Merge tag 'pull-loongarch-20241016' of https://gitlab.com/gaosong/qemu into staging
[qemu/armbru.git] / tests / qtest / fuzz / generic_fuzz.c
blobd107a496da635d00fe00fc6d68324ec23f787bcb
1 /*
2 * Generic Virtual-Device Fuzzing Target
4 * Copyright Red Hat Inc., 2020
6 * Authors:
7 * Alexander Bulekov <alxndr@bu.edu>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "qemu/range.h"
16 #include <wordexp.h>
18 #include "hw/core/cpu.h"
19 #include "tests/qtest/libqtest.h"
20 #include "tests/qtest/libqos/pci-pc.h"
21 #include "fuzz.h"
22 #include "string.h"
23 #include "exec/memory.h"
24 #include "exec/ramblock.h"
25 #include "hw/qdev-core.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/pci_device.h"
28 #include "hw/boards.h"
29 #include "generic_fuzz_configs.h"
30 #include "hw/mem/sparse-mem.h"
32 static void pci_enum(gpointer pcidev, gpointer bus);
35 * SEPARATOR is used to separate "operations" in the fuzz input
37 #define SEPARATOR "FUZZ"
39 enum cmds {
40 OP_IN,
41 OP_OUT,
42 OP_READ,
43 OP_WRITE,
44 OP_PCI_READ,
45 OP_PCI_WRITE,
46 OP_DISABLE_PCI,
47 OP_ADD_DMA_PATTERN,
48 OP_CLEAR_DMA_PATTERNS,
49 OP_CLOCK_STEP,
52 #define USEC_IN_SEC 1000000000
54 #define MAX_DMA_FILL_SIZE 0x10000
55 #define MAX_TOTAL_DMA_SIZE 0x10000000
57 #define PCI_HOST_BRIDGE_CFG 0xcf8
58 #define PCI_HOST_BRIDGE_DATA 0xcfc
60 typedef struct {
61 ram_addr_t addr;
62 ram_addr_t size; /* The number of bytes until the end of the I/O region */
63 } address_range;
65 static bool qtest_log_enabled;
66 size_t dma_bytes_written;
68 MemoryRegion *sparse_mem_mr;
71 * A pattern used to populate a DMA region or perform a memwrite. This is
72 * useful for e.g. populating tables of unique addresses.
73 * Example {.index = 1; .stride = 2; .len = 3; .data = "\x00\x01\x02"}
74 * Renders as: 00 01 02 00 03 02 00 05 02 00 07 02 ...
76 typedef struct {
77 uint8_t index; /* Index of a byte to increment by stride */
78 uint8_t stride; /* Increment each index'th byte by this amount */
79 size_t len;
80 const uint8_t *data;
81 } pattern;
83 /* Avoid filling the same DMA region between MMIO/PIO commands ? */
84 static bool avoid_double_fetches;
86 static QTestState *qts_global; /* Need a global for the DMA callback */
89 * List of memory regions that are children of QOM objects specified by the
90 * user for fuzzing.
92 static GHashTable *fuzzable_memoryregions;
93 static GPtrArray *fuzzable_pci_devices;
95 struct get_io_cb_info {
96 int index;
97 int found;
98 address_range result;
101 static bool get_io_address_cb(Int128 start, Int128 size,
102 const MemoryRegion *mr,
103 hwaddr offset_in_region,
104 void *opaque)
106 struct get_io_cb_info *info = opaque;
107 if (g_hash_table_lookup(fuzzable_memoryregions, mr)) {
108 if (info->index == 0) {
109 info->result.addr = (ram_addr_t)start;
110 info->result.size = (ram_addr_t)size;
111 info->found = 1;
112 return true;
114 info->index--;
116 return false;
120 * List of dma regions populated since the last fuzzing command. Used to ensure
121 * that we only write to each DMA address once, to avoid race conditions when
122 * building reproducers.
