ivshmem: Fix unplug of device "ivshmem-plain"
[qemu/armbru.git] / migration / rdma.c
blob9b2e7e10aa6cd4b07d791894ff128bc7a298ae51
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/sockets.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/coroutine.h"
30 #include <sys/socket.h>
31 #include <netdb.h>
32 #include <arpa/inet.h>
33 #include <rdma/rdma_cma.h>
34 #include "trace.h"
37 * Print and error on both the Monitor and the Log file.
39 #define ERROR(errp, fmt, ...) \
40 do { \
41 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
42 if (errp && (*(errp) == NULL)) { \
43 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
44 } \
45 } while (0)
47 #define RDMA_RESOLVE_TIMEOUT_MS 10000
49 /* Do not merge data if larger than this. */
50 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
51 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
53 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
56 * This is only for non-live state being migrated.
57 * Instead of RDMA_WRITE messages, we use RDMA_SEND
58 * messages for that state, which requires a different
59 * delivery design than main memory.
61 #define RDMA_SEND_INCREMENT 32768
64 * Maximum size infiniband SEND message
66 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
67 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
69 #define RDMA_CONTROL_VERSION_CURRENT 1
71 * Capabilities for negotiation.
73 #define RDMA_CAPABILITY_PIN_ALL 0x01
76 * Add the other flags above to this list of known capabilities
77 * as they are introduced.
79 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
81 #define CHECK_ERROR_STATE() \
82 do { \
83 if (rdma->error_state) { \
84 if (!rdma->error_reported) { \
85 error_report("RDMA is in an error state waiting migration" \
86 " to abort!"); \
87 rdma->error_reported = 1; \
88 } \
89 rcu_read_unlock(); \
90 return rdma->error_state; \
91 } \
92 } while (0)
95 * A work request ID is 64-bits and we split up these bits
96 * into 3 parts:
98 * bits 0-15 : type of control message, 2^16
99 * bits 16-29: ram block index, 2^14
100 * bits 30-63: ram block chunk number, 2^34
102 * The last two bit ranges are only used for RDMA writes,
103 * in order to track their completion and potentially
104 * also track unregistration status of the message.
106 #define RDMA_WRID_TYPE_SHIFT 0UL
107 #define RDMA_WRID_BLOCK_SHIFT 16UL
108 #define RDMA_WRID_CHUNK_SHIFT 30UL
110 #define RDMA_WRID_TYPE_MASK \
111 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
113 #define RDMA_WRID_BLOCK_MASK \
114 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
116 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
119 * RDMA migration protocol:
120 * 1. RDMA Writes (data messages, i.e. RAM)
121 * 2. IB Send/Recv (control channel messages)
123 enum {
124 RDMA_WRID_NONE = 0,
125 RDMA_WRID_RDMA_WRITE = 1,
126 RDMA_WRID_SEND_CONTROL = 2000,
127 RDMA_WRID_RECV_CONTROL = 4000,
130 static const char *wrid_desc[] = {
131 [RDMA_WRID_NONE] = "NONE",
132 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
133 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
134 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
138 * Work request IDs for IB SEND messages only (not RDMA writes).
139 * This is used by the migration protocol to transmit
140 * control messages (such as device state and registration commands)
142 * We could use more WRs, but we have enough for now.
144 enum {
145 RDMA_WRID_READY = 0,
146 RDMA_WRID_DATA,
147 RDMA_WRID_CONTROL,
148 RDMA_WRID_MAX,
152 * SEND/RECV IB Control Messages.
154 enum {
155 RDMA_CONTROL_NONE = 0,
156 RDMA_CONTROL_ERROR,
157 RDMA_CONTROL_READY, /* ready to receive */
158 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
159 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
160 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
161 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
162 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
163 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
164 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
165 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
166 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
171 * Memory and MR structures used to represent an IB Send/Recv work request.
172 * This is *not* used for RDMA writes, only IB Send/Recv.
174 typedef struct {
175 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
176 struct ibv_mr *control_mr; /* registration metadata */
177 size_t control_len; /* length of the message */
178 uint8_t *control_curr; /* start of unconsumed bytes */
179 } RDMAWorkRequestData;
182 * Negotiate RDMA capabilities during connection-setup time.
184 typedef struct {
185 uint32_t version;
186 uint32_t flags;
187 } RDMACapabilities;
189 static void caps_to_network(RDMACapabilities *cap)
191 cap->version = htonl(cap->version);
192 cap->flags = htonl(cap->flags);
195 static void network_to_caps(RDMACapabilities *cap)
197 cap->version = ntohl(cap->version);
198 cap->flags = ntohl(cap->flags);
202 * Representation of a RAMBlock from an RDMA perspective.
203 * This is not transmitted, only local.
204 * This and subsequent structures cannot be linked lists
205 * because we're using a single IB message to transmit
206 * the information. It's small anyway, so a list is overkill.
208 typedef struct RDMALocalBlock {
209 char *block_name;
210 uint8_t *local_host_addr; /* local virtual address */
211 uint64_t remote_host_addr; /* remote virtual address */
212 uint64_t offset;
213 uint64_t length;
214 struct ibv_mr **pmr; /* MRs for chunk-level registration */
215 struct ibv_mr *mr; /* MR for non-chunk-level registration */
216 uint32_t *remote_keys; /* rkeys for chunk-level registration */
217 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
218 int index; /* which block are we */
219 unsigned int src_index; /* (Only used on dest) */
220 bool is_ram_block;
221 int nb_chunks;
222 unsigned long *transit_bitmap;
223 unsigned long *unregister_bitmap;
224 } RDMALocalBlock;
227 * Also represents a RAMblock, but only on the dest.
228 * This gets transmitted by the dest during connection-time
229 * to the source VM and then is used to populate the
230 * corresponding RDMALocalBlock with
231 * the information needed to perform the actual RDMA.
233 typedef struct QEMU_PACKED RDMADestBlock {
234 uint64_t remote_host_addr;
235 uint64_t offset;
236 uint64_t length;
237 uint32_t remote_rkey;
238 uint32_t padding;
239 } RDMADestBlock;
241 static const char *control_desc(unsigned int rdma_control)
243 static const char *strs[] = {
244 [RDMA_CONTROL_NONE] = "NONE",
245 [RDMA_CONTROL_ERROR] = "ERROR",
246 [RDMA_CONTROL_READY] = "READY",
247 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
248 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
249 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
250 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
251 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
252 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
253 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
254 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
255 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
258 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
259 return "??BAD CONTROL VALUE??";
262 return strs[rdma_control];
265 static uint64_t htonll(uint64_t v)
267 union { uint32_t lv[2]; uint64_t llv; } u;
268 u.lv[0] = htonl(v >> 32);
269 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
270 return u.llv;
273 static uint64_t ntohll(uint64_t v) {
274 union { uint32_t lv[2]; uint64_t llv; } u;
275 u.llv = v;
276 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
279 static void dest_block_to_network(RDMADestBlock *db)
281 db->remote_host_addr = htonll(db->remote_host_addr);
282 db->offset = htonll(db->offset);
283 db->length = htonll(db->length);
284 db->remote_rkey = htonl(db->remote_rkey);
287 static void network_to_dest_block(RDMADestBlock *db)
289 db->remote_host_addr = ntohll(db->remote_host_addr);
290 db->offset = ntohll(db->offset);
291 db->length = ntohll(db->length);
292 db->remote_rkey = ntohl(db->remote_rkey);
296 * Virtual address of the above structures used for transmitting
297 * the RAMBlock descriptions at connection-time.
298 * This structure is *not* transmitted.
300 typedef struct RDMALocalBlocks {
301 int nb_blocks;
302 bool init; /* main memory init complete */
303 RDMALocalBlock *block;
304 } RDMALocalBlocks;
307 * Main data structure for RDMA state.
308 * While there is only one copy of this structure being allocated right now,
309 * this is the place where one would start if you wanted to consider
310 * having more than one RDMA connection open at the same time.
312 typedef struct RDMAContext {
313 char *host;
314 int port;
316 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
319 * This is used by *_exchange_send() to figure out whether or not
320 * the initial "READY" message has already been received or not.
321 * This is because other functions may potentially poll() and detect
322 * the READY message before send() does, in which case we need to
323 * know if it completed.
325 int control_ready_expected;
327 /* number of outstanding writes */
328 int nb_sent;
330 /* store info about current buffer so that we can
331 merge it with future sends */
332 uint64_t current_addr;
333 uint64_t current_length;
334 /* index of ram block the current buffer belongs to */
335 int current_index;
336 /* index of the chunk in the current ram block */
337 int current_chunk;
339 bool pin_all;
342 * infiniband-specific variables for opening the device
343 * and maintaining connection state and so forth.
345 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
346 * cm_id->verbs, cm_id->channel, and cm_id->qp.
348 struct rdma_cm_id *cm_id; /* connection manager ID */
349 struct rdma_cm_id *listen_id;
350 bool connected;
352 struct ibv_context *verbs;
353 struct rdma_event_channel *channel;
354 struct ibv_qp *qp; /* queue pair */
355 struct ibv_comp_channel *comp_channel; /* completion channel */
356 struct ibv_pd *pd; /* protection domain */
357 struct ibv_cq *cq; /* completion queue */
360 * If a previous write failed (perhaps because of a failed
361 * memory registration, then do not attempt any future work
362 * and remember the error state.
364 int error_state;
365 int error_reported;
366 int received_error;
369 * Description of ram blocks used throughout the code.
371 RDMALocalBlocks local_ram_blocks;
372 RDMADestBlock *dest_blocks;
374 /* Index of the next RAMBlock received during block registration */
375 unsigned int next_src_index;
378 * Migration on *destination* started.
379 * Then use coroutine yield function.
380 * Source runs in a thread, so we don't care.
382 int migration_started_on_destination;
384 int total_registrations;
385 int total_writes;
387 int unregister_current, unregister_next;
388 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
390 GHashTable *blockmap;
392 /* the RDMAContext for return path */
393 struct RDMAContext *return_path;
394 bool is_return_path;
395 } RDMAContext;
397 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
398 #define QIO_CHANNEL_RDMA(obj) \
399 OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA)
401 typedef struct QIOChannelRDMA QIOChannelRDMA;
404 struct QIOChannelRDMA {
405 QIOChannel parent;
406 RDMAContext *rdmain;
407 RDMAContext *rdmaout;
408 QEMUFile *file;
409 bool blocking; /* XXX we don't actually honour this yet */
413 * Main structure for IB Send/Recv control messages.
414 * This gets prepended at the beginning of every Send/Recv.
416 typedef struct QEMU_PACKED {
417 uint32_t len; /* Total length of data portion */
418 uint32_t type; /* which control command to perform */
419 uint32_t repeat; /* number of commands in data portion of same type */
420 uint32_t padding;
421 } RDMAControlHeader;
423 static void control_to_network(RDMAControlHeader *control)
425 control->type = htonl(control->type);
426 control->len = htonl(control->len);
427 control->repeat = htonl(control->repeat);
430 static void network_to_control(RDMAControlHeader *control)
432 control->type = ntohl(control->type);
433 control->len = ntohl(control->len);
434 control->repeat = ntohl(control->repeat);
438 * Register a single Chunk.
439 * Information sent by the source VM to inform the dest
440 * to register an single chunk of memory before we can perform
441 * the actual RDMA operation.
443 typedef struct QEMU_PACKED {
444 union QEMU_PACKED {
445 uint64_t current_addr; /* offset into the ram_addr_t space */
446 uint64_t chunk; /* chunk to lookup if unregistering */
447 } key;
448 uint32_t current_index; /* which ramblock the chunk belongs to */
449 uint32_t padding;
450 uint64_t chunks; /* how many sequential chunks to register */
451 } RDMARegister;
453 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
455 RDMALocalBlock *local_block;
456 local_block = &rdma->local_ram_blocks.block[reg->current_index];
458 if (local_block->is_ram_block) {
460 * current_addr as passed in is an address in the local ram_addr_t
461 * space, we need to translate this for the destination
463 reg->key.current_addr -= local_block->offset;
464 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
466 reg->key.current_addr = htonll(reg->key.current_addr);
467 reg->current_index = htonl(reg->current_index);
468 reg->chunks = htonll(reg->chunks);
471 static void network_to_register(RDMARegister *reg)
473 reg->key.current_addr = ntohll(reg->key.current_addr);
474 reg->current_index = ntohl(reg->current_index);
475 reg->chunks = ntohll(reg->chunks);
478 typedef struct QEMU_PACKED {
479 uint32_t value; /* if zero, we will madvise() */
480 uint32_t block_idx; /* which ram block index */
481 uint64_t offset; /* Address in remote ram_addr_t space */
482 uint64_t length; /* length of the chunk */
483 } RDMACompress;
485 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
487 comp->value = htonl(comp->value);
489 * comp->offset as passed in is an address in the local ram_addr_t
490 * space, we need to translate this for the destination
492 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
493 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
494 comp->block_idx = htonl(comp->block_idx);
495 comp->offset = htonll(comp->offset);
496 comp->length = htonll(comp->length);
499 static void network_to_compress(RDMACompress *comp)
501 comp->value = ntohl(comp->value);
502 comp->block_idx = ntohl(comp->block_idx);
503 comp->offset = ntohll(comp->offset);
504 comp->length = ntohll(comp->length);
508 * The result of the dest's memory registration produces an "rkey"
509 * which the source VM must reference in order to perform
510 * the RDMA operation.
