qapi: allow unions to contain further unions
[qemu/armbru.git] / target / i386 / helper.c
blob8857444819a0f7827d891eee4350d50993311827
1 /*
2 * i386 helpers (without register variable usage)
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qapi/qapi-events-run-state.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "sysemu/runstate.h"
25 #include "kvm/kvm_i386.h"
26 #ifndef CONFIG_USER_ONLY
27 #include "sysemu/hw_accel.h"
28 #include "monitor/monitor.h"
29 #endif
30 #include "qemu/log.h"
32 void cpu_sync_avx_hflag(CPUX86State *env)
34 if ((env->cr[4] & CR4_OSXSAVE_MASK)
35 && (env->xcr0 & (XSTATE_SSE_MASK | XSTATE_YMM_MASK))
36 == (XSTATE_SSE_MASK | XSTATE_YMM_MASK)) {
37 env->hflags |= HF_AVX_EN_MASK;
38 } else{
39 env->hflags &= ~HF_AVX_EN_MASK;
43 void cpu_sync_bndcs_hflags(CPUX86State *env)
45 uint32_t hflags = env->hflags;
46 uint32_t hflags2 = env->hflags2;
47 uint32_t bndcsr;
49 if ((hflags & HF_CPL_MASK) == 3) {
50 bndcsr = env->bndcs_regs.cfgu;
51 } else {
52 bndcsr = env->msr_bndcfgs;
55 if ((env->cr[4] & CR4_OSXSAVE_MASK)
56 && (env->xcr0 & XSTATE_BNDCSR_MASK)
57 && (bndcsr & BNDCFG_ENABLE)) {
58 hflags |= HF_MPX_EN_MASK;
59 } else {
60 hflags &= ~HF_MPX_EN_MASK;
63 if (bndcsr & BNDCFG_BNDPRESERVE) {
64 hflags2 |= HF2_MPX_PR_MASK;
65 } else {
66 hflags2 &= ~HF2_MPX_PR_MASK;
69 env->hflags = hflags;
70 env->hflags2 = hflags2;
73 static void cpu_x86_version(CPUX86State *env, int *family, int *model)
75 int cpuver = env->cpuid_version;
77 if (family == NULL || model == NULL) {
78 return;
81 *family = (cpuver >> 8) & 0x0f;
82 *model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0x0f);
85 /* Broadcast MCA signal for processor version 06H_EH and above */
86 int cpu_x86_support_mca_broadcast(CPUX86State *env)
88 int family = 0;
89 int model = 0;
91 cpu_x86_version(env, &family, &model);
92 if ((family == 6 && model >= 14) || family > 6) {
93 return 1;
96 return 0;
99 /***********************************************************/
100 /* x86 mmu */
101 /* XXX: add PGE support */
103 void x86_cpu_set_a20(X86CPU *cpu, int a20_state)
105 CPUX86State *env = &cpu->env;
107 a20_state = (a20_state != 0);
108 if (a20_state != ((env->a20_mask >> 20) & 1)) {
109 CPUState *cs = CPU(cpu);
111 qemu_log_mask(CPU_LOG_MMU, "A20 update: a20=%d\n", a20_state);
112 /* if the cpu is currently executing code, we must unlink it and
113 all the potentially executing TB */
114 cpu_interrupt(cs, CPU_INTERRUPT_EXITTB);
116 /* when a20 is changed, all the MMU mappings are invalid, so
117 we must flush everything */
118 tlb_flush(cs);
119 env->a20_mask = ~(1 << 20) | (a20_state << 20);
123 void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
125 X86CPU *cpu = env_archcpu(env);
126 int pe_state;
128 qemu_log_mask(CPU_LOG_MMU, "CR0 update: CR0=0x%08x\n", new_cr0);
129 if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
130 (env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
131 tlb_flush(CPU(cpu));
134 #ifdef TARGET_X86_64
135 if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
136 (env->efer & MSR_EFER_LME)) {
137 /* enter in long mode */
138 /* XXX: generate an exception */
139 if (!(env->cr[4] & CR4_PAE_MASK))
140 return;
141 env->efer |= MSR_EFER_LMA;
142 env->hflags |= HF_LMA_MASK;
