXCVI
) {
422 error
= POWERPC_EXCP_FP_VXCVI
;
429 cs
->exception_index
= POWERPC_EXCP_PROGRAM
;
430 env
->error_code
= error
| POWERPC_EXCP_FP
;
431 env
->fpscr
|= FP_FEX
;
432 /* Deferred floating-point exception after target FPSCR update */
433 if (fp_exceptions_enabled(env
)) {
434 raise_exception_err_ra(env
, cs
->exception_index
,
435 env
->error_code
, raddr
);
439 void helper_fpscr_check_status(CPUPPCState
*env
)
441 do_fpscr_check_status(env
, GETPC());
444 static void do_float_check_status(CPUPPCState
*env
, bool change_fi
,
447 CPUState
*cs
= env_cpu(env
);
448 int status
= get_float_exception_flags(&env
->fp_status
);
450 if (status
& float_flag_overflow
) {
451 status
|= float_overflow_excp(env
);
452 } else if (status
& float_flag_underflow
) {
453 float_underflow_excp(env
);
455 if (status
& float_flag_inexact
) {
456 float_inexact_excp(env
);
459 env
->fpscr
= FIELD_DP64(env
->fpscr
, FPSCR
, FI
,
460 !!(status
& float_flag_inexact
));
463 if (cs
->exception_index
== POWERPC_EXCP_PROGRAM
&&
464 (env
->error_code
& POWERPC_EXCP_FP
)) {
465 /* Deferred floating-point exception after target FPR update */
466 if (fp_exceptions_enabled(env
)) {
467 raise_exception_err_ra(env
, cs
->exception_index
,
468 env
->error_code
, raddr
);
473 void helper_float_check_status(CPUPPCState
*env
)
475 do_float_check_status(env
, true, GETPC());
478 void helper_reset_fpstatus(CPUPPCState
*env
)
480 set_float_exception_flags(0, &env
->fp_status
);
483 static void float_invalid_op_addsub(CPUPPCState
*env
, int flags
,
484 bool set_fpcc
, uintptr_t retaddr
)
486 if (flags
& float_flag_invalid_isi
) {
487 float_invalid_op_vxisi(env
, set_fpcc
, retaddr
);
488 } else if (flags
& float_flag_invalid_snan
) {
489 float_invalid_op_vxsnan(env
, retaddr
);
493 static inline void addsub_flags_handler(CPUPPCState
*env
, int flags
,
496 if (unlikely(flags
& float_flag_invalid
)) {
497 float_invalid_op_addsub(env
, flags
, 1, ra
);
501 static void float_invalid_op_mul(CPUPPCState
*env
, int flags
,
502 bool set_fprc
, uintptr_t retaddr
)
504 if (flags
& float_flag_invalid_imz
) {
505 float_invalid_op_vximz(env
, set_fprc
, retaddr
);
506 } else if (flags
& float_flag_invalid_snan
) {
507 float_invalid_op_vxsnan(env
, retaddr
);
511 static inline void mul_flags_handler(CPUPPCState
*env
, int flags
, uintptr_t ra
)
513 if (unlikely(flags
& float_flag_invalid
)) {
514 float_invalid_op_mul(env
, flags
, 1, ra
);
518 static void float_invalid_op_div(CPUPPCState
*env
, int flags
,
519 bool set_fprc
, uintptr_t retaddr
)
521 if (flags
& float_flag_invalid_idi
) {
522 float_invalid_op_vxidi(env
, set_fprc
, retaddr
);
523 } else if (flags
& float_flag_invalid_zdz
) {
524 float_invalid_op_vxzdz(env
, set_fprc
, retaddr
);
525 } else if (flags
& float_flag_invalid_snan
) {
526 float_invalid_op_vxsnan(env
, retaddr
);
530 static inline void div_flags_handler(CPUPPCState
*env
, int flags
, uintptr_t ra
)
532 if (unlikely(flags
& float_flag_invalid
)) {
533 float_invalid_op_div(env
, flags
, 1, ra
);
535 if (unlikely(flags
& float_flag_divbyzero
)) {
536 float_zero_divide_excp(env
, ra
);
540 static uint64_t float_invalid_cvt(CPUPPCState
*env
, int flags
,
541 uint64_t ret
, uint64_t ret_nan
,
542 bool set_fprc
, uintptr_t retaddr
)
545 * VXCVI is different from most in that it sets two exception bits,
546 * VXCVI and VXSNAN for an SNaN input.
548 if (flags
& float_flag_invalid_snan
) {
549 env
->fpscr
|= FP_VXSNAN
;
551 float_invalid_op_vxcvi(env
, set_fprc
, retaddr
);
553 return flags
& float_flag_invalid_cvti
? ret
: ret_nan
;
556 #define FPU_FCTI(op, cvt, nanval) \
557 uint64_t helper_##op(CPUPPCState *env, float64 arg) \
559 uint64_t ret = float64_to_##cvt(arg, &env->fp_status); \
560 int flags = get_float_exception_flags(&env->fp_status); \
561 if (unlikely(flags & float_flag_invalid)) { \
562 ret = float_invalid_cvt(env, flags, ret, nanval, 1, GETPC()); \
567 FPU_FCTI(fctiw
, int32
, 0x80000000U
)
568 FPU_FCTI(fctiwz
, int32_round_to_zero
, 0x80000000U
)
569 FPU_FCTI(fctiwu
, uint32
, 0x00000000U
)
570 FPU_FCTI(fctiwuz
, uint32_round_to_zero
, 0x00000000U
)
571 FPU_FCTI(fctid
, int64
, 0x8000000000000000ULL
)
572 FPU_FCTI(fctidz
, int64_round_to_zero
, 0x8000000000000000ULL
)
573 FPU_FCTI(fctidu
, uint64
, 0x0000000000000000ULL
)
574 FPU_FCTI(fctiduz
, uint64_round_to_zero
, 0x0000000000000000ULL
)
576 #define FPU_FCFI(op, cvtr, is_single) \
577 uint64_t helper_##op(CPUPPCState *env, uint64_t arg) \
582 float32 tmp = cvtr(arg, &env->fp_status); \
583 farg.d = float32_to_float64(tmp, &env->fp_status); \
585 farg.d = cvtr(arg, &env->fp_status); \
587 do_float_check_status(env, true, GETPC()); \
591 FPU_FCFI(fcfid
, int64_to_float64
, 0)
592 FPU_FCFI(fcfids
, int64_to_float32
, 1)
593 FPU_FCFI(fcfidu
, uint64_to_float64
, 0)
594 FPU_FCFI(fcfidus
, uint64_to_float32
, 1)
596 static uint64_t do_fri(CPUPPCState
*env
, uint64_t arg
,
597 FloatRoundMode rounding_mode
)
599 FloatRoundMode old_rounding_mode
= get_float_rounding_mode(&env
->fp_status
);
602 set_float_rounding_mode(rounding_mode
, &env
->fp_status
);
603 arg
= float64_round_to_int(arg
, &env
->fp_status
);
604 set_float_rounding_mode(old_rounding_mode
, &env
->fp_status
);
606 flags
= get_float_exception_flags(&env
->fp_status
);
607 if (flags
& float_flag_invalid_snan
) {
608 float_invalid_op_vxsnan(env
, GETPC());
611 /* fri* does not set FPSCR[XX] */
612 set_float_exception_flags(flags
& ~float_flag_inexact
, &env
->fp_status
);
613 do_float_check_status(env
, true, GETPC());
618 uint64_t helper_frin(CPUPPCState
*env
, uint64_t arg
)
620 return do_fri(env
, arg
, float_round_ties_away
);
623 uint64_t helper_friz(CPUPPCState
*env
, uint64_t arg
)
625 return do_fri(env
, arg
, float_round_to_zero
);
628 uint64_t helper_frip(CPUPPCState
*env
, uint64_t arg
)
630 return do_fri(env
, arg
, float_round_up
);
633 uint64_t helper_frim(CPUPPCState
*env
, uint64_t arg
)
635 return do_fri(env
, arg
, float_round_down
);
638 static void float_invalid_op_madd(CPUPPCState
*env
, int flags
,
639 bool set_fpcc
, uintptr_t retaddr
)
641 if (flags
& float_flag_invalid_imz
) {
642 float_invalid_op_vximz(env
, set_fpcc
, retaddr
);
644 float_invalid_op_addsub(env
, flags
, set_fpcc
, retaddr
);
648 static float64
do_fmadd(CPUPPCState
*env
, float64 a
, float64 b
,
649 float64 c
, int madd_flags
, uintptr_t retaddr
)
651 float64 ret
= float64_muladd(a
, b
, c
, madd_flags
, &env
->fp_status
);
652 int flags
= get_float_exception_flags(&env
->fp_status
);
654 if (unlikely(flags
& float_flag_invalid
)) {
655 float_invalid_op_madd(env
, flags
, 1, retaddr
);
660 static uint64_t do_fmadds(CPUPPCState
*env
, float64 a
, float64 b
,
661 float64 c
, int madd_flags
, uintptr_t retaddr
)
663 float64 ret
= float64r32_muladd(a
, b
, c
, madd_flags
, &env
->fp_status
);
664 int flags
= get_float_exception_flags(&env
->fp_status
);
666 if (unlikely(flags
& float_flag_invalid
)) {
667 float_invalid_op_madd(env
, flags
, 1, retaddr
);
672 #define FPU_FMADD(op, madd_flags) \
673 uint64_t helper_##op(CPUPPCState *env, uint64_t arg1, \
674 uint64_t arg2, uint64_t arg3) \
675 { return do_fmadd(env, arg1, arg2, arg3, madd_flags, GETPC()); } \
676 uint64_t helper_##op##S(CPUPPCState *env, uint64_t arg1, \
677 uint64_t arg2, uint64_t arg3) \
678 { return do_fmadds(env, arg1, arg2, arg3, madd_flags, GETPC()); }
681 #define MSUB_FLGS float_muladd_negate_c
682 #define NMADD_FLGS float_muladd_negate_result
683 #define NMSUB_FLGS (float_muladd_negate_c | float_muladd_negate_result)
685 FPU_FMADD(FMADD
, MADD_FLGS
)
686 FPU_FMADD(FNMADD
, NMADD_FLGS
)
687 FPU_FMADD(FMSUB
, MSUB_FLGS
)
688 FPU_FMADD(FNMSUB
, NMSUB_FLGS
)
691 static uint64_t do_frsp(CPUPPCState
*env
, uint64_t arg
, uintptr_t retaddr
)
693 float32 f32
= float64_to_float32(arg
, &env
->fp_status
);
694 int flags
= get_float_exception_flags(&env
->fp_status
);
696 if (unlikely(flags
& float_flag_invalid_snan
)) {
697 float_invalid_op_vxsnan(env
, retaddr
);
699 return helper_todouble(f32
);
702 uint64_t helper_frsp(CPUPPCState
*env
, uint64_t arg
)
704 return do_frsp(env
, arg
, GETPC());
707 static void float_invalid_op_sqrt(CPUPPCState
*env
, int flags
,
708 bool set_fpcc
, uintptr_t retaddr
)
710 if (unlikely(flags
& float_flag_invalid_sqrt
)) {
711 float_invalid_op_vxsqrt(env
, set_fpcc
, retaddr
);
712 } else if (unlikely(flags
& float_flag_invalid_snan
)) {
713 float_invalid_op_vxsnan(env
, retaddr
);
717 #define FPU_FSQRT(name, op) \
718 float64 helper_##name(CPUPPCState *env, float64 arg) \
720 float64 ret = op(arg, &env->fp_status); \
721 int flags = get_float_exception_flags(&env->fp_status); \
723 if (unlikely(flags & float_flag_invalid)) { \
724 float_invalid_op_sqrt(env, flags, 1, GETPC()); \
730 FPU_FSQRT(FSQRT
, float64_sqrt
)
731 FPU_FSQRT(FSQRTS
, float64r32_sqrt
)
733 #define FPU_FRE(name, op) \
734 float64 helper_##name(CPUPPCState *env, float64 arg) \
736 /* "Estimate" the reciprocal with actual division. */ \
737 float64 ret = op(float64_one, arg, &env->fp_status); \
738 int flags = get_float_exception_flags(&env->fp_status); \
740 if (unlikely(flags & float_flag_invalid_snan)) { \
741 float_invalid_op_vxsnan(env, GETPC()); \
743 if (unlikely(flags & float_flag_divbyzero)) { \
744 float_zero_divide_excp(env, GETPC()); \
745 /* For FPSCR.ZE == 0, the result is 1/2. */ \
746 ret = float64_set_sign(float64_half, float64_is_neg(arg)); \
752 #define FPU_FRSQRTE(name, op) \
753 float64 helper_##name(CPUPPCState *env, float64 arg) \
755 /* "Estimate" the reciprocal with actual division. */ \
756 float64 rets = float64_sqrt(arg, &env->fp_status); \
757 float64 retd = op(float64_one, rets, &env->fp_status); \
758 int flags = get_float_exception_flags(&env->fp_status); \
760 if (unlikely(flags & float_flag_invalid)) { \
761 float_invalid_op_sqrt(env, flags, 1, GETPC()); \
763 if (unlikely(flags & float_flag_divbyzero)) { \
764 /* Reciprocal of (square root of) zero. */ \
765 float_zero_divide_excp(env, GETPC()); \
771 #define FPU_HELPER(name, op, flags_handler) \
772 float64 helper_##name(CPUPPCState *env, float64 arg1, float64 arg2) \
774 float64 ret = op(arg1, arg2, &env->fp_status); \
775 int flags = get_float_exception_flags(&env->fp_status); \
776 uintptr_t ra = GETPC(); \
777 flags_handler(env, flags, ra); \
781 FPU_FRE(FRE
, float64_div
)
782 FPU_FRE(FRES
, float64r32_div
)
783 FPU_FRSQRTE(FRSQRTE
, float64_div
)
784 FPU_FRSQRTE(FRSQRTES
, float64r32_div
)
785 FPU_HELPER(FADD
, float64_add
, addsub_flags_handler
)
786 FPU_HELPER(FADDS
, float64r32_add
, addsub_flags_handler
)
787 FPU_HELPER(FSUB
, float64_sub
, addsub_flags_handler
)
788 FPU_HELPER(FSUBS
, float64r32_sub
, addsub_flags_handler
)
789 FPU_HELPER(FMUL
, float64_mul
, mul_flags_handler
)
790 FPU_HELPER(FMULS
, float64r32_mul
, mul_flags_handler
)
791 FPU_HELPER(FDIV
, float64_div
, div_flags_handler
)
792 FPU_HELPER(FDIVS
, float64r32_div
, div_flags_handler
)
795 uint64_t helper_FSEL(uint64_t a
, uint64_t b
, uint64_t c
)
801 if ((!float64_is_neg(fa
.d