124 static GArray *dma_regions;
126 static GArray *dma_patterns;
127 static int dma_pattern_index;
128 static bool pci_disabled;
131 * Allocate a block of memory and populate it with a pattern.
133 static void *pattern_alloc(pattern p, size_t len)
135 int i;
136 uint8_t *buf = g_malloc(len);
137 uint8_t sum = 0;
139 for (i = 0; i < len; ++i) {
140 buf[i] = p.data[i % p.len];
141 if ((i % p.len) == p.index) {
142 buf[i] += sum;
143 sum += p.stride;
146 return buf;
149 static int fuzz_memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
151 unsigned access_size_max = mr->ops->valid.max_access_size;
154 * Regions are assumed to support 1-4 byte accesses unless
155 * otherwise specified.
157 if (access_size_max == 0) {
158 access_size_max = 4;
161 /* Bound the maximum access by the alignment of the address. */
162 if (!mr->ops->impl.unaligned) {
163 unsigned align_size_max = addr & -addr;
164 if (align_size_max != 0 && align_size_max < access_size_max) {
165 access_size_max = align_size_max;
169 /* Don't attempt accesses larger than the maximum. */
170 if (l > access_size_max) {
171 l = access_size_max;
173 l = pow2floor(l);
175 return l;
179 * Call-back for functions that perform DMA reads from guest memory. Confirm
180 * that the region has not already been populated since the last loop in
181 * generic_fuzz(), avoiding potential race-conditions, which we don't have
182 * a good way for reproducing right now.
184 void fuzz_dma_read_cb(size_t addr, size_t len, MemoryRegion *mr)
186 /* Are we in the generic-fuzzer or are we using another fuzz-target? */
187 if (!qts_global) {
188 return;
192 * Return immediately if:
193 * - We have no DMA patterns defined
194 * - The length of the DMA read request is zero
195 * - The DMA read is hitting an MR other than the machine's main RAM
196 * - The DMA request hits past the bounds of our RAM
198 if (dma_patterns->len == 0
199 || len == 0
200 || dma_bytes_written + len > MAX_TOTAL_DMA_SIZE
201 || (mr != current_machine->ram && mr != sparse_mem_mr)) {
202 return;
206 * If we overlap with any existing dma_regions, split the range and only
207 * populate the non-overlapping parts.
209 address_range region;
210 bool double_fetch = false;
211 for (int i = 0;
212 i < dma_regions->len && (avoid_double_fetches || qtest_log_enabled);
213 ++i) {
214 region = g_array_index(dma_regions, address_range, i);
215 if (ranges_overlap(addr, len, region.addr, region.size)) {
216 double_fetch = true;
217 if (addr < region.addr
218 && avoid_double_fetches) {
219 fuzz_dma_read_cb(addr, region.addr - addr, mr);
221 if (addr + len > region.addr + region.size
222 && avoid_double_fetches) {
223 fuzz_dma_read_cb(region.addr + region.size,
224 addr + len - (region.addr + region.size), mr);
226 return;
230 /* Cap the length of the DMA access to something reasonable */
231 len = MIN(len, MAX_DMA_FILL_SIZE);
233 address_range ar = {addr, len};
234 g_array_append_val(dma_regions, ar);
235 pattern p = g_array_index(dma_patterns, pattern, dma_pattern_index);
236 void *buf_base = pattern_alloc(p, ar.size);
237 void *buf = buf_base;
238 hwaddr l, addr1;
239 MemoryRegion *mr1;
240 while (len > 0) {
241 l = len;
242 mr1 = address_space_translate(first_cpu->as,
243 addr, &addr1, &l, true,
244 MEMTXATTRS_UNSPECIFIED);
247 * If mr1 isn't RAM, address_space_translate doesn't update l. Use
248 * fuzz_memory_access_size to identify the number of bytes that it
249 * is safe to write without accidentally writing to another
250 * MemoryRegion.
