ivshmem: Fix unplug of device "ivshmem-plain"
[qemu/armbru.git] / tcg / tcg.c
blobf27b22bd3c842d33d470e39dcea4dcb15c2a3c49
1 /*
2 * Tiny Code Generator for QEMU
4 * Copyright (c) 2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 /* define it to use liveness analysis (better code) */
26 #define USE_TCG_OPTIMIZATIONS
28 #include "qemu/osdep.h"
30 /* Define to jump the ELF file used to communicate with GDB. */
31 #undef DEBUG_JIT
33 #include "qemu/cutils.h"
34 #include "qemu/host-utils.h"
35 #include "qemu/timer.h"
37 /* Note: the long term plan is to reduce the dependencies on the QEMU
38 CPU definitions. Currently they are used for qemu_ld/st
39 instructions */
40 #define NO_CPU_IO_DEFS
41 #include "cpu.h"
43 #include "exec/cpu-common.h"
44 #include "exec/exec-all.h"
46 #include "tcg-op.h"
48 #if UINTPTR_MAX == UINT32_MAX
49 # define ELF_CLASS ELFCLASS32
50 #else
51 # define ELF_CLASS ELFCLASS64
52 #endif
53 #ifdef HOST_WORDS_BIGENDIAN
54 # define ELF_DATA ELFDATA2MSB
55 #else
56 # define ELF_DATA ELFDATA2LSB
57 #endif
59 #include "elf.h"
60 #include "exec/log.h"
61 #include "sysemu/sysemu.h"
63 /* Forward declarations for functions declared in tcg-target.inc.c and
64 used here. */
65 static void tcg_target_init(TCGContext *s);
66 static const TCGTargetOpDef *tcg_target_op_def(TCGOpcode);
67 static void tcg_target_qemu_prologue(TCGContext *s);
68 static void patch_reloc(tcg_insn_unit *code_ptr, int type,
69 intptr_t value, intptr_t addend);
71 /* The CIE and FDE header definitions will be common to all hosts. */
72 typedef struct {
73 uint32_t len __attribute__((aligned((sizeof(void *)))));
74 uint32_t id;
75 uint8_t version;
76 char augmentation[1];
77 uint8_t code_align;
78 uint8_t data_align;
79 uint8_t return_column;
80 } DebugFrameCIE;
82 typedef struct QEMU_PACKED {
83 uint32_t len __attribute__((aligned((sizeof(void *)))));
84 uint32_t cie_offset;
85 uintptr_t func_start;
86 uintptr_t func_len;
87 } DebugFrameFDEHeader;
89 typedef struct QEMU_PACKED {
90 DebugFrameCIE cie;
91 DebugFrameFDEHeader fde;
92 } DebugFrameHeader;
94 static void tcg_register_jit_int(void *buf, size_t size,
95 const void *debug_frame,
96 size_t debug_frame_size)
97 __attribute__((unused));
99 /* Forward declarations for functions declared and used in tcg-target.inc.c. */
100 static const char *target_parse_constraint(TCGArgConstraint *ct,
101 const char *ct_str, TCGType type);
102 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg1,
103 intptr_t arg2);
104 static void tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg);
105 static void tcg_out_movi(TCGContext *s, TCGType type,
106 TCGReg ret, tcg_target_long arg);
107 static void tcg_out_op(TCGContext *s, TCGOpcode opc, const TCGArg *args,
108 const int *const_args);
109 #if TCG_TARGET_MAYBE_vec
110 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl,
111 unsigned vece, const TCGArg *args,
112 const int *const_args);
113 #else
114 static inline void tcg_out_vec_op(TCGContext *s, TCGOpcode opc, unsigned vecl,
115 unsigned vece, const TCGArg *args,
116 const int *const_args)
118 g_assert_not_reached();
120 #endif
121 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg, TCGReg arg1,
122 intptr_t arg2);
123 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
124 TCGReg base, intptr_t ofs);
125 static void tcg_out_call(TCGContext *s, tcg_insn_unit *target);
126 static int tcg_target_const_match(tcg_target_long val, TCGType type,
127 const TCGArgConstraint *arg_ct);
128 #ifdef TCG_TARGET_NEED_LDST_LABELS
129 static bool tcg_out_ldst_finalize(TCGContext *s);
130 #endif
132 #define TCG_HIGHWATER 1024
134 static TCGContext **tcg_ctxs;
135 static unsigned int n_tcg_ctxs;
136 TCGv_env cpu_env = 0;
138 struct tcg_region_tree {
139 QemuMutex lock;
140 GTree *tree;
141 /* padding to avoid false sharing is computed at run-time */
145 * We divide code_gen_buffer into equally-sized "regions" that TCG threads
146 * dynamically allocate from as demand dictates. Given appropriate region
147 * sizing, this minimizes flushes even when some TCG threads generate a lot
148 * more code than others.
150 struct tcg_region_state {
151 QemuMutex lock;
153 /* fields set at init time */
154 void *start;
155 void *start_aligned;
156 void *end;
157 size_t n;
158 size_t size; /* size of one region */
159 size_t stride; /* .size + guard size */
161 /* fields protected by the lock */
162 size_t current; /* current region index */
163 size_t agg_size_full; /* aggregate size of full regions */
166 static struct tcg_region_state region;
168 * This is an array of struct tcg_region_tree's, with padding.
169 * We use void * to simplify the computation of region_trees[i]; each
170 * struct is found every tree_size bytes.
172 static void *region_trees;
173 static size_t tree_size;
174 static TCGRegSet tcg_target_available_regs[TCG_TYPE_COUNT];
175 static TCGRegSet tcg_target_call_clobber_regs;
177 #if TCG_TARGET_INSN_UNIT_SIZE == 1
178 static __attribute__((unused)) inline void tcg_out8(TCGContext *s, uint8_t v)
180 *s->code_ptr++ = v;
183 static __attribute__((unused)) inline void tcg_patch8(tcg_insn_unit *p,
184 uint8_t v)
186 *p = v;
188 #endif
190 #if TCG_TARGET_INSN_UNIT_SIZE <= 2
191 static __attribute__((unused)) inline void tcg_out16(TCGContext *s, uint16_t v)
193 if (TCG_TARGET_INSN_UNIT_SIZE == 2) {
194 *s->code_ptr++ = v;
195 } else {
196 tcg_insn_unit *p = s->code_ptr;
197 memcpy(p, &v, sizeof(v));
198 s->code_ptr = p + (2 / TCG_TARGET_INSN_UNIT_SIZE);
202 static __attribute__((unused)) inline void tcg_patch16(tcg_insn_unit *p,
203 uint16_t v)
205 if (TCG_TARGET_INSN_UNIT_SIZE == 2) {
206 *p = v;
207 } else {
208 memcpy(p, &v, sizeof(v));
211 #endif
213 #if TCG_TARGET_INSN_UNIT_SIZE <= 4
214 static __attribute__((unused)) inline void tcg_out32(TCGContext *s, uint32_t v)
216 if (TCG_TARGET_INSN_UNIT_SIZE == 4) {
217 *s->code_ptr++ = v;
218 } else {
219 tcg_insn_unit *p = s->code_ptr;
220 memcpy(p, &v, sizeof(v));
221 s->code_ptr = p + (4 / TCG_TARGET_INSN_UNIT_SIZE);
225 static __attribute__((unused)) inline void tcg_patch32(tcg_insn_unit *p,
226 uint32_t v)
228 if (TCG_TARGET_INSN_UNIT_SIZE == 4) {
229 *p = v;
230 } else {
231 memcpy(p, &v, sizeof(v));
234 #endif
236 #if TCG_TARGET_INSN_UNIT_SIZE <= 8
237 static __attribute__((unused)) inline void tcg_out64(TCGContext *s, uint64_t v)
239 if (TCG_TARGET_INSN_UNIT_SIZE == 8) {
240 *s->code_ptr++ = v;
241 } else {
242 tcg_insn_unit *p = s->code_ptr;
243 memcpy(p, &v, sizeof(v));
244 s->code_ptr = p + (8 / TCG_TARGET_INSN_UNIT_SIZE);
248 static __attribute__((unused)) inline void tcg_patch64(tcg_insn_unit *p,
249 uint64_t v)
251 if (TCG_TARGET_INSN_UNIT_SIZE == 8) {
252 *p = v;
253 } else {
254 memcpy(p, &v, sizeof(v));
257 #endif
259 /* label relocation processing */
261 static void tcg_out_reloc(TCGContext *s, tcg_insn_unit *code_ptr, int type,
262 TCGLabel *l, intptr_t addend)
264 TCGRelocation *r;
266 if (l->has_value) {
267 /* FIXME: This may break relocations on RISC targets that
268 modify instruction fields in place. The caller may not have
269 written the initial value. */
270 patch_reloc(code_ptr, type, l->u.value, addend);
271 } else {
272 /* add a new relocation entry */
273 r = tcg_malloc(sizeof(TCGRelocation));
274 r->type = type;
275 r->ptr = code_ptr;
276 r->addend = addend;
277 r->next = l->u.first_reloc;
278 l->u.first_reloc = r;
282 static void tcg_out_label(TCGContext *s, TCGLabel *l, tcg_insn_unit *ptr)
284 intptr_t value = (intptr_t)ptr;
285 TCGRelocation *r;
287 tcg_debug_assert(!l->has_value);
289 for (r = l->u.first_reloc; r != NULL; r = r->next) {
290 patch_reloc(r->ptr, r->type, value, r->addend);
293 l->has_value = 1;
294 l->u.value_ptr = ptr;
297 TCGLabel *gen_new_label(void)
299 TCGContext *s = tcg_ctx;
300 TCGLabel *l = tcg_malloc(sizeof(TCGLabel));
302 *l = (TCGLabel){
303 .id = s->nb_labels++
306 return l;
309 static void set_jmp_reset_offset(TCGContext *s, int which)
311 size_t off = tcg_current_code_size(s);
312 s->tb_jmp_reset_offset[which] = off;
313 /* Make sure that we didn't overflow the stored offset. */
314 assert(s->tb_jmp_reset_offset[which] == off);
317 #include "tcg-target.inc.c"
319 /* compare a pointer @ptr and a tb_tc @s */
320 static int ptr_cmp_tb_tc(const void *ptr, const struct tb_tc *s)
322 if (ptr >= s->ptr + s->size) {
323 return 1;
324 } else if (ptr < s->ptr) {
325 return -1;
327 return 0;
330 static gint tb_tc_cmp(gconstpointer ap, gconstpointer bp)
332 const struct tb_tc *a = ap;
333 const struct tb_tc *b = bp;
336 * When both sizes are set, we know this isn't a lookup.
337 * This is the most likely case: every TB must be inserted; lookups
338 * are a lot less frequent.
340 if (likely(a->size && b->size)) {
341 if (a->ptr > b->ptr) {
342 return 1;
343 } else if (a->ptr < b->ptr) {
344 return -1;
346 /* a->ptr == b->ptr should happen only on deletions */
347 g_assert(a->size == b->size);
348 return 0;
351 * All lookups have either .size field set to 0.
352 * From the glib sources we see that @ap is always the lookup key. However
353 * the docs provide no guarantee, so we just mark this case as likely.
355 if (likely(a->size == 0)) {
356 return ptr_cmp_tb_tc(a->ptr, b);
358 return ptr_cmp_tb_tc(b->ptr, a);
361 static void tcg_region_trees_init(void)
363 size_t i;
365 tree_size = ROUND_UP(sizeof(struct tcg_region_tree), qemu_dcache_linesize);
366 region_trees = qemu_memalign(qemu_dcache_linesize, region.n * tree_size);
367 for (i = 0; i < region.n; i++) {
368 struct tcg_region_tree *rt = region_trees + i * tree_size;
370 qemu_mutex_init(&rt->lock);
371 rt->tree = g_tree_new(tb_tc_cmp);
375 static struct tcg_region_tree *tc_ptr_to_region_tree(void *p)
377 size_t region_idx;
379 if (p < region.start_aligned) {
380 region_idx = 0;
381 } else {
382 ptrdiff_t offset = p - region.start_aligned;
384 if (offset > region.stride * (region.n - 1)) {
385 region_idx = region.n - 1;
386 } else {
387 region_idx = offset / region.stride;
390 return region_trees + region_idx * tree_size;
393 void tcg_tb_insert(TranslationBlock *tb)
395 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
397 qemu_mutex_lock(&rt->lock);
398 g_tree_insert(rt->tree, &tb->tc, tb);
399 qemu_mutex_unlock(&rt->lock);
402 void tcg_tb_remove(TranslationBlock *tb)
404 struct tcg_region_tree *rt = tc_ptr_to_region_tree(tb->tc.ptr);
406 qemu_mutex_lock(&rt->lock);
407 g_tree_remove(rt->tree, &tb->tc);
408 qemu_mutex_unlock(&rt->lock);
412 * Find the TB 'tb' such that
413 * tb->tc.ptr <= tc_ptr < tb->tc.ptr + tb->tc.size
414 * Return NULL if not found.
416 TranslationBlock *tcg_tb_lookup(uintptr_t tc_ptr)
418 struct tcg_region_tree *rt = tc_ptr_to_region_tree((void *)tc_ptr);
419 TranslationBlock *tb;
420 struct tb_tc s = { .ptr = (void *)tc_ptr };
422 qemu_mutex_lock(&rt->lock);
423 tb = g_tree_lookup(rt->tree, &s);
424 qemu_mutex_unlock(&rt->lock);
425 return tb;
428 static void tcg_region_tree_lock_all(void)
430 size_t i;
432 for (i = 0; i < region.n; i++) {
433 struct tcg_region_tree *rt = region_trees + i * tree_size;
435 qemu_mutex_lock(&rt->lock);
439 static void tcg_region_tree_unlock_all(void)
441 size_t i;
443 for (i = 0; i < region.n; i++) {
444 struct tcg_region_tree *rt = region_trees + i * tree_size;
446 qemu_mutex_unlock(&rt->lock);
450 void tcg_tb_foreach(GTraverseFunc func, gpointer user_data)
452 size_t i;
454 tcg_region_tree_lock_all();
455 for (i = 0; i < region.n; i++) {
456 struct tcg_region_tree *rt = region_trees + i * tree_size;
458 g_tree_foreach(rt->tree, func, user_data);
460 tcg_region_tree_unlock_all();
463 size_t tcg_nb_tbs(void)
465 size_t nb_tbs = 0;
466 size_t i;
468 tcg_region_tree_lock_all();
469 for (i = 0; i < region.n; i++) {
470 struct tcg_region_tree *rt = region_trees + i * tree_size;
472 nb_tbs += g_tree_nnodes(rt->tree);
474 tcg_region_tree_unlock_all();
475 return nb_tbs;
478 static void tcg_region_tree_reset_all(void)
480 size_t i;
482 tcg_region_tree_lock_all();
483 for (i = 0; i < region.n; i++) {
484 struct tcg_region_tree *rt = region_trees + i * tree_size;
486 /* Increment the refcount first so that destroy acts as a reset */
487 g_tree_ref(rt->tree);
488 g_tree_destroy(rt->tree);
490 tcg_region_tree_unlock_all();
493 static void tcg_region_bounds(size_t curr_region, void **pstart, void **pend)
495 void *start, *end;
497 start = region.start_aligned + curr_region * region.stride;
498 end = start + region.size;
500 if (curr_region == 0) {
501 start = region.start;
503 if (curr_region == region.n - 1) {
504 end = region.end;
507 *pstart = start;
508 *pend = end;
511 static void tcg_region_assign(TCGContext *s, size_t curr_region)
513 void *start, *end;
515 tcg_region_bounds(curr_region, &start, &end);
517 s->code_gen_buffer = start;
518 s->code_gen_ptr = start;
519 s->code_gen_buffer_size = end - start;
520 s->code_gen_highwater = end - TCG_HIGHWATER;
523 static bool tcg_region_alloc__locked(TCGContext *s)
525 if (region.current == region.n) {
526 return true;
528 tcg_region_assign(s, region.current);
529 region.current++;
530 return false;
534 * Request a new region once the one in use has filled up.
535 * Returns true on error.
537 static bool tcg_region_alloc(TCGContext *s)
539 bool err;
540 /* read the region size now; alloc__locked will overwrite it on success */
541 size_t size_full = s->code_gen_buffer_size;
543 qemu_mutex_lock(&region.lock);
544 err = tcg_region_alloc__locked(s);
545 if (!err) {
546 region.agg_size_full += size_full - TCG_HIGHWATER;
548 qemu_mutex_unlock(&region.lock);
549 return err;
553 * Perform a context's first region allocation.