) || float64_is_zero(fa
.d
)) &&
802 !float64_is_any_nan(fa
.d
)) {
809 uint32_t helper_FTDIV(uint64_t fra
, uint64_t frb
)
814 if (unlikely(float64_is_infinity(fra
) ||
815 float64_is_infinity(frb
) ||
816 float64_is_zero(frb
))) {
820 int e_a
= ppc_float64_get_unbiased_exp(fra
);
821 int e_b
= ppc_float64_get_unbiased_exp(frb
);
823 if (unlikely(float64_is_any_nan(fra
) ||
824 float64_is_any_nan(frb
))) {
826 } else if ((e_b
<= -1022) || (e_b
>= 1021)) {
828 } else if (!float64_is_zero(fra
) &&
829 (((e_a
- e_b
) >= 1023) ||
830 ((e_a
- e_b
) <= -1021) ||
835 if (unlikely(float64_is_zero_or_denormal(frb
))) {
836 /* XB is not zero because of the above check and */
837 /* so must be denormalized. */
842 return 0x8 | (fg_flag
? 4 : 0) | (fe_flag
? 2 : 0);
845 uint32_t helper_FTSQRT(uint64_t frb
)
850 if (unlikely(float64_is_infinity(frb
) || float64_is_zero(frb
))) {
854 int e_b
= ppc_float64_get_unbiased_exp(frb
);
856 if (unlikely(float64_is_any_nan(frb
))) {
858 } else if (unlikely(float64_is_zero(frb
))) {
860 } else if (unlikely(float64_is_neg(frb
))) {
862 } else if (!float64_is_zero(frb
) && (e_b
<= (-1022 + 52))) {
866 if (unlikely(float64_is_zero_or_denormal(frb
))) {
867 /* XB is not zero because of the above check and */
868 /* therefore must be denormalized. */
873 return 0x8 | (fg_flag
? 4 : 0) | (fe_flag
? 2 : 0);
876 void helper_fcmpu(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
879 CPU_DoubleU farg1
, farg2
;
885 if (unlikely(float64_is_any_nan(farg1
.d
) ||
886 float64_is_any_nan(farg2
.d
))) {
888 } else if (float64_lt(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
890 } else if (!float64_le(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
896 env
->fpscr
&= ~FP_FPCC
;
897 env
->fpscr
|= ret
<< FPSCR_FPCC
;
898 env
->crf
[crfD
] = ret
;
899 if (unlikely(ret
== 0x01UL
900 && (float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
901 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
)))) {
902 /* sNaN comparison */
903 float_invalid_op_vxsnan(env
, GETPC());
907 void helper_fcmpo(CPUPPCState
*env
, uint64_t arg1
, uint64_t arg2
,
910 CPU_DoubleU farg1
, farg2
;
916 if (unlikely(float64_is_any_nan(farg1
.d
) ||
917 float64_is_any_nan(farg2
.d
))) {
919 } else if (float64_lt(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
921 } else if (!float64_le(farg1
.d
, farg2
.d
, &env
->fp_status
)) {
927 env
->fpscr
&= ~FP_FPCC
;
928 env
->fpscr
|= ret
<< FPSCR_FPCC
;
929 env
->crf
[crfD
] = (uint32_t) ret
;
930 if (unlikely(ret
== 0x01UL
)) {
931 float_invalid_op_vxvc(env
, 1, GETPC());
932 if (float64_is_signaling_nan(farg1
.d
, &env
->fp_status
) ||
933 float64_is_signaling_nan(farg2
.d
, &env
->fp_status
)) {
934 /* sNaN comparison */
935 float_invalid_op_vxsnan(env
, GETPC());
940 /* Single-precision floating-point conversions */
941 static inline uint32_t efscfsi(CPUPPCState
*env
, uint32_t val
)
945 u
.f
= int32_to_float32(val
, &env
->vec_status
);
950 static inline uint32_t efscfui(CPUPPCState
*env
, uint32_t val
)
954 u
.f
= uint32_to_float32(val
, &env
->vec_status
);
959 static inline int32_t efsctsi(CPUPPCState
*env
, uint32_t val
)
964 /* NaN are not treated the same way IEEE 754 does */
965 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
969 return float32_to_int32(u
.f
, &env
->vec_status
);
972 static inline uint32_t efsctui(CPUPPCState
*env
, uint32_t val
)
977 /* NaN are not treated the same way IEEE 754 does */
978 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
982 return float32_to_uint32(u
.f
, &env
->vec_status
);
985 static inline uint32_t efsctsiz(CPUPPCState
*env
, uint32_t val
)
990 /* NaN are not treated the same way IEEE 754 does */
991 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
995 return float32_to_int32_round_to_zero(u
.f
, &env
->vec_status
);
998 static inline uint32_t efsctuiz(CPUPPCState
*env
, uint32_t val
)
1003 /* NaN are not treated the same way IEEE 754 does */
1004 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1008 return float32_to_uint32_round_to_zero(u
.f
, &env
->vec_status
);
1011 static inline uint32_t efscfsf(CPUPPCState
*env
, uint32_t val
)
1016 u
.f
= int32_to_float32(val
, &env
->vec_status
);
1017 tmp
= int64_to_float32(1ULL << 32, &env
->vec_status
);
1018 u
.f
= float32_div(u
.f
, tmp
, &env
->vec_status
);
1023 static inline uint32_t efscfuf(CPUPPCState
*env
, uint32_t val
)
1028 u
.f
= uint32_to_float32(val
, &env
->vec_status
);
1029 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
1030 u
.f
= float32_div(u
.f
, tmp
, &env
->vec_status
);
1035 static inline uint32_t efsctsf(CPUPPCState
*env
, uint32_t val
)
1041 /* NaN are not treated the same way IEEE 754 does */
1042 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1045 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
1046 u
.f
= float32_mul(u
.f
, tmp
, &env
->vec_status
);
1048 return float32_to_int32(u
.f
, &env
->vec_status
);
1051 static inline uint32_t efsctuf(CPUPPCState
*env
, uint32_t val
)
1057 /* NaN are not treated the same way IEEE 754 does */
1058 if (unlikely(float32_is_quiet_nan(u
.f
, &env
->vec_status
))) {
1061 tmp
= uint64_to_float32(1ULL << 32, &env
->vec_status
);
1062 u
.f
= float32_mul(u
.f
, tmp
, &env
->vec_status
);
1064 return float32_to_uint32(u
.f
, &env
->vec_status
);
1067 #define HELPER_SPE_SINGLE_CONV(name) \
1068 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1070 return e##name(env, val); \
1073 HELPER_SPE_SINGLE_CONV(fscfsi
);
1075 HELPER_SPE_SINGLE_CONV(fscfui
);
1077 HELPER_SPE_SINGLE_CONV(fscfuf
);
1079 HELPER_SPE_SINGLE_CONV(fscfsf
);
1081 HELPER_SPE_SINGLE_CONV(fsctsi
);
1083 HELPER_SPE_SINGLE_CONV(fsctui
);
1085 HELPER_SPE_SINGLE_CONV(fsctsiz
);
1087 HELPER_SPE_SINGLE_CONV(fsctuiz
);
1089 HELPER_SPE_SINGLE_CONV(fsctsf
);
1091 HELPER_SPE_SINGLE_CONV(fsctuf
);
1093 #define HELPER_SPE_VECTOR_CONV(name) \
1094 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1096 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1097 (uint64_t)e##name(env, val); \
1100 HELPER_SPE_VECTOR_CONV(fscfsi
);
1102 HELPER_SPE_VECTOR_CONV(fscfui
);
1104 HELPER_SPE_VECTOR_CONV(fscfuf
);
1106 HELPER_SPE_VECTOR_CONV(fscfsf
);
1108 HELPER_SPE_VECTOR_CONV(fsctsi
);
1110 HELPER_SPE_VECTOR_CONV(fsctui
);
1112 HELPER_SPE_VECTOR_CONV(fsctsiz
);
1114 HELPER_SPE_VECTOR_CONV(fsctuiz
);
1116 HELPER_SPE_VECTOR_CONV(fsctsf
);
1118 HELPER_SPE_VECTOR_CONV(fsctuf
);
1120 /* Single-precision floating-point arithmetic */
1121 static inline uint32_t efsadd(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1127 u1
.f
= float32_add(u1
.f
, u2
.f
, &env
->vec_status
);
1131 static inline uint32_t efssub(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1137 u1
.f
= float32_sub(u1
.f
, u2
.f
, &env
->vec_status
);
1141 static inline uint32_t efsmul(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1147 u1
.f
= float32_mul(u1
.f
, u2
.f
, &env
->vec_status
);
1151 static inline uint32_t efsdiv(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1157 u1
.f
= float32_div(u1
.f
, u2
.f
, &env
->vec_status
);
1161 #define HELPER_SPE_SINGLE_ARITH(name) \
1162 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1164 return e##name(env, op1, op2); \
1167 HELPER_SPE_SINGLE_ARITH(fsadd
);
1169 HELPER_SPE_SINGLE_ARITH(fssub
);
1171 HELPER_SPE_SINGLE_ARITH(fsmul
);
1173 HELPER_SPE_SINGLE_ARITH(fsdiv
);
1175 #define HELPER_SPE_VECTOR_ARITH(name) \
1176 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1178 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1179 (uint64_t)e##name(env, op1, op2); \
1182 HELPER_SPE_VECTOR_ARITH(fsadd
);
1184 HELPER_SPE_VECTOR_ARITH(fssub
);
1186 HELPER_SPE_VECTOR_ARITH(fsmul
);
1188 HELPER_SPE_VECTOR_ARITH(fsdiv
);
1190 /* Single-precision floating-point comparisons */
1191 static inline uint32_t efscmplt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1197 return float32_lt(u1
.f
, u2
.f
, &env
->vec_status
) ? 4 : 0;
1200 static inline uint32_t efscmpgt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1206 return float32_le(u1
.f
, u2
.f
, &env
->vec_status
) ? 0 : 4;
1209 static inline uint32_t efscmpeq(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1215 return float32_eq(u1
.f
, u2
.f
, &env
->vec_status
) ? 4 : 0;
1218 static inline uint32_t efststlt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1220 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1221 return efscmplt(env
, op1
, op2
);
1224 static inline uint32_t efststgt(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1226 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1227 return efscmpgt(env
, op1
, op2
);
1230 static inline uint32_t efststeq(CPUPPCState
*env
, uint32_t op1
, uint32_t op2
)
1232 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1233 return efscmpeq(env
, op1
, op2
);
1236 #define HELPER_SINGLE_SPE_CMP(name) \
1237 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1239 return e##name(env, op1, op2); \
1242 HELPER_SINGLE_SPE_CMP(fststlt
);
1244 HELPER_SINGLE_SPE_CMP(fststgt
);
1246 HELPER_SINGLE_SPE_CMP(fststeq
);
1248 HELPER_SINGLE_SPE_CMP(fscmplt
);
1250 HELPER_SINGLE_SPE_CMP(fscmpgt
);
1252 HELPER_SINGLE_SPE_CMP(fscmpeq
);
1254 static inline uint32_t evcmp_merge(int t0
, int t1
)
1256 return (t0
<< 3) | (t1
<< 2) | ((t0
| t1
) << 1) | (t0
& t1
);
1259 #define HELPER_VECTOR_SPE_CMP(name) \
1260 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1262 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1263 e##name(env, op1, op2)); \
1266 HELPER_VECTOR_SPE_CMP(fststlt
);
1268 HELPER_VECTOR_SPE_CMP(fststgt
);
1270 HELPER_VECTOR_SPE_CMP(fststeq
);
1272 HELPER_VECTOR_SPE_CMP(fscmplt
);
1274 HELPER_VECTOR_SPE_CMP(fscmpgt
);
1276 HELPER_VECTOR_SPE_CMP(fscmpeq
);
1278 /* Double-precision floating-point conversion */
1279 uint64_t helper_efdcfsi(CPUPPCState
*env
, uint32_t val
)
1283 u
.d
= int32_to_float64(val
, &env
->vec_status
);
1288 uint64_t helper_efdcfsid(CPUPPCState
*env
, uint64_t val
)
1292 u
.d
= int64_to_float64(val
, &env
->vec_status
);
1297 uint64_t helper_efdcfui(CPUPPCState
*env
, uint32_t val
)
1301 u
.d
= uint32_to_float64(val
, &env
->vec_status
);
1306 uint64_t helper_efdcfuid(CPUPPCState
*env
, uint64_t val
)
1310 u
.d
= uint64_to_float64(val
, &env
->vec_status
);
1315 uint32_t helper_efdctsi(CPUPPCState
*env
, uint64_t val
)
1320 /* NaN are not treated the same way IEEE 754 does */
1321 if (unlikely(float64_is_any_nan(u
.d
))) {
1325 return float64_to_int32(u
.d
, &env
->vec_status
);
1328 uint32_t helper_efdctui(CPUPPCState
*env
, uint64_t val
)
1333 /* NaN are not treated the same way IEEE 754 does */
1334 if (unlikely(float64_is_any_nan(u
.d
))) {
1338 return float64_to_uint32(u
.d
, &env
->vec_status
);
1341 uint32_t helper_efdctsiz(CPUPPCState
*env
, uint64_t val
)
1346 /* NaN are not treated the same way IEEE 754 does */
1347 if (unlikely(float64_is_any_nan(u
.d
))) {
1351 return float64_to_int32_round_to_zero(u
.d
, &env
->vec_status
);
1354 uint64_t helper_efdctsidz(CPUPPCState
*env
, uint64_t val
)