252 if (!memory_region_is_ram(mr1)) {
253 l = fuzz_memory_access_size(mr1, l, addr1);
255 if (memory_region_is_ram(mr1) ||
256 memory_region_is_romd(mr1) ||
257 mr1 == sparse_mem_mr) {
258 /* ROM/RAM case */
259 if (qtest_log_enabled) {
261 * With QTEST_LOG, use a normal, slow QTest memwrite. Prefix the log
262 * that will be written by qtest.c with a DMA tag, so we can reorder
263 * the resulting QTest trace so the DMA fills precede the last PIO/MMIO
264 * command.
266 fprintf(stderr, "[DMA] ");
267 if (double_fetch) {
268 fprintf(stderr, "[DOUBLE-FETCH] ");
270 fflush(stderr);
272 qtest_memwrite(qts_global, addr, buf, l);
273 dma_bytes_written += l;
275 len -= l;
276 buf += l;
277 addr += l;
280 g_free(buf_base);
282 /* Increment the index of the pattern for the next DMA access */
283 dma_pattern_index = (dma_pattern_index + 1) % dma_patterns->len;
287 * Here we want to convert a fuzzer-provided [io-region-index, offset] to
288 * a physical address. To do this, we iterate over all of the matched
289 * MemoryRegions. Check whether each region exists within the particular io
290 * space. Return the absolute address of the offset within the index'th region
291 * that is a subregion of the io_space and the distance until the end of the
292 * memory region.
294 static bool get_io_address(address_range *result, AddressSpace *as,
295 uint8_t index,
296 uint32_t offset) {
297 FlatView *view;
298 view = as->current_map;
299 g_assert(view);
300 struct get_io_cb_info cb_info = {};
302 cb_info.index = index;
305 * Loop around the FlatView until we match "index" number of
306 * fuzzable_memoryregions, or until we know that there are no matching
307 * memory_regions.
309 do {
310 flatview_for_each_range(view, get_io_address_cb , &cb_info);
311 } while (cb_info.index != index && !cb_info.found);
313 *result = cb_info.result;
314 if (result->size) {
315 offset = offset % result->size;
316 result->addr += offset;
317 result->size -= offset;
319 return cb_info.found;
322 static bool get_pio_address(address_range *result,
323 uint8_t index, uint16_t offset)
326 * PIO BARs can be set past the maximum port address (0xFFFF). Thus, result
327 * can contain an addr that extends past the PIO space. When we pass this
328 * address to qtest_in/qtest_out, it is cast to a uint16_t, so we might end
329 * up fuzzing a completely different MemoryRegion/Device. Therefore, check
330 * that the address here is within the PIO space limits.
332 bool found = get_io_address(result, &address_space_io, index, offset);
333 return result->addr <= 0xFFFF ? found : false;
336 static bool get_mmio_address(address_range *result,
337 uint8_t index, uint32_t offset)
339 return get_io_address(result, &address_space_memory, index, offset);
342 static void op_in(QTestState *s, const unsigned char * data, size_t len)
344 enum Sizes {Byte, Word, Long, end_sizes};
345 struct {
346 uint8_t size;
347 uint8_t base;
348 uint16_t offset;
349 } a;
350 address_range abs;
352 if (len < sizeof(a)) {
353 return;
355 memcpy(&a, data, sizeof(a));
356 if (get_pio_address(&abs, a.base, a.offset) == 0) {
357 return;
360 switch (a.size %= end_sizes) {
361 case Byte:
362 qtest_inb(s, abs.addr);
363 break;
364 case Word:
365 if (abs.size >= 2) {
366 qtest_inw(s, abs.addr);
368 break;
369 case Long:
370 if (abs.size >= 4) {
371 qtest_inl(s, abs.addr);
373 break;
377 static void op_out(QTestState *s, const unsigned char * data, size_t len)
379 enum Sizes {Byte, Word, Long, end_sizes};
380 struct {
381 uint8_t size;
382 uint8_t base;
383 uint16_t offset;
384 uint32_t value;
385 } a;
386 address_range abs;
388 if (len < sizeof(a)) {
389 return;
391 memcpy(&a, data, sizeof(a));