554 * This function does _not_ increment region.agg_size_full.
556 static inline bool tcg_region_initial_alloc__locked(TCGContext *s)
558 return tcg_region_alloc__locked(s);
561 /* Call from a safe-work context */
562 void tcg_region_reset_all(void)
564 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
565 unsigned int i;
567 qemu_mutex_lock(&region.lock);
568 region.current = 0;
569 region.agg_size_full = 0;
571 for (i = 0; i < n_ctxs; i++) {
572 TCGContext *s = atomic_read(&tcg_ctxs[i]);
573 bool err = tcg_region_initial_alloc__locked(s);
575 g_assert(!err);
577 qemu_mutex_unlock(&region.lock);
579 tcg_region_tree_reset_all();
582 #ifdef CONFIG_USER_ONLY
583 static size_t tcg_n_regions(void)
585 return 1;
587 #else
589 * It is likely that some vCPUs will translate more code than others, so we
590 * first try to set more regions than max_cpus, with those regions being of
591 * reasonable size. If that's not possible we make do by evenly dividing
592 * the code_gen_buffer among the vCPUs.
594 static size_t tcg_n_regions(void)
596 size_t i;
598 /* Use a single region if all we have is one vCPU thread */
599 if (max_cpus == 1 || !qemu_tcg_mttcg_enabled()) {
600 return 1;
603 /* Try to have more regions than max_cpus, with each region being >= 2 MB */
604 for (i = 8; i > 0; i--) {
605 size_t regions_per_thread = i;
606 size_t region_size;
608 region_size = tcg_init_ctx.code_gen_buffer_size;
609 region_size /= max_cpus * regions_per_thread;
611 if (region_size >= 2 * 1024u * 1024) {
612 return max_cpus * regions_per_thread;
615 /* If we can't, then just allocate one region per vCPU thread */
616 return max_cpus;
618 #endif
621 * Initializes region partitioning.
623 * Called at init time from the parent thread (i.e. the one calling
624 * tcg_context_init), after the target's TCG globals have been set.
626 * Region partitioning works by splitting code_gen_buffer into separate regions,
627 * and then assigning regions to TCG threads so that the threads can translate
628 * code in parallel without synchronization.
630 * In softmmu the number of TCG threads is bounded by max_cpus, so we use at
631 * least max_cpus regions in MTTCG. In !MTTCG we use a single region.
632 * Note that the TCG options from the command-line (i.e. -accel accel=tcg,[...])
633 * must have been parsed before calling this function, since it calls
634 * qemu_tcg_mttcg_enabled().
636 * In user-mode we use a single region. Having multiple regions in user-mode
637 * is not supported, because the number of vCPU threads (recall that each thread
638 * spawned by the guest corresponds to a vCPU thread) is only bounded by the
639 * OS, and usually this number is huge (tens of thousands is not uncommon).
640 * Thus, given this large bound on the number of vCPU threads and the fact
641 * that code_gen_buffer is allocated at compile-time, we cannot guarantee
642 * that the availability of at least one region per vCPU thread.
644 * However, this user-mode limitation is unlikely to be a significant problem
645 * in practice. Multi-threaded guests share most if not all of their translated
646 * code, which makes parallel code generation less appealing than in softmmu.
648 void tcg_region_init(void)
650 void *buf = tcg_init_ctx.code_gen_buffer;
651 void *aligned;
652 size_t size = tcg_init_ctx.code_gen_buffer_size;
653 size_t page_size = qemu_real_host_page_size;
654 size_t region_size;
655 size_t n_regions;
656 size_t i;
658 n_regions = tcg_n_regions();
660 /* The first region will be 'aligned - buf' bytes larger than the others */
661 aligned = QEMU_ALIGN_PTR_UP(buf, page_size);
662 g_assert(aligned < tcg_init_ctx.code_gen_buffer + size);
664 * Make region_size a multiple of page_size, using aligned as the start.
665 * As a result of this we might end up with a few extra pages at the end of
666 * the buffer; we will assign those to the last region.
668 region_size = (size - (aligned - buf)) / n_regions;
669 region_size = QEMU_ALIGN_DOWN(region_size, page_size);
671 /* A region must have at least 2 pages; one code, one guard */
672 g_assert(region_size >= 2 * page_size);
674 /* init the region struct */
675 qemu_mutex_init(&region.lock);
676 region.n = n_regions;
677 region.size = region_size - page_size;
678 region.stride = region_size;
679 region.start = buf;
680 region.start_aligned = aligned;
681 /* page-align the end, since its last page will be a guard page */
682 region.end = QEMU_ALIGN_PTR_DOWN(buf + size, page_size);
683 /* account for that last guard page */
684 region.end -= page_size;
686 /* set guard pages */
687 for (i = 0; i < region.n; i++) {
688 void *start, *end;
689 int rc;
691 tcg_region_bounds(i, &start, &end);
692 rc = qemu_mprotect_none(end, page_size);
693 g_assert(!rc);
696 tcg_region_trees_init();
698 /* In user-mode we support only one ctx, so do the initial allocation now */
699 #ifdef CONFIG_USER_ONLY
701 bool err = tcg_region_initial_alloc__locked(tcg_ctx);
703 g_assert(!err);
705 #endif
709 * All TCG threads except the parent (i.e. the one that called tcg_context_init
710 * and registered the target's TCG globals) must register with this function
711 * before initiating translation.
713 * In user-mode we just point tcg_ctx to tcg_init_ctx. See the documentation
714 * of tcg_region_init() for the reasoning behind this.
716 * In softmmu each caller registers its context in tcg_ctxs[]. Note that in
717 * softmmu tcg_ctxs[] does not track tcg_ctx_init, since the initial context
718 * is not used anymore for translation once this function is called.
720 * Not tracking tcg_init_ctx in tcg_ctxs[] in softmmu keeps code that iterates
721 * over the array (e.g. tcg_code_size() the same for both softmmu and user-mode.
723 #ifdef CONFIG_USER_ONLY
724 void tcg_register_thread(void)
726 tcg_ctx = &tcg_init_ctx;
728 #else
729 void tcg_register_thread(void)
731 TCGContext *s = g_malloc(sizeof(*s));
732 unsigned int i, n;
733 bool err;
735 *s = tcg_init_ctx;
737 /* Relink mem_base. */
738 for (i = 0, n = tcg_init_ctx.nb_globals; i < n; ++i) {
739 if (tcg_init_ctx.temps[i].mem_base) {
740 ptrdiff_t b = tcg_init_ctx.temps[i].mem_base - tcg_init_ctx.temps;
741 tcg_debug_assert(b >= 0 && b < n);
742 s->temps[i].mem_base = &s->temps[b];
746 /* Claim an entry in tcg_ctxs */
747 n = atomic_fetch_inc(&n_tcg_ctxs);
748 g_assert(n < max_cpus);
749 atomic_set(&tcg_ctxs[n], s);
751 tcg_ctx = s;
752 qemu_mutex_lock(&region.lock);
753 err = tcg_region_initial_alloc__locked(tcg_ctx);
754 g_assert(!err);
755 qemu_mutex_unlock(&region.lock);
757 #endif /* !CONFIG_USER_ONLY */
760 * Returns the size (in bytes) of all translated code (i.e. from all regions)
761 * currently in the cache.
762 * See also: tcg_code_capacity()
763 * Do not confuse with tcg_current_code_size(); that one applies to a single
764 * TCG context.
766 size_t tcg_code_size(void)
768 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
769 unsigned int i;
770 size_t total;
772 qemu_mutex_lock(&region.lock);
773 total = region.agg_size_full;
774 for (i = 0; i < n_ctxs; i++) {
775 const TCGContext *s = atomic_read(&tcg_ctxs[i]);
776 size_t size;
778 size = atomic_read(&s->code_gen_ptr) - s->code_gen_buffer;
779 g_assert(size <= s->code_gen_buffer_size);
780 total += size;
782 qemu_mutex_unlock(&region.lock);
783 return total;
787 * Returns the code capacity (in bytes) of the entire cache, i.e. including all
788 * regions.
789 * See also: tcg_code_size()
791 size_t tcg_code_capacity(void)
793 size_t guard_size, capacity;
795 /* no need for synchronization; these variables are set at init time */
796 guard_size = region.stride - region.size;
797 capacity = region.end + guard_size - region.start;
798 capacity -= region.n * (guard_size + TCG_HIGHWATER);
799 return capacity;
802 size_t tcg_tb_phys_invalidate_count(void)
804 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
805 unsigned int i;
806 size_t total = 0;
808 for (i = 0; i < n_ctxs; i++) {
809 const TCGContext *s = atomic_read(&tcg_ctxs[i]);
811 total += atomic_read(&s->tb_phys_invalidate_count);
813 return total;
816 /* pool based memory allocation */
817 void *tcg_malloc_internal(TCGContext *s, int size)
819 TCGPool *p;
820 int pool_size;
822 if (size > TCG_POOL_CHUNK_SIZE) {
823 /* big malloc: insert a new pool (XXX: could optimize) */
824 p = g_malloc(sizeof(TCGPool) + size);
825 p->size = size;
826 p->next = s->pool_first_large;
827 s->pool_first_large = p;
828 return p->data;
829 } else {
830 p = s->pool_current;
831 if (!p) {
832 p = s->pool_first;
833 if (!p)
834 goto new_pool;
835 } else {
836 if (!p->next) {
837 new_pool:
838 pool_size = TCG_POOL_CHUNK_SIZE;
839 p = g_malloc(sizeof(TCGPool) + pool_size);
840 p->size = pool_size;
841 p->next = NULL;
842 if (s->pool_current)
843 s->pool_current->next = p;
844 else
845 s->pool_first = p;
846 } else {
847 p = p->next;
851 s->pool_current = p;
852 s->pool_cur = p->data + size;
853 s->pool_end = p->data + p->size;
854 return p->data;
857 void tcg_pool_reset(TCGContext *s)
859 TCGPool *p, *t;
860 for (p = s->pool_first_large; p; p = t) {
861 t = p->next;
862 g_free(p);
864 s->pool_first_large = NULL;
865 s->pool_cur = s->pool_end = NULL;
866 s->pool_current = NULL;
869 typedef struct TCGHelperInfo {
870 void *func;
871 const char *name;
872 unsigned flags;
873 unsigned sizemask;
874 } TCGHelperInfo;
876 #include "exec/helper-proto.h"
878 static const TCGHelperInfo all_helpers[] = {
879 #include "exec/helper-tcg.h"
881 static GHashTable *helper_table;
883 static int indirect_reg_alloc_order[ARRAY_SIZE(tcg_target_reg_alloc_order)];
884 static void process_op_defs(TCGContext *s);
885 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type,
886 TCGReg reg, const char *name);
888 void tcg_context_init(TCGContext *s)
890 int op, total_args, n, i;
891 TCGOpDef *def;
892 TCGArgConstraint *args_ct;
893 int *sorted_args;
894 TCGTemp *ts;
896 memset(s, 0, sizeof(*s));
897 s->nb_globals = 0;
899 /* Count total number of arguments and allocate the corresponding
900 space */
901 total_args = 0;
902 for(op = 0; op < NB_OPS; op++) {
903 def = &tcg_op_defs[op];
904 n = def->nb_iargs + def->nb_oargs;
905 total_args += n;
908 args_ct = g_malloc(sizeof(TCGArgConstraint) * total_args);
909 sorted_args = g_malloc(sizeof(int) * total_args);
911 for(op = 0; op < NB_OPS; op++) {
912 def = &tcg_op_defs[op];
913 def->args_ct = args_ct;
914 def->sorted_args = sorted_args;
915 n = def->nb_iargs + def->nb_oargs;
916 sorted_args += n;
917 args_ct += n;
920 /* Register helpers. */
921 /* Use g_direct_hash/equal for direct pointer comparisons on func. */
922 helper_table = g_hash_table_new(NULL, NULL);
924 for (i = 0; i < ARRAY_SIZE(all_helpers); ++i) {
925 g_hash_table_insert(helper_table, (gpointer)all_helpers[i].func,
926 (gpointer)&all_helpers[i]);
929 tcg_target_init(s);
930 process_op_defs(s);
932 /* Reverse the order of the saved registers, assuming they're all at
933 the start of tcg_target_reg_alloc_order. */
934 for (n = 0; n < ARRAY_SIZE(tcg_target_reg_alloc_order); ++n) {
935 int r = tcg_target_reg_alloc_order[n];
936 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, r)) {
937 break;
940 for (i = 0; i < n; ++i) {
941 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[n - 1 - i];
943 for (; i < ARRAY_SIZE(tcg_target_reg_alloc_order); ++i) {
944 indirect_reg_alloc_order[i] = tcg_target_reg_alloc_order[i];
947 tcg_ctx = s;
949 * In user-mode we simply share the init context among threads, since we
950 * use a single region. See the documentation tcg_region_init() for the
951 * reasoning behind this.
952 * In softmmu we will have at most max_cpus TCG threads.
954 #ifdef CONFIG_USER_ONLY
955 tcg_ctxs = &tcg_ctx;
956 n_tcg_ctxs = 1;
957 #else
958 tcg_ctxs = g_new(TCGContext *, max_cpus);
959 #endif
961 tcg_debug_assert(!tcg_regset_test_reg(s->reserved_regs, TCG_AREG0));
962 ts = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, TCG_AREG0, "env");
963 cpu_env = temp_tcgv_ptr(ts);
967 * Allocate TBs right before their corresponding translated code, making
968 * sure that TBs and code are on different cache lines.