512 typedef struct QEMU_PACKED {
513 uint32_t rkey;
514 uint32_t padding;
515 uint64_t host_addr;
516 } RDMARegisterResult;
518 static void result_to_network(RDMARegisterResult *result)
520 result->rkey = htonl(result->rkey);
521 result->host_addr = htonll(result->host_addr);
524 static void network_to_result(RDMARegisterResult *result)
526 result->rkey = ntohl(result->rkey);
527 result->host_addr = ntohll(result->host_addr);
530 const char *print_wrid(int wrid);
531 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
532 uint8_t *data, RDMAControlHeader *resp,
533 int *resp_idx,
534 int (*callback)(RDMAContext *rdma));
536 static inline uint64_t ram_chunk_index(const uint8_t *start,
537 const uint8_t *host)
539 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
542 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
543 uint64_t i)
545 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
546 (i << RDMA_REG_CHUNK_SHIFT));
549 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
550 uint64_t i)
552 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
553 (1UL << RDMA_REG_CHUNK_SHIFT);
555 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
556 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
559 return result;
562 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
563 void *host_addr,
564 ram_addr_t block_offset, uint64_t length)
566 RDMALocalBlocks *local = &rdma->local_ram_blocks;
567 RDMALocalBlock *block;
568 RDMALocalBlock *old = local->block;
570 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
572 if (local->nb_blocks) {
573 int x;
575 if (rdma->blockmap) {
576 for (x = 0; x < local->nb_blocks; x++) {
577 g_hash_table_remove(rdma->blockmap,
578 (void *)(uintptr_t)old[x].offset);
579 g_hash_table_insert(rdma->blockmap,
580 (void *)(uintptr_t)old[x].offset,
581 &local->block[x]);
584 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
585 g_free(old);
588 block = &local->block[local->nb_blocks];
590 block->block_name = g_strdup(block_name);
591 block->local_host_addr = host_addr;
592 block->offset = block_offset;
593 block->length = length;
594 block->index = local->nb_blocks;
595 block->src_index = ~0U; /* Filled in by the receipt of the block list */
596 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
597 block->transit_bitmap = bitmap_new(block->nb_chunks);
598 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
599 block->unregister_bitmap = bitmap_new(block->nb_chunks);
600 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
601 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
603 block->is_ram_block = local->init ? false : true;
605 if (rdma->blockmap) {
606 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
609 trace_rdma_add_block(block_name, local->nb_blocks,
610 (uintptr_t) block->local_host_addr,
611 block->offset, block->length,
612 (uintptr_t) (block->local_host_addr + block->length),
613 BITS_TO_LONGS(block->nb_chunks) *
614 sizeof(unsigned long) * 8,
615 block->nb_chunks);
617 local->nb_blocks++;
619 return 0;
623 * Memory regions need to be registered with the device and queue pairs setup
624 * in advanced before the migration starts. This tells us where the RAM blocks
625 * are so that we can register them individually.
627 static int qemu_rdma_init_one_block(const char *block_name, void *host_addr,
628 ram_addr_t block_offset, ram_addr_t length, void *opaque)
630 return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
634 * Identify the RAMBlocks and their quantity. They will be references to
635 * identify chunk boundaries inside each RAMBlock and also be referenced
636 * during dynamic page registration.
638 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
640 RDMALocalBlocks *local = &rdma->local_ram_blocks;
642 assert(rdma->blockmap == NULL);
643 memset(local, 0, sizeof *local);
644 qemu_ram_foreach_migratable_block(qemu_rdma_init_one_block, rdma);
645 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
646 rdma->dest_blocks = g_new0(RDMADestBlock,
647 rdma->local_ram_blocks.nb_blocks);
648 local->init = true;
649 return 0;
653 * Note: If used outside of cleanup, the caller must ensure that the destination
654 * block structures are also updated
656 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
658 RDMALocalBlocks *local = &rdma->local_ram_blocks;
659 RDMALocalBlock *old = local->block;
660 int x;
662 if (rdma->blockmap) {
663 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
665 if (block->pmr) {
666 int j;
668 for (j = 0; j < block->nb_chunks; j++) {
669 if (!block->pmr[j]) {
670 continue;
672 ibv_dereg_mr(block->pmr[j]);
673 rdma->total_registrations--;
675 g_free(block->pmr);
676 block->pmr = NULL;
679 if (block->mr) {
680 ibv_dereg_mr(block->mr);
681 rdma->total_registrations--;
682 block->mr = NULL;
685 g_free(block->transit_bitmap);
686 block->transit_bitmap = NULL;
688 g_free(block->unregister_bitmap);
689 block->unregister_bitmap = NULL;
691 g_free(block->remote_keys);
692 block->remote_keys = NULL;
694 g_free(block->block_name);
695 block->block_name = NULL;
697 if (rdma->blockmap) {
698 for (x = 0; x < local->nb_blocks; x++) {
699 g_hash_table_remove(rdma->blockmap,
700 (void *)(uintptr_t)old[x].offset);
704 if (local->nb_blocks > 1) {
706 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
708 if (block->index) {
709 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
712 if (block->index < (local->nb_blocks - 1)) {
713 memcpy(local->block + block->index, old + (block->index + 1),
714 sizeof(RDMALocalBlock) *
715 (local->nb_blocks - (block->index + 1)));
716 for (x = block->index; x < local->nb_blocks - 1; x++) {
717 local->block[x].index--;
720 } else {
721 assert(block == local->block);
722 local->block = NULL;
725 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
726 block->offset, block->length,
727 (uintptr_t)(block->local_host_addr + block->length),
728 BITS_TO_LONGS(block->nb_chunks) *
729 sizeof(unsigned long) * 8, block->nb_chunks);
731 g_free(old);
733 local->nb_blocks--;
735 if (local->nb_blocks && rdma->blockmap) {
736 for (x = 0; x < local->nb_blocks; x++) {
737 g_hash_table_insert(rdma->blockmap,
738 (void *)(uintptr_t)local->block[x].offset,
739 &local->block[x]);
743 return 0;
747 * Put in the log file which RDMA device was opened and the details
748 * associated with that device.
750 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
752 struct ibv_port_attr port;
754 if (ibv_query_port(verbs, 1, &port)) {
755 error_report("Failed to query port information");
756 return;
759 printf("%s RDMA Device opened: kernel name %s "
760 "uverbs device name %s, "
761 "infiniband_verbs class device path %s, "
762 "infiniband class device path %s, "
763 "transport: (%d) %s\n",
764 who,
765 verbs->device->name,
766 verbs->device->dev_name,
767 verbs->device->dev_path,
768 verbs->device->ibdev_path,
769 port.link_layer,
770 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
771 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
772 ? "Ethernet" : "Unknown"));
776 * Put in the log file the RDMA gid addressing information,
777 * useful for folks who have trouble understanding the
778 * RDMA device hierarchy in the kernel.
780 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
782 char sgid[33];
783 char dgid[33];
784 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
785 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
786 trace_qemu_rdma_dump_gid(who, sgid, dgid);
790 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
791 * We will try the next addrinfo struct, and fail if there are
792 * no other valid addresses to bind against.
794 * If user is listening on '[::]', then we will not have a opened a device
795 * yet and have no way of verifying if the device is RoCE or not.
797 * In this case, the source VM will throw an error for ALL types of
798 * connections (both IPv4 and IPv6) if the destination machine does not have
799 * a regular infiniband network available for use.
801 * The only way to guarantee that an error is thrown for broken kernels is
802 * for the management software to choose a *specific* interface at bind time
803 * and validate what time of hardware it is.
805 * Unfortunately, this puts the user in a fix:
807 * If the source VM connects with an IPv4 address without knowing that the
808 * destination has bound to '[::]' the migration will unconditionally fail
809 * unless the management software is explicitly listening on the IPv4
810 * address while using a RoCE-based device.
812 * If the source VM connects with an IPv6 address, then we're OK because we can
813 * throw an error on the source (and similarly on the destination).
815 * But in mixed environments, this will be broken for a while until it is fixed
816 * inside linux.
818 * We do provide a *tiny* bit of help in this function: We can list all of the
819 * devices in the system and check to see if all the devices are RoCE or
820 * Infiniband.
822 * If we detect that we have a *pure* RoCE environment, then we can safely
823 * thrown an error even if the management software has specified '[::]' as the
824 * bind address.
826 * However, if there is are multiple hetergeneous devices, then we cannot make
827 * this assumption and the user just has to be sure they know what they are
828 * doing.
830 * Patches are being reviewed on linux-rdma.
832 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
834 struct ibv_port_attr port_attr;
836 /* This bug only exists in linux, to our knowledge. */
837 #ifdef CONFIG_LINUX
840 * Verbs are only NULL if management has bound to '[::]'.
842 * Let's iterate through all the devices and see if there any pure IB
843 * devices (non-ethernet).
845 * If not, then we can safely proceed with the migration.
846 * Otherwise, there are no guarantees until the bug is fixed in linux.
848 if (!verbs) {
849 int num_devices, x;
850 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
851 bool roce_found = false;
852 bool ib_found = false;
854 for (x = 0; x < num_devices; x++) {
855 verbs = ibv_open_device(dev_list[x]);
856 if (!verbs) {
857 if (errno == EPERM) {
858 continue;
859 } else {
860 return -EINVAL;
864 if (ibv_query_port(verbs, 1, &port_attr)) {
865 ibv_close_device(verbs);
866 ERROR(errp, "Could not query initial IB port");
867 return -EINVAL;
870 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
871 ib_found = true;
872 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
873 roce_found = true;
876 ibv_close_device(verbs);
880 if (roce_found) {
881 if (ib_found) {
882 fprintf(stderr, "WARN: migrations may fail:"
883 " IPv6 over RoCE / iWARP in linux"
884 " is broken. But since you appear to have a"
885 " mixed RoCE / IB environment, be sure to only"
886 " migrate over the IB fabric until the kernel "
887 " fixes the bug.\n");
888 } else {
889 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
890 " and your management software has specified '[::]'"
891 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
892 return -ENONET;
896 return 0;
900 * If we have a verbs context, that means that some other than '[::]' was
901 * used by the management software for binding. In which case we can
902 * actually warn the user about a potentially broken kernel.
905 /* IB ports start with 1, not 0 */
906 if (ibv_query_port(verbs, 1, &port_attr)) {
907 ERROR(errp, "Could not query initial IB port");
908 return -EINVAL;
911 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
912 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
913 "(but patches on linux-rdma in progress)");
914 return -ENONET;
917 #endif
919 return 0;
923 * Figure out which RDMA device corresponds to the requested IP hostname
924 * Also create the initial connection manager identifiers for opening
925 * the connection.
927 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
929 int ret;
930 struct rdma_addrinfo *res;
931 char port_str[16];
932 struct rdma_cm_event *cm_event;
933 char ip[40] = "unknown";
934 struct rdma_addrinfo *e;
936 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
937 ERROR(errp, "RDMA hostname has not been set");
938 return -EINVAL;
941 /* create CM channel */
942 rdma->channel = rdma_create_event_channel();
943 if (!rdma->channel) {
944 ERROR(errp, "could not create CM channel");
945 return -EINVAL;
948 /* create CM id */
949 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
950 if (ret) {
951 ERROR(errp, "could not create channel id");
952 goto err_resolve_create_id;
955 snprintf(port_str, 16, "%d", rdma->port);
956 port_str[15] = '\0';
958 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
959 if (ret < 0) {
960 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
961 goto err_resolve_get_addr;
964 for (e = res; e != NULL; e = e->ai_next) {
965 inet_ntop(e->ai_family,
966 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
967 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
969 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
970 RDMA_RESOLVE_TIMEOUT_MS);
971 if (!ret) {
972 if (e->ai_family == AF_INET6) {
973 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
974 if (ret) {
975 continue;
978 goto route;
982 ERROR(errp, "could not resolve address %s", rdma->host);
983 goto err_resolve_get_addr;
985 route:
986 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
988 ret = rdma_get_cm_event(rdma->channel, &cm_event);
989 if (ret) {
990 ERROR(errp, "could not perform event_addr_resolved");
991 goto err_resolve_get_addr;
994 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
995 ERROR(errp, "result not equal to event_addr_resolved %s",
996 rdma_event_str(cm_event->event));
997 perror("rdma_resolve_addr");
998 rdma_ack_cm_event(cm_event);
999 ret = -EINVAL;
1000 goto err_resolve_get_addr;
1002 rdma_ack_cm_event(cm_event);
1004 /* resolve route */
1005 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1006 if (ret) {
1007 ERROR(errp, "could not resolve rdma route");
1008 goto err_resolve_get_addr;
1011 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1012 if (ret) {
1013 ERROR(errp, "could not perform event_route_resolved");
1014 goto err_resolve_get_addr;
1016 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1017 ERROR(errp, "result not equal to event_route_resolved: %s",
1018 rdma_event_str(cm_event->event));
1019 rdma_ack_cm_event(cm_event);
1020 ret = -EINVAL;
1021 goto err_resolve_get_addr;
1023 rdma_ack_cm_event(cm_event);
1024 rdma->verbs = rdma->cm_id->verbs;
1025 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1026 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1027 return 0;
1029 err_resolve_get_addr:
1030 rdma_destroy_id(rdma->cm_id);
1031 rdma->cm_id = NULL;
1032 err_resolve_create_id:
1033 rdma_destroy_event_channel(rdma->channel);
1034 rdma->channel = NULL;
1035 return ret;
1039 * Create protection domain and completion queues
1041 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1043 /* allocate pd */
1044 rdma->pd = ibv_alloc_pd(rdma->verbs);
1045 if (!rdma->pd) {
1046 error_report("failed to allocate protection domain");
1047 return -1;
1050 /* create completion channel */
1051 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1052 if (!rdma->comp_channel) {
1053 error_report("failed to allocate completion channel");
1054 goto err_alloc_pd_cq;
1058 * Completion queue can be filled by both read and write work requests,
1059 * so must reflect the sum of both possible queue sizes.