1359 /* NaN are not treated the same way IEEE 754 does */
1360 if (unlikely(float64_is_any_nan(u
.d
))) {
1364 return float64_to_int64_round_to_zero(u
.d
, &env
->vec_status
);
1367 uint32_t helper_efdctuiz(CPUPPCState
*env
, uint64_t val
)
1372 /* NaN are not treated the same way IEEE 754 does */
1373 if (unlikely(float64_is_any_nan(u
.d
))) {
1377 return float64_to_uint32_round_to_zero(u
.d
, &env
->vec_status
);
1380 uint64_t helper_efdctuidz(CPUPPCState
*env
, uint64_t val
)
1385 /* NaN are not treated the same way IEEE 754 does */
1386 if (unlikely(float64_is_any_nan(u
.d
))) {
1390 return float64_to_uint64_round_to_zero(u
.d
, &env
->vec_status
);
1393 uint64_t helper_efdcfsf(CPUPPCState
*env
, uint32_t val
)
1398 u
.d
= int32_to_float64(val
, &env
->vec_status
);
1399 tmp
= int64_to_float64(1ULL << 32, &env
->vec_status
);
1400 u
.d
= float64_div(u
.d
, tmp
, &env
->vec_status
);
1405 uint64_t helper_efdcfuf(CPUPPCState
*env
, uint32_t val
)
1410 u
.d
= uint32_to_float64(val
, &env
->vec_status
);
1411 tmp
= int64_to_float64(1ULL << 32, &env
->vec_status
);
1412 u
.d
= float64_div(u
.d
, tmp
, &env
->vec_status
);
1417 uint32_t helper_efdctsf(CPUPPCState
*env
, uint64_t val
)
1423 /* NaN are not treated the same way IEEE 754 does */
1424 if (unlikely(float64_is_any_nan(u
.d
))) {
1427 tmp
= uint64_to_float64(1ULL << 32, &env
->vec_status
);
1428 u
.d
= float64_mul(u
.d
, tmp
, &env
->vec_status
);
1430 return float64_to_int32(u
.d
, &env
->vec_status
);
1433 uint32_t helper_efdctuf(CPUPPCState
*env
, uint64_t val
)
1439 /* NaN are not treated the same way IEEE 754 does */
1440 if (unlikely(float64_is_any_nan(u
.d
))) {
1443 tmp
= uint64_to_float64(1ULL << 32, &env
->vec_status
);
1444 u
.d
= float64_mul(u
.d
, tmp
, &env
->vec_status
);
1446 return float64_to_uint32(u
.d
, &env
->vec_status
);
1449 uint32_t helper_efscfd(CPUPPCState
*env
, uint64_t val
)
1455 u2
.f
= float64_to_float32(u1
.d
, &env
->vec_status
);
1460 uint64_t helper_efdcfs(CPUPPCState
*env
, uint32_t val
)
1466 u2
.d
= float32_to_float64(u1
.f
, &env
->vec_status
);
1471 /* Double precision fixed-point arithmetic */
1472 uint64_t helper_efdadd(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1478 u1
.d
= float64_add(u1
.d
, u2
.d
, &env
->vec_status
);
1482 uint64_t helper_efdsub(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1488 u1
.d
= float64_sub(u1
.d
, u2
.d
, &env
->vec_status
);
1492 uint64_t helper_efdmul(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1498 u1
.d
= float64_mul(u1
.d
, u2
.d
, &env
->vec_status
);
1502 uint64_t helper_efddiv(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1508 u1
.d
= float64_div(u1
.d
, u2
.d
, &env
->vec_status
);
1512 /* Double precision floating point helpers */
1513 uint32_t helper_efdtstlt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1519 return float64_lt(u1
.d
, u2
.d
, &env
->vec_status
) ? 4 : 0;
1522 uint32_t helper_efdtstgt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1528 return float64_le(u1
.d
, u2
.d
, &env
->vec_status
) ? 0 : 4;
1531 uint32_t helper_efdtsteq(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1537 return float64_eq_quiet(u1
.d
, u2
.d
, &env
->vec_status
) ? 4 : 0;
1540 uint32_t helper_efdcmplt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1542 /* XXX: TODO: test special values (NaN, infinites, ...) */
1543 return helper_efdtstlt(env
, op1
, op2
);
1546 uint32_t helper_efdcmpgt(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1548 /* XXX: TODO: test special values (NaN, infinites, ...) */
1549 return helper_efdtstgt(env
, op1
, op2
);
1552 uint32_t helper_efdcmpeq(CPUPPCState
*env
, uint64_t op1
, uint64_t op2
)
1554 /* XXX: TODO: test special values (NaN, infinites, ...) */
1555 return helper_efdtsteq(env
, op1
, op2
);
1558 #define float64_to_float64(x, env) x
1562 * VSX_ADD_SUB - VSX floating point add/subtract
1563 * name - instruction mnemonic
1564 * op - operation (add or sub)
1565 * nels - number of elements (1, 2 or 4)
1566 * tp - type (float32 or float64)
1567 * fld - vsr_t field (VsrD(*) or VsrW(*))
1568 * sfifprf - set FI and FPRF
1570 #define VSX_ADD_SUB(name, op, nels, tp, fld, sfifprf, r2sp) \
1571 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
1572 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1574 ppc_vsr_t t = { }; \
1577 helper_reset_fpstatus(env); \
1579 for (i = 0; i < nels; i++) { \
1580 float_status tstat = env->fp_status; \
1581 set_float_exception_flags(0, &tstat); \
1582 t.fld = tp##_##op(xa->fld, xb->fld, &tstat); \
1583 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1585 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1586 float_invalid_op_addsub(env, tstat.float_exception_flags, \
1587 sfifprf, GETPC()); \
1591 t.fld = do_frsp(env, t.fld, GETPC()); \
1595 helper_compute_fprf_float64(env, t.fld); \
1599 do_float_check_status(env, sfifprf, GETPC()); \
1602 VSX_ADD_SUB(XSADDDP
, add
, 1, float64
, VsrD(0), 1, 0)
1603 VSX_ADD_SUB(XSADDSP
, add
, 1, float64
, VsrD(0), 1, 1)
1604 VSX_ADD_SUB(XVADDDP
, add
, 2, float64
, VsrD(i
), 0, 0)
1605 VSX_ADD_SUB(XVADDSP
, add
, 4, float32
, VsrW(i
), 0, 0)
1606 VSX_ADD_SUB(XSSUBDP
, sub
, 1, float64
, VsrD(0), 1, 0)
1607 VSX_ADD_SUB(XSSUBSP
, sub
, 1, float64
, VsrD(0), 1, 1)
1608 VSX_ADD_SUB(XVSUBDP
, sub
, 2, float64
, VsrD(i
), 0, 0)
1609 VSX_ADD_SUB(XVSUBSP
, sub
, 4, float32
, VsrW(i
), 0, 0)
1611 void helper_xsaddqp(CPUPPCState
*env
, uint32_t opcode
,
1612 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
1617 helper_reset_fpstatus(env
);
1619 tstat
= env
->fp_status
;
1620 if (unlikely(Rc(opcode
) != 0)) {
1621 tstat
.float_rounding_mode
= float_round_to_odd
;
1624 set_float_exception_flags(0, &tstat
);
1625 t
.f128
= float128_add(xa
->f128
, xb
->f128
, &tstat
);
1626 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
1628 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
1629 float_invalid_op_addsub(env
, tstat
.float_exception_flags
, 1, GETPC());
1632 helper_compute_fprf_float128(env
, t
.f128
);
1635 do_float_check_status(env
, true, GETPC());
1639 * VSX_MUL - VSX floating point multiply
1640 * op - instruction mnemonic
1641 * nels - number of elements (1, 2 or 4)
1642 * tp - type (float32 or float64)
1643 * fld - vsr_t field (VsrD(*) or VsrW(*))
1644 * sfifprf - set FI and FPRF
1646 #define VSX_MUL(op, nels, tp, fld, sfifprf, r2sp) \
1647 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1648 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1650 ppc_vsr_t t = { }; \
1653 helper_reset_fpstatus(env); \
1655 for (i = 0; i < nels; i++) { \
1656 float_status tstat = env->fp_status; \
1657 set_float_exception_flags(0, &tstat); \
1658 t.fld = tp##_mul(xa->fld, xb->fld, &tstat); \
1659 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1661 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1662 float_invalid_op_mul(env, tstat.float_exception_flags, \
1663 sfifprf, GETPC()); \
1667 t.fld = do_frsp(env, t.fld, GETPC()); \
1671 helper_compute_fprf_float64(env, t.fld); \
1676 do_float_check_status(env, sfifprf, GETPC()); \
1679 VSX_MUL(XSMULDP
, 1, float64
, VsrD(0), 1, 0)
1680 VSX_MUL(XSMULSP
, 1, float64
, VsrD(0), 1, 1)
1681 VSX_MUL(XVMULDP
, 2, float64
, VsrD(i
), 0, 0)
1682 VSX_MUL(XVMULSP
, 4, float32
, VsrW(i
), 0, 0)
1684 void helper_xsmulqp(CPUPPCState
*env
, uint32_t opcode
,
1685 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
1690 helper_reset_fpstatus(env
);
1691 tstat
= env
->fp_status
;
1692 if (unlikely(Rc(opcode
) != 0)) {
1693 tstat
.float_rounding_mode
= float_round_to_odd
;
1696 set_float_exception_flags(0, &tstat
);
1697 t
.f128
= float128_mul(xa
->f128
, xb
->f128
, &tstat
);
1698 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
1700 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
1701 float_invalid_op_mul(env
, tstat
.float_exception_flags
, 1, GETPC());
1703 helper_compute_fprf_float128(env
, t
.f128
);
1706 do_float_check_status(env
, true, GETPC());
1710 * VSX_DIV - VSX floating point divide
1711 * op - instruction mnemonic
1712 * nels - number of elements (1, 2 or 4)
1713 * tp - type (float32 or float64)
1714 * fld - vsr_t field (VsrD(*) or VsrW(*))
1715 * sfifprf - set FI and FPRF
1717 #define VSX_DIV(op, nels, tp, fld, sfifprf, r2sp) \
1718 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
1719 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1721 ppc_vsr_t t = { }; \
1724 helper_reset_fpstatus(env); \
1726 for (i = 0; i < nels; i++) { \
1727 float_status tstat = env->fp_status; \
1728 set_float_exception_flags(0, &tstat); \
1729 t.fld = tp##_div(xa->fld, xb->fld, &tstat); \
1730 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1732 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1733 float_invalid_op_div(env, tstat.float_exception_flags, \
1734 sfifprf, GETPC()); \
1736 if (unlikely(tstat.float_exception_flags & float_flag_divbyzero)) { \
1737 float_zero_divide_excp(env, GETPC()); \
1741 t.fld = do_frsp(env, t.fld, GETPC()); \
1745 helper_compute_fprf_float64(env, t.fld); \
1750 do_float_check_status(env, sfifprf, GETPC()); \
1753 VSX_DIV(XSDIVDP
, 1, float64
, VsrD(0), 1, 0)
1754 VSX_DIV(XSDIVSP
, 1, float64
, VsrD(0), 1, 1)
1755 VSX_DIV(XVDIVDP
, 2, float64
, VsrD(i
), 0, 0)
1756 VSX_DIV(XVDIVSP
, 4, float32
, VsrW(i
), 0, 0)
1758 void helper_xsdivqp(CPUPPCState
*env
, uint32_t opcode
,
1759 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
1764 helper_reset_fpstatus(env
);
1765 tstat
= env
->fp_status
;
1766 if (unlikely(Rc(opcode
) != 0)) {
1767 tstat
.float_rounding_mode
= float_round_to_odd
;
1770 set_float_exception_flags(0, &tstat
);
1771 t
.f128
= float128_div(xa
->f128
, xb
->f128
, &tstat
);
1772 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
1774 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
1775 float_invalid_op_div(env
, tstat
.float_exception_flags
, 1, GETPC());
1777 if (unlikely(tstat
.float_exception_flags
& float_flag_divbyzero
)) {
1778 float_zero_divide_excp(env
, GETPC());
1781 helper_compute_fprf_float128(env
, t
.f128
);
1783 do_float_check_status(env
, true, GETPC());
1787 * VSX_RE - VSX floating point reciprocal estimate
1788 * op - instruction mnemonic
1789 * nels - number of elements (1, 2 or 4)
1790 * tp - type (float32 or float64)
1791 * fld - vsr_t field (VsrD(*) or VsrW(*))
1792 * sfifprf - set FI and FPRF
1794 #define VSX_RE(op, nels, tp, fld, sfifprf, r2sp) \
1795 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
1797 ppc_vsr_t t = { }; \
1800 helper_reset_fpstatus(env); \
1802 for (i = 0; i < nels; i++) { \
1803 if (unlikely(tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
1804 float_invalid_op_vxsnan(env, GETPC()); \
1806 t.fld = tp##_div(tp##_one, xb->fld, &env->fp_status); \
1809 t.fld = do_frsp(env, t.fld, GETPC()); \
1813 helper_compute_fprf_float64(env, t.fld); \
1818 do_float_check_status(env, sfifprf, GETPC()); \
1821 VSX_RE(xsredp
, 1, float64
, VsrD(0), 1, 0)
1822 VSX_RE(xsresp
, 1, float64
, VsrD(0), 1, 1)
1823 VSX_RE(xvredp
, 2, float64
, VsrD(i