393 if (get_pio_address(&abs, a.base, a.offset) == 0) {
394 return;
397 switch (a.size %= end_sizes) {
398 case Byte:
399 qtest_outb(s, abs.addr, a.value & 0xFF);
400 break;
401 case Word:
402 if (abs.size >= 2) {
403 qtest_outw(s, abs.addr, a.value & 0xFFFF);
405 break;
406 case Long:
407 if (abs.size >= 4) {
408 qtest_outl(s, abs.addr, a.value);
410 break;
414 static void op_read(QTestState *s, const unsigned char * data, size_t len)
416 enum Sizes {Byte, Word, Long, Quad, end_sizes};
417 struct {
418 uint8_t size;
419 uint8_t base;
420 uint32_t offset;
421 } a;
422 address_range abs;
424 if (len < sizeof(a)) {
425 return;
427 memcpy(&a, data, sizeof(a));
429 if (get_mmio_address(&abs, a.base, a.offset) == 0) {
430 return;
433 switch (a.size %= end_sizes) {
434 case Byte:
435 qtest_readb(s, abs.addr);
436 break;
437 case Word:
438 if (abs.size >= 2) {
439 qtest_readw(s, abs.addr);
441 break;
442 case Long:
443 if (abs.size >= 4) {
444 qtest_readl(s, abs.addr);
446 break;
447 case Quad:
448 if (abs.size >= 8) {
449 qtest_readq(s, abs.addr);
451 break;
455 static void op_write(QTestState *s, const unsigned char * data, size_t len)
457 enum Sizes {Byte, Word, Long, Quad, end_sizes};
458 struct {
459 uint8_t size;
460 uint8_t base;
461 uint32_t offset;
462 uint64_t value;
463 } a;
464 address_range abs;
466 if (len < sizeof(a)) {
467 return;
469 memcpy(&a, data, sizeof(a));
471 if (get_mmio_address(&abs, a.base, a.offset) == 0) {
472 return;
475 switch (a.size %= end_sizes) {
476 case Byte:
477 qtest_writeb(s, abs.addr, a.value & 0xFF);
478 break;
479 case Word:
480 if (abs.size >= 2) {
481 qtest_writew(s, abs.addr, a.value & 0xFFFF);
483 break;
484 case Long:
485 if (abs.size >= 4) {
486 qtest_writel(s, abs.addr, a.value & 0xFFFFFFFF);
488 break;
489 case Quad:
490 if (abs.size >= 8) {
491 qtest_writeq(s, abs.addr, a.value);
493 break;
497 static void op_pci_read(QTestState *s, const unsigned char * data, size_t len)
499 enum Sizes {Byte, Word, Long, end_sizes};
500 struct {
501 uint8_t size;
502 uint8_t base;
503 uint8_t offset;
504 } a;
505 if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
506 return;
508 memcpy(&a, data, sizeof(a));
509 PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
510 a.base % fuzzable_pci_devices->len);
511 int devfn = dev->devfn;
512 qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
513 switch (a.size %= end_sizes) {
514 case Byte:
515 qtest_inb(s, PCI_HOST_BRIDGE_DATA);
516 break;
517 case Word:
518 qtest_inw(s, PCI_HOST_BRIDGE_DATA);
519 break;
520 case Long:
521 qtest_inl(s, PCI_HOST_BRIDGE_DATA);
522 break;
526 static void op_pci_write(QTestState *s, const unsigned char * data, size_t len)
528 enum Sizes {Byte, Word, Long, end_sizes};
529 struct {
530 uint8_t size;
531 uint8_t base;
532 uint8_t offset;
533 uint32_t value;
534 } a;
535 if (len < sizeof(a) || fuzzable_pci_devices->len == 0 || pci_disabled) {
536 return;
538 memcpy(&a, data, sizeof(a));
539 PCIDevice *dev = g_ptr_array_index(fuzzable_pci_devices,
540 a.base % fuzzable_pci_devices->len);
541 int devfn = dev->devfn;
542 qtest_outl(s, PCI_HOST_BRIDGE_CFG, (1U << 31) | (devfn << 8) | a.offset);
543 switch (a.size %= end_sizes) {
544 case Byte:
545 qtest_outb(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFF);
546 break;
547 case Word:
548 qtest_outw(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFF);
549 break;
550 case Long:
551 qtest_outl(s, PCI_HOST_BRIDGE_DATA, a.value & 0xFFFFFFFF);
552 break;
556 static void op_add_dma_pattern(QTestState *s,
557 const unsigned char *data, size_t len)
559 struct {
561 * index and stride can be used to increment the index-th byte of the
562 * pattern by the value stride, for each loop of the pattern.