970 TranslationBlock *tcg_tb_alloc(TCGContext *s)
972 uintptr_t align = qemu_icache_linesize;
973 TranslationBlock *tb;
974 void *next;
976 retry:
977 tb = (void *)ROUND_UP((uintptr_t)s->code_gen_ptr, align);
978 next = (void *)ROUND_UP((uintptr_t)(tb + 1), align);
980 if (unlikely(next > s->code_gen_highwater)) {
981 if (tcg_region_alloc(s)) {
982 return NULL;
984 goto retry;
986 atomic_set(&s->code_gen_ptr, next);
987 s->data_gen_ptr = NULL;
988 return tb;
991 void tcg_prologue_init(TCGContext *s)
993 size_t prologue_size, total_size;
994 void *buf0, *buf1;
996 /* Put the prologue at the beginning of code_gen_buffer. */
997 buf0 = s->code_gen_buffer;
998 total_size = s->code_gen_buffer_size;
999 s->code_ptr = buf0;
1000 s->code_buf = buf0;
1001 s->data_gen_ptr = NULL;
1002 s->code_gen_prologue = buf0;
1004 /* Compute a high-water mark, at which we voluntarily flush the buffer
1005 and start over. The size here is arbitrary, significantly larger
1006 than we expect the code generation for any one opcode to require. */
1007 s->code_gen_highwater = s->code_gen_buffer + (total_size - TCG_HIGHWATER);
1009 #ifdef TCG_TARGET_NEED_POOL_LABELS
1010 s->pool_labels = NULL;
1011 #endif
1013 /* Generate the prologue. */
1014 tcg_target_qemu_prologue(s);
1016 #ifdef TCG_TARGET_NEED_POOL_LABELS
1017 /* Allow the prologue to put e.g. guest_base into a pool entry. */
1019 bool ok = tcg_out_pool_finalize(s);
1020 tcg_debug_assert(ok);
1022 #endif
1024 buf1 = s->code_ptr;
1025 flush_icache_range((uintptr_t)buf0, (uintptr_t)buf1);
1027 /* Deduct the prologue from the buffer. */
1028 prologue_size = tcg_current_code_size(s);
1029 s->code_gen_ptr = buf1;
1030 s->code_gen_buffer = buf1;
1031 s->code_buf = buf1;
1032 total_size -= prologue_size;
1033 s->code_gen_buffer_size = total_size;
1035 tcg_register_jit(s->code_gen_buffer, total_size);
1037 #ifdef DEBUG_DISAS
1038 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1039 qemu_log_lock();
1040 qemu_log("PROLOGUE: [size=%zu]\n", prologue_size);
1041 if (s->data_gen_ptr) {
1042 size_t code_size = s->data_gen_ptr - buf0;
1043 size_t data_size = prologue_size - code_size;
1044 size_t i;
1046 log_disas(buf0, code_size);
1048 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1049 if (sizeof(tcg_target_ulong) == 8) {
1050 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n",
1051 (uintptr_t)s->data_gen_ptr + i,
1052 *(uint64_t *)(s->data_gen_ptr + i));
1053 } else {
1054 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n",
1055 (uintptr_t)s->data_gen_ptr + i,
1056 *(uint32_t *)(s->data_gen_ptr + i));
1059 } else {
1060 log_disas(buf0, prologue_size);
1062 qemu_log("\n");
1063 qemu_log_flush();
1064 qemu_log_unlock();
1066 #endif
1068 /* Assert that goto_ptr is implemented completely. */
1069 if (TCG_TARGET_HAS_goto_ptr) {
1070 tcg_debug_assert(s->code_gen_epilogue != NULL);
1074 void tcg_func_start(TCGContext *s)
1076 tcg_pool_reset(s);
1077 s->nb_temps = s->nb_globals;
1079 /* No temps have been previously allocated for size or locality. */
1080 memset(s->free_temps, 0, sizeof(s->free_temps));
1082 s->nb_ops = 0;
1083 s->nb_labels = 0;
1084 s->current_frame_offset = s->frame_start;
1086 #ifdef CONFIG_DEBUG_TCG
1087 s->goto_tb_issue_mask = 0;
1088 #endif
1090 QTAILQ_INIT(&s->ops);
1091 QTAILQ_INIT(&s->free_ops);
1094 static inline TCGTemp *tcg_temp_alloc(TCGContext *s)
1096 int n = s->nb_temps++;
1097 tcg_debug_assert(n < TCG_MAX_TEMPS);
1098 return memset(&s->temps[n], 0, sizeof(TCGTemp));
1101 static inline TCGTemp *tcg_global_alloc(TCGContext *s)
1103 TCGTemp *ts;
1105 tcg_debug_assert(s->nb_globals == s->nb_temps);
1106 s->nb_globals++;
1107 ts = tcg_temp_alloc(s);
1108 ts->temp_global = 1;
1110 return ts;
1113 static TCGTemp *tcg_global_reg_new_internal(TCGContext *s, TCGType type,
1114 TCGReg reg, const char *name)
1116 TCGTemp *ts;
1118 if (TCG_TARGET_REG_BITS == 32 && type != TCG_TYPE_I32) {
1119 tcg_abort();
1122 ts = tcg_global_alloc(s);
1123 ts->base_type = type;
1124 ts->type = type;
1125 ts->fixed_reg = 1;
1126 ts->reg = reg;
1127 ts->name = name;
1128 tcg_regset_set_reg(s->reserved_regs, reg);
1130 return ts;
1133 void tcg_set_frame(TCGContext *s, TCGReg reg, intptr_t start, intptr_t size)
1135 s->frame_start = start;
1136 s->frame_end = start + size;
1137 s->frame_temp
1138 = tcg_global_reg_new_internal(s, TCG_TYPE_PTR, reg, "_frame");
1141 TCGTemp *tcg_global_mem_new_internal(TCGType type, TCGv_ptr base,
1142 intptr_t offset, const char *name)
1144 TCGContext *s = tcg_ctx;
1145 TCGTemp *base_ts = tcgv_ptr_temp(base);
1146 TCGTemp *ts = tcg_global_alloc(s);
1147 int indirect_reg = 0, bigendian = 0;
1148 #ifdef HOST_WORDS_BIGENDIAN
1149 bigendian = 1;
1150 #endif
1152 if (!base_ts->fixed_reg) {
1153 /* We do not support double-indirect registers. */
1154 tcg_debug_assert(!base_ts->indirect_reg);
1155 base_ts->indirect_base = 1;
1156 s->nb_indirects += (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64
1157 ? 2 : 1);
1158 indirect_reg = 1;
1161 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) {
1162 TCGTemp *ts2 = tcg_global_alloc(s);
1163 char buf[64];
1165 ts->base_type = TCG_TYPE_I64;
1166 ts->type = TCG_TYPE_I32;
1167 ts->indirect_reg = indirect_reg;
1168 ts->mem_allocated = 1;
1169 ts->mem_base = base_ts;
1170 ts->mem_offset = offset + bigendian * 4;
1171 pstrcpy(buf, sizeof(buf), name);
1172 pstrcat(buf, sizeof(buf), "_0");
1173 ts->name = strdup(buf);
1175 tcg_debug_assert(ts2 == ts + 1);
1176 ts2->base_type = TCG_TYPE_I64;
1177 ts2->type = TCG_TYPE_I32;
1178 ts2->indirect_reg = indirect_reg;
1179 ts2->mem_allocated = 1;
1180 ts2->mem_base = base_ts;
1181 ts2->mem_offset = offset + (1 - bigendian) * 4;
1182 pstrcpy(buf, sizeof(buf), name);
1183 pstrcat(buf, sizeof(buf), "_1");
1184 ts2->name = strdup(buf);
1185 } else {
1186 ts->base_type = type;
1187 ts->type = type;
1188 ts->indirect_reg = indirect_reg;
1189 ts->mem_allocated = 1;
1190 ts->mem_base = base_ts;
1191 ts->mem_offset = offset;
1192 ts->name = name;
1194 return ts;
1197 TCGTemp *tcg_temp_new_internal(TCGType type, bool temp_local)
1199 TCGContext *s = tcg_ctx;
1200 TCGTemp *ts;
1201 int idx, k;
1203 k = type + (temp_local ? TCG_TYPE_COUNT : 0);
1204 idx = find_first_bit(s->free_temps[k].l, TCG_MAX_TEMPS);
1205 if (idx < TCG_MAX_TEMPS) {
1206 /* There is already an available temp with the right type. */
1207 clear_bit(idx, s->free_temps[k].l);
1209 ts = &s->temps[idx];
1210 ts->temp_allocated = 1;
1211 tcg_debug_assert(ts->base_type == type);
1212 tcg_debug_assert(ts->temp_local == temp_local);
1213 } else {
1214 ts = tcg_temp_alloc(s);
1215 if (TCG_TARGET_REG_BITS == 32 && type == TCG_TYPE_I64) {
1216 TCGTemp *ts2 = tcg_temp_alloc(s);
1218 ts->base_type = type;
1219 ts->type = TCG_TYPE_I32;
1220 ts->temp_allocated = 1;
1221 ts->temp_local = temp_local;
1223 tcg_debug_assert(ts2 == ts + 1);
1224 ts2->base_type = TCG_TYPE_I64;
1225 ts2->type = TCG_TYPE_I32;
1226 ts2->temp_allocated = 1;
1227 ts2->temp_local = temp_local;
1228 } else {
1229 ts->base_type = type;
1230 ts->type = type;
1231 ts->temp_allocated = 1;
1232 ts->temp_local = temp_local;
1236 #if defined(CONFIG_DEBUG_TCG)
1237 s->temps_in_use++;
1238 #endif
1239 return ts;
1242 TCGv_vec tcg_temp_new_vec(TCGType type)
1244 TCGTemp *t;
1246 #ifdef CONFIG_DEBUG_TCG
1247 switch (type) {
1248 case TCG_TYPE_V64:
1249 assert(TCG_TARGET_HAS_v64);
1250 break;
1251 case TCG_TYPE_V128:
1252 assert(TCG_TARGET_HAS_v128);
1253 break;
1254 case TCG_TYPE_V256:
1255 assert(TCG_TARGET_HAS_v256);
1256 break;
1257 default:
1258 g_assert_not_reached();
1260 #endif
1262 t = tcg_temp_new_internal(type, 0);
1263 return temp_tcgv_vec(t);
1266 /* Create a new temp of the same type as an existing temp. */
1267 TCGv_vec tcg_temp_new_vec_matching(TCGv_vec match)
1269 TCGTemp *t = tcgv_vec_temp(match);
1271 tcg_debug_assert(t->temp_allocated != 0);
1273 t = tcg_temp_new_internal(t->base_type, 0);
1274 return temp_tcgv_vec(t);
1277 void tcg_temp_free_internal(TCGTemp *ts)
1279 TCGContext *s = tcg_ctx;
1280 int k, idx;
1282 #if defined(CONFIG_DEBUG_TCG)
1283 s->temps_in_use--;
1284 if (s->temps_in_use < 0) {
1285 fprintf(stderr, "More temporaries freed than allocated!\n");
1287 #endif
1289 tcg_debug_assert(ts->temp_global == 0);
1290 tcg_debug_assert(ts->temp_allocated != 0);
1291 ts->temp_allocated = 0;
1293 idx = temp_idx(ts);
1294 k = ts->base_type + (ts->temp_local ? TCG_TYPE_COUNT : 0);
1295 set_bit(idx, s->free_temps[k].l);
1298 TCGv_i32 tcg_const_i32(int32_t val)
1300 TCGv_i32 t0;
1301 t0 = tcg_temp_new_i32();
1302 tcg_gen_movi_i32(t0, val);
1303 return t0;
1306 TCGv_i64 tcg_const_i64(int64_t val)
1308 TCGv_i64 t0;
1309 t0 = tcg_temp_new_i64();
1310 tcg_gen_movi_i64(t0, val);
1311 return t0;
1314 TCGv_i32 tcg_const_local_i32(int32_t val)
1316 TCGv_i32 t0;
1317 t0 = tcg_temp_local_new_i32();
1318 tcg_gen_movi_i32(t0, val);
1319 return t0;
1322 TCGv_i64 tcg_const_local_i64(int64_t val)
1324 TCGv_i64 t0;
1325 t0 = tcg_temp_local_new_i64();
1326 tcg_gen_movi_i64(t0, val);
1327 return t0;
1330 #if defined(CONFIG_DEBUG_TCG)
1331 void tcg_clear_temp_count(void)
1333 TCGContext *s = tcg_ctx;
1334 s->temps_in_use = 0;
1337 int tcg_check_temp_count(void)
1339 TCGContext *s = tcg_ctx;
1340 if (s->temps_in_use) {
1341 /* Clear the count so that we don't give another
1342 * warning immediately next time around.
1344 s->temps_in_use = 0;
1345 return 1;
1347 return 0;
1349 #endif
1351 /* Return true if OP may appear in the opcode stream.
1352 Test the runtime variable that controls each opcode. */
1353 bool tcg_op_supported(TCGOpcode op)
1355 const bool have_vec
1356 = TCG_TARGET_HAS_v64 | TCG_TARGET_HAS_v128 | TCG_TARGET_HAS_v256;
1358 switch (op) {
1359 case INDEX_op_discard:
1360 case INDEX_op_set_label:
1361 case INDEX_op_call:
1362 case INDEX_op_br:
1363 case INDEX_op_mb:
1364 case INDEX_op_insn_start:
1365 case INDEX_op_exit_tb:
1366 case INDEX_op_goto_tb:
1367 case INDEX_op_qemu_ld_i32:
1368 case INDEX_op_qemu_st_i32:
1369 case INDEX_op_qemu_ld_i64:
1370 case INDEX_op_qemu_st_i64:
1371 return true;
1373 case INDEX_op_goto_ptr:
1374 return TCG_TARGET_HAS_goto_ptr;
1376 case INDEX_op_mov_i32:
1377 case INDEX_op_movi_i32:
1378 case INDEX_op_setcond_i32:
1379 case INDEX_op_brcond_i32:
1380 case INDEX_op_ld8u_i32:
1381 case INDEX_op_ld8s_i32:
1382 case INDEX_op_ld16u_i32:
1383 case INDEX_op_ld16s_i32:
1384 case INDEX_op_ld_i32:
1385 case INDEX_op_st8_i32:
1386 case INDEX_op_st16_i32:
1387 case INDEX_op_st_i32:
1388 case INDEX_op_add_i32:
1389 case INDEX_op_sub_i32:
1390 case INDEX_op_mul_i32:
1391 case INDEX_op_and_i32:
1392 case INDEX_op_or_i32:
1393 case INDEX_op_xor_i32:
1394 case INDEX_op_shl_i32:
1395 case INDEX_op_shr_i32:
1396 case INDEX_op_sar_i32:
1397 return true;
1399 case INDEX_op_movcond_i32:
1400 return TCG_TARGET_HAS_movcond_i32;
1401 case INDEX_op_div_i32:
1402 case INDEX_op_divu_i32:
1403 return TCG_TARGET_HAS_div_i32;
1404 case INDEX_op_rem_i32:
1405 case INDEX_op_remu_i32:
1406 return TCG_TARGET_HAS_rem_i32;
1407 case INDEX_op_div2_i32:
1408 case INDEX_op_divu2_i32:
1409 return TCG_TARGET_HAS_div2_i32;
1410 case INDEX_op_rotl_i32:
1411 case INDEX_op_rotr_i32:
1412 return TCG_TARGET_HAS_rot_i32;
1413 case INDEX_op_deposit_i32:
1414 return TCG_TARGET_HAS_deposit_i32;