1061 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1062 NULL, rdma->comp_channel, 0);
1063 if (!rdma->cq) {
1064 error_report("failed to allocate completion queue");
1065 goto err_alloc_pd_cq;
1068 return 0;
1070 err_alloc_pd_cq:
1071 if (rdma->pd) {
1072 ibv_dealloc_pd(rdma->pd);
1074 if (rdma->comp_channel) {
1075 ibv_destroy_comp_channel(rdma->comp_channel);
1077 rdma->pd = NULL;
1078 rdma->comp_channel = NULL;
1079 return -1;
1084 * Create queue pairs.
1086 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1088 struct ibv_qp_init_attr attr = { 0 };
1089 int ret;
1091 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1092 attr.cap.max_recv_wr = 3;
1093 attr.cap.max_send_sge = 1;
1094 attr.cap.max_recv_sge = 1;
1095 attr.send_cq = rdma->cq;
1096 attr.recv_cq = rdma->cq;
1097 attr.qp_type = IBV_QPT_RC;
1099 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1100 if (ret) {
1101 return -1;
1104 rdma->qp = rdma->cm_id->qp;
1105 return 0;
1108 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1110 int i;
1111 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1113 for (i = 0; i < local->nb_blocks; i++) {
1114 local->block[i].mr =
1115 ibv_reg_mr(rdma->pd,
1116 local->block[i].local_host_addr,
1117 local->block[i].length,
1118 IBV_ACCESS_LOCAL_WRITE |
1119 IBV_ACCESS_REMOTE_WRITE
1121 if (!local->block[i].mr) {
1122 perror("Failed to register local dest ram block!\n");
1123 break;
1125 rdma->total_registrations++;
1128 if (i >= local->nb_blocks) {
1129 return 0;
1132 for (i--; i >= 0; i--) {
1133 ibv_dereg_mr(local->block[i].mr);
1134 rdma->total_registrations--;
1137 return -1;
1142 * Find the ram block that corresponds to the page requested to be
1143 * transmitted by QEMU.
1145 * Once the block is found, also identify which 'chunk' within that
1146 * block that the page belongs to.
1148 * This search cannot fail or the migration will fail.
1150 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1151 uintptr_t block_offset,
1152 uint64_t offset,
1153 uint64_t length,
1154 uint64_t *block_index,
1155 uint64_t *chunk_index)
1157 uint64_t current_addr = block_offset + offset;
1158 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1159 (void *) block_offset);
1160 assert(block);
1161 assert(current_addr >= block->offset);
1162 assert((current_addr + length) <= (block->offset + block->length));
1164 *block_index = block->index;
1165 *chunk_index = ram_chunk_index(block->local_host_addr,
1166 block->local_host_addr + (current_addr - block->offset));
1168 return 0;
1172 * Register a chunk with IB. If the chunk was already registered
1173 * previously, then skip.
1175 * Also return the keys associated with the registration needed
1176 * to perform the actual RDMA operation.
1178 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1179 RDMALocalBlock *block, uintptr_t host_addr,
1180 uint32_t *lkey, uint32_t *rkey, int chunk,
1181 uint8_t *chunk_start, uint8_t *chunk_end)
1183 if (block->mr) {
1184 if (lkey) {
1185 *lkey = block->mr->lkey;
1187 if (rkey) {
1188 *rkey = block->mr->rkey;
1190 return 0;
1193 /* allocate memory to store chunk MRs */
1194 if (!block->pmr) {
1195 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1199 * If 'rkey', then we're the destination, so grant access to the source.
1201 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1203 if (!block->pmr[chunk]) {
1204 uint64_t len = chunk_end - chunk_start;
1206 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1208 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1209 chunk_start, len,
1210 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1211 IBV_ACCESS_REMOTE_WRITE) : 0));
1213 if (!block->pmr[chunk]) {
1214 perror("Failed to register chunk!");
1215 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1216 " start %" PRIuPTR " end %" PRIuPTR
1217 " host %" PRIuPTR
1218 " local %" PRIuPTR " registrations: %d\n",
1219 block->index, chunk, (uintptr_t)chunk_start,
1220 (uintptr_t)chunk_end, host_addr,
1221 (uintptr_t)block->local_host_addr,
1222 rdma->total_registrations);
1223 return -1;
1225 rdma->total_registrations++;
1228 if (lkey) {
1229 *lkey = block->pmr[chunk]->lkey;
1231 if (rkey) {
1232 *rkey = block->pmr[chunk]->rkey;
1234 return 0;
1238 * Register (at connection time) the memory used for control
1239 * channel messages.
1241 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1243 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1244 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1245 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1246 if (rdma->wr_data[idx].control_mr) {
1247 rdma->total_registrations++;
1248 return 0;
1250 error_report("qemu_rdma_reg_control failed");
1251 return -1;
1254 const char *print_wrid(int wrid)
1256 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1257 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1259 return wrid_desc[wrid];
1263 * RDMA requires memory registration (mlock/pinning), but this is not good for
1264 * overcommitment.
1266 * In preparation for the future where LRU information or workload-specific
1267 * writable writable working set memory access behavior is available to QEMU
1268 * it would be nice to have in place the ability to UN-register/UN-pin
1269 * particular memory regions from the RDMA hardware when it is determine that
1270 * those regions of memory will likely not be accessed again in the near future.
1272 * While we do not yet have such information right now, the following
1273 * compile-time option allows us to perform a non-optimized version of this
1274 * behavior.
1276 * By uncommenting this option, you will cause *all* RDMA transfers to be
1277 * unregistered immediately after the transfer completes on both sides of the
1278 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1280 * This will have a terrible impact on migration performance, so until future
1281 * workload information or LRU information is available, do not attempt to use
1282 * this feature except for basic testing.
1284 //#define RDMA_UNREGISTRATION_EXAMPLE
1287 * Perform a non-optimized memory unregistration after every transfer
1288 * for demonstration purposes, only if pin-all is not requested.
1290 * Potential optimizations:
1291 * 1. Start a new thread to run this function continuously
1292 - for bit clearing
1293 - and for receipt of unregister messages
1294 * 2. Use an LRU.
1295 * 3. Use workload hints.
1297 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1299 while (rdma->unregistrations[rdma->unregister_current]) {
1300 int ret;
1301 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1302 uint64_t chunk =
1303 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1304 uint64_t index =
1305 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1306 RDMALocalBlock *block =
1307 &(rdma->local_ram_blocks.block[index]);
1308 RDMARegister reg = { .current_index = index };
1309 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1311 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1312 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1313 .repeat = 1,
1316 trace_qemu_rdma_unregister_waiting_proc(chunk,
1317 rdma->unregister_current);
1319 rdma->unregistrations[rdma->unregister_current] = 0;
1320 rdma->unregister_current++;
1322 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1323 rdma->unregister_current = 0;
1328 * Unregistration is speculative (because migration is single-threaded
1329 * and we cannot break the protocol's inifinband message ordering).
1330 * Thus, if the memory is currently being used for transmission,
1331 * then abort the attempt to unregister and try again
1332 * later the next time a completion is received for this memory.
1334 clear_bit(chunk, block->unregister_bitmap);
1336 if (test_bit(chunk, block->transit_bitmap)) {
1337 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1338 continue;
1341 trace_qemu_rdma_unregister_waiting_send(chunk);
1343 ret = ibv_dereg_mr(block->pmr[chunk]);
1344 block->pmr[chunk] = NULL;
1345 block->remote_keys[chunk] = 0;
1347 if (ret != 0) {
1348 perror("unregistration chunk failed");
1349 return -ret;
1351 rdma->total_registrations--;
1353 reg.key.chunk = chunk;
1354 register_to_network(rdma, &reg);
1355 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1356 &resp, NULL, NULL);
1357 if (ret < 0) {
1358 return ret;
1361 trace_qemu_rdma_unregister_waiting_complete(chunk);
1364 return 0;
1367 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1368 uint64_t chunk)
1370 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1372 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1373 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1375 return result;
1379 * Set bit for unregistration in the next iteration.
1380 * We cannot transmit right here, but will unpin later.
1382 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1383 uint64_t chunk, uint64_t wr_id)
1385 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1386 error_report("rdma migration: queue is full");
1387 } else {
1388 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1390 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1391 trace_qemu_rdma_signal_unregister_append(chunk,
1392 rdma->unregister_next);
1394 rdma->unregistrations[rdma->unregister_next++] =
1395 qemu_rdma_make_wrid(wr_id, index, chunk);
1397 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1398 rdma->unregister_next = 0;
1400 } else {
1401 trace_qemu_rdma_signal_unregister_already(chunk);
1407 * Consult the connection manager to see a work request
1408 * (of any kind) has completed.
1409 * Return the work request ID that completed.
1411 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1412 uint32_t *byte_len)
1414 int ret;
1415 struct ibv_wc wc;
1416 uint64_t wr_id;
1418 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1420 if (!ret) {
1421 *wr_id_out = RDMA_WRID_NONE;
1422 return 0;
1425 if (ret < 0) {
1426 error_report("ibv_poll_cq return %d", ret);
1427 return ret;
1430 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1432 if (wc.status != IBV_WC_SUCCESS) {
1433 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1434 wc.status, ibv_wc_status_str(wc.status));
1435 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1437 return -1;
1440 if (rdma->control_ready_expected &&
1441 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1442 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1443 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1444 rdma->control_ready_expected = 0;
1447 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1448 uint64_t chunk =
1449 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1450 uint64_t index =
1451 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1452 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1454 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1455 index, chunk, block->local_host_addr,
1456 (void *)(uintptr_t)block->remote_host_addr);
1458 clear_bit(chunk, block->transit_bitmap);
1460 if (rdma->nb_sent > 0) {
1461 rdma->nb_sent--;
1464 if (!rdma->pin_all) {
1466 * FYI: If one wanted to signal a specific chunk to be unregistered
1467 * using LRU or workload-specific information, this is the function
1468 * you would call to do so. That chunk would then get asynchronously
1469 * unregistered later.
1471 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1472 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1473 #endif
1475 } else {
1476 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1479 *wr_id_out = wc.wr_id;
1480 if (byte_len) {
1481 *byte_len = wc.byte_len;
1484 return 0;
1487 /* Wait for activity on the completion channel.
1488 * Returns 0 on success, none-0 on error.
1490 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1492 struct rdma_cm_event *cm_event;
1493 int ret = -1;
1496 * Coroutine doesn't start until migration_fd_process_incoming()
1497 * so don't yield unless we know we're running inside of a coroutine.
1499 if (rdma->migration_started_on_destination &&
1500 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1501 yield_until_fd_readable(rdma->comp_channel->fd);
1502 } else {
1503 /* This is the source side, we're in a separate thread
1504 * or destination prior to migration_fd_process_incoming()
1505 * after postcopy, the destination also in a seprate thread.
1506 * we can't yield; so we have to poll the fd.
1507 * But we need to be able to handle 'cancel' or an error
1508 * without hanging forever.