143 } else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
144 (env->efer & MSR_EFER_LMA)) {
145 /* exit long mode */
146 env->efer &= ~MSR_EFER_LMA;
147 env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
148 env->eip &= 0xffffffff;
150 #endif
151 env->cr[0] = new_cr0 | CR0_ET_MASK;
153 /* update PE flag in hidden flags */
154 pe_state = (env->cr[0] & CR0_PE_MASK);
155 env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
156 /* ensure that ADDSEG is always set in real mode */
157 env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
158 /* update FPU flags */
159 env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
160 ((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
163 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
164 the PDPT */
165 void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
167 env->cr[3] = new_cr3;
168 if (env->cr[0] & CR0_PG_MASK) {
169 qemu_log_mask(CPU_LOG_MMU,
170 "CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
171 tlb_flush(env_cpu(env));
175 void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
177 uint32_t hflags;
179 #if defined(DEBUG_MMU)
180 printf("CR4 update: %08x -> %08x\n", (uint32_t)env->cr[4], new_cr4);
181 #endif
182 if ((new_cr4 ^ env->cr[4]) &
183 (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK |
184 CR4_SMEP_MASK | CR4_SMAP_MASK | CR4_LA57_MASK)) {
185 tlb_flush(env_cpu(env));
188 /* Clear bits we're going to recompute. */
189 hflags = env->hflags & ~(HF_OSFXSR_MASK | HF_SMAP_MASK | HF_UMIP_MASK);
191 /* SSE handling */
192 if (!(env->features[FEAT_1_EDX] & CPUID_SSE)) {
193 new_cr4 &= ~CR4_OSFXSR_MASK;
195 if (new_cr4 & CR4_OSFXSR_MASK) {
196 hflags |= HF_OSFXSR_MASK;
199 if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_SMAP)) {
200 new_cr4 &= ~CR4_SMAP_MASK;
202 if (new_cr4 & CR4_SMAP_MASK) {
203 hflags |= HF_SMAP_MASK;
205 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_UMIP)) {
206 new_cr4 &= ~CR4_UMIP_MASK;
208 if (new_cr4 & CR4_UMIP_MASK) {
209 hflags |= HF_UMIP_MASK;
212 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKU)) {
213 new_cr4 &= ~CR4_PKE_MASK;
215 if (!(env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_PKS)) {
216 new_cr4 &= ~CR4_PKS_MASK;
219 env->cr[4] = new_cr4;
220 env->hflags = hflags;
222 cpu_sync_bndcs_hflags(env);
223 cpu_sync_avx_hflag(env);
226 #if !defined(CONFIG_USER_ONLY)
227 hwaddr x86_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
228 MemTxAttrs *attrs)
230 X86CPU *cpu = X86_CPU(cs);
231 CPUX86State *env = &cpu->env;
232 target_ulong pde_addr, pte_addr;
233 uint64_t pte;
234 int32_t a20_mask;
235 uint32_t page_offset;
236 int page_size;
238 *attrs = cpu_get_mem_attrs(env);
240 a20_mask = x86_get_a20_mask(env);
241 if (!(env->cr[0] & CR0_PG_MASK)) {
242 pte = addr & a20_mask;
243 page_size = 4096;
244 } else if (env->cr[4] & CR4_PAE_MASK) {
245 target_ulong pdpe_addr;
246 uint64_t pde, pdpe;
248 #ifdef TARGET_X86_64
249 if (env->hflags & HF_LMA_MASK) {
250 bool la57 = env->cr[4] & CR4_LA57_MASK;
251 uint64_t pml5e_addr, pml5e;
252 uint64_t pml4e_addr, pml4e;
253 int32_t sext;
255 /* test virtual address sign extension */
256 sext = la57 ? (int64_t)addr >> 56 : (int64_t)addr >> 47;
257 if (sext != 0 && sext != -1) {