564 uint8_t index;
565 uint8_t stride;
566 } a;
568 if (len < sizeof(a) + 1) {
569 return;
571 memcpy(&a, data, sizeof(a));
572 pattern p = {a.index, a.stride, len - sizeof(a), data + sizeof(a)};
573 p.index = a.index % p.len;
574 g_array_append_val(dma_patterns, p);
575 return;
578 static void op_clear_dma_patterns(QTestState *s,
579 const unsigned char *data, size_t len)
581 g_array_set_size(dma_patterns, 0);
582 dma_pattern_index = 0;
585 static void op_clock_step(QTestState *s, const unsigned char *data, size_t len)
587 qtest_clock_step_next(s);
590 static void op_disable_pci(QTestState *s, const unsigned char *data, size_t len)
592 pci_disabled = true;
596 * Here, we interpret random bytes from the fuzzer, as a sequence of commands.
597 * Some commands can be variable-width, so we use a separator, SEPARATOR, to
598 * specify the boundaries between commands. SEPARATOR is used to separate
599 * "operations" in the fuzz input. Why use a separator, instead of just using
600 * the operations' length to identify operation boundaries?
601 * 1. This is a simple way to support variable-length operations
602 * 2. This adds "stability" to the input.
603 * For example take the input "AbBcgDefg", where there is no separator and
604 * Opcodes are capitalized.
605 * Simply, by removing the first byte, we end up with a very different
606 * sequence:
607 * BbcGdefg...
608 * By adding a separator, we avoid this problem:
609 * Ab SEP Bcg SEP Defg -> B SEP Bcg SEP Defg
610 * Since B uses two additional bytes as operands, the first "B" will be
611 * ignored. The fuzzer actively tries to reduce inputs, so such unused
612 * bytes are likely to be pruned, eventually.
614 * SEPARATOR is trivial for the fuzzer to discover when using ASan. Optionally,
615 * SEPARATOR can be manually specified as a dictionary value (see libfuzzer's
616 * -dict), though this should not be necessary.
618 * As a result, the stream of bytes is converted into a sequence of commands.
619 * In a simplified example where SEPARATOR is 0xFF:
620 * 00 01 02 FF 03 04 05 06 FF 01 FF ...
621 * becomes this sequence of commands:
622 * 00 01 02 -> op00 (0102) -> in (0102, 2)
623 * 03 04 05 06 -> op03 (040506) -> write (040506, 3)
624 * 01 -> op01 (-,0) -> out (-,0)
625 * ...
627 * Note here that it is the job of the individual opcode functions to check
628 * that enough data was provided. I.e. in the last command out (,0), out needs
629 * to check that there is not enough data provided to select an address/value
630 * for the operation.