1510 while (!rdma->error_state && !rdma->received_error) {
1511 GPollFD pfds[2];
1512 pfds[0].fd = rdma->comp_channel->fd;
1513 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1514 pfds[0].revents = 0;
1516 pfds[1].fd = rdma->channel->fd;
1517 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1518 pfds[1].revents = 0;
1520 /* 0.1s timeout, should be fine for a 'cancel' */
1521 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1522 case 2:
1523 case 1: /* fd active */
1524 if (pfds[0].revents) {
1525 return 0;
1528 if (pfds[1].revents) {
1529 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1530 if (!ret) {
1531 rdma_ack_cm_event(cm_event);
1534 error_report("receive cm event while wait comp channel,"
1535 "cm event is %d", cm_event->event);
1536 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1537 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1538 return -EPIPE;
1541 break;
1543 case 0: /* Timeout, go around again */
1544 break;
1546 default: /* Error of some type -
1547 * I don't trust errno from qemu_poll_ns
1549 error_report("%s: poll failed", __func__);
1550 return -EPIPE;
1553 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1554 /* Bail out and let the cancellation happen */
1555 return -EPIPE;
1560 if (rdma->received_error) {
1561 return -EPIPE;
1563 return rdma->error_state;
1567 * Block until the next work request has completed.
1569 * First poll to see if a work request has already completed,
1570 * otherwise block.
1572 * If we encounter completed work requests for IDs other than
1573 * the one we're interested in, then that's generally an error.
1575 * The only exception is actual RDMA Write completions. These
1576 * completions only need to be recorded, but do not actually
1577 * need further processing.
1579 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1580 uint32_t *byte_len)
1582 int num_cq_events = 0, ret = 0;
1583 struct ibv_cq *cq;
1584 void *cq_ctx;
1585 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1587 if (ibv_req_notify_cq(rdma->cq, 0)) {
1588 return -1;
1590 /* poll cq first */
1591 while (wr_id != wrid_requested) {
1592 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1593 if (ret < 0) {
1594 return ret;
1597 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1599 if (wr_id == RDMA_WRID_NONE) {
1600 break;
1602 if (wr_id != wrid_requested) {
1603 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1604 wrid_requested, print_wrid(wr_id), wr_id);
1608 if (wr_id == wrid_requested) {
1609 return 0;
1612 while (1) {
1613 ret = qemu_rdma_wait_comp_channel(rdma);
1614 if (ret) {
1615 goto err_block_for_wrid;
1618 ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1619 if (ret) {
1620 perror("ibv_get_cq_event");
1621 goto err_block_for_wrid;
1624 num_cq_events++;
1626 ret = -ibv_req_notify_cq(cq, 0);
1627 if (ret) {
1628 goto err_block_for_wrid;
1631 while (wr_id != wrid_requested) {
1632 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1633 if (ret < 0) {
1634 goto err_block_for_wrid;
1637 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1639 if (wr_id == RDMA_WRID_NONE) {
1640 break;
1642 if (wr_id != wrid_requested) {
1643 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1644 wrid_requested, print_wrid(wr_id), wr_id);
1648 if (wr_id == wrid_requested) {
1649 goto success_block_for_wrid;
1653 success_block_for_wrid:
1654 if (num_cq_events) {
1655 ibv_ack_cq_events(cq, num_cq_events);
1657 return 0;
1659 err_block_for_wrid:
1660 if (num_cq_events) {
1661 ibv_ack_cq_events(cq, num_cq_events);
1664 rdma->error_state = ret;
1665 return ret;
1669 * Post a SEND message work request for the control channel
1670 * containing some data and block until the post completes.
1672 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1673 RDMAControlHeader *head)
1675 int ret = 0;
1676 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1677 struct ibv_send_wr *bad_wr;
1678 struct ibv_sge sge = {
1679 .addr = (uintptr_t)(wr->control),
1680 .length = head->len + sizeof(RDMAControlHeader),
1681 .lkey = wr->control_mr->lkey,
1683 struct ibv_send_wr send_wr = {
1684 .wr_id = RDMA_WRID_SEND_CONTROL,
1685 .opcode = IBV_WR_SEND,
1686 .send_flags = IBV_SEND_SIGNALED,
1687 .sg_list = &sge,
1688 .num_sge = 1,
1691 trace_qemu_rdma_post_send_control(control_desc(head->type));
1694 * We don't actually need to do a memcpy() in here if we used
1695 * the "sge" properly, but since we're only sending control messages
1696 * (not RAM in a performance-critical path), then its OK for now.
1698 * The copy makes the RDMAControlHeader simpler to manipulate
1699 * for the time being.
1701 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1702 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1703 control_to_network((void *) wr->control);
1705 if (buf) {
1706 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1710 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1712 if (ret > 0) {
1713 error_report("Failed to use post IB SEND for control");
1714 return -ret;
1717 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1718 if (ret < 0) {
1719 error_report("rdma migration: send polling control error");
1722 return ret;
1726 * Post a RECV work request in anticipation of some future receipt
1727 * of data on the control channel.
1729 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1731 struct ibv_recv_wr *bad_wr;
1732 struct ibv_sge sge = {
1733 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1734 .length = RDMA_CONTROL_MAX_BUFFER,
1735 .lkey = rdma->wr_data[idx].control_mr->lkey,
1738 struct ibv_recv_wr recv_wr = {
1739 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1740 .sg_list = &sge,
1741 .num_sge = 1,
1745 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1746 return -1;
1749 return 0;
1753 * Block and wait for a RECV control channel message to arrive.
1755 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1756 RDMAControlHeader *head, int expecting, int idx)
1758 uint32_t byte_len;
1759 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1760 &byte_len);
1762 if (ret < 0) {
1763 error_report("rdma migration: recv polling control error!");
1764 return ret;
1767 network_to_control((void *) rdma->wr_data[idx].control);
1768 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1770 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1772 if (expecting == RDMA_CONTROL_NONE) {
1773 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1774 head->type);
1775 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1776 error_report("Was expecting a %s (%d) control message"
1777 ", but got: %s (%d), length: %d",
1778 control_desc(expecting), expecting,
1779 control_desc(head->type), head->type, head->len);
1780 if (head->type == RDMA_CONTROL_ERROR) {
1781 rdma->received_error = true;
1783 return -EIO;
1785 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1786 error_report("too long length: %d", head->len);
1787 return -EINVAL;
1789 if (sizeof(*head) + head->len != byte_len) {
1790 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1791 return -EINVAL;
1794 return 0;
1798 * When a RECV work request has completed, the work request's
1799 * buffer is pointed at the header.
1801 * This will advance the pointer to the data portion
1802 * of the control message of the work request's buffer that
1803 * was populated after the work request finished.
1805 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1806 RDMAControlHeader *head)
1808 rdma->wr_data[idx].control_len = head->len;
1809 rdma->wr_data[idx].control_curr =
1810 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1814 * This is an 'atomic' high-level operation to deliver a single, unified
1815 * control-channel message.
1817 * Additionally, if the user is expecting some kind of reply to this message,
1818 * they can request a 'resp' response message be filled in by posting an
1819 * additional work request on behalf of the user and waiting for an additional
1820 * completion.
1822 * The extra (optional) response is used during registration to us from having
1823 * to perform an *additional* exchange of message just to provide a response by
1824 * instead piggy-backing on the acknowledgement.
1826 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1827 uint8_t *data, RDMAControlHeader *resp,
1828 int *resp_idx,
1829 int (*callback)(RDMAContext *rdma))
1831 int ret = 0;
1834 * Wait until the dest is ready before attempting to deliver the message
1835 * by waiting for a READY message.
1837 if (rdma->control_ready_expected) {
1838 RDMAControlHeader resp;
1839 ret = qemu_rdma_exchange_get_response(rdma,
1840 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1841 if (ret < 0) {
1842 return ret;
1847 * If the user is expecting a response, post a WR in anticipation of it.
1849 if (resp) {
1850 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1851 if (ret) {
1852 error_report("rdma migration: error posting"
1853 " extra control recv for anticipated result!");
1854 return ret;
1859 * Post a WR to replace the one we just consumed for the READY message.
1861 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1862 if (ret) {
1863 error_report("rdma migration: error posting first control recv!");
1864 return ret;
1868 * Deliver the control message that was requested.
1870 ret = qemu_rdma_post_send_control(rdma, data, head);
1872 if (ret < 0) {
1873 error_report("Failed to send control buffer!");
1874 return ret;
1878 * If we're expecting a response, block and wait for it.
1880 if (resp) {
1881 if (callback) {
1882 trace_qemu_rdma_exchange_send_issue_callback();
1883 ret = callback(rdma);
1884 if (ret < 0) {
1885 return ret;
1889 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1890 ret = qemu_rdma_exchange_get_response(rdma, resp,
1891 resp->type, RDMA_WRID_DATA);
1893 if (ret < 0) {
1894 return ret;
1897 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1898 if (resp_idx) {
1899 *resp_idx = RDMA_WRID_DATA;
1901 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1904 rdma->control_ready_expected = 1;
1906 return 0;
1910 * This is an 'atomic' high-level operation to receive a single, unified
1911 * control-channel message.
1913 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1914 int expecting)
1916 RDMAControlHeader ready = {
1917 .len = 0,
1918 .type = RDMA_CONTROL_READY,
1919 .repeat = 1,
1921 int ret;
1924 * Inform the source that we're ready to receive a message.
1926 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1928 if (ret < 0) {
1929 error_report("Failed to send control buffer!");
1930 return ret;
1934 * Block and wait for the message.
1936 ret = qemu_rdma_exchange_get_response(rdma, head,
1937 expecting, RDMA_WRID_READY);
1939 if (ret < 0) {
1940 return ret;
1943 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1946 * Post a new RECV work request to replace the one we just consumed.
1948 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1949 if (ret) {
1950 error_report("rdma migration: error posting second control recv!");
1951 return ret;
1954 return 0;
1958 * Write an actual chunk of memory using RDMA.
1960 * If we're using dynamic registration on the dest-side, we have to
1961 * send a registration command first.
1963 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1964 int current_index, uint64_t current_addr,
1965 uint64_t length)
1967 struct ibv_sge sge;
1968 struct ibv_send_wr send_wr = { 0 };
1969 struct ibv_send_wr *bad_wr;
1970 int reg_result_idx, ret, count = 0;
1971 uint64_t chunk, chunks;
1972 uint8_t *chunk_start, *chunk_end;
1973 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1974 RDMARegister reg;
1975 RDMARegisterResult *reg_result;
1976 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1977 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1978 .type = RDMA_CONTROL_REGISTER_REQUEST,
1979 .repeat = 1,
1982 retry:
1983 sge.addr = (uintptr_t)(block->local_host_addr +
1984 (current_addr - block->offset));
1985 sge.length = length;
1987 chunk = ram_chunk_index(block->local_host_addr,
1988 (uint8_t *)(uintptr_t)sge.addr);
1989 chunk_start = ram_chunk_start(block, chunk);
1991 if (block->is_ram_block) {
1992 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1994 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1995 chunks--;
1997 } else {
1998 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2000 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2001 chunks--;
2005 trace_qemu_rdma_write_one_top(chunks + 1,
2006 (chunks + 1) *
2007 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2009 chunk_end = ram_chunk_end(block, chunk + chunks);
2011 if (!rdma->pin_all) {
2012 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2013 qemu_rdma_unregister_waiting(rdma);
2014 #endif
2017 while (test_bit(chunk, block->transit_bitmap)) {
2018 (void)count;
2019 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2020 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2022 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2024 if (ret < 0) {
2025 error_report("Failed to Wait for previous write to complete "
2026 "block %d chunk %" PRIu64
2027 " current %" PRIu64 " len %" PRIu64 " %d",
2028 current_index, chunk, sge.addr, length, rdma->nb_sent);
2029 return ret;
2033 if (!rdma->pin_all || !block->is_ram_block) {
2034 if (!block->remote_keys[chunk]) {
2036 * This chunk has not yet been registered, so first check to see
2037 * if the entire chunk is zero. If so, tell the other size to
2038 * memset() + madvise() the entire chunk without RDMA.
2041 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2042 RDMACompress comp = {
2043 .offset = current_addr,
2044 .value = 0,
2045 .block_idx = current_index,
2046 .length = length,
2049 head.len = sizeof(comp);
2050 head.type = RDMA_CONTROL_COMPRESS;
2052 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2053 current_index, current_addr);
2055 compress_to_network(rdma, &comp);
2056 ret = qemu_rdma_exchange_send(rdma, &head,
2057 (uint8_t *) &comp, NULL, NULL, NULL);
2059 if (ret < 0) {
2060 return -EIO;
2063 acct_update_position(f, sge.length, true);
2065 return 1;
2069 * Otherwise, tell other side to register.
2071 reg.current_index = current_index;
2072 if (block->is_ram_block) {
2073 reg.key.current_addr = current_addr;
2074 } else {
2075 reg.key.chunk = chunk;
2077 reg.chunks = chunks;
2079 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2080 current_addr);
2082 register_to_network(rdma, &reg);
2083 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2084 &resp, &reg_result_idx, NULL);
2085 if (ret < 0) {
2086 return ret;
2089 /* try to overlap this single registration with the one we sent. */
2090 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2091 &sge.lkey, NULL, chunk,
2092 chunk_start, chunk_end)) {
2093 error_report("cannot get lkey");
2094 return -EINVAL;
2097 reg_result = (RDMARegisterResult *)
2098 rdma->wr_data[reg_result_idx].control_curr;
2100 network_to_result(reg_result);
2102 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2103 reg_result->rkey, chunk);
2105 block->remote_keys[chunk] = reg_result->rkey;
2106 block->remote_host_addr = reg_result->host_addr;
2107 } else {
2108 /* already registered before */
2109 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2110 &sge.lkey, NULL, chunk,
2111 chunk_start, chunk_end)) {
2112 error_report("cannot get lkey!");
2113 return -EINVAL;
2117 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2118 } else {
2119 send_wr.wr.rdma.rkey = block->remote_rkey;
2121 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2122 &sge.lkey, NULL, chunk,
2123 chunk_start, chunk_end)) {
2124 error_report("cannot get lkey!");
2125 return -EINVAL;
2130 * Encode the ram block index and chunk within this wrid.