1415 case INDEX_op_extract_i32:
1416 return TCG_TARGET_HAS_extract_i32;
1417 case INDEX_op_sextract_i32:
1418 return TCG_TARGET_HAS_sextract_i32;
1419 case INDEX_op_add2_i32:
1420 return TCG_TARGET_HAS_add2_i32;
1421 case INDEX_op_sub2_i32:
1422 return TCG_TARGET_HAS_sub2_i32;
1423 case INDEX_op_mulu2_i32:
1424 return TCG_TARGET_HAS_mulu2_i32;
1425 case INDEX_op_muls2_i32:
1426 return TCG_TARGET_HAS_muls2_i32;
1427 case INDEX_op_muluh_i32:
1428 return TCG_TARGET_HAS_muluh_i32;
1429 case INDEX_op_mulsh_i32:
1430 return TCG_TARGET_HAS_mulsh_i32;
1431 case INDEX_op_ext8s_i32:
1432 return TCG_TARGET_HAS_ext8s_i32;
1433 case INDEX_op_ext16s_i32:
1434 return TCG_TARGET_HAS_ext16s_i32;
1435 case INDEX_op_ext8u_i32:
1436 return TCG_TARGET_HAS_ext8u_i32;
1437 case INDEX_op_ext16u_i32:
1438 return TCG_TARGET_HAS_ext16u_i32;
1439 case INDEX_op_bswap16_i32:
1440 return TCG_TARGET_HAS_bswap16_i32;
1441 case INDEX_op_bswap32_i32:
1442 return TCG_TARGET_HAS_bswap32_i32;
1443 case INDEX_op_not_i32:
1444 return TCG_TARGET_HAS_not_i32;
1445 case INDEX_op_neg_i32:
1446 return TCG_TARGET_HAS_neg_i32;
1447 case INDEX_op_andc_i32:
1448 return TCG_TARGET_HAS_andc_i32;
1449 case INDEX_op_orc_i32:
1450 return TCG_TARGET_HAS_orc_i32;
1451 case INDEX_op_eqv_i32:
1452 return TCG_TARGET_HAS_eqv_i32;
1453 case INDEX_op_nand_i32:
1454 return TCG_TARGET_HAS_nand_i32;
1455 case INDEX_op_nor_i32:
1456 return TCG_TARGET_HAS_nor_i32;
1457 case INDEX_op_clz_i32:
1458 return TCG_TARGET_HAS_clz_i32;
1459 case INDEX_op_ctz_i32:
1460 return TCG_TARGET_HAS_ctz_i32;
1461 case INDEX_op_ctpop_i32:
1462 return TCG_TARGET_HAS_ctpop_i32;
1464 case INDEX_op_brcond2_i32:
1465 case INDEX_op_setcond2_i32:
1466 return TCG_TARGET_REG_BITS == 32;
1468 case INDEX_op_mov_i64:
1469 case INDEX_op_movi_i64:
1470 case INDEX_op_setcond_i64:
1471 case INDEX_op_brcond_i64:
1472 case INDEX_op_ld8u_i64:
1473 case INDEX_op_ld8s_i64:
1474 case INDEX_op_ld16u_i64:
1475 case INDEX_op_ld16s_i64:
1476 case INDEX_op_ld32u_i64:
1477 case INDEX_op_ld32s_i64:
1478 case INDEX_op_ld_i64:
1479 case INDEX_op_st8_i64:
1480 case INDEX_op_st16_i64:
1481 case INDEX_op_st32_i64:
1482 case INDEX_op_st_i64:
1483 case INDEX_op_add_i64:
1484 case INDEX_op_sub_i64:
1485 case INDEX_op_mul_i64:
1486 case INDEX_op_and_i64:
1487 case INDEX_op_or_i64:
1488 case INDEX_op_xor_i64:
1489 case INDEX_op_shl_i64:
1490 case INDEX_op_shr_i64:
1491 case INDEX_op_sar_i64:
1492 case INDEX_op_ext_i32_i64:
1493 case INDEX_op_extu_i32_i64:
1494 return TCG_TARGET_REG_BITS == 64;
1496 case INDEX_op_movcond_i64:
1497 return TCG_TARGET_HAS_movcond_i64;
1498 case INDEX_op_div_i64:
1499 case INDEX_op_divu_i64:
1500 return TCG_TARGET_HAS_div_i64;
1501 case INDEX_op_rem_i64:
1502 case INDEX_op_remu_i64:
1503 return TCG_TARGET_HAS_rem_i64;
1504 case INDEX_op_div2_i64:
1505 case INDEX_op_divu2_i64:
1506 return TCG_TARGET_HAS_div2_i64;
1507 case INDEX_op_rotl_i64:
1508 case INDEX_op_rotr_i64:
1509 return TCG_TARGET_HAS_rot_i64;
1510 case INDEX_op_deposit_i64:
1511 return TCG_TARGET_HAS_deposit_i64;
1512 case INDEX_op_extract_i64:
1513 return TCG_TARGET_HAS_extract_i64;
1514 case INDEX_op_sextract_i64:
1515 return TCG_TARGET_HAS_sextract_i64;
1516 case INDEX_op_extrl_i64_i32:
1517 return TCG_TARGET_HAS_extrl_i64_i32;
1518 case INDEX_op_extrh_i64_i32:
1519 return TCG_TARGET_HAS_extrh_i64_i32;
1520 case INDEX_op_ext8s_i64:
1521 return TCG_TARGET_HAS_ext8s_i64;
1522 case INDEX_op_ext16s_i64:
1523 return TCG_TARGET_HAS_ext16s_i64;
1524 case INDEX_op_ext32s_i64:
1525 return TCG_TARGET_HAS_ext32s_i64;
1526 case INDEX_op_ext8u_i64:
1527 return TCG_TARGET_HAS_ext8u_i64;
1528 case INDEX_op_ext16u_i64:
1529 return TCG_TARGET_HAS_ext16u_i64;
1530 case INDEX_op_ext32u_i64:
1531 return TCG_TARGET_HAS_ext32u_i64;
1532 case INDEX_op_bswap16_i64:
1533 return TCG_TARGET_HAS_bswap16_i64;
1534 case INDEX_op_bswap32_i64:
1535 return TCG_TARGET_HAS_bswap32_i64;
1536 case INDEX_op_bswap64_i64:
1537 return TCG_TARGET_HAS_bswap64_i64;
1538 case INDEX_op_not_i64:
1539 return TCG_TARGET_HAS_not_i64;
1540 case INDEX_op_neg_i64:
1541 return TCG_TARGET_HAS_neg_i64;
1542 case INDEX_op_andc_i64:
1543 return TCG_TARGET_HAS_andc_i64;
1544 case INDEX_op_orc_i64:
1545 return TCG_TARGET_HAS_orc_i64;
1546 case INDEX_op_eqv_i64:
1547 return TCG_TARGET_HAS_eqv_i64;
1548 case INDEX_op_nand_i64:
1549 return TCG_TARGET_HAS_nand_i64;
1550 case INDEX_op_nor_i64:
1551 return TCG_TARGET_HAS_nor_i64;
1552 case INDEX_op_clz_i64:
1553 return TCG_TARGET_HAS_clz_i64;
1554 case INDEX_op_ctz_i64:
1555 return TCG_TARGET_HAS_ctz_i64;
1556 case INDEX_op_ctpop_i64:
1557 return TCG_TARGET_HAS_ctpop_i64;
1558 case INDEX_op_add2_i64:
1559 return TCG_TARGET_HAS_add2_i64;
1560 case INDEX_op_sub2_i64:
1561 return TCG_TARGET_HAS_sub2_i64;
1562 case INDEX_op_mulu2_i64:
1563 return TCG_TARGET_HAS_mulu2_i64;
1564 case INDEX_op_muls2_i64:
1565 return TCG_TARGET_HAS_muls2_i64;
1566 case INDEX_op_muluh_i64:
1567 return TCG_TARGET_HAS_muluh_i64;
1568 case INDEX_op_mulsh_i64:
1569 return TCG_TARGET_HAS_mulsh_i64;
1571 case INDEX_op_mov_vec:
1572 case INDEX_op_dup_vec:
1573 case INDEX_op_dupi_vec:
1574 case INDEX_op_ld_vec:
1575 case INDEX_op_st_vec:
1576 case INDEX_op_add_vec:
1577 case INDEX_op_sub_vec:
1578 case INDEX_op_and_vec:
1579 case INDEX_op_or_vec:
1580 case INDEX_op_xor_vec:
1581 case INDEX_op_cmp_vec:
1582 return have_vec;
1583 case INDEX_op_dup2_vec:
1584 return have_vec && TCG_TARGET_REG_BITS == 32;
1585 case INDEX_op_not_vec:
1586 return have_vec && TCG_TARGET_HAS_not_vec;
1587 case INDEX_op_neg_vec:
1588 return have_vec && TCG_TARGET_HAS_neg_vec;
1589 case INDEX_op_andc_vec:
1590 return have_vec && TCG_TARGET_HAS_andc_vec;
1591 case INDEX_op_orc_vec:
1592 return have_vec && TCG_TARGET_HAS_orc_vec;
1593 case INDEX_op_mul_vec:
1594 return have_vec && TCG_TARGET_HAS_mul_vec;
1595 case INDEX_op_shli_vec:
1596 case INDEX_op_shri_vec:
1597 case INDEX_op_sari_vec:
1598 return have_vec && TCG_TARGET_HAS_shi_vec;
1599 case INDEX_op_shls_vec:
1600 case INDEX_op_shrs_vec:
1601 case INDEX_op_sars_vec:
1602 return have_vec && TCG_TARGET_HAS_shs_vec;
1603 case INDEX_op_shlv_vec:
1604 case INDEX_op_shrv_vec:
1605 case INDEX_op_sarv_vec:
1606 return have_vec && TCG_TARGET_HAS_shv_vec;
1608 default:
1609 tcg_debug_assert(op > INDEX_op_last_generic && op < NB_OPS);
1610 return true;
1614 /* Note: we convert the 64 bit args to 32 bit and do some alignment
1615 and endian swap. Maybe it would be better to do the alignment
1616 and endian swap in tcg_reg_alloc_call(). */
1617 void tcg_gen_callN(void *func, TCGTemp *ret, int nargs, TCGTemp **args)
1619 int i, real_args, nb_rets, pi;
1620 unsigned sizemask, flags;
1621 TCGHelperInfo *info;
1622 TCGOp *op;
1624 info = g_hash_table_lookup(helper_table, (gpointer)func);
1625 flags = info->flags;
1626 sizemask = info->sizemask;
1628 #if defined(__sparc__) && !defined(__arch64__) \
1629 && !defined(CONFIG_TCG_INTERPRETER)
1630 /* We have 64-bit values in one register, but need to pass as two
1631 separate parameters. Split them. */
1632 int orig_sizemask = sizemask;
1633 int orig_nargs = nargs;
1634 TCGv_i64 retl, reth;
1635 TCGTemp *split_args[MAX_OPC_PARAM];
1637 retl = NULL;
1638 reth = NULL;
1639 if (sizemask != 0) {
1640 for (i = real_args = 0; i < nargs; ++i) {
1641 int is_64bit = sizemask & (1 << (i+1)*2);
1642 if (is_64bit) {
1643 TCGv_i64 orig = temp_tcgv_i64(args[i]);
1644 TCGv_i32 h = tcg_temp_new_i32();
1645 TCGv_i32 l = tcg_temp_new_i32();
1646 tcg_gen_extr_i64_i32(l, h, orig);
1647 split_args[real_args++] = tcgv_i32_temp(h);
1648 split_args[real_args++] = tcgv_i32_temp(l);
1649 } else {
1650 split_args[real_args++] = args[i];
1653 nargs = real_args;
1654 args = split_args;
1655 sizemask = 0;
1657 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64
1658 for (i = 0; i < nargs; ++i) {
1659 int is_64bit = sizemask & (1 << (i+1)*2);
1660 int is_signed = sizemask & (2 << (i+1)*2);
1661 if (!is_64bit) {
1662 TCGv_i64 temp = tcg_temp_new_i64();
1663 TCGv_i64 orig = temp_tcgv_i64(args[i]);
1664 if (is_signed) {
1665 tcg_gen_ext32s_i64(temp, orig);
1666 } else {
1667 tcg_gen_ext32u_i64(temp, orig);
1669 args[i] = tcgv_i64_temp(temp);
1672 #endif /* TCG_TARGET_EXTEND_ARGS */
1674 op = tcg_emit_op(INDEX_op_call);
1676 pi = 0;
1677 if (ret != NULL) {
1678 #if defined(__sparc__) && !defined(__arch64__) \
1679 && !defined(CONFIG_TCG_INTERPRETER)
1680 if (orig_sizemask & 1) {
1681 /* The 32-bit ABI is going to return the 64-bit value in
1682 the %o0/%o1 register pair. Prepare for this by using
1683 two return temporaries, and reassemble below. */
1684 retl = tcg_temp_new_i64();
1685 reth = tcg_temp_new_i64();
1686 op->args[pi++] = tcgv_i64_arg(reth);
1687 op->args[pi++] = tcgv_i64_arg(retl);
1688 nb_rets = 2;
1689 } else {
1690 op->args[pi++] = temp_arg(ret);
1691 nb_rets = 1;
1693 #else
1694 if (TCG_TARGET_REG_BITS < 64 && (sizemask & 1)) {
1695 #ifdef HOST_WORDS_BIGENDIAN
1696 op->args[pi++] = temp_arg(ret + 1);
1697 op->args[pi++] = temp_arg(ret);
1698 #else
1699 op->args[pi++] = temp_arg(ret);
1700 op->args[pi++] = temp_arg(ret + 1);
1701 #endif
1702 nb_rets = 2;
1703 } else {
1704 op->args[pi++] = temp_arg(ret);
1705 nb_rets = 1;
1707 #endif
1708 } else {
1709 nb_rets = 0;
1711 TCGOP_CALLO(op) = nb_rets;
1713 real_args = 0;
1714 for (i = 0; i < nargs; i++) {
1715 int is_64bit = sizemask & (1 << (i+1)*2);
1716 if (TCG_TARGET_REG_BITS < 64 && is_64bit) {
1717 #ifdef TCG_TARGET_CALL_ALIGN_ARGS
1718 /* some targets want aligned 64 bit args */
1719 if (real_args & 1) {
1720 op->args[pi++] = TCG_CALL_DUMMY_ARG;
1721 real_args++;
1723 #endif
1724 /* If stack grows up, then we will be placing successive
1725 arguments at lower addresses, which means we need to
1726 reverse the order compared to how we would normally
1727 treat either big or little-endian. For those arguments
1728 that will wind up in registers, this still works for
1729 HPPA (the only current STACK_GROWSUP target) since the
1730 argument registers are *also* allocated in decreasing
1731 order. If another such target is added, this logic may
1732 have to get more complicated to differentiate between
1733 stack arguments and register arguments. */
1734 #if defined(HOST_WORDS_BIGENDIAN) != defined(TCG_TARGET_STACK_GROWSUP)
1735 op->args[pi++] = temp_arg(args[i] + 1);
1736 op->args[pi++] = temp_arg(args[i]);
1737 #else
1738 op->args[pi++] = temp_arg(args[i]);
1739 op->args[pi++] = temp_arg(args[i] + 1);
1740 #endif
1741 real_args += 2;
1742 continue;
1745 op->args[pi++] = temp_arg(args[i]);
1746 real_args++;
1748 op->args[pi++] = (uintptr_t)func;
1749 op->args[pi++] = flags;
1750 TCGOP_CALLI(op) = real_args;
1752 /* Make sure the fields didn't overflow. */
1753 tcg_debug_assert(TCGOP_CALLI(op) == real_args);
1754 tcg_debug_assert(pi <= ARRAY_SIZE(op->args));
1756 #if defined(__sparc__) && !defined(__arch64__) \
1757 && !defined(CONFIG_TCG_INTERPRETER)
1758 /* Free all of the parts we allocated above. */
1759 for (i = real_args = 0; i < orig_nargs; ++i) {
1760 int is_64bit = orig_sizemask & (1 << (i+1)*2);
1761 if (is_64bit) {
1762 tcg_temp_free_internal(args[real_args++]);
1763 tcg_temp_free_internal(args[real_args++]);
1764 } else {
1765 real_args++;
1768 if (orig_sizemask & 1) {
1769 /* The 32-bit ABI returned two 32-bit pieces. Re-assemble them.