632 static void generic_fuzz(QTestState *s, const unsigned char *Data, size_t Size)
634 void (*ops[]) (QTestState *s, const unsigned char* , size_t) = {
635 [OP_IN] = op_in,
636 [OP_OUT] = op_out,
637 [OP_READ] = op_read,
638 [OP_WRITE] = op_write,
639 [OP_PCI_READ] = op_pci_read,
640 [OP_PCI_WRITE] = op_pci_write,
641 [OP_DISABLE_PCI] = op_disable_pci,
642 [OP_ADD_DMA_PATTERN] = op_add_dma_pattern,
643 [OP_CLEAR_DMA_PATTERNS] = op_clear_dma_patterns,
644 [OP_CLOCK_STEP] = op_clock_step,
646 const unsigned char *cmd = Data;
647 const unsigned char *nextcmd;
648 size_t cmd_len;
649 uint8_t op;
651 op_clear_dma_patterns(s, NULL, 0);
652 pci_disabled = false;
653 dma_bytes_written = 0;
655 QPCIBus *pcibus = qpci_new_pc(s, NULL);
656 g_ptr_array_foreach(fuzzable_pci_devices, pci_enum, pcibus);
657 qpci_free_pc(pcibus);
659 while (cmd && Size) {
660 /* Get the length until the next command or end of input */
661 nextcmd = memmem(cmd, Size, SEPARATOR, strlen(SEPARATOR));
662 cmd_len = nextcmd ? nextcmd - cmd : Size;
664 if (cmd_len > 0) {
665 /* Interpret the first byte of the command as an opcode */
666 op = *cmd % (sizeof(ops) / sizeof((ops)[0]));
667 ops[op](s, cmd + 1, cmd_len - 1);
669 /* Run the main loop */
670 flush_events(s);
672 /* Advance to the next command */
673 cmd = nextcmd ? nextcmd + sizeof(SEPARATOR) - 1 : nextcmd;
674 Size = Size - (cmd_len + sizeof(SEPARATOR) - 1);
675 g_array_set_size(dma_regions, 0);
677 fuzz_reset(s);
680 static void usage(void)
682 printf("Please specify the following environment variables:\n");
683 printf("QEMU_FUZZ_ARGS= the command line arguments passed to qemu\n");
684 printf("QEMU_FUZZ_OBJECTS= "
685 "a space separated list of QOM type names for objects to fuzz\n");
686 printf("Optionally: QEMU_AVOID_DOUBLE_FETCH= "
687 "Try to avoid racy DMA double fetch bugs? %d by default\n",
688 avoid_double_fetches);
689 exit(0);
692 static int locate_fuzz_memory_regions(Object *child, void *opaque)
694 MemoryRegion *mr;
695 if (object_dynamic_cast(child, TYPE_MEMORY_REGION)) {
696 mr = MEMORY_REGION(child);
697 if ((memory_region_is_ram(mr) ||
698 memory_region_is_ram_device(mr) ||
699 memory_region_is_rom(mr)) == false) {
701 * We don't want duplicate pointers to the same MemoryRegion, so
702 * try to remove copies of the pointer, before adding it.
704 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
707 return 0;
710 static int locate_fuzz_objects(Object *child, void *opaque)
712 GString *type_name;
713 GString *path_name;
714 char *pattern = opaque;
716 type_name = g_string_new(object_get_typename(child));
717 g_string_ascii_down(type_name);
718 if (g_pattern_match_simple(pattern, type_name->str)) {
719 /* Find and save ptrs to any child MemoryRegions */
720 object_child_foreach_recursive(child, locate_fuzz_memory_regions, NULL);
723 * We matched an object. If its a PCI device, store a pointer to it so
724 * we can map BARs and fuzz its config space.
726 if (object_dynamic_cast(OBJECT(child), TYPE_PCI_DEVICE)) {
728 * Don't want duplicate pointers to the same PCIDevice, so remove
729 * copies of the pointer, before adding it.