2131 * We will use this information at the time of completion
2132 * to figure out which bitmap to check against and then which
2133 * chunk in the bitmap to look for.
2135 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2136 current_index, chunk);
2138 send_wr.opcode = IBV_WR_RDMA_WRITE;
2139 send_wr.send_flags = IBV_SEND_SIGNALED;
2140 send_wr.sg_list = &sge;
2141 send_wr.num_sge = 1;
2142 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2143 (current_addr - block->offset);
2145 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2146 sge.length);
2149 * ibv_post_send() does not return negative error numbers,
2150 * per the specification they are positive - no idea why.
2152 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2154 if (ret == ENOMEM) {
2155 trace_qemu_rdma_write_one_queue_full();
2156 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2157 if (ret < 0) {
2158 error_report("rdma migration: failed to make "
2159 "room in full send queue! %d", ret);
2160 return ret;
2163 goto retry;
2165 } else if (ret > 0) {
2166 perror("rdma migration: post rdma write failed");
2167 return -ret;
2170 set_bit(chunk, block->transit_bitmap);
2171 acct_update_position(f, sge.length, false);
2172 rdma->total_writes++;
2174 return 0;
2178 * Push out any unwritten RDMA operations.
2180 * We support sending out multiple chunks at the same time.
2181 * Not all of them need to get signaled in the completion queue.
2183 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2185 int ret;
2187 if (!rdma->current_length) {
2188 return 0;
2191 ret = qemu_rdma_write_one(f, rdma,
2192 rdma->current_index, rdma->current_addr, rdma->current_length);
2194 if (ret < 0) {
2195 return ret;
2198 if (ret == 0) {
2199 rdma->nb_sent++;
2200 trace_qemu_rdma_write_flush(rdma->nb_sent);
2203 rdma->current_length = 0;
2204 rdma->current_addr = 0;
2206 return 0;
2209 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2210 uint64_t offset, uint64_t len)
2212 RDMALocalBlock *block;
2213 uint8_t *host_addr;
2214 uint8_t *chunk_end;
2216 if (rdma->current_index < 0) {
2217 return 0;
2220 if (rdma->current_chunk < 0) {
2221 return 0;
2224 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2225 host_addr = block->local_host_addr + (offset - block->offset);
2226 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2228 if (rdma->current_length == 0) {
2229 return 0;
2233 * Only merge into chunk sequentially.
2235 if (offset != (rdma->current_addr + rdma->current_length)) {
2236 return 0;
2239 if (offset < block->offset) {
2240 return 0;
2243 if ((offset + len) > (block->offset + block->length)) {
2244 return 0;
2247 if ((host_addr + len) > chunk_end) {
2248 return 0;
2251 return 1;
2255 * We're not actually writing here, but doing three things:
2257 * 1. Identify the chunk the buffer belongs to.
2258 * 2. If the chunk is full or the buffer doesn't belong to the current
2259 * chunk, then start a new chunk and flush() the old chunk.
2260 * 3. To keep the hardware busy, we also group chunks into batches
2261 * and only require that a batch gets acknowledged in the completion
2262 * qeueue instead of each individual chunk.
2264 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2265 uint64_t block_offset, uint64_t offset,
2266 uint64_t len)
2268 uint64_t current_addr = block_offset + offset;
2269 uint64_t index = rdma->current_index;
2270 uint64_t chunk = rdma->current_chunk;
2271 int ret;
2273 /* If we cannot merge it, we flush the current buffer first. */
2274 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2275 ret = qemu_rdma_write_flush(f, rdma);
2276 if (ret) {
2277 return ret;
2279 rdma->current_length = 0;
2280 rdma->current_addr = current_addr;
2282 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2283 offset, len, &index, &chunk);
2284 if (ret) {
2285 error_report("ram block search failed");
2286 return ret;
2288 rdma->current_index = index;
2289 rdma->current_chunk = chunk;
2292 /* merge it */
2293 rdma->current_length += len;
2295 /* flush it if buffer is too large */
2296 if (rdma->current_length >= RDMA_MERGE_MAX) {
2297 return qemu_rdma_write_flush(f, rdma);
2300 return 0;
2303 static void qemu_rdma_cleanup(RDMAContext *rdma)
2305 int idx;
2307 if (rdma->cm_id && rdma->connected) {
2308 if ((rdma->error_state ||
2309 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2310 !rdma->received_error) {
2311 RDMAControlHeader head = { .len = 0,
2312 .type = RDMA_CONTROL_ERROR,
2313 .repeat = 1,
2315 error_report("Early error. Sending error.");
2316 qemu_rdma_post_send_control(rdma, NULL, &head);
2319 rdma_disconnect(rdma->cm_id);
2320 trace_qemu_rdma_cleanup_disconnect();
2321 rdma->connected = false;
2324 g_free(rdma->dest_blocks);
2325 rdma->dest_blocks = NULL;
2327 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2328 if (rdma->wr_data[idx].control_mr) {
2329 rdma->total_registrations--;
2330 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2332 rdma->wr_data[idx].control_mr = NULL;
2335 if (rdma->local_ram_blocks.block) {
2336 while (rdma->local_ram_blocks.nb_blocks) {
2337 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2341 if (rdma->qp) {
2342 rdma_destroy_qp(rdma->cm_id);
2343 rdma->qp = NULL;
2345 if (rdma->cq) {
2346 ibv_destroy_cq(rdma->cq);
2347 rdma->cq = NULL;
2349 if (rdma->comp_channel) {
2350 ibv_destroy_comp_channel(rdma->comp_channel);
2351 rdma->comp_channel = NULL;
2353 if (rdma->pd) {
2354 ibv_dealloc_pd(rdma->pd);
2355 rdma->pd = NULL;
2357 if (rdma->cm_id) {
2358 rdma_destroy_id(rdma->cm_id);
2359 rdma->cm_id = NULL;
2362 /* the destination side, listen_id and channel is shared */
2363 if (rdma->listen_id) {
2364 if (!rdma->is_return_path) {
2365 rdma_destroy_id(rdma->listen_id);
2367 rdma->listen_id = NULL;
2369 if (rdma->channel) {
2370 if (!rdma->is_return_path) {
2371 rdma_destroy_event_channel(rdma->channel);
2373 rdma->channel = NULL;
2377 if (rdma->channel) {
2378 rdma_destroy_event_channel(rdma->channel);
2379 rdma->channel = NULL;
2381 g_free(rdma->host);
2382 rdma->host = NULL;
2386 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2388 int ret, idx;
2389 Error *local_err = NULL, **temp = &local_err;
2392 * Will be validated against destination's actual capabilities
2393 * after the connect() completes.
2395 rdma->pin_all = pin_all;
2397 ret = qemu_rdma_resolve_host(rdma, temp);
2398 if (ret) {
2399 goto err_rdma_source_init;
2402 ret = qemu_rdma_alloc_pd_cq(rdma);
2403 if (ret) {
2404 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2405 " limits may be too low. Please check $ ulimit -a # and "
2406 "search for 'ulimit -l' in the output");
2407 goto err_rdma_source_init;
2410 ret = qemu_rdma_alloc_qp(rdma);
2411 if (ret) {
2412 ERROR(temp, "rdma migration: error allocating qp!");
2413 goto err_rdma_source_init;
2416 ret = qemu_rdma_init_ram_blocks(rdma);
2417 if (ret) {
2418 ERROR(temp, "rdma migration: error initializing ram blocks!");
2419 goto err_rdma_source_init;
2422 /* Build the hash that maps from offset to RAMBlock */
2423 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2424 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2425 g_hash_table_insert(rdma->blockmap,
2426 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2427 &rdma->local_ram_blocks.block[idx]);
2430 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2431 ret = qemu_rdma_reg_control(rdma, idx);
2432 if (ret) {
2433 ERROR(temp, "rdma migration: error registering %d control!",
2434 idx);
2435 goto err_rdma_source_init;
2439 return 0;
2441 err_rdma_source_init:
2442 error_propagate(errp, local_err);
2443 qemu_rdma_cleanup(rdma);
2444 return -1;
2447 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2449 RDMACapabilities cap = {
2450 .version = RDMA_CONTROL_VERSION_CURRENT,
2451 .flags = 0,
2453 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2454 .retry_count = 5,
2455 .private_data = &cap,
2456 .private_data_len = sizeof(cap),
2458 struct rdma_cm_event *cm_event;
2459 int ret;
2462 * Only negotiate the capability with destination if the user
2463 * on the source first requested the capability.
2465 if (rdma->pin_all) {
2466 trace_qemu_rdma_connect_pin_all_requested();
2467 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2470 caps_to_network(&cap);
2472 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2473 if (ret) {
2474 ERROR(errp, "posting second control recv");
2475 goto err_rdma_source_connect;
2478 ret = rdma_connect(rdma->cm_id, &conn_param);
2479 if (ret) {
2480 perror("rdma_connect");
2481 ERROR(errp, "connecting to destination!");
2482 goto err_rdma_source_connect;
2485 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2486 if (ret) {
2487 perror("rdma_get_cm_event after rdma_connect");
2488 ERROR(errp, "connecting to destination!");
2489 rdma_ack_cm_event(cm_event);
2490 goto err_rdma_source_connect;
2493 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2494 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2495 ERROR(errp, "connecting to destination!");
2496 rdma_ack_cm_event(cm_event);
2497 goto err_rdma_source_connect;
2499 rdma->connected = true;
2501 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2502 network_to_caps(&cap);
2505 * Verify that the *requested* capabilities are supported by the destination
2506 * and disable them otherwise.
2508 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2509 ERROR(errp, "Server cannot support pinning all memory. "
2510 "Will register memory dynamically.");
2511 rdma->pin_all = false;
2514 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2516 rdma_ack_cm_event(cm_event);
2518 rdma->control_ready_expected = 1;
2519 rdma->nb_sent = 0;
2520 return 0;
2522 err_rdma_source_connect:
2523 qemu_rdma_cleanup(rdma);
2524 return -1;
2527 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2529 int ret, idx;
2530 struct rdma_cm_id *listen_id;
2531 char ip[40] = "unknown";
2532 struct rdma_addrinfo *res, *e;
2533 char port_str[16];
2535 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2536 rdma->wr_data[idx].control_len = 0;
2537 rdma->wr_data[idx].control_curr = NULL;
2540 if (!rdma->host || !rdma->host[0]) {
2541 ERROR(errp, "RDMA host is not set!");
2542 rdma->error_state = -EINVAL;
2543 return -1;
2545 /* create CM channel */
2546 rdma->channel = rdma_create_event_channel();
2547 if (!rdma->channel) {
2548 ERROR(errp, "could not create rdma event channel");
2549 rdma->error_state = -EINVAL;
2550 return -1;
2553 /* create CM id */
2554 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2555 if (ret) {
2556 ERROR(errp, "could not create cm_id!");
2557 goto err_dest_init_create_listen_id;
2560 snprintf(port_str, 16, "%d", rdma->port);
2561 port_str[15] = '\0';
2563 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2564 if (ret < 0) {
2565 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2566 goto err_dest_init_bind_addr;
2569 for (e = res; e != NULL; e = e->ai_next) {
2570 inet_ntop(e->ai_family,
2571 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2572 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2573 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2574 if (ret) {
2575 continue;
2577 if (e->ai_family == AF_INET6) {
2578 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2579 if (ret) {
2580 continue;
2583 break;
2586 if (!e) {
2587 ERROR(errp, "Error: could not rdma_bind_addr!");
2588 goto err_dest_init_bind_addr;
2591 rdma->listen_id = listen_id;
2592 qemu_rdma_dump_gid("dest_init", listen_id);
2593 return 0;
2595 err_dest_init_bind_addr:
2596 rdma_destroy_id(listen_id);
2597 err_dest_init_create_listen_id:
2598 rdma_destroy_event_channel(rdma->channel);
2599 rdma->channel = NULL;
2600 rdma->error_state = ret;
2601 return ret;
2605 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2606 RDMAContext *rdma)
2608 int idx;
2610 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2611 rdma_return_path->wr_data[idx].control_len = 0;
2612 rdma_return_path->wr_data[idx].control_curr = NULL;
2615 /*the CM channel and CM id is shared*/
2616 rdma_return_path->channel = rdma->channel;
2617 rdma_return_path->listen_id = rdma->listen_id;
2619 rdma->return_path = rdma_return_path;
2620 rdma_return_path->return_path = rdma;
2621 rdma_return_path->is_return_path = true;
2624 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2626 RDMAContext *rdma = NULL;
2627 InetSocketAddress *addr;
2629 if (host_port) {
2630 rdma = g_new0(RDMAContext, 1);
2631 rdma->current_index = -1;
2632 rdma->current_chunk = -1;
2634 addr = g_new(InetSocketAddress, 1);
2635 if (!inet_parse(addr, host_port, NULL)) {
2636 rdma->port = atoi(addr->port);
2637 rdma->host = g_strdup(addr->host);
2638 } else {
2639 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2640 g_free(rdma);
2641 rdma = NULL;
2644 qapi_free_InetSocketAddress(addr);
2647 return rdma;
2651 * QEMUFile interface to the control channel.