258 return -1;
261 if (la57) {
262 pml5e_addr = ((env->cr[3] & ~0xfff) +
263 (((addr >> 48) & 0x1ff) << 3)) & a20_mask;
264 pml5e = x86_ldq_phys(cs, pml5e_addr);
265 if (!(pml5e & PG_PRESENT_MASK)) {
266 return -1;
268 } else {
269 pml5e = env->cr[3];
272 pml4e_addr = ((pml5e & PG_ADDRESS_MASK) +
273 (((addr >> 39) & 0x1ff) << 3)) & a20_mask;
274 pml4e = x86_ldq_phys(cs, pml4e_addr);
275 if (!(pml4e & PG_PRESENT_MASK)) {
276 return -1;
278 pdpe_addr = ((pml4e & PG_ADDRESS_MASK) +
279 (((addr >> 30) & 0x1ff) << 3)) & a20_mask;
280 pdpe = x86_ldq_phys(cs, pdpe_addr);
281 if (!(pdpe & PG_PRESENT_MASK)) {
282 return -1;
284 if (pdpe & PG_PSE_MASK) {
285 page_size = 1024 * 1024 * 1024;
286 pte = pdpe;
287 goto out;
290 } else
291 #endif
293 pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) &
294 a20_mask;
295 pdpe = x86_ldq_phys(cs, pdpe_addr);
296 if (!(pdpe & PG_PRESENT_MASK))
297 return -1;
300 pde_addr = ((pdpe & PG_ADDRESS_MASK) +
301 (((addr >> 21) & 0x1ff) << 3)) & a20_mask;
302 pde = x86_ldq_phys(cs, pde_addr);
303 if (!(pde & PG_PRESENT_MASK)) {
304 return -1;
306 if (pde & PG_PSE_MASK) {
307 /* 2 MB page */
308 page_size = 2048 * 1024;
309 pte = pde;
310 } else {
311 /* 4 KB page */
312 pte_addr = ((pde & PG_ADDRESS_MASK) +
313 (((addr >> 12) & 0x1ff) << 3)) & a20_mask;
314 page_size = 4096;
315 pte = x86_ldq_phys(cs, pte_addr);
317 if (!(pte & PG_PRESENT_MASK)) {
318 return -1;
320 } else {
321 uint32_t pde;
323 /* page directory entry */
324 pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & a20_mask;
325 pde = x86_ldl_phys(cs, pde_addr);
326 if (!(pde & PG_PRESENT_MASK))
327 return -1;
328 if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
329 pte = pde | ((pde & 0x1fe000LL) << (32 - 13));
330 page_size = 4096 * 1024;
331 } else {
332 /* page directory entry */
333 pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & a20_mask;
334 pte = x86_ldl_phys(cs, pte_addr);
335 if (!(pte & PG_PRESENT_MASK)) {
336 return -1;
338 page_size = 4096;
340 pte = pte & a20_mask;
343 #ifdef TARGET_X86_64
344 out:
345 #endif
346 pte &= PG_ADDRESS_MASK & ~(page_size - 1);
347 page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
348 return pte | page_offset;
351 typedef struct MCEInjectionParams {
352 Monitor *mon;
353 int bank;
354 uint64_t status;
355 uint64_t mcg_status;
356 uint64_t addr;
357 uint64_t misc;
358 int flags;
359 } MCEInjectionParams;
361 static void emit_guest_memory_failure(MemoryFailureAction action, bool ar,
362 bool recursive)
364 MemoryFailureFlags mff = {.action_required = ar, .recursive = recursive};
366 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST, action,
367 &mff);
370 static void do_inject_x86_mce(CPUState *cs, run_on_cpu_data data)
372 MCEInjectionParams *params = data.host_ptr;
373 X86CPU *cpu = X86_CPU(cs);
374 CPUX86State *cenv = &cpu->env;
375 uint64_t *banks = cenv->mce_banks + 4 * params->bank;
376 g_autofree char *msg = NULL;
377 bool need_reset = false;
378 bool recursive;
379 bool ar = !!(params->status & MCI_STATUS_AR);
381 cpu_synchronize_state(cs);
382 recursive = !!(cenv->mcg_status & MCG_STATUS_MCIP);
385 * If there is an MCE exception being processed, ignore this SRAO MCE
386 * unless unconditional injection was requested.