1770 Note that describing these as TCGv_i64 eliminates an unnecessary
1771 zero-extension that tcg_gen_concat_i32_i64 would create. */
1772 tcg_gen_concat32_i64(temp_tcgv_i64(ret), retl, reth);
1773 tcg_temp_free_i64(retl);
1774 tcg_temp_free_i64(reth);
1776 #elif defined(TCG_TARGET_EXTEND_ARGS) && TCG_TARGET_REG_BITS == 64
1777 for (i = 0; i < nargs; ++i) {
1778 int is_64bit = sizemask & (1 << (i+1)*2);
1779 if (!is_64bit) {
1780 tcg_temp_free_internal(args[i]);
1783 #endif /* TCG_TARGET_EXTEND_ARGS */
1786 static void tcg_reg_alloc_start(TCGContext *s)
1788 int i, n;
1789 TCGTemp *ts;
1791 for (i = 0, n = s->nb_globals; i < n; i++) {
1792 ts = &s->temps[i];
1793 ts->val_type = (ts->fixed_reg ? TEMP_VAL_REG : TEMP_VAL_MEM);
1795 for (n = s->nb_temps; i < n; i++) {
1796 ts = &s->temps[i];
1797 ts->val_type = (ts->temp_local ? TEMP_VAL_MEM : TEMP_VAL_DEAD);
1798 ts->mem_allocated = 0;
1799 ts->fixed_reg = 0;
1802 memset(s->reg_to_temp, 0, sizeof(s->reg_to_temp));
1805 static char *tcg_get_arg_str_ptr(TCGContext *s, char *buf, int buf_size,
1806 TCGTemp *ts)
1808 int idx = temp_idx(ts);
1810 if (ts->temp_global) {
1811 pstrcpy(buf, buf_size, ts->name);
1812 } else if (ts->temp_local) {
1813 snprintf(buf, buf_size, "loc%d", idx - s->nb_globals);
1814 } else {
1815 snprintf(buf, buf_size, "tmp%d", idx - s->nb_globals);
1817 return buf;
1820 static char *tcg_get_arg_str(TCGContext *s, char *buf,
1821 int buf_size, TCGArg arg)
1823 return tcg_get_arg_str_ptr(s, buf, buf_size, arg_temp(arg));
1826 /* Find helper name. */
1827 static inline const char *tcg_find_helper(TCGContext *s, uintptr_t val)
1829 const char *ret = NULL;
1830 if (helper_table) {
1831 TCGHelperInfo *info = g_hash_table_lookup(helper_table, (gpointer)val);
1832 if (info) {
1833 ret = info->name;
1836 return ret;
1839 static const char * const cond_name[] =
1841 [TCG_COND_NEVER] = "never",
1842 [TCG_COND_ALWAYS] = "always",
1843 [TCG_COND_EQ] = "eq",
1844 [TCG_COND_NE] = "ne",
1845 [TCG_COND_LT] = "lt",
1846 [TCG_COND_GE] = "ge",
1847 [TCG_COND_LE] = "le",
1848 [TCG_COND_GT] = "gt",
1849 [TCG_COND_LTU] = "ltu",
1850 [TCG_COND_GEU] = "geu",
1851 [TCG_COND_LEU] = "leu",
1852 [TCG_COND_GTU] = "gtu"
1855 static const char * const ldst_name[] =
1857 [MO_UB] = "ub",
1858 [MO_SB] = "sb",
1859 [MO_LEUW] = "leuw",
1860 [MO_LESW] = "lesw",
1861 [MO_LEUL] = "leul",
1862 [MO_LESL] = "lesl",
1863 [MO_LEQ] = "leq",
1864 [MO_BEUW] = "beuw",
1865 [MO_BESW] = "besw",
1866 [MO_BEUL] = "beul",
1867 [MO_BESL] = "besl",
1868 [MO_BEQ] = "beq",
1871 static const char * const alignment_name[(MO_AMASK >> MO_ASHIFT) + 1] = {
1872 #ifdef ALIGNED_ONLY
1873 [MO_UNALN >> MO_ASHIFT] = "un+",
1874 [MO_ALIGN >> MO_ASHIFT] = "",
1875 #else
1876 [MO_UNALN >> MO_ASHIFT] = "",
1877 [MO_ALIGN >> MO_ASHIFT] = "al+",
1878 #endif
1879 [MO_ALIGN_2 >> MO_ASHIFT] = "al2+",
1880 [MO_ALIGN_4 >> MO_ASHIFT] = "al4+",
1881 [MO_ALIGN_8 >> MO_ASHIFT] = "al8+",
1882 [MO_ALIGN_16 >> MO_ASHIFT] = "al16+",
1883 [MO_ALIGN_32 >> MO_ASHIFT] = "al32+",
1884 [MO_ALIGN_64 >> MO_ASHIFT] = "al64+",
1887 void tcg_dump_ops(TCGContext *s)
1889 char buf[128];
1890 TCGOp *op;
1892 QTAILQ_FOREACH(op, &s->ops, link) {
1893 int i, k, nb_oargs, nb_iargs, nb_cargs;
1894 const TCGOpDef *def;
1895 TCGOpcode c;
1896 int col = 0;
1898 c = op->opc;
1899 def = &tcg_op_defs[c];
1901 if (c == INDEX_op_insn_start) {
1902 col += qemu_log("\n ----");
1904 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) {
1905 target_ulong a;
1906 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
1907 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]);
1908 #else
1909 a = op->args[i];
1910 #endif
1911 col += qemu_log(" " TARGET_FMT_lx, a);
1913 } else if (c == INDEX_op_call) {
1914 /* variable number of arguments */
1915 nb_oargs = TCGOP_CALLO(op);
1916 nb_iargs = TCGOP_CALLI(op);
1917 nb_cargs = def->nb_cargs;
1919 /* function name, flags, out args */
1920 col += qemu_log(" %s %s,$0x%" TCG_PRIlx ",$%d", def->name,
1921 tcg_find_helper(s, op->args[nb_oargs + nb_iargs]),
1922 op->args[nb_oargs + nb_iargs + 1], nb_oargs);
1923 for (i = 0; i < nb_oargs; i++) {
1924 col += qemu_log(",%s", tcg_get_arg_str(s, buf, sizeof(buf),
1925 op->args[i]));
1927 for (i = 0; i < nb_iargs; i++) {
1928 TCGArg arg = op->args[nb_oargs + i];
1929 const char *t = "<dummy>";
1930 if (arg != TCG_CALL_DUMMY_ARG) {
1931 t = tcg_get_arg_str(s, buf, sizeof(buf), arg);
1933 col += qemu_log(",%s", t);
1935 } else {
1936 col += qemu_log(" %s ", def->name);
1938 nb_oargs = def->nb_oargs;
1939 nb_iargs = def->nb_iargs;
1940 nb_cargs = def->nb_cargs;
1942 if (def->flags & TCG_OPF_VECTOR) {
1943 col += qemu_log("v%d,e%d,", 64 << TCGOP_VECL(op),
1944 8 << TCGOP_VECE(op));
1947 k = 0;
1948 for (i = 0; i < nb_oargs; i++) {
1949 if (k != 0) {
1950 col += qemu_log(",");
1952 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf),
1953 op->args[k++]));
1955 for (i = 0; i < nb_iargs; i++) {
1956 if (k != 0) {
1957 col += qemu_log(",");
1959 col += qemu_log("%s", tcg_get_arg_str(s, buf, sizeof(buf),
1960 op->args[k++]));
1962 switch (c) {
1963 case INDEX_op_brcond_i32:
1964 case INDEX_op_setcond_i32:
1965 case INDEX_op_movcond_i32:
1966 case INDEX_op_brcond2_i32:
1967 case INDEX_op_setcond2_i32:
1968 case INDEX_op_brcond_i64:
1969 case INDEX_op_setcond_i64:
1970 case INDEX_op_movcond_i64:
1971 case INDEX_op_cmp_vec:
1972 if (op->args[k] < ARRAY_SIZE(cond_name)
1973 && cond_name[op->args[k]]) {
1974 col += qemu_log(",%s", cond_name[op->args[k++]]);
1975 } else {
1976 col += qemu_log(",$0x%" TCG_PRIlx, op->args[k++]);
1978 i = 1;
1979 break;
1980 case INDEX_op_qemu_ld_i32:
1981 case INDEX_op_qemu_st_i32:
1982 case INDEX_op_qemu_ld_i64:
1983 case INDEX_op_qemu_st_i64:
1985 TCGMemOpIdx oi = op->args[k++];
1986 TCGMemOp op = get_memop(oi);
1987 unsigned ix = get_mmuidx(oi);
1989 if (op & ~(MO_AMASK | MO_BSWAP | MO_SSIZE)) {
1990 col += qemu_log(",$0x%x,%u", op, ix);
1991 } else {
1992 const char *s_al, *s_op;
1993 s_al = alignment_name[(op & MO_AMASK) >> MO_ASHIFT];
1994 s_op = ldst_name[op & (MO_BSWAP | MO_SSIZE)];
1995 col += qemu_log(",%s%s,%u", s_al, s_op, ix);
1997 i = 1;
1999 break;
2000 default:
2001 i = 0;
2002 break;
2004 switch (c) {
2005 case INDEX_op_set_label:
2006 case INDEX_op_br:
2007 case INDEX_op_brcond_i32:
2008 case INDEX_op_brcond_i64:
2009 case INDEX_op_brcond2_i32:
2010 col += qemu_log("%s$L%d", k ? "," : "",
2011 arg_label(op->args[k])->id);
2012 i++, k++;
2013 break;
2014 default:
2015 break;
2017 for (; i < nb_cargs; i++, k++) {
2018 col += qemu_log("%s$0x%" TCG_PRIlx, k ? "," : "", op->args[k]);
2021 if (op->life) {
2022 unsigned life = op->life;
2024 for (; col < 48; ++col) {
2025 putc(' ', qemu_logfile);
2028 if (life & (SYNC_ARG * 3)) {
2029 qemu_log(" sync:");
2030 for (i = 0; i < 2; ++i) {
2031 if (life & (SYNC_ARG << i)) {
2032 qemu_log(" %d", i);
2036 life /= DEAD_ARG;
2037 if (life) {
2038 qemu_log(" dead:");
2039 for (i = 0; life; ++i, life >>= 1) {
2040 if (life & 1) {
2041 qemu_log(" %d", i);
2046 qemu_log("\n");
2050 /* we give more priority to constraints with less registers */
2051 static int get_constraint_priority(const TCGOpDef *def, int k)
2053 const TCGArgConstraint *arg_ct;
2055 int i, n;
2056 arg_ct = &def->args_ct[k];
2057 if (arg_ct->ct & TCG_CT_ALIAS) {
2058 /* an alias is equivalent to a single register */
2059 n = 1;
2060 } else {
2061 if (!(arg_ct->ct & TCG_CT_REG))
2062 return 0;
2063 n = 0;
2064 for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
2065 if (tcg_regset_test_reg(arg_ct->u.regs, i))
2066 n++;
2069 return TCG_TARGET_NB_REGS - n + 1;
2072 /* sort from highest priority to lowest */
2073 static void sort_constraints(TCGOpDef *def, int start, int n)
2075 int i, j, p1, p2, tmp;
2077 for(i = 0; i < n; i++)
2078 def->sorted_args[start + i] = start + i;
2079 if (n <= 1)
2080 return;
2081 for(i = 0; i < n - 1; i++) {
2082 for(j = i + 1; j < n; j++) {
2083 p1 = get_constraint_priority(def, def->sorted_args[start + i]);
2084 p2 = get_constraint_priority(def, def->sorted_args[start + j]);
2085 if (p1 < p2) {
2086 tmp = def->sorted_args[start + i];
2087 def->sorted_args[start + i] = def->sorted_args[start + j];
2088 def->sorted_args[start + j] = tmp;
2094 static void process_op_defs(TCGContext *s)
2096 TCGOpcode op;
2098 for (op = 0; op < NB_OPS; op++) {
2099 TCGOpDef *def = &tcg_op_defs[op];
2100 const TCGTargetOpDef *tdefs;
2101 TCGType type;
2102 int i, nb_args;
2104 if (def->flags & TCG_OPF_NOT_PRESENT) {
2105 continue;
2108 nb_args = def->nb_iargs + def->nb_oargs;
2109 if (nb_args == 0) {
2110 continue;
2113 tdefs = tcg_target_op_def(op);
2114 /* Missing TCGTargetOpDef entry. */
2115 tcg_debug_assert(tdefs != NULL);
2117 type = (def->flags & TCG_OPF_64BIT ? TCG_TYPE_I64 : TCG_TYPE_I32);
2118 for (i = 0; i < nb_args; i++) {
2119 const char *ct_str = tdefs->args_ct_str[i];
2120 /* Incomplete TCGTargetOpDef entry. */
2121 tcg_debug_assert(ct_str != NULL);
2123 def->args_ct[i].u.regs = 0;
2124 def->args_ct[i].ct = 0;
2125 while (*ct_str != '\0') {
2126 switch(*ct_str) {
2127 case '0' ... '9':
2129 int oarg = *ct_str - '0';
2130 tcg_debug_assert(ct_str == tdefs->args_ct_str[i]);
2131 tcg_debug_assert(oarg < def->nb_oargs);
2132 tcg_debug_assert(def->args_ct[oarg].ct & TCG_CT_REG);
2133 /* TCG_CT_ALIAS is for the output arguments.
2134 The input is tagged with TCG_CT_IALIAS. */
2135 def->args_ct[i] = def->args_ct[oarg];
2136 def->args_ct[oarg].ct |= TCG_CT_ALIAS;
2137 def->args_ct[oarg].alias_index = i;
2138 def->args_ct[i].ct |= TCG_CT_IALIAS;
2139 def->args_ct[i].alias_index = oarg;
2141 ct_str++;
2142 break;
2143 case '&':
2144 def->args_ct[i].ct |= TCG_CT_NEWREG;
2145 ct_str++;
2146 break;
2147 case 'i':
2148 def->args_ct[i].ct |= TCG_CT_CONST;
2149 ct_str++;
2150 break;
2151 default:
2152 ct_str = target_parse_constraint(&def->args_ct[i],
2153 ct_str, type);
2154 /* Typo in TCGTargetOpDef constraint. */
2155 tcg_debug_assert(ct_str != NULL);
2160 /* TCGTargetOpDef entry with too much information? */
2161 tcg_debug_assert(i == TCG_MAX_OP_ARGS || tdefs->args_ct_str[i] == NULL);
2163 /* sort the constraints (XXX: this is just an heuristic) */
2164 sort_constraints(def, 0, def->nb_oargs);
2165 sort_constraints(def, def->nb_oargs, def->nb_iargs);
2169 void tcg_op_remove(TCGContext *s, TCGOp *op)
2171 QTAILQ_REMOVE(&s->ops, op, link);
2172 QTAILQ_INSERT_TAIL(&s->free_ops, op, link);
2173 s->nb_ops--;
2175 #ifdef CONFIG_PROFILER
2176 atomic_set(&s->prof.del_op_count, s->prof.del_op_count + 1);
2177 #endif
2180 static TCGOp *tcg_op_alloc(TCGOpcode opc)
2182 TCGContext *s = tcg_ctx;
2183 TCGOp *op;
2185 if (likely(QTAILQ_EMPTY(&s->free_ops))) {
2186 op = tcg_malloc(sizeof(TCGOp));
2187 } else {
2188 op = QTAILQ_FIRST(&s->free_ops);
2189 QTAILQ_REMOVE(&s->free_ops, op, link);
2191 memset(op, 0, offsetof(TCGOp, link));
2192 op->opc = opc;
2193 s->nb_ops++;
2195 return op;
2198 TCGOp *tcg_emit_op(TCGOpcode opc)
2200 TCGOp *op = tcg_op_alloc(opc);
2201 QTAILQ_INSERT_TAIL(&tcg_ctx->ops, op, link);
2202 return op;
2205 TCGOp *tcg_op_insert_before(TCGContext *s, TCGOp *old_op,
2206 TCGOpcode opc, int nargs)
2208 TCGOp *new_op = tcg_op_alloc(opc);
2209 QTAILQ_INSERT_BEFORE(old_op, new_op, link);
2210 return new_op;
2213 TCGOp *tcg_op_insert_after(TCGContext *s, TCGOp *old_op,
2214 TCGOpcode opc, int nargs)
2216 TCGOp *new_op = tcg_op_alloc(opc);
2217 QTAILQ_INSERT_AFTER(&s->ops, old_op, new_op, link);
2218 return new_op;
2221 #define TS_DEAD 1
2222 #define TS_MEM 2
2224 #define IS_DEAD_ARG(n) (arg_life & (DEAD_ARG << (n)))
2225 #define NEED_SYNC_ARG(n) (arg_life & (SYNC_ARG << (n)))
2227 /* liveness analysis: end of function: all temps are dead, and globals
2228 should be in memory. */
2229 static void tcg_la_func_end(TCGContext *s)
2231 int ng = s->nb_globals;
2232 int nt = s->nb_temps;
2233 int i;
2235 for (i = 0; i < ng; ++i) {
2236 s->temps[i].state = TS_DEAD | TS_MEM;
2238 for (i = ng; i < nt; ++i) {
2239 s->temps[i].state = TS_DEAD;
2243 /* liveness analysis: end of basic block: all temps are dead, globals
2244 and local temps should be in memory. */
2245 static void tcg_la_bb_end(TCGContext *s)
2247 int ng = s->nb_globals;
2248 int nt = s->nb_temps;
2249 int i;
2251 for (i = 0; i < ng; ++i) {
2252 s->temps[i].state = TS_DEAD | TS_MEM;
2254 for (i = ng; i < nt; ++i) {
2255 s->temps[i].state = (s->temps[i].temp_local
2256 ? TS_DEAD | TS_MEM
2257 : TS_DEAD);
2261 /* Liveness analysis : update the opc_arg_life array to tell if a
2262 given input arguments is dead. Instructions updating dead
2263 temporaries are removed. */
2264 static void liveness_pass_1(TCGContext *s)
2266 int nb_globals = s->nb_globals;
2267 TCGOp *op, *op_prev;
2269 tcg_la_func_end(s);
2271 QTAILQ_FOREACH_REVERSE_SAFE(op, &s->ops, TCGOpHead, link, op_prev) {
2272 int i, nb_iargs, nb_oargs;
2273 TCGOpcode opc_new, opc_new2;
2274 bool have_opc_new2;