2652 * SEND messages for control only.
2653 * VM's ram is handled with regular RDMA messages.
2655 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2656 const struct iovec *iov,
2657 size_t niov,
2658 int *fds,
2659 size_t nfds,
2660 Error **errp)
2662 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2663 QEMUFile *f = rioc->file;
2664 RDMAContext *rdma;
2665 int ret;
2666 ssize_t done = 0;
2667 size_t i;
2668 size_t len = 0;
2670 rcu_read_lock();
2671 rdma = atomic_rcu_read(&rioc->rdmaout);
2673 if (!rdma) {
2674 rcu_read_unlock();
2675 return -EIO;
2678 CHECK_ERROR_STATE();
2681 * Push out any writes that
2682 * we're queued up for VM's ram.
2684 ret = qemu_rdma_write_flush(f, rdma);
2685 if (ret < 0) {
2686 rdma->error_state = ret;
2687 rcu_read_unlock();
2688 return ret;
2691 for (i = 0; i < niov; i++) {
2692 size_t remaining = iov[i].iov_len;
2693 uint8_t * data = (void *)iov[i].iov_base;
2694 while (remaining) {
2695 RDMAControlHeader head;
2697 len = MIN(remaining, RDMA_SEND_INCREMENT);
2698 remaining -= len;
2700 head.len = len;
2701 head.type = RDMA_CONTROL_QEMU_FILE;
2703 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2705 if (ret < 0) {
2706 rdma->error_state = ret;
2707 rcu_read_unlock();
2708 return ret;
2711 data += len;
2712 done += len;
2716 rcu_read_unlock();
2717 return done;
2720 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2721 size_t size, int idx)
2723 size_t len = 0;
2725 if (rdma->wr_data[idx].control_len) {
2726 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2728 len = MIN(size, rdma->wr_data[idx].control_len);
2729 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2730 rdma->wr_data[idx].control_curr += len;
2731 rdma->wr_data[idx].control_len -= len;
2734 return len;
2738 * QEMUFile interface to the control channel.
2739 * RDMA links don't use bytestreams, so we have to
2740 * return bytes to QEMUFile opportunistically.
2742 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2743 const struct iovec *iov,
2744 size_t niov,
2745 int **fds,
2746 size_t *nfds,
2747 Error **errp)
2749 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2750 RDMAContext *rdma;
2751 RDMAControlHeader head;
2752 int ret = 0;
2753 ssize_t i;
2754 size_t done = 0;
2756 rcu_read_lock();
2757 rdma = atomic_rcu_read(&rioc->rdmain);
2759 if (!rdma) {
2760 rcu_read_unlock();
2761 return -EIO;
2764 CHECK_ERROR_STATE();
2766 for (i = 0; i < niov; i++) {
2767 size_t want = iov[i].iov_len;
2768 uint8_t *data = (void *)iov[i].iov_base;
2771 * First, we hold on to the last SEND message we
2772 * were given and dish out the bytes until we run
2773 * out of bytes.
2775 ret = qemu_rdma_fill(rdma, data, want, 0);
2776 done += ret;
2777 want -= ret;
2778 /* Got what we needed, so go to next iovec */
2779 if (want == 0) {
2780 continue;
2783 /* If we got any data so far, then don't wait
2784 * for more, just return what we have */
2785 if (done > 0) {
2786 break;
2790 /* We've got nothing at all, so lets wait for
2791 * more to arrive
2793 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2795 if (ret < 0) {
2796 rdma->error_state = ret;
2797 rcu_read_unlock();
2798 return ret;
2802 * SEND was received with new bytes, now try again.
2804 ret = qemu_rdma_fill(rdma, data, want, 0);
2805 done += ret;
2806 want -= ret;
2808 /* Still didn't get enough, so lets just return */
2809 if (want) {
2810 if (done == 0) {
2811 rcu_read_unlock();
2812 return QIO_CHANNEL_ERR_BLOCK;
2813 } else {
2814 break;
2818 rcu_read_unlock();
2819 return done;
2823 * Block until all the outstanding chunks have been delivered by the hardware.
2825 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2827 int ret;
2829 if (qemu_rdma_write_flush(f, rdma) < 0) {
2830 return -EIO;
2833 while (rdma->nb_sent) {
2834 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2835 if (ret < 0) {
2836 error_report("rdma migration: complete polling error!");
2837 return -EIO;
2841 qemu_rdma_unregister_waiting(rdma);
2843 return 0;
2847 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2848 bool blocking,
2849 Error **errp)
2851 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2852 /* XXX we should make readv/writev actually honour this :-) */
2853 rioc->blocking = blocking;
2854 return 0;
2858 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2859 struct QIOChannelRDMASource {
2860 GSource parent;
2861 QIOChannelRDMA *rioc;
2862 GIOCondition condition;
2865 static gboolean
2866 qio_channel_rdma_source_prepare(GSource *source,
2867 gint *timeout)
2869 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2870 RDMAContext *rdma;
2871 GIOCondition cond = 0;
2872 *timeout = -1;
2874 rcu_read_lock();
2875 if (rsource->condition == G_IO_IN) {
2876 rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2877 } else {
2878 rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2881 if (!rdma) {
2882 error_report("RDMAContext is NULL when prepare Gsource");
2883 rcu_read_unlock();
2884 return FALSE;
2887 if (rdma->wr_data[0].control_len) {
2888 cond |= G_IO_IN;
2890 cond |= G_IO_OUT;
2892 rcu_read_unlock();
2893 return cond & rsource->condition;
2896 static gboolean
2897 qio_channel_rdma_source_check(GSource *source)
2899 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2900 RDMAContext *rdma;
2901 GIOCondition cond = 0;
2903 rcu_read_lock();
2904 if (rsource->condition == G_IO_IN) {
2905 rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2906 } else {
2907 rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2910 if (!rdma) {
2911 error_report("RDMAContext is NULL when check Gsource");
2912 rcu_read_unlock();
2913 return FALSE;
2916 if (rdma->wr_data[0].control_len) {
2917 cond |= G_IO_IN;
2919 cond |= G_IO_OUT;
2921 rcu_read_unlock();
2922 return cond & rsource->condition;
2925 static gboolean
2926 qio_channel_rdma_source_dispatch(GSource *source,
2927 GSourceFunc callback,
2928 gpointer user_data)
2930 QIOChannelFunc func = (QIOChannelFunc)callback;
2931 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2932 RDMAContext *rdma;
2933 GIOCondition cond = 0;
2935 rcu_read_lock();
2936 if (rsource->condition == G_IO_IN) {
2937 rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2938 } else {
2939 rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2942 if (!rdma) {
2943 error_report("RDMAContext is NULL when dispatch Gsource");
2944 rcu_read_unlock();
2945 return FALSE;
2948 if (rdma->wr_data[0].control_len) {
2949 cond |= G_IO_IN;
2951 cond |= G_IO_OUT;
2953 rcu_read_unlock();
2954 return (*func)(QIO_CHANNEL(rsource->rioc),
2955 (cond & rsource->condition),
2956 user_data);
2959 static void
2960 qio_channel_rdma_source_finalize(GSource *source)
2962 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
2964 object_unref(OBJECT(ssource->rioc));
2967 GSourceFuncs qio_channel_rdma_source_funcs = {
2968 qio_channel_rdma_source_prepare,
2969 qio_channel_rdma_source_check,
2970 qio_channel_rdma_source_dispatch,
2971 qio_channel_rdma_source_finalize
2974 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
2975 GIOCondition condition)
2977 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2978 QIOChannelRDMASource *ssource;
2979 GSource *source;
2981 source = g_source_new(&qio_channel_rdma_source_funcs,
2982 sizeof(QIOChannelRDMASource));
2983 ssource = (QIOChannelRDMASource *)source;
2985 ssource->rioc = rioc;
2986 object_ref(OBJECT(rioc));
2988 ssource->condition = condition;
2990 return source;
2993 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
2994 AioContext *ctx,
2995 IOHandler *io_read,
2996 IOHandler *io_write,
2997 void *opaque)
2999 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3000 if (io_read) {
3001 aio_set_fd_handler(ctx, rioc->rdmain->comp_channel->fd,
3002 false, io_read, io_write, NULL, opaque);
3003 } else {
3004 aio_set_fd_handler(ctx, rioc->rdmaout->comp_channel->fd,
3005 false, io_read, io_write, NULL, opaque);
3009 static int qio_channel_rdma_close(QIOChannel *ioc,
3010 Error **errp)
3012 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3013 RDMAContext *rdmain, *rdmaout;
3014 trace_qemu_rdma_close();
3016 rdmain = rioc->rdmain;
3017 if (rdmain) {
3018 atomic_rcu_set(&rioc->rdmain, NULL);
3021 rdmaout = rioc->rdmaout;
3022 if (rdmaout) {
3023 atomic_rcu_set(&rioc->rdmaout, NULL);
3026 synchronize_rcu();
3028 if (rdmain) {
3029 qemu_rdma_cleanup(rdmain);
3032 if (rdmaout) {
3033 qemu_rdma_cleanup(rdmaout);
3036 g_free(rdmain);
3037 g_free(rdmaout);
3039 return 0;
3042 static int
3043 qio_channel_rdma_shutdown(QIOChannel *ioc,
3044 QIOChannelShutdown how,
3045 Error **errp)
3047 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3048 RDMAContext *rdmain, *rdmaout;
3050 rcu_read_lock();
3052 rdmain = atomic_rcu_read(&rioc->rdmain);
3053 rdmaout = atomic_rcu_read(&rioc->rdmain);
3055 switch (how) {
3056 case QIO_CHANNEL_SHUTDOWN_READ:
3057 if (rdmain) {
3058 rdmain->error_state = -1;
3060 break;
3061 case QIO_CHANNEL_SHUTDOWN_WRITE:
3062 if (rdmaout) {
3063 rdmaout->error_state = -1;
3065 break;
3066 case QIO_CHANNEL_SHUTDOWN_BOTH:
3067 default:
3068 if (rdmain) {
3069 rdmain->error_state = -1;
3071 if (rdmaout) {
3072 rdmaout->error_state = -1;
3074 break;
3077 rcu_read_unlock();
3078 return 0;
3082 * Parameters:
3083 * @offset == 0 :
3084 * This means that 'block_offset' is a full virtual address that does not
3085 * belong to a RAMBlock of the virtual machine and instead
3086 * represents a private malloc'd memory area that the caller wishes to
3087 * transfer.
3089 * @offset != 0 :
3090 * Offset is an offset to be added to block_offset and used
3091 * to also lookup the corresponding RAMBlock.
3093 * @size > 0 :
3094 * Initiate an transfer this size.
3096 * @size == 0 :
3097 * A 'hint' or 'advice' that means that we wish to speculatively
3098 * and asynchronously unregister this memory. In this case, there is no
3099 * guarantee that the unregister will actually happen, for example,
3100 * if the memory is being actively transmitted. Additionally, the memory
3101 * may be re-registered at any future time if a write within the same
3102 * chunk was requested again, even if you attempted to unregister it
3103 * here.
3105 * @size < 0 : TODO, not yet supported
3106 * Unregister the memory NOW. This means that the caller does not
3107 * expect there to be any future RDMA transfers and we just want to clean
3108 * things up. This is used in case the upper layer owns the memory and
3109 * cannot wait for qemu_fclose() to occur.
3111 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3112 * sent. Usually, this will not be more than a few bytes of
3113 * the protocol because most transfers are sent asynchronously.
3115 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3116 ram_addr_t block_offset, ram_addr_t offset,
3117 size_t size, uint64_t *bytes_sent)
3119 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3120 RDMAContext *rdma;
3121 int ret;
3123 rcu_read_lock();
3124 rdma = atomic_rcu_read(&rioc->rdmaout);
3126 if (!rdma) {
3127 rcu_read_unlock();
3128 return -EIO;
3131 CHECK_ERROR_STATE();
3133 if (migrate_get_current()->state == MIGRATION_STATUS_POSTCOPY_ACTIVE) {
3134 rcu_read_unlock();
3135 return RAM_SAVE_CONTROL_NOT_SUPP;
3138 qemu_fflush(f);
3140 if (size > 0) {
3142 * Add this page to the current 'chunk'. If the chunk
3143 * is full, or the page doen't belong to the current chunk,
3144 * an actual RDMA write will occur and a new chunk will be formed.