388 if (!(params->flags & MCE_INJECT_UNCOND_AO) && !ar && recursive) {
389 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, ar, recursive);
390 return;
393 if (params->status & MCI_STATUS_UC) {
395 * if MSR_MCG_CTL is not all 1s, the uncorrected error
396 * reporting is disabled
398 if ((cenv->mcg_cap & MCG_CTL_P) && cenv->mcg_ctl != ~(uint64_t)0) {
399 monitor_printf(params->mon,
400 "CPU %d: Uncorrected error reporting disabled\n",
401 cs->cpu_index);
402 return;
406 * if MSR_MCi_CTL is not all 1s, the uncorrected error
407 * reporting is disabled for the bank
409 if (banks[0] != ~(uint64_t)0) {
410 monitor_printf(params->mon,
411 "CPU %d: Uncorrected error reporting disabled for"
412 " bank %d\n",
413 cs->cpu_index, params->bank);
414 return;
417 if (!(cenv->cr[4] & CR4_MCE_MASK)) {
418 need_reset = true;
419 msg = g_strdup_printf("CPU %d: MCE capability is not enabled, "
420 "raising triple fault", cs->cpu_index);
421 } else if (recursive) {
422 need_reset = true;
423 msg = g_strdup_printf("CPU %d: Previous MCE still in progress, "
424 "raising triple fault", cs->cpu_index);
427 if (need_reset) {
428 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET, ar,
429 recursive);
430 monitor_puts(params->mon, msg);
431 qemu_log_mask(CPU_LOG_RESET, "%s\n", msg);
432 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
433 return;
436 if (banks[1] & MCI_STATUS_VAL) {
437 params->status |= MCI_STATUS_OVER;
439 banks[2] = params->addr;
440 banks[3] = params->misc;
441 cenv->mcg_status = params->mcg_status;
442 banks[1] = params->status;
443 cpu_interrupt(cs, CPU_INTERRUPT_MCE);
444 } else if (!(banks[1] & MCI_STATUS_VAL)
445 || !(banks[1] & MCI_STATUS_UC)) {
446 if (banks[1] & MCI_STATUS_VAL) {
447 params->status |= MCI_STATUS_OVER;
449 banks[2] = params->addr;
450 banks[3] = params->misc;
451 banks[1] = params->status;
452 } else {
453 banks[1] |= MCI_STATUS_OVER;
456 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT, ar, recursive);
459 void cpu_x86_inject_mce(Monitor *mon, X86CPU *cpu, int bank,
460 uint64_t status, uint64_t mcg_status, uint64_t addr,
461 uint64_t misc, int flags)
463 CPUState *cs = CPU(cpu);
464 CPUX86State *cenv = &cpu->env;
465 MCEInjectionParams params = {
466 .mon = mon,
467 .bank = bank,
468 .status = status,
469 .mcg_status = mcg_status,
470 .addr = addr,
471 .misc = misc,
472 .flags = flags,
474 unsigned bank_num = cenv->mcg_cap & 0xff;
476 if (!cenv->mcg_cap) {
477 monitor_printf(mon, "MCE injection not supported\n");
478 return;
480 if (bank >= bank_num) {
481 monitor_printf(mon, "Invalid MCE bank number\n");
482 return;
484 if (!(status & MCI_STATUS_VAL)) {
485 monitor_printf(mon, "Invalid MCE status code\n");
486 return;
488 if ((flags & MCE_INJECT_BROADCAST)
489 && !cpu_x86_support_mca_broadcast(cenv)) {
490 monitor_printf(mon, "Guest CPU does not support MCA broadcast\n");