), 0, 0)
1824 VSX_RE(xvresp
, 4, float32
, VsrW(i
), 0, 0)
1827 * VSX_SQRT - VSX floating point square root
1828 * op - instruction mnemonic
1829 * nels - number of elements (1, 2 or 4)
1830 * tp - type (float32 or float64)
1831 * fld - vsr_t field (VsrD(*) or VsrW(*))
1832 * sfifprf - set FI and FPRF
1834 #define VSX_SQRT(op, nels, tp, fld, sfifprf, r2sp) \
1835 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
1837 ppc_vsr_t t = { }; \
1840 helper_reset_fpstatus(env); \
1842 for (i = 0; i < nels; i++) { \
1843 float_status tstat = env->fp_status; \
1844 set_float_exception_flags(0, &tstat); \
1845 t.fld = tp##_sqrt(xb->fld, &tstat); \
1846 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1848 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1849 float_invalid_op_sqrt(env, tstat.float_exception_flags, \
1850 sfifprf, GETPC()); \
1854 t.fld = do_frsp(env, t.fld, GETPC()); \
1858 helper_compute_fprf_float64(env, t.fld); \
1863 do_float_check_status(env, sfifprf, GETPC()); \
1866 VSX_SQRT(xssqrtdp
, 1, float64
, VsrD(0), 1, 0)
1867 VSX_SQRT(xssqrtsp
, 1, float64
, VsrD(0), 1, 1)
1868 VSX_SQRT(xvsqrtdp
, 2, float64
, VsrD(i
), 0, 0)
1869 VSX_SQRT(xvsqrtsp
, 4, float32
, VsrW(i
), 0, 0)
1872 *VSX_RSQRTE - VSX floating point reciprocal square root estimate
1873 * op - instruction mnemonic
1874 * nels - number of elements (1, 2 or 4)
1875 * tp - type (float32 or float64)
1876 * fld - vsr_t field (VsrD(*) or VsrW(*))
1877 * sfifprf - set FI and FPRF
1879 #define VSX_RSQRTE(op, nels, tp, fld, sfifprf, r2sp) \
1880 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
1882 ppc_vsr_t t = { }; \
1885 helper_reset_fpstatus(env); \
1887 for (i = 0; i < nels; i++) { \
1888 float_status tstat = env->fp_status; \
1889 set_float_exception_flags(0, &tstat); \
1890 t.fld = tp##_sqrt(xb->fld, &tstat); \
1891 t.fld = tp##_div(tp##_one, t.fld, &tstat); \
1892 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
1893 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
1894 float_invalid_op_sqrt(env, tstat.float_exception_flags, \
1895 sfifprf, GETPC()); \
1898 t.fld = do_frsp(env, t.fld, GETPC()); \
1902 helper_compute_fprf_float64(env, t.fld); \
1907 do_float_check_status(env, sfifprf, GETPC()); \
1910 VSX_RSQRTE(xsrsqrtedp
, 1, float64
, VsrD(0), 1, 0)
1911 VSX_RSQRTE(xsrsqrtesp
, 1, float64
, VsrD(0), 1, 1)
1912 VSX_RSQRTE(xvrsqrtedp
, 2, float64
, VsrD(i
), 0, 0)
1913 VSX_RSQRTE(xvrsqrtesp
, 4, float32
, VsrW(i
), 0, 0)
1916 * VSX_TDIV - VSX floating point test for divide
1917 * op - instruction mnemonic
1918 * nels - number of elements (1, 2 or 4)
1919 * tp - type (float32 or float64)
1920 * fld - vsr_t field (VsrD(*) or VsrW(*))
1921 * emin - minimum unbiased exponent
1922 * emax - maximum unbiased exponent
1923 * nbits - number of fraction bits
1925 #define VSX_TDIV(op, nels, tp, fld, emin, emax, nbits) \
1926 void helper_##op(CPUPPCState *env, uint32_t opcode, \
1927 ppc_vsr_t *xa, ppc_vsr_t *xb) \
1933 for (i = 0; i < nels; i++) { \
1934 if (unlikely(tp##_is_infinity(xa->fld) || \
1935 tp##_is_infinity(xb->fld) || \
1936 tp##_is_zero(xb->fld))) { \
1940 int e_a = ppc_##tp##_get_unbiased_exp(xa->fld); \
1941 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
1943 if (unlikely(tp##_is_any_nan(xa->fld) || \
1944 tp##_is_any_nan(xb->fld))) { \
1946 } else if ((e_b <= emin) || (e_b >= (emax - 2))) { \
1948 } else if (!tp##_is_zero(xa->fld) && \
1949 (((e_a - e_b) >= emax) || \
1950 ((e_a - e_b) <= (emin + 1)) || \
1951 (e_a <= (emin + nbits)))) { \
1955 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
1957 * XB is not zero because of the above check and so \
1958 * must be denormalized. \
1965 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
1968 VSX_TDIV(xstdivdp
, 1, float64
, VsrD(0), -1022, 1023, 52)
1969 VSX_TDIV(xvtdivdp
, 2, float64
, VsrD(i
), -1022, 1023, 52)
1970 VSX_TDIV(xvtdivsp
, 4, float32
, VsrW(i
), -126, 127, 23)
1973 * VSX_TSQRT - VSX floating point test for square root
1974 * op - instruction mnemonic
1975 * nels - number of elements (1, 2 or 4)
1976 * tp - type (float32 or float64)
1977 * fld - vsr_t field (VsrD(*) or VsrW(*))
1978 * emin - minimum unbiased exponent
1979 * emax - maximum unbiased exponent
1980 * nbits - number of fraction bits
1982 #define VSX_TSQRT(op, nels, tp, fld, emin, nbits) \
1983 void helper_##op(CPUPPCState *env, uint32_t opcode, ppc_vsr_t *xb) \
1989 for (i = 0; i < nels; i++) { \
1990 if (unlikely(tp##_is_infinity(xb->fld) || \
1991 tp##_is_zero(xb->fld))) { \
1995 int e_b = ppc_##tp##_get_unbiased_exp(xb->fld); \
1997 if (unlikely(tp##_is_any_nan(xb->fld))) { \
1999 } else if (unlikely(tp##_is_zero(xb->fld))) { \
2001 } else if (unlikely(tp##_is_neg(xb->fld))) { \
2003 } else if (!tp##_is_zero(xb->fld) && \
2004 (e_b <= (emin + nbits))) { \
2008 if (unlikely(tp##_is_zero_or_denormal(xb->fld))) { \
2010 * XB is not zero because of the above check and \
2011 * therefore must be denormalized. \
2018 env->crf[BF(opcode)] = 0x8 | (fg_flag ? 4 : 0) | (fe_flag ? 2 : 0); \
2021 VSX_TSQRT(xstsqrtdp
, 1, float64
, VsrD(0), -1022, 52)
2022 VSX_TSQRT(xvtsqrtdp
, 2, float64
, VsrD(i
), -1022, 52)
2023 VSX_TSQRT(xvtsqrtsp
, 4, float32
, VsrW(i
), -126, 23)
2026 * VSX_MADD - VSX floating point muliply/add variations
2027 * op - instruction mnemonic
2028 * nels - number of elements (1, 2 or 4)
2029 * tp - type (float32 or float64)
2030 * fld - vsr_t field (VsrD(*) or VsrW(*))
2031 * maddflgs - flags for the float*muladd routine that control the
2032 * various forms (madd, msub, nmadd, nmsub)
2033 * sfifprf - set FI and FPRF
2035 #define VSX_MADD(op, nels, tp, fld, maddflgs, sfifprf) \
2036 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2037 ppc_vsr_t *s1, ppc_vsr_t *s2, ppc_vsr_t *s3) \
2039 ppc_vsr_t t = { }; \
2042 helper_reset_fpstatus(env); \
2044 for (i = 0; i < nels; i++) { \
2045 float_status tstat = env->fp_status; \
2046 set_float_exception_flags(0, &tstat); \
2047 t.fld = tp##_muladd(s1->fld, s3->fld, s2->fld, maddflgs, &tstat); \
2048 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2050 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2051 float_invalid_op_madd(env, tstat.float_exception_flags, \
2052 sfifprf, GETPC()); \
2056 helper_compute_fprf_float64(env, t.fld); \
2060 do_float_check_status(env, sfifprf, GETPC()); \
2063 VSX_MADD(XSMADDDP
, 1, float64
, VsrD(0), MADD_FLGS
, 1)
2064 VSX_MADD(XSMSUBDP
, 1, float64
, VsrD(0), MSUB_FLGS
, 1)
2065 VSX_MADD(XSNMADDDP
, 1, float64
, VsrD(0), NMADD_FLGS
, 1)
2066 VSX_MADD(XSNMSUBDP
, 1, float64
, VsrD(0), NMSUB_FLGS
, 1)
2067 VSX_MADD(XSMADDSP
, 1, float64r32
, VsrD(0), MADD_FLGS
, 1)
2068 VSX_MADD(XSMSUBSP
, 1, float64r32
, VsrD(0), MSUB_FLGS
, 1)
2069 VSX_MADD(XSNMADDSP
, 1, float64r32
, VsrD(0), NMADD_FLGS
, 1)
2070 VSX_MADD(XSNMSUBSP
, 1, float64r32
, VsrD(0), NMSUB_FLGS
, 1)
2072 VSX_MADD(xvmadddp
, 2, float64
, VsrD(i
), MADD_FLGS
, 0)
2073 VSX_MADD(xvmsubdp
, 2, float64
, VsrD(i
), MSUB_FLGS
, 0)
2074 VSX_MADD(xvnmadddp
, 2, float64
, VsrD(i
), NMADD_FLGS
, 0)
2075 VSX_MADD(xvnmsubdp
, 2, float64
, VsrD(i
), NMSUB_FLGS
, 0)
2077 VSX_MADD(xvmaddsp
, 4, float32
, VsrW(i
), MADD_FLGS
, 0)
2078 VSX_MADD(xvmsubsp
, 4, float32
, VsrW(i
), MSUB_FLGS
, 0)
2079 VSX_MADD(xvnmaddsp
, 4, float32
, VsrW(i
), NMADD_FLGS
, 0)
2080 VSX_MADD(xvnmsubsp
, 4, float32
, VsrW(i
), NMSUB_FLGS
, 0)
2083 * VSX_MADDQ - VSX floating point quad-precision muliply/add
2084 * op - instruction mnemonic
2085 * maddflgs - flags for the float*muladd routine that control the
2086 * various forms (madd, msub, nmadd, nmsub)
2089 #define VSX_MADDQ(op, maddflgs, ro) \
2090 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *s1, ppc_vsr_t *s2,\
2093 ppc_vsr_t t = *xt; \
2095 helper_reset_fpstatus(env); \
2097 float_status tstat = env->fp_status; \
2098 set_float_exception_flags(0, &tstat); \
2100 tstat.float_rounding_mode = float_round_to_odd; \
2102 t.f128 = float128_muladd(s1->f128, s3->f128, s2->f128, maddflgs, &tstat); \
2103 env->fp_status.float_exception_flags |= tstat.float_exception_flags; \
2105 if (unlikely(tstat.float_exception_flags & float_flag_invalid)) { \
2106 float_invalid_op_madd(env, tstat.float_exception_flags, \
2110 helper_compute_fprf_float128(env, t.f128); \
2112 do_float_check_status(env, true, GETPC()); \
2115 VSX_MADDQ(XSMADDQP
, MADD_FLGS
, 0)
2116 VSX_MADDQ(XSMADDQPO
, MADD_FLGS
, 1)
2117 VSX_MADDQ(XSMSUBQP
, MSUB_FLGS
, 0)
2118 VSX_MADDQ(XSMSUBQPO
, MSUB_FLGS
, 1)
2119 VSX_MADDQ(XSNMADDQP
, NMADD_FLGS
, 0)
2120 VSX_MADDQ(XSNMADDQPO
, NMADD_FLGS
, 1)
2121 VSX_MADDQ(XSNMSUBQP
, NMSUB_FLGS
, 0)
2122 VSX_MADDQ(XSNMSUBQPO
, NMSUB_FLGS
, 0)
2125 * VSX_SCALAR_CMP - VSX scalar floating point compare
2126 * op - instruction mnemonic
2128 * cmp - comparison operation
2130 * svxvc - set VXVC bit
2132 #define VSX_SCALAR_CMP(op, tp, cmp, fld, svxvc) \
2133 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2134 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2139 helper_reset_fpstatus(env); \
2142 r = tp##_##cmp(xb->fld, xa->fld, &env->fp_status); \
2144 r = tp##_##cmp##_quiet(xb->fld, xa->fld, &env->fp_status); \
2147 flags = get_float_exception_flags(&env->fp_status); \
2148 if (unlikely(flags & float_flag_invalid)) { \
2150 if (flags & float_flag_invalid_snan) { \
2151 float_invalid_op_vxsnan(env, GETPC()); \
2152 vxvc &= !(env->fpscr & FP_VE); \
2155 float_invalid_op_vxvc(env, 0, GETPC()); \
2159 memset(xt, 0, sizeof(*xt)); \
2160 memset(&xt->fld, -r, sizeof(xt->fld)); \
2161 do_float_check_status(env, false, GETPC()); \
2164 VSX_SCALAR_CMP(XSCMPEQDP
, float64
, eq
, VsrD(0), 0)
2165 VSX_SCALAR_CMP(XSCMPGEDP
, float64
, le
, VsrD(0), 1)
2166 VSX_SCALAR_CMP(XSCMPGTDP
, float64
, lt
, VsrD(0), 1)
2167 VSX_SCALAR_CMP(XSCMPEQQP
, float128
, eq
, f128
, 0)
2168 VSX_SCALAR_CMP(XSCMPGEQP
, float128
, le
, f128
, 1)
2169 VSX_SCALAR_CMP(XSCMPGTQP
, float128
, lt
, f128
, 1)
2171 void helper_xscmpexpdp(CPUPPCState
*env
, uint32_t opcode
,
2172 ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
2174 int64_t exp_a
, exp_b
;
2177 exp_a
= extract64(xa
->VsrD(0), 52, 11);
2178 exp_b
= extract64(xb
->VsrD(0), 52, 11);
2180 if (unlikely(float64_is_any_nan(xa
->VsrD(0)) ||
2181 float64_is_any_nan(xb
->VsrD(0)))) {
2184 if (exp_a
< exp_b
) {
2186 } else if (exp_a
> exp_b
) {
2193 env
->fpscr
&= ~FP_FPCC
;
2194 env
->fpscr
|= cc
<< FPSCR_FPCC
;
2195 env
->crf
[BF(opcode
)] = cc
;
2197 do_float_check_status(env
, false, GETPC());
2200 void helper_xscmpexpqp(CPUPPCState
*env
, uint32_t opcode
,
2201 ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
2203 int64_t exp_a
, exp_b
;
2206 exp_a
= extract64(xa
->VsrD(0), 48, 15);
2207 exp_b
= extract64(xb
->VsrD(0), 48, 15);
2209 if (unlikely(float128_is_any_nan(xa
->f128
) ||
2210 float128_is_any_nan(xb
->f128
))) {
2213 if (exp_a
< exp_b
) {
2215 } else if (exp_a
> exp_b
) {
2222 env
->fpscr
&= ~FP_FPCC
;
2223 env
->fpscr
|= cc
<< FPSCR_FPCC
;
2224 env
->crf
[BF(opcode
)] = cc
;
2226 do_float_check_status(env
, false, GETPC());