731 g_ptr_array_remove_fast(fuzzable_pci_devices, PCI_DEVICE(child));
732 g_ptr_array_add(fuzzable_pci_devices, PCI_DEVICE(child));
734 } else if (object_dynamic_cast(OBJECT(child), TYPE_MEMORY_REGION)) {
735 path_name = g_string_new(object_get_canonical_path_component(child));
736 g_string_ascii_down(path_name);
737 if (g_pattern_match_simple(pattern, path_name->str)) {
738 MemoryRegion *mr;
739 mr = MEMORY_REGION(child);
740 if ((memory_region_is_ram(mr) ||
741 memory_region_is_ram_device(mr) ||
742 memory_region_is_rom(mr)) == false) {
743 g_hash_table_insert(fuzzable_memoryregions, mr, (gpointer)true);
746 g_string_free(path_name, true);
748 g_string_free(type_name, true);
749 return 0;
753 static void pci_enum(gpointer pcidev, gpointer bus)
755 PCIDevice *dev = pcidev;
756 QPCIDevice *qdev;
757 int i;
759 qdev = qpci_device_find(bus, dev->devfn);
760 g_assert(qdev != NULL);
761 for (i = 0; i < 6; i++) {
762 if (dev->io_regions[i].size) {
763 qpci_iomap(qdev, i, NULL);
766 qpci_device_enable(qdev);
767 g_free(qdev);
770 static void generic_pre_fuzz(QTestState *s)
772 GHashTableIter iter;
773 MemoryRegion *mr;
774 char **result;
775 GString *name_pattern;
777 if (!getenv("QEMU_FUZZ_OBJECTS")) {
778 usage();
780 if (getenv("QTEST_LOG")) {
781 qtest_log_enabled = 1;
783 if (getenv("QEMU_AVOID_DOUBLE_FETCH")) {
784 avoid_double_fetches = 1;
786 qts_global = s;
789 * Create a special device that we can use to back DMA buffers at very
790 * high memory addresses
792 sparse_mem_mr = sparse_mem_init(0, UINT64_MAX);
794 dma_regions = g_array_new(false, false, sizeof(address_range));
795 dma_patterns = g_array_new(false, false, sizeof(pattern));
797 fuzzable_memoryregions = g_hash_table_new(NULL, NULL);
798 fuzzable_pci_devices = g_ptr_array_new();
800 result = g_strsplit(getenv("QEMU_FUZZ_OBJECTS"), " ", -1);
801 for (int i = 0; result[i] != NULL; i++) {
802 name_pattern = g_string_new(result[i]);
804 * Make the pattern lowercase. We do the same for all the MemoryRegion
805 * and Type names so the configs are case-insensitive.
807 g_string_ascii_down(name_pattern);
808 printf("Matching objects by name %s\n", result[i]);
809 object_child_foreach_recursive(qdev_get_machine(),
810 locate_fuzz_objects,
811 name_pattern->str);
812 g_string_free(name_pattern, true);
814 g_strfreev(result);
815 printf("This process will try to fuzz the following MemoryRegions:\n");
817 g_hash_table_iter_init(&iter, fuzzable_memoryregions);
818 while (g_hash_table_iter_next(&iter, (gpointer)&mr, NULL)) {
819 printf(" * %s (size 0x%" PRIx64 ")\n",
820 object_get_canonical_path_component(&(mr->parent_obj)),
821 memory_region_size(mr));
824 if (!g_hash_table_size(fuzzable_memoryregions)) {
825 printf("No fuzzable memory regions found...\n");
826 exit(1);
831 * When libfuzzer gives us two inputs to combine, return a new input with the
832 * following structure:
834 * Input 1 (data1)
835 * SEPARATOR
836 * Clear out the DMA Patterns
837 * SEPARATOR
838 * Disable the pci_read/write instructions
839 * SEPARATOR
840 * Input 2 (data2)
842 * The idea is to collate the core behaviors of the two inputs.
843 * For example:
844 * Input 1: maps a device's BARs, sets up three DMA patterns, and triggers
845 * device functionality A
846 * Input 2: maps a device's BARs, sets up one DMA pattern, and triggers device
847 * functionality B
849 * This function attempts to produce an input that:
850 * Output: maps a device's BARs, set up three DMA patterns, triggers
851 * device functionality A, replaces the DMA patterns with a single
852 * pattern, and triggers device functionality B.