491 return;
494 run_on_cpu(cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
495 if (flags & MCE_INJECT_BROADCAST) {
496 CPUState *other_cs;
498 params.bank = 1;
499 params.status = MCI_STATUS_VAL | MCI_STATUS_UC;
500 params.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
501 params.addr = 0;
502 params.misc = 0;
503 CPU_FOREACH(other_cs) {
504 if (other_cs == cs) {
505 continue;
507 run_on_cpu(other_cs, do_inject_x86_mce, RUN_ON_CPU_HOST_PTR(&params));
512 static inline target_ulong get_memio_eip(CPUX86State *env)
514 #ifdef CONFIG_TCG
515 uint64_t data[TARGET_INSN_START_WORDS];
516 CPUState *cs = env_cpu(env);
518 if (!cpu_unwind_state_data(cs, cs->mem_io_pc, data)) {
519 return env->eip;
522 /* Per x86_restore_state_to_opc. */
523 if (cs->tcg_cflags & CF_PCREL) {
524 return (env->eip & TARGET_PAGE_MASK) | data[0];
525 } else {
526 return data[0] - env->segs[R_CS].base;
528 #else
529 qemu_build_not_reached();
530 #endif
533 void cpu_report_tpr_access(CPUX86State *env, TPRAccess access)
535 X86CPU *cpu = env_archcpu(env);
536 CPUState *cs = env_cpu(env);
538 if (kvm_enabled() || whpx_enabled() || nvmm_enabled()) {
539 env->tpr_access_type = access;
541 cpu_interrupt(cs, CPU_INTERRUPT_TPR);
542 } else if (tcg_enabled()) {
543 target_ulong eip = get_memio_eip(env);
545 apic_handle_tpr_access_report(cpu->apic_state, eip, access);
548 #endif /* !CONFIG_USER_ONLY */
550 int cpu_x86_get_descr_debug(CPUX86State *env, unsigned int selector,
551 target_ulong *base, unsigned int *limit,
552 unsigned int *flags)
554 CPUState *cs = env_cpu(env);
555 SegmentCache *dt;
556 target_ulong ptr;
557 uint32_t e1, e2;
558 int index;
560 if (selector & 0x4)
561 dt = &env->ldt;
562 else
563 dt = &env->gdt;
564 index = selector & ~7;
565 ptr = dt->base + index;
566 if ((index + 7) > dt->limit
567 || cpu_memory_rw_debug(cs, ptr, (uint8_t *)&e1, sizeof(e1), 0) != 0
568 || cpu_memory_rw_debug(cs, ptr+4, (uint8_t *)&e2, sizeof(e2), 0) != 0)
569 return 0;
571 *base = ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
572 *limit = (e1 & 0xffff) | (e2 & 0x000f0000);
573 if (e2 & DESC_G_MASK)
574 *limit = (*limit << 12) | 0xfff;
575 *flags = e2;
577 return 1;
580 #if !defined(CONFIG_USER_ONLY)
581 void do_cpu_init(X86CPU *cpu)
583 CPUState *cs = CPU(cpu);
584 CPUX86State *env = &cpu->env;
585 CPUX86State *save = g_new(CPUX86State, 1);
586 int sipi = cs->interrupt_request & CPU_INTERRUPT_SIPI;
588 *save = *env;
590 cpu_reset(cs);
591 cs->interrupt_request = sipi;
592 memcpy(&env->start_init_save, &save->start_init_save,
593 offsetof(CPUX86State, end_init_save) -
594 offsetof(CPUX86State, start_init_save));
595 g_free(save);
597 if (kvm_enabled()) {
598 kvm_arch_do_init_vcpu(cpu);
600 apic_init_reset(cpu->apic_state);
603 void do_cpu_sipi(X86CPU *cpu)
605 apic_sipi(cpu->apic_state);
607 #else
608 void do_cpu_init(X86CPU *cpu)