2229 static inline void do_scalar_cmp(CPUPPCState
*env
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
,
2230 int crf_idx
, bool ordered
)
2233 bool vxsnan_flag
= false, vxvc_flag
= false;
2235 helper_reset_fpstatus(env
);
2237 switch (float64_compare(xa
->VsrD(0), xb
->VsrD(0), &env
->fp_status
)) {
2238 case float_relation_less
:
2241 case float_relation_equal
:
2244 case float_relation_greater
:
2247 case float_relation_unordered
:
2250 if (float64_is_signaling_nan(xa
->VsrD(0), &env
->fp_status
) ||
2251 float64_is_signaling_nan(xb
->VsrD(0), &env
->fp_status
)) {
2253 if (!(env
->fpscr
& FP_VE
) && ordered
) {
2256 } else if (float64_is_quiet_nan(xa
->VsrD(0), &env
->fp_status
) ||
2257 float64_is_quiet_nan(xb
->VsrD(0), &env
->fp_status
)) {
2265 g_assert_not_reached();
2268 env
->fpscr
&= ~FP_FPCC
;
2269 env
->fpscr
|= cc
<< FPSCR_FPCC
;
2270 env
->crf
[crf_idx
] = cc
;
2273 float_invalid_op_vxsnan(env
, GETPC());
2276 float_invalid_op_vxvc(env
, 0, GETPC());
2279 do_float_check_status(env
, false, GETPC());
2282 void helper_xscmpodp(CPUPPCState
*env
, uint32_t opcode
, ppc_vsr_t
*xa
,
2285 do_scalar_cmp(env
, xa
, xb
, BF(opcode
), true);
2288 void helper_xscmpudp(CPUPPCState
*env
, uint32_t opcode
, ppc_vsr_t
*xa
,
2291 do_scalar_cmp(env
, xa
, xb
, BF(opcode
), false);
2294 static inline void do_scalar_cmpq(CPUPPCState
*env
, ppc_vsr_t
*xa
,
2295 ppc_vsr_t
*xb
, int crf_idx
, bool ordered
)
2298 bool vxsnan_flag
= false, vxvc_flag
= false;
2300 helper_reset_fpstatus(env
);
2302 switch (float128_compare(xa
->f128
, xb
->f128
, &env
->fp_status
)) {
2303 case float_relation_less
:
2306 case float_relation_equal
:
2309 case float_relation_greater
:
2312 case float_relation_unordered
:
2315 if (float128_is_signaling_nan(xa
->f128
, &env
->fp_status
) ||
2316 float128_is_signaling_nan(xb
->f128
, &env
->fp_status
)) {
2318 if (!(env
->fpscr
& FP_VE
) && ordered
) {
2321 } else if (float128_is_quiet_nan(xa
->f128
, &env
->fp_status
) ||
2322 float128_is_quiet_nan(xb
->f128
, &env
->fp_status
)) {
2330 g_assert_not_reached();
2333 env
->fpscr
&= ~FP_FPCC
;
2334 env
->fpscr
|= cc
<< FPSCR_FPCC
;
2335 env
->crf
[crf_idx
] = cc
;
2338 float_invalid_op_vxsnan(env
, GETPC());
2341 float_invalid_op_vxvc(env
, 0, GETPC());
2344 do_float_check_status(env
, false, GETPC());
2347 void helper_xscmpoqp(CPUPPCState
*env
, uint32_t opcode
, ppc_vsr_t
*xa
,
2350 do_scalar_cmpq(env
, xa
, xb
, BF(opcode
), true);
2353 void helper_xscmpuqp(CPUPPCState
*env
, uint32_t opcode
, ppc_vsr_t
*xa
,
2356 do_scalar_cmpq(env
, xa
, xb
, BF(opcode
), false);
2360 * VSX_MAX_MIN - VSX floating point maximum/minimum
2361 * name - instruction mnemonic
2362 * op - operation (max or min)
2363 * nels - number of elements (1, 2 or 4)
2364 * tp - type (float32 or float64)
2365 * fld - vsr_t field (VsrD(*) or VsrW(*))
2367 #define VSX_MAX_MIN(name, op, nels, tp, fld) \
2368 void helper_##name(CPUPPCState *env, ppc_vsr_t *xt, \
2369 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2371 ppc_vsr_t t = { }; \
2374 for (i = 0; i < nels; i++) { \
2375 t.fld = tp##_##op(xa->fld, xb->fld, &env->fp_status); \
2376 if (unlikely(tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2377 tp##_is_signaling_nan(xb->fld, &env->fp_status))) { \
2378 float_invalid_op_vxsnan(env, GETPC()); \
2383 do_float_check_status(env, false, GETPC()); \
2386 VSX_MAX_MIN(XSMAXDP
, maxnum
, 1, float64
, VsrD(0))
2387 VSX_MAX_MIN(XVMAXDP
, maxnum
, 2, float64
, VsrD(i
))
2388 VSX_MAX_MIN(XVMAXSP
, maxnum
, 4, float32
, VsrW(i
))
2389 VSX_MAX_MIN(XSMINDP
, minnum
, 1, float64
, VsrD(0))
2390 VSX_MAX_MIN(XVMINDP
, minnum
, 2, float64
, VsrD(i
))
2391 VSX_MAX_MIN(XVMINSP
, minnum
, 4, float32
, VsrW(i
))
2393 #define VSX_MAX_MINC(name, max, tp, fld) \
2394 void helper_##name(CPUPPCState *env, \
2395 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2397 ppc_vsr_t t = { }; \
2400 helper_reset_fpstatus(env); \
2403 first = tp##_le_quiet(xb->fld, xa->fld, &env->fp_status); \
2405 first = tp##_lt_quiet(xa->fld, xb->fld, &env->fp_status); \
2412 if (env->fp_status.float_exception_flags & float_flag_invalid_snan) { \
2413 float_invalid_op_vxsnan(env, GETPC()); \
2420 VSX_MAX_MINC(XSMAXCDP
, true, float64
, VsrD(0));
2421 VSX_MAX_MINC(XSMINCDP
, false, float64
, VsrD(0));
2422 VSX_MAX_MINC(XSMAXCQP
, true, float128
, f128
);
2423 VSX_MAX_MINC(XSMINCQP
, false, float128
, f128
);
2425 #define VSX_MAX_MINJ(name, max) \
2426 void helper_##name(CPUPPCState *env, \
2427 ppc_vsr_t *xt, ppc_vsr_t *xa, ppc_vsr_t *xb) \
2429 ppc_vsr_t t = { }; \
2430 bool vxsnan_flag = false, vex_flag = false; \
2432 if (unlikely(float64_is_any_nan(xa->VsrD(0)))) { \
2433 if (float64_is_signaling_nan(xa->VsrD(0), &env->fp_status)) { \
2434 vxsnan_flag = true; \
2436 t.VsrD(0) = xa->VsrD(0); \
2437 } else if (unlikely(float64_is_any_nan(xb->VsrD(0)))) { \
2438 if (float64_is_signaling_nan(xb->VsrD(0), &env->fp_status)) { \
2439 vxsnan_flag = true; \
2441 t.VsrD(0) = xb->VsrD(0); \
2442 } else if (float64_is_zero(xa->VsrD(0)) && \
2443 float64_is_zero(xb->VsrD(0))) { \
2445 if (!float64_is_neg(xa->VsrD(0)) || \
2446 !float64_is_neg(xb->VsrD(0))) { \
2449 t.VsrD(0) = 0x8000000000000000ULL; \
2452 if (float64_is_neg(xa->VsrD(0)) || \
2453 float64_is_neg(xb->VsrD(0))) { \
2454 t.VsrD(0) = 0x8000000000000000ULL; \
2459 } else if ((max && \
2460 !float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status)) || \
2462 float64_lt(xa->VsrD(0), xb->VsrD(0), &env->fp_status))) { \
2463 t.VsrD(0) = xa->VsrD(0); \
2465 t.VsrD(0) = xb->VsrD(0); \
2468 vex_flag = (env->fpscr & FP_VE) && vxsnan_flag; \
2469 if (vxsnan_flag) { \
2470 float_invalid_op_vxsnan(env, GETPC()); \
2477 VSX_MAX_MINJ(XSMAXJDP, 1);
2478 VSX_MAX_MINJ(XSMINJDP
, 0);
2481 * VSX_CMP - VSX floating point compare
2482 * op - instruction mnemonic
2483 * nels - number of elements (1, 2 or 4)
2484 * tp - type (float32 or float64)
2485 * fld - vsr_t field (VsrD(*) or VsrW(*))
2486 * cmp - comparison operation
2487 * svxvc - set VXVC bit
2488 * exp - expected result of comparison
2490 #define VSX_CMP(op, nels, tp, fld, cmp, svxvc, exp) \
2491 uint32_t helper_##op(CPUPPCState *env, ppc_vsr_t *xt, \
2492 ppc_vsr_t *xa, ppc_vsr_t *xb) \
2494 ppc_vsr_t t = *xt; \
2495 uint32_t crf6 = 0; \
2498 int all_false = 1; \
2500 helper_reset_fpstatus(env); \
2502 for (i = 0; i < nels; i++) { \
2503 if (unlikely(tp##_is_any_nan(xa->fld) || \
2504 tp##_is_any_nan(xb->fld))) { \
2505 if (tp##_is_signaling_nan(xa->fld, &env->fp_status) || \
2506 tp##_is_signaling_nan(xb->fld, &env->fp_status)) { \
2507 float_invalid_op_vxsnan(env, GETPC()); \
2510 float_invalid_op_vxvc(env, 0, GETPC()); \
2515 if (tp##_##cmp(xb->fld, xa->fld, &env->fp_status) == exp) { \
2526 crf6 = (all_true ? 0x8 : 0) | (all_false ? 0x2 : 0); \
2530 VSX_CMP(XVCMPEQDP
, 2, float64
, VsrD(i
), eq
, 0, 1)
2531 VSX_CMP(XVCMPGEDP
, 2, float64
, VsrD(i
), le
, 1, 1)
2532 VSX_CMP(XVCMPGTDP
, 2, float64
, VsrD(i
), lt
, 1, 1)
2533 VSX_CMP(XVCMPNEDP
, 2, float64
, VsrD(i
), eq
, 0, 0)
2534 VSX_CMP(XVCMPEQSP
, 4, float32
, VsrW(i
), eq
, 0, 1)
2535 VSX_CMP(XVCMPGESP
, 4, float32
, VsrW(i
), le
, 1, 1)
2536 VSX_CMP(XVCMPGTSP
, 4, float32
, VsrW(i
), lt
, 1, 1)
2537 VSX_CMP(XVCMPNESP
, 4, float32
, VsrW(i
), eq
, 0, 0)
2540 * VSX_CVT_FP_TO_FP - VSX floating point/floating point conversion
2541 * op - instruction mnemonic
2542 * nels - number of elements (1, 2 or 4)
2543 * stp - source type (float32 or float64)
2544 * ttp - target type (float32 or float64)
2545 * sfld - source vsr_t field
2546 * tfld - target vsr_t field (f32 or f64)
2547 * sfifprf - set FI and FPRF
2549 #define VSX_CVT_FP_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf) \
2550 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2552 ppc_vsr_t t = { }; \
2555 helper_reset_fpstatus(env); \
2557 for (i = 0; i < nels; i++) { \
2558 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2559 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2560 &env->fp_status))) { \
2561 float_invalid_op_vxsnan(env, GETPC()); \
2562 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2565 helper_compute_fprf_##ttp(env, t.tfld); \
2570 do_float_check_status(env, sfifprf, GETPC()); \
2573 VSX_CVT_FP_TO_FP(xscvspdp
, 1, float32
, float64
, VsrW(0), VsrD(0), 1)
2574 VSX_CVT_FP_TO_FP(xvcvspdp
, 2, float32
, float64
, VsrW(2 * i
), VsrD(i
), 0)
2576 #define VSX_CVT_FP_TO_FP2(op, nels, stp, ttp, sfifprf) \
2577 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2579 ppc_vsr_t t = { }; \
2582 helper_reset_fpstatus(env); \
2584 for (i = 0; i < nels; i++) { \
2585 t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status); \
2586 if (unlikely(stp##_is_signaling_nan(xb->VsrD(i), \
2587 &env->fp_status))) { \
2588 float_invalid_op_vxsnan(env, GETPC()); \
2589 t.VsrW(2 * i) = ttp##_snan_to_qnan(t.VsrW(2 * i)); \
2592 helper_compute_fprf_##ttp(env, t.VsrW(2 * i)); \
2594 t.VsrW(2 * i + 1) = t.VsrW(2 * i); \
2598 do_float_check_status(env, sfifprf, GETPC()); \
2601 VSX_CVT_FP_TO_FP2(xvcvdpsp
, 2, float64
, float32
, 0)
2602 VSX_CVT_FP_TO_FP2(xscvdpsp
, 1, float64
, float32
, 1)
2605 * VSX_CVT_FP_TO_FP_VECTOR - VSX floating point/floating point conversion
2606 * op - instruction mnemonic
2607 * nels - number of elements (1, 2 or 4)
2608 * stp - source type (float32 or float64)
2609 * ttp - target type (float32 or float64)
2610 * sfld - source vsr_t field
2611 * tfld - target vsr_t field (f32 or f64)
2614 #define VSX_CVT_FP_TO_FP_VECTOR(op, nels, stp, ttp, sfld, tfld, sfprf) \
2615 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2616 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2618 ppc_vsr_t t = *xt; \
2621 helper_reset_fpstatus(env); \
2623 for (i = 0; i < nels; i++) { \
2624 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2625 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2626 &env->fp_status))) { \
2627 float_invalid_op_vxsnan(env, GETPC()); \
2628 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2631 helper_compute_fprf_##ttp(env, t.tfld); \
2636 do_float_check_status(env, true, GETPC()); \
2639 VSX_CVT_FP_TO_FP_VECTOR(xscvdpqp
, 1, float64
, float128
, VsrD(0), f128
, 1)
2642 * VSX_CVT_FP_TO_FP_HP - VSX floating point/floating point conversion
2643 * involving one half precision value
2644 * op - instruction mnemonic
2645 * nels - number of elements (1, 2 or 4)
2648 * sfld - source vsr_t field
2649 * tfld - target vsr_t field
2650 * sfifprf - set FI and FPRF
2652 #define VSX_CVT_FP_TO_FP_HP(op, nels, stp, ttp, sfld, tfld, sfifprf) \
2653 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2655 ppc_vsr_t t = { }; \
2658 helper_reset_fpstatus(env); \
2660 for (i = 0; i < nels; i++) { \
2661 t.tfld = stp##_to_##ttp(xb->sfld, 1, &env->fp_status); \
2662 if (unlikely(stp##_is_signaling_nan(xb->sfld, \
2663 &env->fp_status))) { \
2664 float_invalid_op_vxsnan(env, GETPC()); \
2665 t.tfld = ttp##_snan_to_qnan(t.tfld); \
2668 helper_compute_fprf_##ttp(env, t.tfld); \
2673 do_float_check_status(env, sfifprf, GETPC()); \