2275 TCGLifeData arg_life = 0;
2276 TCGTemp *arg_ts;
2277 TCGOpcode opc = op->opc;
2278 const TCGOpDef *def = &tcg_op_defs[opc];
2280 switch (opc) {
2281 case INDEX_op_call:
2283 int call_flags;
2285 nb_oargs = TCGOP_CALLO(op);
2286 nb_iargs = TCGOP_CALLI(op);
2287 call_flags = op->args[nb_oargs + nb_iargs + 1];
2289 /* pure functions can be removed if their result is unused */
2290 if (call_flags & TCG_CALL_NO_SIDE_EFFECTS) {
2291 for (i = 0; i < nb_oargs; i++) {
2292 arg_ts = arg_temp(op->args[i]);
2293 if (arg_ts->state != TS_DEAD) {
2294 goto do_not_remove_call;
2297 goto do_remove;
2298 } else {
2299 do_not_remove_call:
2301 /* output args are dead */
2302 for (i = 0; i < nb_oargs; i++) {
2303 arg_ts = arg_temp(op->args[i]);
2304 if (arg_ts->state & TS_DEAD) {
2305 arg_life |= DEAD_ARG << i;
2307 if (arg_ts->state & TS_MEM) {
2308 arg_life |= SYNC_ARG << i;
2310 arg_ts->state = TS_DEAD;
2313 if (!(call_flags & (TCG_CALL_NO_WRITE_GLOBALS |
2314 TCG_CALL_NO_READ_GLOBALS))) {
2315 /* globals should go back to memory */
2316 for (i = 0; i < nb_globals; i++) {
2317 s->temps[i].state = TS_DEAD | TS_MEM;
2319 } else if (!(call_flags & TCG_CALL_NO_READ_GLOBALS)) {
2320 /* globals should be synced to memory */
2321 for (i = 0; i < nb_globals; i++) {
2322 s->temps[i].state |= TS_MEM;
2326 /* record arguments that die in this helper */
2327 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2328 arg_ts = arg_temp(op->args[i]);
2329 if (arg_ts && arg_ts->state & TS_DEAD) {
2330 arg_life |= DEAD_ARG << i;
2333 /* input arguments are live for preceding opcodes */
2334 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2335 arg_ts = arg_temp(op->args[i]);
2336 if (arg_ts) {
2337 arg_ts->state &= ~TS_DEAD;
2342 break;
2343 case INDEX_op_insn_start:
2344 break;
2345 case INDEX_op_discard:
2346 /* mark the temporary as dead */
2347 arg_temp(op->args[0])->state = TS_DEAD;
2348 break;
2350 case INDEX_op_add2_i32:
2351 opc_new = INDEX_op_add_i32;
2352 goto do_addsub2;
2353 case INDEX_op_sub2_i32:
2354 opc_new = INDEX_op_sub_i32;
2355 goto do_addsub2;
2356 case INDEX_op_add2_i64:
2357 opc_new = INDEX_op_add_i64;
2358 goto do_addsub2;
2359 case INDEX_op_sub2_i64:
2360 opc_new = INDEX_op_sub_i64;
2361 do_addsub2:
2362 nb_iargs = 4;
2363 nb_oargs = 2;
2364 /* Test if the high part of the operation is dead, but not
2365 the low part. The result can be optimized to a simple
2366 add or sub. This happens often for x86_64 guest when the
2367 cpu mode is set to 32 bit. */
2368 if (arg_temp(op->args[1])->state == TS_DEAD) {
2369 if (arg_temp(op->args[0])->state == TS_DEAD) {
2370 goto do_remove;
2372 /* Replace the opcode and adjust the args in place,
2373 leaving 3 unused args at the end. */
2374 op->opc = opc = opc_new;
2375 op->args[1] = op->args[2];
2376 op->args[2] = op->args[4];
2377 /* Fall through and mark the single-word operation live. */
2378 nb_iargs = 2;
2379 nb_oargs = 1;
2381 goto do_not_remove;
2383 case INDEX_op_mulu2_i32:
2384 opc_new = INDEX_op_mul_i32;
2385 opc_new2 = INDEX_op_muluh_i32;
2386 have_opc_new2 = TCG_TARGET_HAS_muluh_i32;
2387 goto do_mul2;
2388 case INDEX_op_muls2_i32:
2389 opc_new = INDEX_op_mul_i32;
2390 opc_new2 = INDEX_op_mulsh_i32;
2391 have_opc_new2 = TCG_TARGET_HAS_mulsh_i32;
2392 goto do_mul2;
2393 case INDEX_op_mulu2_i64:
2394 opc_new = INDEX_op_mul_i64;
2395 opc_new2 = INDEX_op_muluh_i64;
2396 have_opc_new2 = TCG_TARGET_HAS_muluh_i64;
2397 goto do_mul2;
2398 case INDEX_op_muls2_i64:
2399 opc_new = INDEX_op_mul_i64;
2400 opc_new2 = INDEX_op_mulsh_i64;
2401 have_opc_new2 = TCG_TARGET_HAS_mulsh_i64;
2402 goto do_mul2;
2403 do_mul2:
2404 nb_iargs = 2;
2405 nb_oargs = 2;
2406 if (arg_temp(op->args[1])->state == TS_DEAD) {
2407 if (arg_temp(op->args[0])->state == TS_DEAD) {
2408 /* Both parts of the operation are dead. */
2409 goto do_remove;
2411 /* The high part of the operation is dead; generate the low. */
2412 op->opc = opc = opc_new;
2413 op->args[1] = op->args[2];
2414 op->args[2] = op->args[3];
2415 } else if (arg_temp(op->args[0])->state == TS_DEAD && have_opc_new2) {
2416 /* The low part of the operation is dead; generate the high. */
2417 op->opc = opc = opc_new2;
2418 op->args[0] = op->args[1];
2419 op->args[1] = op->args[2];
2420 op->args[2] = op->args[3];
2421 } else {
2422 goto do_not_remove;
2424 /* Mark the single-word operation live. */
2425 nb_oargs = 1;
2426 goto do_not_remove;
2428 default:
2429 /* XXX: optimize by hardcoding common cases (e.g. triadic ops) */
2430 nb_iargs = def->nb_iargs;
2431 nb_oargs = def->nb_oargs;
2433 /* Test if the operation can be removed because all
2434 its outputs are dead. We assume that nb_oargs == 0
2435 implies side effects */
2436 if (!(def->flags & TCG_OPF_SIDE_EFFECTS) && nb_oargs != 0) {
2437 for (i = 0; i < nb_oargs; i++) {
2438 if (arg_temp(op->args[i])->state != TS_DEAD) {
2439 goto do_not_remove;
2442 do_remove:
2443 tcg_op_remove(s, op);
2444 } else {
2445 do_not_remove:
2446 /* output args are dead */
2447 for (i = 0; i < nb_oargs; i++) {
2448 arg_ts = arg_temp(op->args[i]);
2449 if (arg_ts->state & TS_DEAD) {
2450 arg_life |= DEAD_ARG << i;
2452 if (arg_ts->state & TS_MEM) {
2453 arg_life |= SYNC_ARG << i;
2455 arg_ts->state = TS_DEAD;
2458 /* if end of basic block, update */
2459 if (def->flags & TCG_OPF_BB_END) {
2460 tcg_la_bb_end(s);
2461 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) {
2462 /* globals should be synced to memory */
2463 for (i = 0; i < nb_globals; i++) {
2464 s->temps[i].state |= TS_MEM;
2468 /* record arguments that die in this opcode */
2469 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2470 arg_ts = arg_temp(op->args[i]);
2471 if (arg_ts->state & TS_DEAD) {
2472 arg_life |= DEAD_ARG << i;
2475 /* input arguments are live for preceding opcodes */
2476 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
2477 arg_temp(op->args[i])->state &= ~TS_DEAD;
2480 break;
2482 op->life = arg_life;
2486 /* Liveness analysis: Convert indirect regs to direct temporaries. */
2487 static bool liveness_pass_2(TCGContext *s)
2489 int nb_globals = s->nb_globals;
2490 int nb_temps, i;
2491 bool changes = false;
2492 TCGOp *op, *op_next;
2494 /* Create a temporary for each indirect global. */
2495 for (i = 0; i < nb_globals; ++i) {
2496 TCGTemp *its = &s->temps[i];
2497 if (its->indirect_reg) {
2498 TCGTemp *dts = tcg_temp_alloc(s);
2499 dts->type = its->type;
2500 dts->base_type = its->base_type;
2501 its->state_ptr = dts;
2502 } else {
2503 its->state_ptr = NULL;
2505 /* All globals begin dead. */
2506 its->state = TS_DEAD;
2508 for (nb_temps = s->nb_temps; i < nb_temps; ++i) {
2509 TCGTemp *its = &s->temps[i];
2510 its->state_ptr = NULL;
2511 its->state = TS_DEAD;
2514 QTAILQ_FOREACH_SAFE(op, &s->ops, link, op_next) {
2515 TCGOpcode opc = op->opc;
2516 const TCGOpDef *def = &tcg_op_defs[opc];
2517 TCGLifeData arg_life = op->life;
2518 int nb_iargs, nb_oargs, call_flags;
2519 TCGTemp *arg_ts, *dir_ts;
2521 if (opc == INDEX_op_call) {
2522 nb_oargs = TCGOP_CALLO(op);
2523 nb_iargs = TCGOP_CALLI(op);
2524 call_flags = op->args[nb_oargs + nb_iargs + 1];
2525 } else {
2526 nb_iargs = def->nb_iargs;
2527 nb_oargs = def->nb_oargs;
2529 /* Set flags similar to how calls require. */
2530 if (def->flags & TCG_OPF_BB_END) {
2531 /* Like writing globals: save_globals */
2532 call_flags = 0;
2533 } else if (def->flags & TCG_OPF_SIDE_EFFECTS) {
2534 /* Like reading globals: sync_globals */
2535 call_flags = TCG_CALL_NO_WRITE_GLOBALS;
2536 } else {
2537 /* No effect on globals. */
2538 call_flags = (TCG_CALL_NO_READ_GLOBALS |
2539 TCG_CALL_NO_WRITE_GLOBALS);
2543 /* Make sure that input arguments are available. */
2544 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2545 arg_ts = arg_temp(op->args[i]);
2546 if (arg_ts) {
2547 dir_ts = arg_ts->state_ptr;
2548 if (dir_ts && arg_ts->state == TS_DEAD) {
2549 TCGOpcode lopc = (arg_ts->type == TCG_TYPE_I32
2550 ? INDEX_op_ld_i32
2551 : INDEX_op_ld_i64);
2552 TCGOp *lop = tcg_op_insert_before(s, op, lopc, 3);
2554 lop->args[0] = temp_arg(dir_ts);
2555 lop->args[1] = temp_arg(arg_ts->mem_base);
2556 lop->args[2] = arg_ts->mem_offset;
2558 /* Loaded, but synced with memory. */
2559 arg_ts->state = TS_MEM;
2564 /* Perform input replacement, and mark inputs that became dead.
2565 No action is required except keeping temp_state up to date
2566 so that we reload when needed. */
2567 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
2568 arg_ts = arg_temp(op->args[i]);
2569 if (arg_ts) {
2570 dir_ts = arg_ts->state_ptr;
2571 if (dir_ts) {
2572 op->args[i] = temp_arg(dir_ts);
2573 changes = true;
2574 if (IS_DEAD_ARG(i)) {
2575 arg_ts->state = TS_DEAD;
2581 /* Liveness analysis should ensure that the following are
2582 all correct, for call sites and basic block end points. */
2583 if (call_flags & TCG_CALL_NO_READ_GLOBALS) {
2584 /* Nothing to do */
2585 } else if (call_flags & TCG_CALL_NO_WRITE_GLOBALS) {
2586 for (i = 0; i < nb_globals; ++i) {
2587 /* Liveness should see that globals are synced back,
2588 that is, either TS_DEAD or TS_MEM. */
2589 arg_ts = &s->temps[i];
2590 tcg_debug_assert(arg_ts->state_ptr == 0
2591 || arg_ts->state != 0);
2593 } else {
2594 for (i = 0; i < nb_globals; ++i) {
2595 /* Liveness should see that globals are saved back,
2596 that is, TS_DEAD, waiting to be reloaded. */
2597 arg_ts = &s->temps[i];
2598 tcg_debug_assert(arg_ts->state_ptr == 0
2599 || arg_ts->state == TS_DEAD);
2603 /* Outputs become available. */
2604 for (i = 0; i < nb_oargs; i++) {
2605 arg_ts = arg_temp(op->args[i]);
2606 dir_ts = arg_ts->state_ptr;
2607 if (!dir_ts) {
2608 continue;
2610 op->args[i] = temp_arg(dir_ts);
2611 changes = true;
2613 /* The output is now live and modified. */
2614 arg_ts->state = 0;
2616 /* Sync outputs upon their last write. */
2617 if (NEED_SYNC_ARG(i)) {
2618 TCGOpcode sopc = (arg_ts->type == TCG_TYPE_I32
2619 ? INDEX_op_st_i32
2620 : INDEX_op_st_i64);
2621 TCGOp *sop = tcg_op_insert_after(s, op, sopc, 3);
2623 sop->args[0] = temp_arg(dir_ts);
2624 sop->args[1] = temp_arg(arg_ts->mem_base);
2625 sop->args[2] = arg_ts->mem_offset;
2627 arg_ts->state = TS_MEM;
2629 /* Drop outputs that are dead. */
2630 if (IS_DEAD_ARG(i)) {
2631 arg_ts->state = TS_DEAD;
2636 return changes;
2639 #ifdef CONFIG_DEBUG_TCG
2640 static void dump_regs(TCGContext *s)
2642 TCGTemp *ts;
2643 int i;
2644 char buf[64];
2646 for(i = 0; i < s->nb_temps; i++) {
2647 ts = &s->temps[i];
2648 printf(" %10s: ", tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts));
2649 switch(ts->val_type) {
2650 case TEMP_VAL_REG:
2651 printf("%s", tcg_target_reg_names[ts->reg]);
2652 break;
2653 case TEMP_VAL_MEM:
2654 printf("%d(%s)", (int)ts->mem_offset,
2655 tcg_target_reg_names[ts->mem_base->reg]);
2656 break;
2657 case TEMP_VAL_CONST:
2658 printf("$0x%" TCG_PRIlx, ts->val);
2659 break;
2660 case TEMP_VAL_DEAD:
2661 printf("D");
2662 break;
2663 default:
2664 printf("???");
2665 break;
2667 printf("\n");
2670 for(i = 0; i < TCG_TARGET_NB_REGS; i++) {
2671 if (s->reg_to_temp[i] != NULL) {
2672 printf("%s: %s\n",
2673 tcg_target_reg_names[i],
2674 tcg_get_arg_str_ptr(s, buf, sizeof(buf), s->reg_to_temp[i]));
2679 static void check_regs(TCGContext *s)
2681 int reg;
2682 int k;
2683 TCGTemp *ts;
2684 char buf[64];
2686 for (reg = 0; reg < TCG_TARGET_NB_REGS; reg++) {
2687 ts = s->reg_to_temp[reg];
2688 if (ts != NULL) {
2689 if (ts->val_type != TEMP_VAL_REG || ts->reg != reg) {
2690 printf("Inconsistency for register %s:\n",
2691 tcg_target_reg_names[reg]);
2692 goto fail;
2696 for (k = 0; k < s->nb_temps; k++) {
2697 ts = &s->temps[k];
2698 if (ts->val_type == TEMP_VAL_REG && !ts->fixed_reg
2699 && s->reg_to_temp[ts->reg] != ts) {
2700 printf("Inconsistency for temp %s:\n",
2701 tcg_get_arg_str_ptr(s, buf, sizeof(buf), ts));
2702 fail:
2703 printf("reg state:\n");
2704 dump_regs(s);
2705 tcg_abort();
2709 #endif
2711 static void temp_allocate_frame(TCGContext *s, TCGTemp *ts)
2713 #if !(defined(__sparc__) && TCG_TARGET_REG_BITS == 64)
2714 /* Sparc64 stack is accessed with offset of 2047 */
2715 s->current_frame_offset = (s->current_frame_offset +
2716 (tcg_target_long)sizeof(tcg_target_long) - 1) &
2717 ~(sizeof(tcg_target_long) - 1);
2718 #endif
2719 if (s->current_frame_offset + (tcg_target_long)sizeof(tcg_target_long) >
2720 s->frame_end) {
2721 tcg_abort();
2723 ts->mem_offset = s->current_frame_offset;
2724 ts->mem_base = s->frame_temp;
2725 ts->mem_allocated = 1;
2726 s->current_frame_offset += sizeof(tcg_target_long);
2729 static void temp_load(TCGContext *, TCGTemp *, TCGRegSet, TCGRegSet);
2731 /* Mark a temporary as free or dead. If 'free_or_dead' is negative,
2732 mark it free; otherwise mark it dead. */
2733 static void temp_free_or_dead(TCGContext *s, TCGTemp *ts, int free_or_dead)
2735 if (ts->fixed_reg) {
2736 return;
2738 if (ts->val_type == TEMP_VAL_REG) {