854 static size_t generic_fuzz_crossover(const uint8_t *data1, size_t size1, const
855 uint8_t *data2, size_t size2, uint8_t *out,
856 size_t max_out_size, unsigned int seed)
858 size_t copy_len = 0, size = 0;
860 /* Check that we have enough space for data1 and at least part of data2 */
861 if (max_out_size <= size1 + strlen(SEPARATOR) * 3 + 2) {
862 return 0;
865 /* Copy_Len in the first input */
866 copy_len = size1;
867 memcpy(out + size, data1, copy_len);
868 size += copy_len;
869 max_out_size -= copy_len;
871 /* Append a separator */
872 copy_len = strlen(SEPARATOR);
873 memcpy(out + size, SEPARATOR, copy_len);
874 size += copy_len;
875 max_out_size -= copy_len;
877 /* Clear out the DMA Patterns */
878 copy_len = 1;
879 if (copy_len) {
880 out[size] = OP_CLEAR_DMA_PATTERNS;
882 size += copy_len;
883 max_out_size -= copy_len;
885 /* Append a separator */
886 copy_len = strlen(SEPARATOR);
887 memcpy(out + size, SEPARATOR, copy_len);
888 size += copy_len;
889 max_out_size -= copy_len;
891 /* Disable PCI ops. Assume data1 took care of setting up PCI */
892 copy_len = 1;
893 if (copy_len) {
894 out[size] = OP_DISABLE_PCI;
896 size += copy_len;
897 max_out_size -= copy_len;
899 /* Append a separator */
900 copy_len = strlen(SEPARATOR);
901 memcpy(out + size, SEPARATOR, copy_len);
902 size += copy_len;
903 max_out_size -= copy_len;
905 /* Copy_Len over the second input */
906 copy_len = MIN(size2, max_out_size);
907 memcpy(out + size, data2, copy_len);
908 size += copy_len;
909 max_out_size -= copy_len;
911 return size;
915 static GString *generic_fuzz_cmdline(FuzzTarget *t)
917 GString *cmd_line = g_string_new(TARGET_NAME);
918 if (!getenv("QEMU_FUZZ_ARGS")) {
919 usage();
921 g_string_append_printf(cmd_line, " -display none \
922 -machine accel=qtest, \
923 -m 512M %s ", getenv("QEMU_FUZZ_ARGS"));
924 return cmd_line;
927 static GString *generic_fuzz_predefined_config_cmdline(FuzzTarget *t)
929 gchar *args;
930 const generic_fuzz_config *config;
931 g_assert(t->opaque);
933 config = t->opaque;
934 g_setenv("QEMU_AVOID_DOUBLE_FETCH", "1", 1);
935 if (config->argfunc) {
936 args = config->argfunc();
937 g_setenv("QEMU_FUZZ_ARGS", args, 1);
938 g_free(args);
939 } else {
940 g_assert_nonnull(config->args);
941 g_setenv("QEMU_FUZZ_ARGS", config->args, 1);
943 g_setenv("QEMU_FUZZ_OBJECTS", config->objects, 1);
944 return generic_fuzz_cmdline(t);
947 static void register_generic_fuzz_targets(void)
949 fuzz_add_target(&(FuzzTarget){
950 .name = "generic-fuzz",
951 .description = "Fuzz based on any qemu command-line args. ",
952 .get_init_cmdline = generic_fuzz_cmdline,
953 .pre_fuzz = generic_pre_fuzz,
954 .fuzz = generic_fuzz,
955 .crossover = generic_fuzz_crossover
958 for (int i = 0; i < ARRAY_SIZE(predefined_configs); i++) {
959 const generic_fuzz_config *config = predefined_configs + i;
960 fuzz_add_target(&(FuzzTarget){
961 .name = g_strconcat("generic-fuzz-", config->name, NULL),
962 .description = "Predefined generic-fuzz config.",
963 .get_init_cmdline = generic_fuzz_predefined_config_cmdline,
964 .pre_fuzz = generic_pre_fuzz,
965 .fuzz = generic_fuzz,
966 .crossover = generic_fuzz_crossover,
967 .opaque = (void *)config
972 fuzz_target_init(register_generic_fuzz_targets);