2676 VSX_CVT_FP_TO_FP_HP(xscvdphp
, 1, float64
, float16
, VsrD(0), VsrH(3), 1)
2677 VSX_CVT_FP_TO_FP_HP(xscvhpdp
, 1, float16
, float64
, VsrH(3), VsrD(0), 1)
2678 VSX_CVT_FP_TO_FP_HP(xvcvsphp
, 4, float32
, float16
, VsrW(i
), VsrH(2 * i
+ 1), 0)
2679 VSX_CVT_FP_TO_FP_HP(xvcvhpsp
, 4, float16
, float32
, VsrH(2 * i
+ 1), VsrW(i
), 0)
2681 void helper_XVCVSPBF16(CPUPPCState
*env
, ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
2686 helper_reset_fpstatus(env
);
2688 for (i
= 0; i
< 4; i
++) {
2689 t
.VsrH(2 * i
+ 1) = float32_to_bfloat16(xb
->VsrW(i
), &env
->fp_status
);
2692 status
= get_float_exception_flags(&env
->fp_status
);
2693 if (unlikely(status
& float_flag_invalid_snan
)) {
2694 float_invalid_op_vxsnan(env
, GETPC());
2698 do_float_check_status(env
, false, GETPC());
2701 void helper_XSCVQPDP(CPUPPCState
*env
, uint32_t ro
, ppc_vsr_t
*xt
,
2707 helper_reset_fpstatus(env
);
2709 tstat
= env
->fp_status
;
2711 tstat
.float_rounding_mode
= float_round_to_odd
;
2714 t
.VsrD(0) = float128_to_float64(xb
->f128
, &tstat
);
2715 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
2716 if (unlikely(float128_is_signaling_nan(xb
->f128
, &tstat
))) {
2717 float_invalid_op_vxsnan(env
, GETPC());
2718 t
.VsrD(0) = float64_snan_to_qnan(t
.VsrD(0));
2720 helper_compute_fprf_float64(env
, t
.VsrD(0));
2723 do_float_check_status(env
, true, GETPC());
2726 uint64_t helper_xscvdpspn(CPUPPCState
*env
, uint64_t xb
)
2728 uint64_t result
, sign
, exp
, frac
;
2730 helper_reset_fpstatus(env
);
2731 float_status tstat
= env
->fp_status
;
2732 set_float_exception_flags(0, &tstat
);
2734 sign
= extract64(xb
, 63, 1);
2735 exp
= extract64(xb
, 52, 11);
2736 frac
= extract64(xb
, 0, 52) | 0x10000000000000ULL
;
2738 if (unlikely(exp
== 0 && extract64(frac
, 0, 52) != 0)) {
2739 /* DP denormal operand. */
2740 /* Exponent override to DP min exp. */
2742 /* Implicit bit override to 0. */
2743 frac
= deposit64(frac
, 53, 1, 0);
2746 if (unlikely(exp
< 897 && frac
!= 0)) {
2747 /* SP tiny operand. */
2748 if (897 - exp
> 63) {
2751 /* Denormalize until exp = SP min exp. */
2752 frac
>>= (897 - exp
);
2754 /* Exponent override to SP min exp - 1. */
2758 result
= sign
<< 31;
2759 result
|= extract64(exp
, 10, 1) << 30;
2760 result
|= extract64(exp
, 0, 7) << 23;
2761 result
|= extract64(frac
, 29, 23);
2763 /* hardware replicates result to both words of the doubleword result. */
2764 return (result
<< 32) | result
;
2767 uint64_t helper_XSCVSPDPN(uint64_t xb
)
2769 return helper_todouble(xb
>> 32);
2773 * VSX_CVT_FP_TO_INT - VSX floating point to integer conversion
2774 * op - instruction mnemonic
2775 * nels - number of elements (1, 2 or 4)
2776 * stp - source type (float32 or float64)
2777 * ttp - target type (int32, uint32, int64 or uint64)
2778 * sfld - source vsr_t field
2779 * tfld - target vsr_t field
2781 * rnan - resulting NaN
2783 #define VSX_CVT_FP_TO_INT(op, nels, stp, ttp, sfld, tfld, sfi, rnan) \
2784 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2786 int all_flags = 0; \
2787 ppc_vsr_t t = { }; \
2790 for (i = 0; i < nels; i++) { \
2791 helper_reset_fpstatus(env); \
2792 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2793 flags = env->fp_status.float_exception_flags; \
2794 all_flags |= flags; \
2795 if (unlikely(flags & float_flag_invalid)) { \
2796 t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC());\
2801 env->fp_status.float_exception_flags = all_flags; \
2802 do_float_check_status(env, sfi, GETPC()); \
2805 VSX_CVT_FP_TO_INT(xscvdpsxds
, 1, float64
, int64
, VsrD(0), VsrD(0), true, \
2806 0x8000000000000000ULL
)
2807 VSX_CVT_FP_TO_INT(xscvdpuxds
, 1, float64
, uint64
, VsrD(0), VsrD(0), true, 0ULL)
2808 VSX_CVT_FP_TO_INT(xvcvdpsxds
, 2, float64
, int64
, VsrD(i
), VsrD(i
), false, \
2809 0x8000000000000000ULL
)
2810 VSX_CVT_FP_TO_INT(xvcvdpuxds
, 2, float64
, uint64
, VsrD(i
), VsrD(i
), false, \
2812 VSX_CVT_FP_TO_INT(xvcvspsxds
, 2, float32
, int64
, VsrW(2 * i
), VsrD(i
), false, \
2813 0x8000000000000000ULL
)
2814 VSX_CVT_FP_TO_INT(xvcvspsxws
, 4, float32
, int32
, VsrW(i
), VsrW(i
), false, \
2816 VSX_CVT_FP_TO_INT(xvcvspuxds
, 2, float32
, uint64
, VsrW(2 * i
), VsrD(i
), \
2818 VSX_CVT_FP_TO_INT(xvcvspuxws
, 4, float32
, uint32
, VsrW(i
), VsrW(i
), false, 0U)
2820 #define VSX_CVT_FP_TO_INT128(op, tp, rnan) \
2821 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2826 helper_reset_fpstatus(env); \
2827 t.s128 = float128_to_##tp##_round_to_zero(xb->f128, &env->fp_status); \
2828 flags = get_float_exception_flags(&env->fp_status); \
2829 if (unlikely(flags & float_flag_invalid)) { \
2830 t.VsrD(0) = float_invalid_cvt(env, flags, t.VsrD(0), rnan, 0, GETPC());\
2831 t.VsrD(1) = -(t.VsrD(0) & 1); \
2835 do_float_check_status(env, true, GETPC()); \
2838 VSX_CVT_FP_TO_INT128(XSCVQPUQZ
, uint128
, 0)
2839 VSX_CVT_FP_TO_INT128(XSCVQPSQZ
, int128
, 0x8000000000000000ULL
);
2842 * Likewise, except that the result is duplicated into both subwords.
2843 * Power ISA v3.1 has Programming Notes for these insns:
2844 * Previous versions of the architecture allowed the contents of
2845 * word 0 of the result register to be undefined. However, all
2846 * processors that support this instruction write the result into
2847 * words 0 and 1 (and words 2 and 3) of the result register, as
2848 * is required by this version of the architecture.
2850 #define VSX_CVT_FP_TO_INT2(op, nels, stp, ttp, sfi, rnan) \
2851 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2853 int all_flags = 0; \
2854 ppc_vsr_t t = { }; \
2857 for (i = 0; i < nels; i++) { \
2858 helper_reset_fpstatus(env); \
2859 t.VsrW(2 * i) = stp##_to_##ttp##_round_to_zero(xb->VsrD(i), \
2861 flags = env->fp_status.float_exception_flags; \
2862 all_flags |= flags; \
2863 if (unlikely(flags & float_flag_invalid)) { \
2864 t.VsrW(2 * i) = float_invalid_cvt(env, flags, t.VsrW(2 * i), \
2865 rnan, 0, GETPC()); \
2867 t.VsrW(2 * i + 1) = t.VsrW(2 * i); \
2871 env->fp_status.float_exception_flags = all_flags; \
2872 do_float_check_status(env, sfi, GETPC()); \
2875 VSX_CVT_FP_TO_INT2(xscvdpsxws
, 1, float64
, int32
, true, 0x80000000U
)
2876 VSX_CVT_FP_TO_INT2(xscvdpuxws
, 1, float64
, uint32
, true, 0U)
2877 VSX_CVT_FP_TO_INT2(xvcvdpsxws
, 2, float64
, int32
, false, 0x80000000U
)
2878 VSX_CVT_FP_TO_INT2(xvcvdpuxws
, 2, float64
, uint32
, false, 0U)
2881 * VSX_CVT_FP_TO_INT_VECTOR - VSX floating point to integer conversion
2882 * op - instruction mnemonic
2883 * stp - source type (float32 or float64)
2884 * ttp - target type (int32, uint32, int64 or uint64)
2885 * sfld - source vsr_t field
2886 * tfld - target vsr_t field
2887 * rnan - resulting NaN
2889 #define VSX_CVT_FP_TO_INT_VECTOR(op, stp, ttp, sfld, tfld, rnan) \
2890 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2891 ppc_vsr_t *xt, ppc_vsr_t *xb) \
2893 ppc_vsr_t t = { }; \
2896 helper_reset_fpstatus(env); \
2898 t.tfld = stp##_to_##ttp##_round_to_zero(xb->sfld, &env->fp_status); \
2899 flags = get_float_exception_flags(&env->fp_status); \
2900 if (flags & float_flag_invalid) { \
2901 t.tfld = float_invalid_cvt(env, flags, t.tfld, rnan, 0, GETPC()); \
2905 do_float_check_status(env, true, GETPC()); \
2908 VSX_CVT_FP_TO_INT_VECTOR(xscvqpsdz
, float128
, int64
, f128
, VsrD(0), \
2909 0x8000000000000000ULL
)
2910 VSX_CVT_FP_TO_INT_VECTOR(xscvqpswz
, float128
, int32
, f128
, VsrD(0), \
2911 0xffffffff80000000ULL
)
2912 VSX_CVT_FP_TO_INT_VECTOR(xscvqpudz
, float128
, uint64
, f128
, VsrD(0), 0x0ULL
)
2913 VSX_CVT_FP_TO_INT_VECTOR(xscvqpuwz
, float128
, uint32
, f128
, VsrD(0), 0x0ULL
)
2916 * VSX_CVT_INT_TO_FP - VSX integer to floating point conversion
2917 * op - instruction mnemonic
2918 * nels - number of elements (1, 2 or 4)
2919 * stp - source type (int32, uint32, int64 or uint64)
2920 * ttp - target type (float32 or float64)
2921 * sfld - source vsr_t field
2922 * tfld - target vsr_t field
2923 * jdef - definition of the j index (i or 2*i)
2924 * sfifprf - set FI and FPRF
2926 #define VSX_CVT_INT_TO_FP(op, nels, stp, ttp, sfld, tfld, sfifprf, r2sp)\
2927 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2929 ppc_vsr_t t = { }; \
2932 helper_reset_fpstatus(env); \
2934 for (i = 0; i < nels; i++) { \
2935 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
2937 t.tfld = do_frsp(env, t.tfld, GETPC()); \
2940 helper_compute_fprf_float64(env, t.tfld); \
2945 do_float_check_status(env, sfifprf, GETPC()); \
2948 VSX_CVT_INT_TO_FP(xscvsxddp
, 1, int64
, float64
, VsrD(0), VsrD(0), 1, 0)
2949 VSX_CVT_INT_TO_FP(xscvuxddp
, 1, uint64
, float64
, VsrD(0), VsrD(0), 1, 0)
2950 VSX_CVT_INT_TO_FP(xscvsxdsp
, 1, int64
, float64
, VsrD(0), VsrD(0), 1, 1)
2951 VSX_CVT_INT_TO_FP(xscvuxdsp
, 1, uint64
, float64
, VsrD(0), VsrD(0), 1, 1)
2952 VSX_CVT_INT_TO_FP(xvcvsxddp
, 2, int64
, float64
, VsrD(i
), VsrD(i
), 0, 0)
2953 VSX_CVT_INT_TO_FP(xvcvuxddp
, 2, uint64
, float64
, VsrD(i
), VsrD(i
), 0, 0)
2954 VSX_CVT_INT_TO_FP(xvcvsxwdp
, 2, int32
, float64
, VsrW(2 * i
), VsrD(i
), 0, 0)
2955 VSX_CVT_INT_TO_FP(xvcvuxwdp
, 2, uint64
, float64
, VsrW(2 * i
), VsrD(i
), 0, 0)
2956 VSX_CVT_INT_TO_FP(xvcvsxwsp
, 4, int32
, float32
, VsrW(i
), VsrW(i
), 0, 0)
2957 VSX_CVT_INT_TO_FP(xvcvuxwsp
, 4, uint32
, float32
, VsrW(i
), VsrW(i
), 0, 0)
2959 #define VSX_CVT_INT_TO_FP2(op, stp, ttp) \
2960 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
2962 ppc_vsr_t t = { }; \
2965 for (i = 0; i < 2; i++) { \
2966 t.VsrW(2 * i) = stp##_to_##ttp(xb->VsrD(i), &env->fp_status); \
2967 t.VsrW(2 * i + 1) = t.VsrW(2 * i); \
2971 do_float_check_status(env, false, GETPC()); \
2974 VSX_CVT_INT_TO_FP2(xvcvsxdsp
, int64
, float32
)
2975 VSX_CVT_INT_TO_FP2(xvcvuxdsp
, uint64
, float32
)
2977 #define VSX_CVT_INT128_TO_FP(op, tp) \
2978 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb)\
2980 helper_reset_fpstatus(env); \
2981 xt->f128 = tp##_to_float128(xb->s128, &env->fp_status); \
2982 helper_compute_fprf_float128(env, xt->f128); \
2983 do_float_check_status(env, true, GETPC()); \
2986 VSX_CVT_INT128_TO_FP(XSCVUQQP
, uint128
);
2987 VSX_CVT_INT128_TO_FP(XSCVSQQP
, int128
);
2990 * VSX_CVT_INT_TO_FP_VECTOR - VSX integer to floating point conversion
2991 * op - instruction mnemonic
2992 * stp - source type (int32, uint32, int64 or uint64)
2993 * ttp - target type (float32 or float64)
2994 * sfld - source vsr_t field
2995 * tfld - target vsr_t field
2997 #define VSX_CVT_INT_TO_FP_VECTOR(op, stp, ttp, sfld, tfld) \
2998 void helper_##op(CPUPPCState *env, uint32_t opcode, \
2999 ppc_vsr_t *xt, ppc_vsr_t *xb) \
3001 ppc_vsr_t t = *xt; \
3003 helper_reset_fpstatus(env); \
3004 t.tfld = stp##_to_##ttp(xb->sfld, &env->fp_status); \
3005 helper_compute_fprf_##ttp(env, t.tfld); \
3008 do_float_check_status(env, true, GETPC()); \
3011 VSX_CVT_INT_TO_FP_VECTOR(xscvsdqp
, int64
, float128
, VsrD(0), f128
)
3012 VSX_CVT_INT_TO_FP_VECTOR(xscvudqp
, uint64
, float128
, VsrD(0), f128
)
3015 * For "use current rounding mode", define a value that will not be
3016 * one of the existing rounding model enums.