3146 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3147 if (ret < 0) {
3148 error_report("rdma migration: write error! %d", ret);
3149 goto err;
3153 * We always return 1 bytes because the RDMA
3154 * protocol is completely asynchronous. We do not yet know
3155 * whether an identified chunk is zero or not because we're
3156 * waiting for other pages to potentially be merged with
3157 * the current chunk. So, we have to call qemu_update_position()
3158 * later on when the actual write occurs.
3160 if (bytes_sent) {
3161 *bytes_sent = 1;
3163 } else {
3164 uint64_t index, chunk;
3166 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3167 if (size < 0) {
3168 ret = qemu_rdma_drain_cq(f, rdma);
3169 if (ret < 0) {
3170 fprintf(stderr, "rdma: failed to synchronously drain"
3171 " completion queue before unregistration.\n");
3172 goto err;
3177 ret = qemu_rdma_search_ram_block(rdma, block_offset,
3178 offset, size, &index, &chunk);
3180 if (ret) {
3181 error_report("ram block search failed");
3182 goto err;
3185 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3188 * TODO: Synchronous, guaranteed unregistration (should not occur during
3189 * fast-path). Otherwise, unregisters will process on the next call to
3190 * qemu_rdma_drain_cq()
3191 if (size < 0) {
3192 qemu_rdma_unregister_waiting(rdma);
3198 * Drain the Completion Queue if possible, but do not block,
3199 * just poll.
3201 * If nothing to poll, the end of the iteration will do this
3202 * again to make sure we don't overflow the request queue.
3204 while (1) {
3205 uint64_t wr_id, wr_id_in;
3206 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3207 if (ret < 0) {
3208 error_report("rdma migration: polling error! %d", ret);
3209 goto err;
3212 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3214 if (wr_id == RDMA_WRID_NONE) {
3215 break;
3219 rcu_read_unlock();
3220 return RAM_SAVE_CONTROL_DELAYED;
3221 err:
3222 rdma->error_state = ret;
3223 rcu_read_unlock();
3224 return ret;
3227 static void rdma_accept_incoming_migration(void *opaque);
3229 static void rdma_cm_poll_handler(void *opaque)
3231 RDMAContext *rdma = opaque;
3232 int ret;
3233 struct rdma_cm_event *cm_event;
3234 MigrationIncomingState *mis = migration_incoming_get_current();
3236 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3237 if (ret) {
3238 error_report("get_cm_event failed %d", errno);
3239 return;
3241 rdma_ack_cm_event(cm_event);
3243 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3244 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3245 error_report("receive cm event, cm event is %d", cm_event->event);
3246 rdma->error_state = -EPIPE;
3247 if (rdma->return_path) {
3248 rdma->return_path->error_state = -EPIPE;
3251 if (mis->migration_incoming_co) {
3252 qemu_coroutine_enter(mis->migration_incoming_co);
3254 return;
3258 static int qemu_rdma_accept(RDMAContext *rdma)
3260 RDMACapabilities cap;
3261 struct rdma_conn_param conn_param = {
3262 .responder_resources = 2,
3263 .private_data = &cap,
3264 .private_data_len = sizeof(cap),
3266 struct rdma_cm_event *cm_event;
3267 struct ibv_context *verbs;
3268 int ret = -EINVAL;
3269 int idx;
3271 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3272 if (ret) {
3273 goto err_rdma_dest_wait;
3276 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3277 rdma_ack_cm_event(cm_event);
3278 goto err_rdma_dest_wait;
3281 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3283 network_to_caps(&cap);
3285 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3286 error_report("Unknown source RDMA version: %d, bailing...",
3287 cap.version);
3288 rdma_ack_cm_event(cm_event);
3289 goto err_rdma_dest_wait;
3293 * Respond with only the capabilities this version of QEMU knows about.
3295 cap.flags &= known_capabilities;
3298 * Enable the ones that we do know about.
3299 * Add other checks here as new ones are introduced.
3301 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3302 rdma->pin_all = true;
3305 rdma->cm_id = cm_event->id;
3306 verbs = cm_event->id->verbs;
3308 rdma_ack_cm_event(cm_event);
3310 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3312 caps_to_network(&cap);
3314 trace_qemu_rdma_accept_pin_verbsc(verbs);
3316 if (!rdma->verbs) {
3317 rdma->verbs = verbs;
3318 } else if (rdma->verbs != verbs) {
3319 error_report("ibv context not matching %p, %p!", rdma->verbs,
3320 verbs);
3321 goto err_rdma_dest_wait;
3324 qemu_rdma_dump_id("dest_init", verbs);
3326 ret = qemu_rdma_alloc_pd_cq(rdma);
3327 if (ret) {
3328 error_report("rdma migration: error allocating pd and cq!");
3329 goto err_rdma_dest_wait;
3332 ret = qemu_rdma_alloc_qp(rdma);
3333 if (ret) {
3334 error_report("rdma migration: error allocating qp!");
3335 goto err_rdma_dest_wait;
3338 ret = qemu_rdma_init_ram_blocks(rdma);
3339 if (ret) {
3340 error_report("rdma migration: error initializing ram blocks!");
3341 goto err_rdma_dest_wait;
3344 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3345 ret = qemu_rdma_reg_control(rdma, idx);
3346 if (ret) {
3347 error_report("rdma: error registering %d control", idx);
3348 goto err_rdma_dest_wait;
3352 /* Accept the second connection request for return path */
3353 if (migrate_postcopy() && !rdma->is_return_path) {
3354 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3355 NULL,
3356 (void *)(intptr_t)rdma->return_path);
3357 } else {
3358 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3359 NULL, rdma);
3362 ret = rdma_accept(rdma->cm_id, &conn_param);
3363 if (ret) {
3364 error_report("rdma_accept returns %d", ret);
3365 goto err_rdma_dest_wait;
3368 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3369 if (ret) {
3370 error_report("rdma_accept get_cm_event failed %d", ret);
3371 goto err_rdma_dest_wait;
3374 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3375 error_report("rdma_accept not event established");
3376 rdma_ack_cm_event(cm_event);
3377 goto err_rdma_dest_wait;
3380 rdma_ack_cm_event(cm_event);
3381 rdma->connected = true;
3383 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3384 if (ret) {
3385 error_report("rdma migration: error posting second control recv");
3386 goto err_rdma_dest_wait;
3389 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3391 return 0;
3393 err_rdma_dest_wait:
3394 rdma->error_state = ret;
3395 qemu_rdma_cleanup(rdma);
3396 return ret;
3399 static int dest_ram_sort_func(const void *a, const void *b)
3401 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3402 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3404 return (a_index < b_index) ? -1 : (a_index != b_index);
3408 * During each iteration of the migration, we listen for instructions
3409 * by the source VM to perform dynamic page registrations before they
3410 * can perform RDMA operations.
3412 * We respond with the 'rkey'.
3414 * Keep doing this until the source tells us to stop.
3416 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3418 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3419 .type = RDMA_CONTROL_REGISTER_RESULT,
3420 .repeat = 0,
3422 RDMAControlHeader unreg_resp = { .len = 0,
3423 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3424 .repeat = 0,
3426 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3427 .repeat = 1 };
3428 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3429 RDMAContext *rdma;
3430 RDMALocalBlocks *local;
3431 RDMAControlHeader head;
3432 RDMARegister *reg, *registers;
3433 RDMACompress *comp;
3434 RDMARegisterResult *reg_result;
3435 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3436 RDMALocalBlock *block;
3437 void *host_addr;
3438 int ret = 0;
3439 int idx = 0;
3440 int count = 0;
3441 int i = 0;
3443 rcu_read_lock();
3444 rdma = atomic_rcu_read(&rioc->rdmain);
3446 if (!rdma) {
3447 rcu_read_unlock();
3448 return -EIO;
3451 CHECK_ERROR_STATE();
3453 local = &rdma->local_ram_blocks;
3454 do {
3455 trace_qemu_rdma_registration_handle_wait();
3457 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3459 if (ret < 0) {
3460 break;
3463 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3464 error_report("rdma: Too many requests in this message (%d)."
3465 "Bailing.", head.repeat);
3466 ret = -EIO;
3467 break;
3470 switch (head.type) {
3471 case RDMA_CONTROL_COMPRESS:
3472 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3473 network_to_compress(comp);
3475 trace_qemu_rdma_registration_handle_compress(comp->length,
3476 comp->block_idx,
3477 comp->offset);
3478 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3479 error_report("rdma: 'compress' bad block index %u (vs %d)",
3480 (unsigned int)comp->block_idx,
3481 rdma->local_ram_blocks.nb_blocks);
3482 ret = -EIO;
3483 goto out;
3485 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3487 host_addr = block->local_host_addr +
3488 (comp->offset - block->offset);
3490 ram_handle_compressed(host_addr, comp->value, comp->length);
3491 break;
3493 case RDMA_CONTROL_REGISTER_FINISHED:
3494 trace_qemu_rdma_registration_handle_finished();
3495 goto out;
3497 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3498 trace_qemu_rdma_registration_handle_ram_blocks();
3500 /* Sort our local RAM Block list so it's the same as the source,
3501 * we can do this since we've filled in a src_index in the list
3502 * as we received the RAMBlock list earlier.
3504 qsort(rdma->local_ram_blocks.block,
3505 rdma->local_ram_blocks.nb_blocks,
3506 sizeof(RDMALocalBlock), dest_ram_sort_func);
3507 for (i = 0; i < local->nb_blocks; i++) {
3508 local->block[i].index = i;
3511 if (rdma->pin_all) {
3512 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3513 if (ret) {
3514 error_report("rdma migration: error dest "
3515 "registering ram blocks");
3516 goto out;
3521 * Dest uses this to prepare to transmit the RAMBlock descriptions
3522 * to the source VM after connection setup.
3523 * Both sides use the "remote" structure to communicate and update
3524 * their "local" descriptions with what was sent.
3526 for (i = 0; i < local->nb_blocks; i++) {
3527 rdma->dest_blocks[i].remote_host_addr =
3528 (uintptr_t)(local->block[i].local_host_addr);
3530 if (rdma->pin_all) {
3531 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3534 rdma->dest_blocks[i].offset = local->block[i].offset;
3535 rdma->dest_blocks[i].length = local->block[i].length;
3537 dest_block_to_network(&rdma->dest_blocks[i]);
3538 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3539 local->block[i].block_name,
3540 local->block[i].offset,
3541 local->block[i].length,
3542 local->block[i].local_host_addr,
3543 local->block[i].src_index);
3546 blocks.len = rdma->local_ram_blocks.nb_blocks
3547 * sizeof(RDMADestBlock);
3550 ret = qemu_rdma_post_send_control(rdma,
3551 (uint8_t *) rdma->dest_blocks, &blocks);
3553 if (ret < 0) {
3554 error_report("rdma migration: error sending remote info");
3555 goto out;
3558 break;
3559 case RDMA_CONTROL_REGISTER_REQUEST:
3560 trace_qemu_rdma_registration_handle_register(head.repeat);
3562 reg_resp.repeat = head.repeat;
3563 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3565 for (count = 0; count < head.repeat; count++) {
3566 uint64_t chunk;
3567 uint8_t *chunk_start, *chunk_end;
3569 reg = &registers[count];
3570 network_to_register(reg);
3572 reg_result = &results[count];
3574 trace_qemu_rdma_registration_handle_register_loop(count,
3575 reg->current_index, reg->key.current_addr, reg->chunks);
3577 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3578 error_report("rdma: 'register' bad block index %u (vs %d)",
3579 (unsigned int)reg->current_index,
3580 rdma->local_ram_blocks.nb_blocks);
3581 ret = -ENOENT;
3582 goto out;
3584 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3585 if (block->is_ram_block) {
3586 if (block->offset > reg->key.current_addr) {
3587 error_report("rdma: bad register address for block %s"
3588 " offset: %" PRIx64 " current_addr: %" PRIx64,
3589 block->block_name, block->offset,
3590 reg->key.current_addr);
3591 ret = -ERANGE;
3592 goto out;
3594 host_addr = (block->local_host_addr +
3595 (reg->key.current_addr - block->offset));
3596 chunk = ram_chunk_index(block->local_host_addr,
3597 (uint8_t *) host_addr);
3598 } else {
3599 chunk = reg->key.chunk;
3600 host_addr = block->local_host_addr +
3601 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3602 /* Check for particularly bad chunk value */
3603 if (host_addr < (void *)block->local_host_addr) {
3604 error_report("rdma: bad chunk for block %s"
3605 " chunk: %" PRIx64,
3606 block->block_name, reg->key.chunk);
3607 ret = -ERANGE;
3608 goto out;
3611 chunk_start = ram_chunk_start(block, chunk);
3612 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3613 if (qemu_rdma_register_and_get_keys(rdma, block,
3614 (uintptr_t)host_addr, NULL, &reg_result->rkey,
3615 chunk, chunk_start, chunk_end)) {
3616 error_report("cannot get rkey");
3617 ret = -EINVAL;
3618 goto out;
3621 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3623 trace_qemu_rdma_registration_handle_register_rkey(
3624 reg_result->rkey);
3626 result_to_network(reg_result);
3629 ret = qemu_rdma_post_send_control(rdma,
3630 (uint8_t *) results, &reg_resp);
3632 if (ret < 0) {
3633 error_report("Failed to send control buffer");
3634 goto out;
3636 break;
3637 case RDMA_CONTROL_UNREGISTER_REQUEST:
3638 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3639 unreg_resp.repeat = head.repeat;
3640 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3642 for (count = 0; count < head.repeat; count++) {
3643 reg = &registers[count];
3644 network_to_register(reg);
3646 trace_qemu_rdma_registration_handle_unregister_loop(count,
3647 reg->current_index, reg->key.chunk);
3649 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3651 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3652 block->pmr[reg->key.chunk] = NULL;
3654 if (ret != 0) {
3655 perror("rdma unregistration chunk failed");
3656 ret = -ret;
3657 goto out;
3660 rdma->total_registrations--;
3662 trace_qemu_rdma_registration_handle_unregister_success(
3663 reg->key.chunk);
3666 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3668 if (ret < 0) {
3669 error_report("Failed to send control buffer");
3670 goto out;
3672 break;
3673 case RDMA_CONTROL_REGISTER_RESULT:
3674 error_report("Invalid RESULT message at dest.");
3675 ret = -EIO;
3676 goto out;
3677 default:
3678 error_report("Unknown control message %s", control_desc(head.type));
3679 ret = -EIO;
3680 goto out;
3682 } while (1);
3683 out:
3684 if (ret < 0) {
3685 rdma->error_state = ret;
3687 rcu_read_unlock();
3688 return ret;
3691 /* Destination:
3692 * Called via a ram_control_load_hook during the initial RAM load section which
3693 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3694 * on the source.