611 void do_cpu_sipi(X86CPU *cpu)
614 #endif
616 #ifndef CONFIG_USER_ONLY
618 void cpu_load_efer(CPUX86State *env, uint64_t val)
620 env->efer = val;
621 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
622 if (env->efer & MSR_EFER_LMA) {
623 env->hflags |= HF_LMA_MASK;
625 if (env->efer & MSR_EFER_SVME) {
626 env->hflags |= HF_SVME_MASK;
630 uint8_t x86_ldub_phys(CPUState *cs, hwaddr addr)
632 X86CPU *cpu = X86_CPU(cs);
633 CPUX86State *env = &cpu->env;
634 MemTxAttrs attrs = cpu_get_mem_attrs(env);
635 AddressSpace *as = cpu_addressspace(cs, attrs);
637 return address_space_ldub(as, addr, attrs, NULL);
640 uint32_t x86_lduw_phys(CPUState *cs, hwaddr addr)
642 X86CPU *cpu = X86_CPU(cs);
643 CPUX86State *env = &cpu->env;
644 MemTxAttrs attrs = cpu_get_mem_attrs(env);
645 AddressSpace *as = cpu_addressspace(cs, attrs);
647 return address_space_lduw(as, addr, attrs, NULL);
650 uint32_t x86_ldl_phys(CPUState *cs, hwaddr addr)
652 X86CPU *cpu = X86_CPU(cs);
653 CPUX86State *env = &cpu->env;
654 MemTxAttrs attrs = cpu_get_mem_attrs(env);
655 AddressSpace *as = cpu_addressspace(cs, attrs);
657 return address_space_ldl(as, addr, attrs, NULL);
660 uint64_t x86_ldq_phys(CPUState *cs, hwaddr addr)
662 X86CPU *cpu = X86_CPU(cs);
663 CPUX86State *env = &cpu->env;
664 MemTxAttrs attrs = cpu_get_mem_attrs(env);
665 AddressSpace *as = cpu_addressspace(cs, attrs);
667 return address_space_ldq(as, addr, attrs, NULL);
670 void x86_stb_phys(CPUState *cs, hwaddr addr, uint8_t val)
672 X86CPU *cpu = X86_CPU(cs);
673 CPUX86State *env = &cpu->env;
674 MemTxAttrs attrs = cpu_get_mem_attrs(env);
675 AddressSpace *as = cpu_addressspace(cs, attrs);
677 address_space_stb(as, addr, val, attrs, NULL);
680 void x86_stl_phys_notdirty(CPUState *cs, hwaddr addr, uint32_t val)
682 X86CPU *cpu = X86_CPU(cs);
683 CPUX86State *env = &cpu->env;
684 MemTxAttrs attrs = cpu_get_mem_attrs(env);
685 AddressSpace *as = cpu_addressspace(cs, attrs);
687 address_space_stl_notdirty(as, addr, val, attrs, NULL);
690 void x86_stw_phys(CPUState *cs, hwaddr addr, uint32_t val)
692 X86CPU *cpu = X86_CPU(cs);
693 CPUX86State *env = &cpu->env;
694 MemTxAttrs attrs = cpu_get_mem_attrs(env);
695 AddressSpace *as = cpu_addressspace(cs, attrs);
697 address_space_stw(as, addr, val, attrs, NULL);
700 void x86_stl_phys(CPUState *cs, hwaddr addr, uint32_t val)
702 X86CPU *cpu = X86_CPU(cs);
703 CPUX86State *env = &cpu->env;
704 MemTxAttrs attrs = cpu_get_mem_attrs(env);
705 AddressSpace *as = cpu_addressspace(cs, attrs);
707 address_space_stl(as, addr, val, attrs, NULL);
710 void x86_stq_phys(CPUState *cs, hwaddr addr, uint64_t val)
712 X86CPU *cpu = X86_CPU(cs);
713 CPUX86State *env = &cpu->env;
714 MemTxAttrs attrs = cpu_get_mem_attrs(env);
715 AddressSpace *as = cpu_addressspace(cs, attrs);
717 address_space_stq(as, addr, val, attrs, NULL);
719 #endif