3018 #define FLOAT_ROUND_CURRENT (float_round_nearest_even + float_round_down + \
3019 float_round_up + float_round_to_zero)
3022 * VSX_ROUND - VSX floating point round
3023 * op - instruction mnemonic
3024 * nels - number of elements (1, 2 or 4)
3025 * tp - type (float32 or float64)
3026 * fld - vsr_t field (VsrD(*) or VsrW(*))
3027 * rmode - rounding mode
3028 * sfifprf - set FI and FPRF
3030 #define VSX_ROUND(op, nels, tp, fld, rmode, sfifprf) \
3031 void helper_##op(CPUPPCState *env, ppc_vsr_t *xt, ppc_vsr_t *xb) \
3033 ppc_vsr_t t = { }; \
3035 FloatRoundMode curr_rounding_mode; \
3037 helper_reset_fpstatus(env); \
3039 if (rmode != FLOAT_ROUND_CURRENT) { \
3040 curr_rounding_mode = get_float_rounding_mode(&env->fp_status); \
3041 set_float_rounding_mode(rmode, &env->fp_status); \
3044 for (i = 0; i < nels; i++) { \
3045 if (unlikely(tp##_is_signaling_nan(xb->fld, \
3046 &env->fp_status))) { \
3047 float_invalid_op_vxsnan(env, GETPC()); \
3048 t.fld = tp##_snan_to_qnan(xb->fld); \
3050 t.fld = tp##_round_to_int(xb->fld, &env->fp_status); \
3053 helper_compute_fprf_float64(env, t.fld); \
3058 * If this is not a "use current rounding mode" instruction, \
3059 * then inhibit setting of the XX bit and restore rounding \
3062 if (rmode != FLOAT_ROUND_CURRENT) { \
3063 set_float_rounding_mode(curr_rounding_mode, &env->fp_status); \
3064 env->fp_status.float_exception_flags &= ~float_flag_inexact; \
3068 do_float_check_status(env, sfifprf, GETPC()); \
3071 VSX_ROUND(xsrdpi
, 1, float64
, VsrD(0), float_round_ties_away
, 1)
3072 VSX_ROUND(xsrdpic
, 1, float64
, VsrD(0), FLOAT_ROUND_CURRENT
, 1)
3073 VSX_ROUND(xsrdpim
, 1, float64
, VsrD(0), float_round_down
, 1)
3074 VSX_ROUND(xsrdpip
, 1, float64
, VsrD(0), float_round_up
, 1)
3075 VSX_ROUND(xsrdpiz
, 1, float64
, VsrD(0), float_round_to_zero
, 1)
3077 VSX_ROUND(xvrdpi
, 2, float64
, VsrD(i
), float_round_ties_away
, 0)
3078 VSX_ROUND(xvrdpic
, 2, float64
, VsrD(i
), FLOAT_ROUND_CURRENT
, 0)
3079 VSX_ROUND(xvrdpim
, 2, float64
, VsrD(i
), float_round_down
, 0)
3080 VSX_ROUND(xvrdpip
, 2, float64
, VsrD(i
), float_round_up
, 0)
3081 VSX_ROUND(xvrdpiz
, 2, float64
, VsrD(i
), float_round_to_zero
, 0)
3083 VSX_ROUND(xvrspi
, 4, float32
, VsrW(i
), float_round_ties_away
, 0)
3084 VSX_ROUND(xvrspic
, 4, float32
, VsrW(i
), FLOAT_ROUND_CURRENT
, 0)
3085 VSX_ROUND(xvrspim
, 4, float32
, VsrW(i
), float_round_down
, 0)
3086 VSX_ROUND(xvrspip
, 4, float32
, VsrW(i
), float_round_up
, 0)
3087 VSX_ROUND(xvrspiz
, 4, float32
, VsrW(i
), float_round_to_zero
, 0)
3089 uint64_t helper_xsrsp(CPUPPCState
*env
, uint64_t xb
)
3091 helper_reset_fpstatus(env
);
3093 uint64_t xt
= do_frsp(env
, xb
, GETPC());
3095 helper_compute_fprf_float64(env
, xt
);
3096 do_float_check_status(env
, true, GETPC());
3100 void helper_XVXSIGSP(ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3103 uint32_t exp
, i
, fraction
;
3105 for (i
= 0; i
< 4; i
++) {
3106 exp
= (xb
->VsrW(i
) >> 23) & 0xFF;
3107 fraction
= xb
->VsrW(i
) & 0x7FFFFF;
3108 if (exp
!= 0 && exp
!= 255) {
3109 t
.VsrW(i
) = fraction
| 0x00800000;
3111 t
.VsrW(i
) = fraction
;
3117 #define VSX_TSTDC(tp) \
3118 static int32_t tp##_tstdc(tp b, uint32_t dcmx) \
3120 uint32_t match = 0; \
3121 uint32_t sign = tp##_is_neg(b); \
3122 if (tp##_is_any_nan(b)) { \
3123 match = extract32(dcmx, 6, 1); \
3124 } else if (tp##_is_infinity(b)) { \
3125 match = extract32(dcmx, 4 + !sign, 1); \
3126 } else if (tp##_is_zero(b)) { \
3127 match = extract32(dcmx, 2 + !sign, 1); \
3128 } else if (tp##_is_zero_or_denormal(b)) { \
3129 match = extract32(dcmx, 0 + !sign, 1); \
3131 return (match != 0); \
3139 void helper_XVTSTDCDP(ppc_vsr_t
*t
, ppc_vsr_t
*b
, uint64_t dcmx
, uint32_t v
)
3142 for (i
= 0; i
< 2; i
++) {
3143 t
->s64
[i
] = (int64_t)-float64_tstdc(b
->f64
[i
], dcmx
);
3147 void helper_XVTSTDCSP(ppc_vsr_t
*t
, ppc_vsr_t
*b
, uint64_t dcmx
, uint32_t v
)
3150 for (i
= 0; i
< 4; i
++) {
3151 t
->s32
[i
] = (int32_t)-float32_tstdc(b
->f32
[i
], dcmx
);
3155 static bool not_SP_value(float64 val
)
3157 return val
!= helper_todouble(helper_tosingle(val
));
3161 * VSX_XS_TSTDC - VSX Scalar Test Data Class
3162 * NAME - instruction name
3163 * FLD - vsr_t field (VsrD(0) or f128)
3164 * TP - type (float64 or float128)
3166 #define VSX_XS_TSTDC(NAME, FLD, TP) \
3167 void helper_##NAME(CPUPPCState *env, uint32_t bf, \
3168 uint32_t dcmx, ppc_vsr_t *b) \
3170 uint32_t cc, match, sign = TP##_is_neg(b->FLD); \
3171 match = TP##_tstdc(b->FLD, dcmx); \
3172 cc = sign << CRF_LT_BIT | match << CRF_EQ_BIT; \
3173 env->fpscr &= ~FP_FPCC; \
3174 env->fpscr |= cc << FPSCR_FPCC; \
3175 env->crf[bf] = cc; \
3178 VSX_XS_TSTDC(XSTSTDCDP
, VsrD(0), float64
)
3179 VSX_XS_TSTDC(XSTSTDCQP
, f128
, float128
)
3182 void helper_XSTSTDCSP(CPUPPCState
*env
, uint32_t bf
,
3183 uint32_t dcmx
, ppc_vsr_t
*b
)
3185 uint32_t cc
, match
, sign
= float64_is_neg(b
->VsrD(0));
3186 uint32_t exp
= (b
->VsrD(0) >> 52) & 0x7FF;
3187 int not_sp
= (int)not_SP_value(b
->VsrD(0));
3188 match
= float64_tstdc(b
->VsrD(0), dcmx
) || (exp
> 0 && exp
< 0x381);
3189 cc
= sign
<< CRF_LT_BIT
| match
<< CRF_EQ_BIT
| not_sp
<< CRF_SO_BIT
;
3190 env
->fpscr
&= ~FP_FPCC
;
3191 env
->fpscr
|= cc
<< FPSCR_FPCC
;
3195 void helper_xsrqpi(CPUPPCState
*env
, uint32_t opcode
,
3196 ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3199 uint8_t r
= Rrm(opcode
);
3200 uint8_t ex
= Rc(opcode
);
3201 uint8_t rmc
= RMC(opcode
);
3205 helper_reset_fpstatus(env
);
3207 if (r
== 0 && rmc
== 0) {
3208 rmode
= float_round_ties_away
;
3209 } else if (r
== 0 && rmc
== 0x3) {
3210 rmode
= env
->fpscr
& FP_RN
;
3211 } else if (r
== 1) {
3214 rmode
= float_round_nearest_even
;
3217 rmode
= float_round_to_zero
;
3220 rmode
= float_round_up
;
3223 rmode
= float_round_down
;
3230 tstat
= env
->fp_status
;
3231 set_float_exception_flags(0, &tstat
);
3232 set_float_rounding_mode(rmode
, &tstat
);
3233 t
.f128
= float128_round_to_int(xb
->f128
, &tstat
);
3234 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3236 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid_snan
)) {
3237 float_invalid_op_vxsnan(env
, GETPC());
3240 if (ex
== 0 && (tstat
.float_exception_flags
& float_flag_inexact
)) {
3241 env
->fp_status
.float_exception_flags
&= ~float_flag_inexact
;
3244 helper_compute_fprf_float128(env
, t
.f128
);
3245 do_float_check_status(env
, true, GETPC());
3249 void helper_xsrqpxp(CPUPPCState
*env
, uint32_t opcode
,
3250 ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3253 uint8_t r
= Rrm(opcode
);
3254 uint8_t rmc
= RMC(opcode
);
3259 helper_reset_fpstatus(env
);
3261 if (r
== 0 && rmc
== 0) {
3262 rmode
= float_round_ties_away
;
3263 } else if (r
== 0 && rmc
== 0x3) {
3264 rmode
= env
->fpscr
& FP_RN
;
3265 } else if (r
== 1) {
3268 rmode
= float_round_nearest_even
;
3271 rmode
= float_round_to_zero
;
3274 rmode
= float_round_up
;
3277 rmode
= float_round_down
;
3284 tstat
= env
->fp_status
;
3285 set_float_exception_flags(0, &tstat
);
3286 set_float_rounding_mode(rmode
, &tstat
);
3287 round_res
= float128_to_floatx80(xb
->f128
, &tstat
);
3288 t
.f128
= floatx80_to_float128(round_res
, &tstat
);
3289 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3291 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid_snan
)) {
3292 float_invalid_op_vxsnan(env
, GETPC());
3293 t
.f128
= float128_snan_to_qnan(t
.f128
);
3296 helper_compute_fprf_float128(env
, t
.f128
);
3298 do_float_check_status(env
, true, GETPC());
3301 void helper_xssqrtqp(CPUPPCState
*env
, uint32_t opcode
,
3302 ppc_vsr_t
*xt
, ppc_vsr_t
*xb
)
3307 helper_reset_fpstatus(env
);
3309 tstat
= env
->fp_status
;
3310 if (unlikely(Rc(opcode
) != 0)) {
3311 tstat
.float_rounding_mode
= float_round_to_odd
;
3314 set_float_exception_flags(0, &tstat
);
3315 t
.f128
= float128_sqrt(xb
->f128
, &tstat
);
3316 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3318 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
3319 float_invalid_op_sqrt(env
, tstat
.float_exception_flags
, 1, GETPC());
3322 helper_compute_fprf_float128(env
, t
.f128
);
3324 do_float_check_status(env
, true, GETPC());
3327 void helper_xssubqp(CPUPPCState
*env
, uint32_t opcode
,
3328 ppc_vsr_t
*xt
, ppc_vsr_t
*xa
, ppc_vsr_t
*xb
)
3333 helper_reset_fpstatus(env
);
3335 tstat
= env
->fp_status
;
3336 if (unlikely(Rc(opcode
) != 0)) {
3337 tstat
.float_rounding_mode
= float_round_to_odd
;
3340 set_float_exception_flags(0, &tstat
);
3341 t
.f128
= float128_sub(xa
->f128
, xb
->f128
, &tstat
);
3342 env
->fp_status
.float_exception_flags
|= tstat
.float_exception_flags
;
3344 if (unlikely(tstat
.float_exception_flags
& float_flag_invalid
)) {
3345 float_invalid_op_addsub(env
, tstat
.float_exception_flags
, 1, GETPC());
3348 helper_compute_fprf_float128(env
, t
.f128
);
3350 do_float_check_status(env
, true, GETPC());