3695 * We've already built our local RAMBlock list, but not yet sent the list to
3696 * the source.
3698 static int
3699 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3701 RDMAContext *rdma;
3702 int curr;
3703 int found = -1;
3705 rcu_read_lock();
3706 rdma = atomic_rcu_read(&rioc->rdmain);
3708 if (!rdma) {
3709 rcu_read_unlock();
3710 return -EIO;
3713 /* Find the matching RAMBlock in our local list */
3714 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3715 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3716 found = curr;
3717 break;
3721 if (found == -1) {
3722 error_report("RAMBlock '%s' not found on destination", name);
3723 rcu_read_unlock();
3724 return -ENOENT;
3727 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3728 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3729 rdma->next_src_index++;
3731 rcu_read_unlock();
3732 return 0;
3735 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3737 switch (flags) {
3738 case RAM_CONTROL_BLOCK_REG:
3739 return rdma_block_notification_handle(opaque, data);
3741 case RAM_CONTROL_HOOK:
3742 return qemu_rdma_registration_handle(f, opaque);
3744 default:
3745 /* Shouldn't be called with any other values */
3746 abort();
3750 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3751 uint64_t flags, void *data)
3753 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3754 RDMAContext *rdma;
3756 rcu_read_lock();
3757 rdma = atomic_rcu_read(&rioc->rdmaout);
3758 if (!rdma) {
3759 rcu_read_unlock();
3760 return -EIO;
3763 CHECK_ERROR_STATE();
3765 if (migrate_get_current()->state == MIGRATION_STATUS_POSTCOPY_ACTIVE) {
3766 rcu_read_unlock();
3767 return 0;
3770 trace_qemu_rdma_registration_start(flags);
3771 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3772 qemu_fflush(f);
3774 rcu_read_unlock();
3775 return 0;
3779 * Inform dest that dynamic registrations are done for now.
3780 * First, flush writes, if any.
3782 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3783 uint64_t flags, void *data)
3785 Error *local_err = NULL, **errp = &local_err;
3786 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3787 RDMAContext *rdma;
3788 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3789 int ret = 0;
3791 rcu_read_lock();
3792 rdma = atomic_rcu_read(&rioc->rdmaout);
3793 if (!rdma) {
3794 rcu_read_unlock();
3795 return -EIO;
3798 CHECK_ERROR_STATE();
3800 if (migrate_get_current()->state == MIGRATION_STATUS_POSTCOPY_ACTIVE) {
3801 rcu_read_unlock();
3802 return 0;
3805 qemu_fflush(f);
3806 ret = qemu_rdma_drain_cq(f, rdma);
3808 if (ret < 0) {
3809 goto err;
3812 if (flags == RAM_CONTROL_SETUP) {
3813 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3814 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3815 int reg_result_idx, i, nb_dest_blocks;
3817 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3818 trace_qemu_rdma_registration_stop_ram();
3821 * Make sure that we parallelize the pinning on both sides.
3822 * For very large guests, doing this serially takes a really
3823 * long time, so we have to 'interleave' the pinning locally
3824 * with the control messages by performing the pinning on this
3825 * side before we receive the control response from the other
3826 * side that the pinning has completed.
3828 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3829 &reg_result_idx, rdma->pin_all ?
3830 qemu_rdma_reg_whole_ram_blocks : NULL);
3831 if (ret < 0) {
3832 ERROR(errp, "receiving remote info!");
3833 rcu_read_unlock();
3834 return ret;
3837 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3840 * The protocol uses two different sets of rkeys (mutually exclusive):
3841 * 1. One key to represent the virtual address of the entire ram block.
3842 * (dynamic chunk registration disabled - pin everything with one rkey.)
3843 * 2. One to represent individual chunks within a ram block.
3844 * (dynamic chunk registration enabled - pin individual chunks.)
3846 * Once the capability is successfully negotiated, the destination transmits
3847 * the keys to use (or sends them later) including the virtual addresses
3848 * and then propagates the remote ram block descriptions to his local copy.
3851 if (local->nb_blocks != nb_dest_blocks) {
3852 ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) "
3853 "Your QEMU command line parameters are probably "
3854 "not identical on both the source and destination.",
3855 local->nb_blocks, nb_dest_blocks);
3856 rdma->error_state = -EINVAL;
3857 rcu_read_unlock();
3858 return -EINVAL;
3861 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3862 memcpy(rdma->dest_blocks,
3863 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3864 for (i = 0; i < nb_dest_blocks; i++) {
3865 network_to_dest_block(&rdma->dest_blocks[i]);
3867 /* We require that the blocks are in the same order */
3868 if (rdma->dest_blocks[i].length != local->block[i].length) {
3869 ERROR(errp, "Block %s/%d has a different length %" PRIu64
3870 "vs %" PRIu64, local->block[i].block_name, i,
3871 local->block[i].length,
3872 rdma->dest_blocks[i].length);
3873 rdma->error_state = -EINVAL;
3874 rcu_read_unlock();
3875 return -EINVAL;
3877 local->block[i].remote_host_addr =
3878 rdma->dest_blocks[i].remote_host_addr;
3879 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3883 trace_qemu_rdma_registration_stop(flags);
3885 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3886 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3888 if (ret < 0) {
3889 goto err;
3892 rcu_read_unlock();
3893 return 0;
3894 err:
3895 rdma->error_state = ret;
3896 rcu_read_unlock();
3897 return ret;
3900 static const QEMUFileHooks rdma_read_hooks = {
3901 .hook_ram_load = rdma_load_hook,
3904 static const QEMUFileHooks rdma_write_hooks = {
3905 .before_ram_iterate = qemu_rdma_registration_start,
3906 .after_ram_iterate = qemu_rdma_registration_stop,
3907 .save_page = qemu_rdma_save_page,
3911 static void qio_channel_rdma_finalize(Object *obj)
3913 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3914 if (rioc->rdmain) {
3915 qemu_rdma_cleanup(rioc->rdmain);
3916 g_free(rioc->rdmain);
3917 rioc->rdmain = NULL;
3919 if (rioc->rdmaout) {
3920 qemu_rdma_cleanup(rioc->rdmaout);
3921 g_free(rioc->rdmaout);
3922 rioc->rdmaout = NULL;
3926 static void qio_channel_rdma_class_init(ObjectClass *klass,
3927 void *class_data G_GNUC_UNUSED)
3929 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3931 ioc_klass->io_writev = qio_channel_rdma_writev;
3932 ioc_klass->io_readv = qio_channel_rdma_readv;
3933 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3934 ioc_klass->io_close = qio_channel_rdma_close;
3935 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3936 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
3937 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
3940 static const TypeInfo qio_channel_rdma_info = {
3941 .parent = TYPE_QIO_CHANNEL,
3942 .name = TYPE_QIO_CHANNEL_RDMA,
3943 .instance_size = sizeof(QIOChannelRDMA),
3944 .instance_finalize = qio_channel_rdma_finalize,
3945 .class_init = qio_channel_rdma_class_init,
3948 static void qio_channel_rdma_register_types(void)
3950 type_register_static(&qio_channel_rdma_info);
3953 type_init(qio_channel_rdma_register_types);
3955 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3957 QIOChannelRDMA *rioc;
3959 if (qemu_file_mode_is_not_valid(mode)) {
3960 return NULL;
3963 rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
3965 if (mode[0] == 'w') {
3966 rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
3967 rioc->rdmaout = rdma;
3968 rioc->rdmain = rdma->return_path;
3969 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
3970 } else {
3971 rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
3972 rioc->rdmain = rdma;
3973 rioc->rdmaout = rdma->return_path;
3974 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
3977 return rioc->file;
3980 static void rdma_accept_incoming_migration(void *opaque)
3982 RDMAContext *rdma = opaque;
3983 int ret;
3984 QEMUFile *f;
3985 Error *local_err = NULL, **errp = &local_err;
3987 trace_qemu_rdma_accept_incoming_migration();
3988 ret = qemu_rdma_accept(rdma);
3990 if (ret) {
3991 ERROR(errp, "RDMA Migration initialization failed!");
3992 return;
3995 trace_qemu_rdma_accept_incoming_migration_accepted();
3997 if (rdma->is_return_path) {
3998 return;
4001 f = qemu_fopen_rdma(rdma, "rb");
4002 if (f == NULL) {
4003 ERROR(errp, "could not qemu_fopen_rdma!");
4004 qemu_rdma_cleanup(rdma);
4005 return;
4008 rdma->migration_started_on_destination = 1;
4009 migration_fd_process_incoming(f);
4012 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4014 int ret;
4015 RDMAContext *rdma, *rdma_return_path = NULL;
4016 Error *local_err = NULL;
4018 trace_rdma_start_incoming_migration();
4019 rdma = qemu_rdma_data_init(host_port, &local_err);
4021 if (rdma == NULL) {
4022 goto err;
4025 ret = qemu_rdma_dest_init(rdma, &local_err);
4027 if (ret) {
4028 goto err;
4031 trace_rdma_start_incoming_migration_after_dest_init();
4033 ret = rdma_listen(rdma->listen_id, 5);
4035 if (ret) {
4036 ERROR(errp, "listening on socket!");
4037 goto err;
4040 trace_rdma_start_incoming_migration_after_rdma_listen();
4042 /* initialize the RDMAContext for return path */
4043 if (migrate_postcopy()) {
4044 rdma_return_path = qemu_rdma_data_init(host_port, &local_err);
4046 if (rdma_return_path == NULL) {
4047 goto err;
4050 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
4053 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4054 NULL, (void *)(intptr_t)rdma);
4055 return;
4056 err:
4057 error_propagate(errp, local_err);
4058 g_free(rdma);
4059 g_free(rdma_return_path);
4062 void rdma_start_outgoing_migration(void *opaque,
4063 const char *host_port, Error **errp)
4065 MigrationState *s = opaque;
4066 RDMAContext *rdma = qemu_rdma_data_init(host_port, errp);
4067 RDMAContext *rdma_return_path = NULL;
4068 int ret = 0;
4070 if (rdma == NULL) {
4071 goto err;
4074 ret = qemu_rdma_source_init(rdma,
4075 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4077 if (ret) {
4078 goto err;
4081 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4082 ret = qemu_rdma_connect(rdma, errp);
4084 if (ret) {
4085 goto err;
4088 /* RDMA postcopy need a seprate queue pair for return path */
4089 if (migrate_postcopy()) {
4090 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4092 if (rdma_return_path == NULL) {
4093 goto err;
4096 ret = qemu_rdma_source_init(rdma_return_path,
4097 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4099 if (ret) {
4100 goto err;
4103 ret = qemu_rdma_connect(rdma_return_path, errp);
4105 if (ret) {
4106 goto err;
4109 rdma->return_path = rdma_return_path;
4110 rdma_return_path->return_path = rdma;
4111 rdma_return_path->is_return_path = true;
4114 trace_rdma_start_outgoing_migration_after_rdma_connect();
4116 s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4117 migrate_fd_connect(s, NULL);
4118 return;
4119 err:
4120 g_free(rdma);
4121 g_free(rdma_return_path);