2739 s->reg_to_temp[ts->reg] = NULL;
2741 ts->val_type = (free_or_dead < 0
2742 || ts->temp_local
2743 || ts->temp_global
2744 ? TEMP_VAL_MEM : TEMP_VAL_DEAD);
2747 /* Mark a temporary as dead. */
2748 static inline void temp_dead(TCGContext *s, TCGTemp *ts)
2750 temp_free_or_dead(s, ts, 1);
2753 /* Sync a temporary to memory. 'allocated_regs' is used in case a temporary
2754 registers needs to be allocated to store a constant. If 'free_or_dead'
2755 is non-zero, subsequently release the temporary; if it is positive, the
2756 temp is dead; if it is negative, the temp is free. */
2757 static void temp_sync(TCGContext *s, TCGTemp *ts,
2758 TCGRegSet allocated_regs, int free_or_dead)
2760 if (ts->fixed_reg) {
2761 return;
2763 if (!ts->mem_coherent) {
2764 if (!ts->mem_allocated) {
2765 temp_allocate_frame(s, ts);
2767 switch (ts->val_type) {
2768 case TEMP_VAL_CONST:
2769 /* If we're going to free the temp immediately, then we won't
2770 require it later in a register, so attempt to store the
2771 constant to memory directly. */
2772 if (free_or_dead
2773 && tcg_out_sti(s, ts->type, ts->val,
2774 ts->mem_base->reg, ts->mem_offset)) {
2775 break;
2777 temp_load(s, ts, tcg_target_available_regs[ts->type],
2778 allocated_regs);
2779 /* fallthrough */
2781 case TEMP_VAL_REG:
2782 tcg_out_st(s, ts->type, ts->reg,
2783 ts->mem_base->reg, ts->mem_offset);
2784 break;
2786 case TEMP_VAL_MEM:
2787 break;
2789 case TEMP_VAL_DEAD:
2790 default:
2791 tcg_abort();
2793 ts->mem_coherent = 1;
2795 if (free_or_dead) {
2796 temp_free_or_dead(s, ts, free_or_dead);
2800 /* free register 'reg' by spilling the corresponding temporary if necessary */
2801 static void tcg_reg_free(TCGContext *s, TCGReg reg, TCGRegSet allocated_regs)
2803 TCGTemp *ts = s->reg_to_temp[reg];
2804 if (ts != NULL) {
2805 temp_sync(s, ts, allocated_regs, -1);
2809 /* Allocate a register belonging to reg1 & ~reg2 */
2810 static TCGReg tcg_reg_alloc(TCGContext *s, TCGRegSet desired_regs,
2811 TCGRegSet allocated_regs, bool rev)
2813 int i, n = ARRAY_SIZE(tcg_target_reg_alloc_order);
2814 const int *order;
2815 TCGReg reg;
2816 TCGRegSet reg_ct;
2818 reg_ct = desired_regs & ~allocated_regs;
2819 order = rev ? indirect_reg_alloc_order : tcg_target_reg_alloc_order;
2821 /* first try free registers */
2822 for(i = 0; i < n; i++) {
2823 reg = order[i];
2824 if (tcg_regset_test_reg(reg_ct, reg) && s->reg_to_temp[reg] == NULL)
2825 return reg;
2828 /* XXX: do better spill choice */
2829 for(i = 0; i < n; i++) {
2830 reg = order[i];
2831 if (tcg_regset_test_reg(reg_ct, reg)) {
2832 tcg_reg_free(s, reg, allocated_regs);
2833 return reg;
2837 tcg_abort();
2840 /* Make sure the temporary is in a register. If needed, allocate the register
2841 from DESIRED while avoiding ALLOCATED. */
2842 static void temp_load(TCGContext *s, TCGTemp *ts, TCGRegSet desired_regs,
2843 TCGRegSet allocated_regs)
2845 TCGReg reg;
2847 switch (ts->val_type) {
2848 case TEMP_VAL_REG:
2849 return;
2850 case TEMP_VAL_CONST:
2851 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, ts->indirect_base);
2852 tcg_out_movi(s, ts->type, reg, ts->val);
2853 ts->mem_coherent = 0;
2854 break;
2855 case TEMP_VAL_MEM:
2856 reg = tcg_reg_alloc(s, desired_regs, allocated_regs, ts->indirect_base);
2857 tcg_out_ld(s, ts->type, reg, ts->mem_base->reg, ts->mem_offset);
2858 ts->mem_coherent = 1;
2859 break;
2860 case TEMP_VAL_DEAD:
2861 default:
2862 tcg_abort();
2864 ts->reg = reg;
2865 ts->val_type = TEMP_VAL_REG;
2866 s->reg_to_temp[reg] = ts;
2869 /* Save a temporary to memory. 'allocated_regs' is used in case a
2870 temporary registers needs to be allocated to store a constant. */
2871 static void temp_save(TCGContext *s, TCGTemp *ts, TCGRegSet allocated_regs)
2873 /* The liveness analysis already ensures that globals are back
2874 in memory. Keep an tcg_debug_assert for safety. */
2875 tcg_debug_assert(ts->val_type == TEMP_VAL_MEM || ts->fixed_reg);
2878 /* save globals to their canonical location and assume they can be
2879 modified be the following code. 'allocated_regs' is used in case a
2880 temporary registers needs to be allocated to store a constant. */
2881 static void save_globals(TCGContext *s, TCGRegSet allocated_regs)
2883 int i, n;
2885 for (i = 0, n = s->nb_globals; i < n; i++) {
2886 temp_save(s, &s->temps[i], allocated_regs);
2890 /* sync globals to their canonical location and assume they can be
2891 read by the following code. 'allocated_regs' is used in case a
2892 temporary registers needs to be allocated to store a constant. */
2893 static void sync_globals(TCGContext *s, TCGRegSet allocated_regs)
2895 int i, n;
2897 for (i = 0, n = s->nb_globals; i < n; i++) {
2898 TCGTemp *ts = &s->temps[i];
2899 tcg_debug_assert(ts->val_type != TEMP_VAL_REG
2900 || ts->fixed_reg
2901 || ts->mem_coherent);
2905 /* at the end of a basic block, we assume all temporaries are dead and
2906 all globals are stored at their canonical location. */
2907 static void tcg_reg_alloc_bb_end(TCGContext *s, TCGRegSet allocated_regs)
2909 int i;
2911 for (i = s->nb_globals; i < s->nb_temps; i++) {
2912 TCGTemp *ts = &s->temps[i];
2913 if (ts->temp_local) {
2914 temp_save(s, ts, allocated_regs);
2915 } else {
2916 /* The liveness analysis already ensures that temps are dead.
2917 Keep an tcg_debug_assert for safety. */
2918 tcg_debug_assert(ts->val_type == TEMP_VAL_DEAD);
2922 save_globals(s, allocated_regs);
2925 static void tcg_reg_alloc_do_movi(TCGContext *s, TCGTemp *ots,
2926 tcg_target_ulong val, TCGLifeData arg_life)
2928 if (ots->fixed_reg) {
2929 /* For fixed registers, we do not do any constant propagation. */
2930 tcg_out_movi(s, ots->type, ots->reg, val);
2931 return;
2934 /* The movi is not explicitly generated here. */
2935 if (ots->val_type == TEMP_VAL_REG) {
2936 s->reg_to_temp[ots->reg] = NULL;
2938 ots->val_type = TEMP_VAL_CONST;
2939 ots->val = val;
2940 ots->mem_coherent = 0;
2941 if (NEED_SYNC_ARG(0)) {
2942 temp_sync(s, ots, s->reserved_regs, IS_DEAD_ARG(0));
2943 } else if (IS_DEAD_ARG(0)) {
2944 temp_dead(s, ots);
2948 static void tcg_reg_alloc_movi(TCGContext *s, const TCGOp *op)
2950 TCGTemp *ots = arg_temp(op->args[0]);
2951 tcg_target_ulong val = op->args[1];
2953 tcg_reg_alloc_do_movi(s, ots, val, op->life);
2956 static void tcg_reg_alloc_mov(TCGContext *s, const TCGOp *op)
2958 const TCGLifeData arg_life = op->life;
2959 TCGRegSet allocated_regs;
2960 TCGTemp *ts, *ots;
2961 TCGType otype, itype;
2963 allocated_regs = s->reserved_regs;
2964 ots = arg_temp(op->args[0]);
2965 ts = arg_temp(op->args[1]);
2967 /* Note that otype != itype for no-op truncation. */
2968 otype = ots->type;
2969 itype = ts->type;
2971 if (ts->val_type == TEMP_VAL_CONST) {
2972 /* propagate constant or generate sti */
2973 tcg_target_ulong val = ts->val;
2974 if (IS_DEAD_ARG(1)) {
2975 temp_dead(s, ts);
2977 tcg_reg_alloc_do_movi(s, ots, val, arg_life);
2978 return;
2981 /* If the source value is in memory we're going to be forced
2982 to have it in a register in order to perform the copy. Copy
2983 the SOURCE value into its own register first, that way we
2984 don't have to reload SOURCE the next time it is used. */
2985 if (ts->val_type == TEMP_VAL_MEM) {
2986 temp_load(s, ts, tcg_target_available_regs[itype], allocated_regs);
2989 tcg_debug_assert(ts->val_type == TEMP_VAL_REG);
2990 if (IS_DEAD_ARG(0) && !ots->fixed_reg) {
2991 /* mov to a non-saved dead register makes no sense (even with
2992 liveness analysis disabled). */
2993 tcg_debug_assert(NEED_SYNC_ARG(0));
2994 if (!ots->mem_allocated) {
2995 temp_allocate_frame(s, ots);
2997 tcg_out_st(s, otype, ts->reg, ots->mem_base->reg, ots->mem_offset);
2998 if (IS_DEAD_ARG(1)) {
2999 temp_dead(s, ts);
3001 temp_dead(s, ots);
3002 } else {
3003 if (IS_DEAD_ARG(1) && !ts->fixed_reg && !ots->fixed_reg) {
3004 /* the mov can be suppressed */
3005 if (ots->val_type == TEMP_VAL_REG) {
3006 s->reg_to_temp[ots->reg] = NULL;
3008 ots->reg = ts->reg;
3009 temp_dead(s, ts);
3010 } else {
3011 if (ots->val_type != TEMP_VAL_REG) {
3012 /* When allocating a new register, make sure to not spill the
3013 input one. */
3014 tcg_regset_set_reg(allocated_regs, ts->reg);
3015 ots->reg = tcg_reg_alloc(s, tcg_target_available_regs[otype],
3016 allocated_regs, ots->indirect_base);
3018 tcg_out_mov(s, otype, ots->reg, ts->reg);
3020 ots->val_type = TEMP_VAL_REG;
3021 ots->mem_coherent = 0;
3022 s->reg_to_temp[ots->reg] = ots;
3023 if (NEED_SYNC_ARG(0)) {
3024 temp_sync(s, ots, allocated_regs, 0);
3029 static void tcg_reg_alloc_op(TCGContext *s, const TCGOp *op)
3031 const TCGLifeData arg_life = op->life;
3032 const TCGOpDef * const def = &tcg_op_defs[op->opc];
3033 TCGRegSet i_allocated_regs;
3034 TCGRegSet o_allocated_regs;
3035 int i, k, nb_iargs, nb_oargs;
3036 TCGReg reg;
3037 TCGArg arg;
3038 const TCGArgConstraint *arg_ct;
3039 TCGTemp *ts;
3040 TCGArg new_args[TCG_MAX_OP_ARGS];
3041 int const_args[TCG_MAX_OP_ARGS];
3043 nb_oargs = def->nb_oargs;
3044 nb_iargs = def->nb_iargs;
3046 /* copy constants */
3047 memcpy(new_args + nb_oargs + nb_iargs,
3048 op->args + nb_oargs + nb_iargs,
3049 sizeof(TCGArg) * def->nb_cargs);
3051 i_allocated_regs = s->reserved_regs;
3052 o_allocated_regs = s->reserved_regs;
3054 /* satisfy input constraints */
3055 for (k = 0; k < nb_iargs; k++) {
3056 i = def->sorted_args[nb_oargs + k];
3057 arg = op->args[i];
3058 arg_ct = &def->args_ct[i];
3059 ts = arg_temp(arg);
3061 if (ts->val_type == TEMP_VAL_CONST
3062 && tcg_target_const_match(ts->val, ts->type, arg_ct)) {
3063 /* constant is OK for instruction */
3064 const_args[i] = 1;
3065 new_args[i] = ts->val;
3066 goto iarg_end;
3069 temp_load(s, ts, arg_ct->u.regs, i_allocated_regs);
3071 if (arg_ct->ct & TCG_CT_IALIAS) {
3072 if (ts->fixed_reg) {
3073 /* if fixed register, we must allocate a new register
3074 if the alias is not the same register */
3075 if (arg != op->args[arg_ct->alias_index])
3076 goto allocate_in_reg;
3077 } else {
3078 /* if the input is aliased to an output and if it is
3079 not dead after the instruction, we must allocate
3080 a new register and move it */
3081 if (!IS_DEAD_ARG(i)) {
3082 goto allocate_in_reg;
3084 /* check if the current register has already been allocated
3085 for another input aliased to an output */
3086 int k2, i2;
3087 for (k2 = 0 ; k2 < k ; k2++) {
3088 i2 = def->sorted_args[nb_oargs + k2];
3089 if ((def->args_ct[i2].ct & TCG_CT_IALIAS) &&
3090 (new_args[i2] == ts->reg)) {
3091 goto allocate_in_reg;
3096 reg = ts->reg;
3097 if (tcg_regset_test_reg(arg_ct->u.regs, reg)) {
3098 /* nothing to do : the constraint is satisfied */
3099 } else {
3100 allocate_in_reg:
3101 /* allocate a new register matching the constraint
3102 and move the temporary register into it */
3103 reg = tcg_reg_alloc(s, arg_ct->u.regs, i_allocated_regs,
3104 ts->indirect_base);
3105 tcg_out_mov(s, ts->type, reg, ts->reg);
3107 new_args[i] = reg;
3108 const_args[i] = 0;
3109 tcg_regset_set_reg(i_allocated_regs, reg);
3110 iarg_end: ;
3113 /* mark dead temporaries and free the associated registers */
3114 for (i = nb_oargs; i < nb_oargs + nb_iargs; i++) {
3115 if (IS_DEAD_ARG(i)) {
3116 temp_dead(s, arg_temp(op->args[i]));
3120 if (def->flags & TCG_OPF_BB_END) {
3121 tcg_reg_alloc_bb_end(s, i_allocated_regs);
3122 } else {
3123 if (def->flags & TCG_OPF_CALL_CLOBBER) {
3124 /* XXX: permit generic clobber register list ? */
3125 for (i = 0; i < TCG_TARGET_NB_REGS; i++) {
3126 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) {
3127 tcg_reg_free(s, i, i_allocated_regs);
3131 if (def->flags & TCG_OPF_SIDE_EFFECTS) {
3132 /* sync globals if the op has side effects and might trigger
3133 an exception. */
3134 sync_globals(s, i_allocated_regs);
3137 /* satisfy the output constraints */
3138 for(k = 0; k < nb_oargs; k++) {
3139 i = def->sorted_args[k];
3140 arg = op->args[i];
3141 arg_ct = &def->args_ct[i];
3142 ts = arg_temp(arg);
3143 if ((arg_ct->ct & TCG_CT_ALIAS)
3144 && !const_args[arg_ct->alias_index]) {
3145 reg = new_args[arg_ct->alias_index];
3146 } else if (arg_ct->ct & TCG_CT_NEWREG) {
3147 reg = tcg_reg_alloc(s, arg_ct->u.regs,
3148 i_allocated_regs | o_allocated_regs,
3149 ts->indirect_base);
3150 } else {
3151 /* if fixed register, we try to use it */
3152 reg = ts->reg;
3153 if (ts->fixed_reg &&
3154 tcg_regset_test_reg(arg_ct->u.regs, reg)) {
3155 goto oarg_end;
3157 reg = tcg_reg_alloc(s, arg_ct->u.regs, o_allocated_regs,
3158 ts->indirect_base);
3160 tcg_regset_set_reg(o_allocated_regs, reg);
3161 /* if a fixed register is used, then a move will be done afterwards */
3162 if (!ts->fixed_reg) {
3163 if (ts->val_type == TEMP_VAL_REG) {
3164 s->reg_to_temp[ts->reg] = NULL;
3166 ts->val_type = TEMP_VAL_REG;
3167 ts->reg = reg;
3168 /* temp value is modified, so the value kept in memory is
3169 potentially not the same */
3170 ts->mem_coherent = 0;
3171 s->reg_to_temp[reg] = ts;