3353 static inline void vsxger_excp(CPUPPCState
*env
, uintptr_t retaddr
)
3356 * XV*GER instructions execute and set the FPSCR as if exceptions
3357 * are disabled and only at the end throw an exception
3359 target_ulong enable
;
3360 enable
= env
->fpscr
& (FP_ENABLES
| FP_FI
| FP_FR
);
3361 env
->fpscr
&= ~(FP_ENABLES
| FP_FI
| FP_FR
);
3362 int status
= get_float_exception_flags(&env
->fp_status
);
3363 if (unlikely(status
& float_flag_invalid
)) {
3364 if (status
& float_flag_invalid_snan
) {
3365 float_invalid_op_vxsnan(env
, 0);
3367 if (status
& float_flag_invalid_imz
) {
3368 float_invalid_op_vximz(env
, false, 0);
3370 if (status
& float_flag_invalid_isi
) {
3371 float_invalid_op_vxisi(env
, false, 0);
3374 do_float_check_status(env
, false, retaddr
);
3375 env
->fpscr
|= enable
;
3376 do_fpscr_check_status(env
, retaddr
);
3379 typedef float64
extract_f16(float16
, float_status
*);
3381 static float64
extract_hf16(float16 in
, float_status
*fp_status
)
3383 return float16_to_float64(in
, true, fp_status
);
3386 static float64
extract_bf16(bfloat16 in
, float_status
*fp_status
)
3388 return bfloat16_to_float64(in
, fp_status
);
3391 static void vsxger16(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3392 ppc_acc_t
*at
, uint32_t mask
, bool acc
,
3393 bool neg_mul
, bool neg_acc
, extract_f16 extract
)
3396 float64 psum
, va
, vb
, vc
, vd
;
3397 int i
, j
, xmsk_bit
, ymsk_bit
;
3398 uint8_t pmsk
= FIELD_EX32(mask
, GER_MSK
, PMSK
),
3399 xmsk
= FIELD_EX32(mask
, GER_MSK
, XMSK
),
3400 ymsk
= FIELD_EX32(mask
, GER_MSK
, YMSK
);
3401 float_status
*excp_ptr
= &env
->fp_status
;
3402 for (i
= 0, xmsk_bit
= 1 << 3; i
< 4; i
++, xmsk_bit
>>= 1) {
3403 for (j
= 0, ymsk_bit
= 1 << 3; j
< 4; j
++, ymsk_bit
>>= 1) {
3404 if ((xmsk_bit
& xmsk
) && (ymsk_bit
& ymsk
)) {
3405 va
= !(pmsk
& 2) ? float64_zero
:
3406 extract(a
->VsrHF(2 * i
), excp_ptr
);
3407 vb
= !(pmsk
& 2) ? float64_zero
:
3408 extract(b
->VsrHF(2 * j
), excp_ptr
);
3409 vc
= !(pmsk
& 1) ? float64_zero
:
3410 extract(a
->VsrHF(2 * i
+ 1), excp_ptr
);
3411 vd
= !(pmsk
& 1) ? float64_zero
:
3412 extract(b
->VsrHF(2 * j
+ 1), excp_ptr
);
3413 psum
= float64_mul(va
, vb
, excp_ptr
);
3414 psum
= float64r32_muladd(vc
, vd
, psum
, 0, excp_ptr
);
3415 r
= float64_to_float32(psum
, excp_ptr
);
3417 aux_acc
= at
[i
].VsrSF(j
);
3422 aux_acc
= bfp32_neg(aux_acc
);
3424 r
= float32_add(r
, aux_acc
, excp_ptr
);
3428 at
[i
].VsrSF(j
) = float32_zero
;
3432 vsxger_excp(env
, GETPC());
3435 typedef void vsxger_zero(ppc_vsr_t
*at
, int, int);
3437 typedef void vsxger_muladd_f(ppc_vsr_t
*, ppc_vsr_t
*, ppc_vsr_t
*, int, int,
3438 int flags
, float_status
*s
);
3440 static void vsxger_muladd32(ppc_vsr_t
*at
, ppc_vsr_t
*a
, ppc_vsr_t
*b
, int i
,
3441 int j
, int flags
, float_status
*s
)
3443 at
[i
].VsrSF(j
) = float32_muladd(a
->VsrSF(i
), b
->VsrSF(j
),
3444 at
[i
].VsrSF(j
), flags
, s
);
3447 static void vsxger_mul32(ppc_vsr_t
*at
, ppc_vsr_t
*a
, ppc_vsr_t
*b
, int i
,
3448 int j
, int flags
, float_status
*s
)
3450 at
[i
].VsrSF(j
) = float32_mul(a
->VsrSF(i
), b
->VsrSF(j
), s
);
3453 static void vsxger_zero32(ppc_vsr_t
*at
, int i
, int j
)
3455 at
[i
].VsrSF(j
) = float32_zero
;
3458 static void vsxger_muladd64(ppc_vsr_t
*at
, ppc_vsr_t
*a
, ppc_vsr_t
*b
, int i
,
3459 int j
, int flags
, float_status
*s
)
3463 at
[i
].VsrDF(j
) = float64_muladd(a
[i
/ 2].VsrDF(i
% 2), b
->VsrDF(j
),
3464 at
[i
].VsrDF(j
), flags
, s
);
3468 static void vsxger_mul64(ppc_vsr_t
*at
, ppc_vsr_t
*a
, ppc_vsr_t
*b
, int i
,
3469 int j
, int flags
, float_status
*s
)
3473 at
[i
].VsrDF(j
) = float64_mul(a
[i
/ 2].VsrDF(i
% 2), b
->VsrDF(j
), s
);
3477 static void vsxger_zero64(ppc_vsr_t
*at
, int i
, int j
)
3481 at
[i
].VsrDF(j
) = float64_zero
;
3485 static void vsxger(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3486 ppc_acc_t
*at
, uint32_t mask
, bool acc
, bool neg_mul
,
3487 bool neg_acc
, vsxger_muladd_f mul
, vsxger_muladd_f muladd
,
3490 int i
, j
, xmsk_bit
, ymsk_bit
, op_flags
;
3491 uint8_t xmsk
= mask
& 0x0F;
3492 uint8_t ymsk
= (mask
>> 4) & 0x0F;
3493 float_status
*excp_ptr
= &env
->fp_status
;
3494 op_flags
= (neg_acc
^ neg_mul
) ? float_muladd_negate_c
: 0;
3495 op_flags
|= (neg_mul
) ? float_muladd_negate_result
: 0;
3496 helper_reset_fpstatus(env
);
3497 for (i
= 0, xmsk_bit
= 1 << 3; i
< 4; i
++, xmsk_bit
>>= 1) {
3498 for (j
= 0, ymsk_bit
= 1 << 3; j
< 4; j
++, ymsk_bit
>>= 1) {
3499 if ((xmsk_bit
& xmsk
) && (ymsk_bit
& ymsk
)) {
3501 muladd(at
, a
, b
, i
, j
, op_flags
, excp_ptr
);
3503 mul(at
, a
, b
, i
, j
, op_flags
, excp_ptr
);
3510 vsxger_excp(env
, GETPC());
3514 void helper_XVBF16GER2(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3515 ppc_acc_t
*at
, uint32_t mask
)
3517 vsxger16(env
, a
, b
, at
, mask
, false, false, false, extract_bf16
);
3521 void helper_XVBF16GER2PP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3522 ppc_acc_t
*at
, uint32_t mask
)
3524 vsxger16(env
, a
, b
, at
, mask
, true, false, false, extract_bf16
);
3528 void helper_XVBF16GER2PN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3529 ppc_acc_t
*at
, uint32_t mask
)
3531 vsxger16(env
, a
, b
, at
, mask
, true, false, true, extract_bf16
);
3535 void helper_XVBF16GER2NP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3536 ppc_acc_t
*at
, uint32_t mask
)
3538 vsxger16(env
, a
, b
, at
, mask
, true, true, false, extract_bf16
);
3542 void helper_XVBF16GER2NN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3543 ppc_acc_t
*at
, uint32_t mask
)
3545 vsxger16(env
, a
, b
, at
, mask
, true, true, true, extract_bf16
);
3549 void helper_XVF16GER2(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3550 ppc_acc_t
*at
, uint32_t mask
)
3552 vsxger16(env
, a
, b
, at
, mask
, false, false, false, extract_hf16
);
3556 void helper_XVF16GER2PP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3557 ppc_acc_t
*at
, uint32_t mask
)
3559 vsxger16(env
, a
, b
, at
, mask
, true, false, false, extract_hf16
);
3563 void helper_XVF16GER2PN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3564 ppc_acc_t
*at
, uint32_t mask
)
3566 vsxger16(env
, a
, b
, at
, mask
, true, false, true, extract_hf16
);
3570 void helper_XVF16GER2NP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3571 ppc_acc_t
*at
, uint32_t mask
)
3573 vsxger16(env
, a
, b
, at
, mask
, true, true, false, extract_hf16
);
3577 void helper_XVF16GER2NN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3578 ppc_acc_t
*at
, uint32_t mask
)
3580 vsxger16(env
, a
, b
, at
, mask
, true, true, true, extract_hf16
);
3584 void helper_XVF32GER(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3585 ppc_acc_t
*at
, uint32_t mask
)
3587 vsxger(env
, a
, b
, at
, mask
, false, false, false, vsxger_mul32
,
3588 vsxger_muladd32
, vsxger_zero32
);
3592 void helper_XVF32GERPP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3593 ppc_acc_t
*at
, uint32_t mask
)
3595 vsxger(env
, a
, b
, at
, mask
, true, false, false, vsxger_mul32
,
3596 vsxger_muladd32
, vsxger_zero32
);
3600 void helper_XVF32GERPN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3601 ppc_acc_t
*at
, uint32_t mask
)
3603 vsxger(env
, a
, b
, at
, mask
, true, false, true, vsxger_mul32
,
3604 vsxger_muladd32
, vsxger_zero32
);
3608 void helper_XVF32GERNP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3609 ppc_acc_t
*at
, uint32_t mask
)
3611 vsxger(env
, a
, b
, at
, mask
, true, true, false, vsxger_mul32
,
3612 vsxger_muladd32
, vsxger_zero32
);
3616 void helper_XVF32GERNN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3617 ppc_acc_t
*at
, uint32_t mask
)
3619 vsxger(env
, a
, b
, at
, mask
, true, true, true, vsxger_mul32
,
3620 vsxger_muladd32
, vsxger_zero32
);
3624 void helper_XVF64GER(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3625 ppc_acc_t
*at
, uint32_t mask
)
3627 vsxger(env
, a
, b
, at
, mask
, false, false, false, vsxger_mul64
,
3628 vsxger_muladd64
, vsxger_zero64
);
3632 void helper_XVF64GERPP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3633 ppc_acc_t
*at
, uint32_t mask
)
3635 vsxger(env
, a
, b
, at
, mask
, true, false, false, vsxger_mul64
,
3636 vsxger_muladd64
, vsxger_zero64
);
3640 void helper_XVF64GERPN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3641 ppc_acc_t
*at
, uint32_t mask
)
3643 vsxger(env
, a
, b
, at
, mask
, true, false, true, vsxger_mul64
,
3644 vsxger_muladd64
, vsxger_zero64
);
3648 void helper_XVF64GERNP(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3649 ppc_acc_t
*at
, uint32_t mask
)
3651 vsxger(env
, a
, b
, at
, mask
, true, true, false, vsxger_mul64
,
3652 vsxger_muladd64
, vsxger_zero64
);
3656 void helper_XVF64GERNN(CPUPPCState
*env
, ppc_vsr_t
*a
, ppc_vsr_t
*b
,
3657 ppc_acc_t
*at
, uint32_t mask
)
3659 vsxger(env
, a
, b
, at
, mask
, true, true, true, vsxger_mul64
,
3660 vsxger_muladd64
, vsxger_zero64
);