3173 oarg_end:
3174 new_args[i] = reg;
3178 /* emit instruction */
3179 if (def->flags & TCG_OPF_VECTOR) {
3180 tcg_out_vec_op(s, op->opc, TCGOP_VECL(op), TCGOP_VECE(op),
3181 new_args, const_args);
3182 } else {
3183 tcg_out_op(s, op->opc, new_args, const_args);
3186 /* move the outputs in the correct register if needed */
3187 for(i = 0; i < nb_oargs; i++) {
3188 ts = arg_temp(op->args[i]);
3189 reg = new_args[i];
3190 if (ts->fixed_reg && ts->reg != reg) {
3191 tcg_out_mov(s, ts->type, ts->reg, reg);
3193 if (NEED_SYNC_ARG(i)) {
3194 temp_sync(s, ts, o_allocated_regs, IS_DEAD_ARG(i));
3195 } else if (IS_DEAD_ARG(i)) {
3196 temp_dead(s, ts);
3201 #ifdef TCG_TARGET_STACK_GROWSUP
3202 #define STACK_DIR(x) (-(x))
3203 #else
3204 #define STACK_DIR(x) (x)
3205 #endif
3207 static void tcg_reg_alloc_call(TCGContext *s, TCGOp *op)
3209 const int nb_oargs = TCGOP_CALLO(op);
3210 const int nb_iargs = TCGOP_CALLI(op);
3211 const TCGLifeData arg_life = op->life;
3212 int flags, nb_regs, i;
3213 TCGReg reg;
3214 TCGArg arg;
3215 TCGTemp *ts;
3216 intptr_t stack_offset;
3217 size_t call_stack_size;
3218 tcg_insn_unit *func_addr;
3219 int allocate_args;
3220 TCGRegSet allocated_regs;
3222 func_addr = (tcg_insn_unit *)(intptr_t)op->args[nb_oargs + nb_iargs];
3223 flags = op->args[nb_oargs + nb_iargs + 1];
3225 nb_regs = ARRAY_SIZE(tcg_target_call_iarg_regs);
3226 if (nb_regs > nb_iargs) {
3227 nb_regs = nb_iargs;
3230 /* assign stack slots first */
3231 call_stack_size = (nb_iargs - nb_regs) * sizeof(tcg_target_long);
3232 call_stack_size = (call_stack_size + TCG_TARGET_STACK_ALIGN - 1) &
3233 ~(TCG_TARGET_STACK_ALIGN - 1);
3234 allocate_args = (call_stack_size > TCG_STATIC_CALL_ARGS_SIZE);
3235 if (allocate_args) {
3236 /* XXX: if more than TCG_STATIC_CALL_ARGS_SIZE is needed,
3237 preallocate call stack */
3238 tcg_abort();
3241 stack_offset = TCG_TARGET_CALL_STACK_OFFSET;
3242 for (i = nb_regs; i < nb_iargs; i++) {
3243 arg = op->args[nb_oargs + i];
3244 #ifdef TCG_TARGET_STACK_GROWSUP
3245 stack_offset -= sizeof(tcg_target_long);
3246 #endif
3247 if (arg != TCG_CALL_DUMMY_ARG) {
3248 ts = arg_temp(arg);
3249 temp_load(s, ts, tcg_target_available_regs[ts->type],
3250 s->reserved_regs);
3251 tcg_out_st(s, ts->type, ts->reg, TCG_REG_CALL_STACK, stack_offset);
3253 #ifndef TCG_TARGET_STACK_GROWSUP
3254 stack_offset += sizeof(tcg_target_long);
3255 #endif
3258 /* assign input registers */
3259 allocated_regs = s->reserved_regs;
3260 for (i = 0; i < nb_regs; i++) {
3261 arg = op->args[nb_oargs + i];
3262 if (arg != TCG_CALL_DUMMY_ARG) {
3263 ts = arg_temp(arg);
3264 reg = tcg_target_call_iarg_regs[i];
3265 tcg_reg_free(s, reg, allocated_regs);
3267 if (ts->val_type == TEMP_VAL_REG) {
3268 if (ts->reg != reg) {
3269 tcg_out_mov(s, ts->type, reg, ts->reg);
3271 } else {
3272 TCGRegSet arg_set = 0;
3274 tcg_regset_set_reg(arg_set, reg);
3275 temp_load(s, ts, arg_set, allocated_regs);
3278 tcg_regset_set_reg(allocated_regs, reg);
3282 /* mark dead temporaries and free the associated registers */
3283 for (i = nb_oargs; i < nb_iargs + nb_oargs; i++) {
3284 if (IS_DEAD_ARG(i)) {
3285 temp_dead(s, arg_temp(op->args[i]));
3289 /* clobber call registers */
3290 for (i = 0; i < TCG_TARGET_NB_REGS; i++) {
3291 if (tcg_regset_test_reg(tcg_target_call_clobber_regs, i)) {
3292 tcg_reg_free(s, i, allocated_regs);
3296 /* Save globals if they might be written by the helper, sync them if
3297 they might be read. */
3298 if (flags & TCG_CALL_NO_READ_GLOBALS) {
3299 /* Nothing to do */
3300 } else if (flags & TCG_CALL_NO_WRITE_GLOBALS) {
3301 sync_globals(s, allocated_regs);
3302 } else {
3303 save_globals(s, allocated_regs);
3306 tcg_out_call(s, func_addr);
3308 /* assign output registers and emit moves if needed */
3309 for(i = 0; i < nb_oargs; i++) {
3310 arg = op->args[i];
3311 ts = arg_temp(arg);
3312 reg = tcg_target_call_oarg_regs[i];
3313 tcg_debug_assert(s->reg_to_temp[reg] == NULL);
3315 if (ts->fixed_reg) {
3316 if (ts->reg != reg) {
3317 tcg_out_mov(s, ts->type, ts->reg, reg);
3319 } else {
3320 if (ts->val_type == TEMP_VAL_REG) {
3321 s->reg_to_temp[ts->reg] = NULL;
3323 ts->val_type = TEMP_VAL_REG;
3324 ts->reg = reg;
3325 ts->mem_coherent = 0;
3326 s->reg_to_temp[reg] = ts;
3327 if (NEED_SYNC_ARG(i)) {
3328 temp_sync(s, ts, allocated_regs, IS_DEAD_ARG(i));
3329 } else if (IS_DEAD_ARG(i)) {
3330 temp_dead(s, ts);
3336 #ifdef CONFIG_PROFILER
3338 /* avoid copy/paste errors */
3339 #define PROF_ADD(to, from, field) \
3340 do { \
3341 (to)->field += atomic_read(&((from)->field)); \
3342 } while (0)
3344 #define PROF_MAX(to, from, field) \
3345 do { \
3346 typeof((from)->field) val__ = atomic_read(&((from)->field)); \
3347 if (val__ > (to)->field) { \
3348 (to)->field = val__; \
3350 } while (0)
3352 /* Pass in a zero'ed @prof */
3353 static inline
3354 void tcg_profile_snapshot(TCGProfile *prof, bool counters, bool table)
3356 unsigned int n_ctxs = atomic_read(&n_tcg_ctxs);
3357 unsigned int i;
3359 for (i = 0; i < n_ctxs; i++) {
3360 TCGContext *s = atomic_read(&tcg_ctxs[i]);
3361 const TCGProfile *orig = &s->prof;
3363 if (counters) {
3364 PROF_ADD(prof, orig, tb_count1);
3365 PROF_ADD(prof, orig, tb_count);
3366 PROF_ADD(prof, orig, op_count);
3367 PROF_MAX(prof, orig, op_count_max);
3368 PROF_ADD(prof, orig, temp_count);
3369 PROF_MAX(prof, orig, temp_count_max);
3370 PROF_ADD(prof, orig, del_op_count);
3371 PROF_ADD(prof, orig, code_in_len);
3372 PROF_ADD(prof, orig, code_out_len);
3373 PROF_ADD(prof, orig, search_out_len);
3374 PROF_ADD(prof, orig, interm_time);
3375 PROF_ADD(prof, orig, code_time);
3376 PROF_ADD(prof, orig, la_time);
3377 PROF_ADD(prof, orig, opt_time);
3378 PROF_ADD(prof, orig, restore_count);
3379 PROF_ADD(prof, orig, restore_time);
3381 if (table) {
3382 int i;
3384 for (i = 0; i < NB_OPS; i++) {
3385 PROF_ADD(prof, orig, table_op_count[i]);
3391 #undef PROF_ADD
3392 #undef PROF_MAX
3394 static void tcg_profile_snapshot_counters(TCGProfile *prof)
3396 tcg_profile_snapshot(prof, true, false);
3399 static void tcg_profile_snapshot_table(TCGProfile *prof)
3401 tcg_profile_snapshot(prof, false, true);
3404 void tcg_dump_op_count(FILE *f, fprintf_function cpu_fprintf)
3406 TCGProfile prof = {};
3407 int i;
3409 tcg_profile_snapshot_table(&prof);
3410 for (i = 0; i < NB_OPS; i++) {
3411 cpu_fprintf(f, "%s %" PRId64 "\n", tcg_op_defs[i].name,
3412 prof.table_op_count[i]);
3415 #else
3416 void tcg_dump_op_count(FILE *f, fprintf_function cpu_fprintf)
3418 cpu_fprintf(f, "[TCG profiler not compiled]\n");
3420 #endif
3423 int tcg_gen_code(TCGContext *s, TranslationBlock *tb)
3425 #ifdef CONFIG_PROFILER
3426 TCGProfile *prof = &s->prof;
3427 #endif
3428 int i, num_insns;
3429 TCGOp *op;
3431 #ifdef CONFIG_PROFILER
3433 int n;
3435 QTAILQ_FOREACH(op, &s->ops, link) {
3436 n++;
3438 atomic_set(&prof->op_count, prof->op_count + n);
3439 if (n > prof->op_count_max) {
3440 atomic_set(&prof->op_count_max, n);
3443 n = s->nb_temps;
3444 atomic_set(&prof->temp_count, prof->temp_count + n);
3445 if (n > prof->temp_count_max) {
3446 atomic_set(&prof->temp_count_max, n);
3449 #endif
3451 #ifdef DEBUG_DISAS
3452 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP)
3453 && qemu_log_in_addr_range(tb->pc))) {
3454 qemu_log_lock();
3455 qemu_log("OP:\n");
3456 tcg_dump_ops(s);
3457 qemu_log("\n");
3458 qemu_log_unlock();
3460 #endif
3462 #ifdef CONFIG_PROFILER
3463 atomic_set(&prof->opt_time, prof->opt_time - profile_getclock());
3464 #endif
3466 #ifdef USE_TCG_OPTIMIZATIONS
3467 tcg_optimize(s);
3468 #endif
3470 #ifdef CONFIG_PROFILER
3471 atomic_set(&prof->opt_time, prof->opt_time + profile_getclock());
3472 atomic_set(&prof->la_time, prof->la_time - profile_getclock());
3473 #endif
3475 liveness_pass_1(s);
3477 if (s->nb_indirects > 0) {
3478 #ifdef DEBUG_DISAS
3479 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_IND)
3480 && qemu_log_in_addr_range(tb->pc))) {
3481 qemu_log_lock();
3482 qemu_log("OP before indirect lowering:\n");
3483 tcg_dump_ops(s);
3484 qemu_log("\n");
3485 qemu_log_unlock();
3487 #endif
3488 /* Replace indirect temps with direct temps. */
3489 if (liveness_pass_2(s)) {
3490 /* If changes were made, re-run liveness. */
3491 liveness_pass_1(s);
3495 #ifdef CONFIG_PROFILER
3496 atomic_set(&prof->la_time, prof->la_time + profile_getclock());
3497 #endif
3499 #ifdef DEBUG_DISAS
3500 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_OP_OPT)
3501 && qemu_log_in_addr_range(tb->pc))) {
3502 qemu_log_lock();
3503 qemu_log("OP after optimization and liveness analysis:\n");
3504 tcg_dump_ops(s);
3505 qemu_log("\n");
3506 qemu_log_unlock();
3508 #endif
3510 tcg_reg_alloc_start(s);
3512 s->code_buf = tb->tc.ptr;
3513 s->code_ptr = tb->tc.ptr;
3515 #ifdef TCG_TARGET_NEED_LDST_LABELS
3516 QSIMPLEQ_INIT(&s->ldst_labels);
3517 #endif
3518 #ifdef TCG_TARGET_NEED_POOL_LABELS
3519 s->pool_labels = NULL;
3520 #endif
3522 num_insns = -1;
3523 QTAILQ_FOREACH(op, &s->ops, link) {
3524 TCGOpcode opc = op->opc;
3526 #ifdef CONFIG_PROFILER
3527 atomic_set(&prof->table_op_count[opc], prof->table_op_count[opc] + 1);
3528 #endif
3530 switch (opc) {
3531 case INDEX_op_mov_i32:
3532 case INDEX_op_mov_i64:
3533 case INDEX_op_mov_vec:
3534 tcg_reg_alloc_mov(s, op);
3535 break;
3536 case INDEX_op_movi_i32:
3537 case INDEX_op_movi_i64:
3538 case INDEX_op_dupi_vec:
3539 tcg_reg_alloc_movi(s, op);
3540 break;
3541 case INDEX_op_insn_start:
3542 if (num_insns >= 0) {
3543 size_t off = tcg_current_code_size(s);
3544 s->gen_insn_end_off[num_insns] = off;
3545 /* Assert that we do not overflow our stored offset. */
3546 assert(s->gen_insn_end_off[num_insns] == off);
3548 num_insns++;
3549 for (i = 0; i < TARGET_INSN_START_WORDS; ++i) {
3550 target_ulong a;
3551 #if TARGET_LONG_BITS > TCG_TARGET_REG_BITS
3552 a = deposit64(op->args[i * 2], 32, 32, op->args[i * 2 + 1]);
3553 #else
3554 a = op->args[i];
3555 #endif
3556 s->gen_insn_data[num_insns][i] = a;
3558 break;
3559 case INDEX_op_discard:
3560 temp_dead(s, arg_temp(op->args[0]));
3561 break;
3562 case INDEX_op_set_label:
3563 tcg_reg_alloc_bb_end(s, s->reserved_regs);
3564 tcg_out_label(s, arg_label(op->args[0]), s->code_ptr);
3565 break;
3566 case INDEX_op_call:
3567 tcg_reg_alloc_call(s, op);
3568 break;
3569 default:
3570 /* Sanity check that we've not introduced any unhandled opcodes. */
3571 tcg_debug_assert(tcg_op_supported(opc));
3572 /* Note: in order to speed up the code, it would be much
3573 faster to have specialized register allocator functions for
3574 some common argument patterns */
3575 tcg_reg_alloc_op(s, op);
3576 break;
3578 #ifdef CONFIG_DEBUG_TCG
3579 check_regs(s);
3580 #endif
3581 /* Test for (pending) buffer overflow. The assumption is that any
3582 one operation beginning below the high water mark cannot overrun
3583 the buffer completely. Thus we can test for overflow after
3584 generating code without having to check during generation. */
3585 if (unlikely((void *)s->code_ptr > s->code_gen_highwater)) {
3586 return -1;
3589 tcg_debug_assert(num_insns >= 0);
3590 s->gen_insn_end_off[num_insns] = tcg_current_code_size(s);
3592 /* Generate TB finalization at the end of block */
3593 #ifdef TCG_TARGET_NEED_LDST_LABELS
3594 if (!tcg_out_ldst_finalize(s)) {
3595 return -1;
3597 #endif
3598 #ifdef TCG_TARGET_NEED_POOL_LABELS
3599 if (!tcg_out_pool_finalize(s)) {
3600 return -1;
3602 #endif
3604 /* flush instruction cache */
3605 flush_icache_range((uintptr_t)s->code_buf, (uintptr_t)s->code_ptr);
3607 return tcg_current_code_size(s);
3610 #ifdef CONFIG_PROFILER
3611 void tcg_dump_info(FILE *f, fprintf_function cpu_fprintf)
3613 TCGProfile prof = {};
3614 const TCGProfile *s;
3615 int64_t tb_count;
3616 int64_t tb_div_count;
3617 int64_t tot;
3619 tcg_profile_snapshot_counters(&prof);
3620 s = &prof;
3621 tb_count = s->tb_count;
3622 tb_div_count = tb_count ? tb_count : 1;
3623 tot = s->interm_time + s->code_time;
3625 cpu_fprintf(f, "JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n",
3626 tot, tot / 2.4e9);
3627 cpu_fprintf(f, "translated TBs %" PRId64 " (aborted=%" PRId64 " %0.1f%%)\n",
3628 tb_count, s->tb_count1 - tb_count,
3629 (double)(s->tb_count1 - s->tb_count)
3630 / (s->tb_count1 ? s->tb_count1 : 1) * 100.0);
3631 cpu_fprintf(f, "avg ops/TB %0.1f max=%d\n",
3632 (double)s->op_count / tb_div_count, s->op_count_max);
3633 cpu_fprintf(f, "deleted ops/TB %0.2f\n",
3634 (double)s->del_op_count / tb_div_count);
3635 cpu_fprintf(f, "avg temps/TB %0.2f max=%d\n",
3636 (double)s->temp_count / tb_div_count, s->temp_count_max);
3637 cpu_fprintf(f, "avg host code/TB %0.1f\n",
3638 (double)s->code_out_len / tb_div_count);
3639 cpu_fprintf(f, "avg search data/TB %0.1f\n",
3640 (double)s->search_out_len / tb_div_count);
3642 cpu_fprintf(f, "cycles/op %0.1f\n",
3643 s->op_count ? (double)tot / s->op_count : 0);
3644 cpu_fprintf(f, "cycles/in byte %0.1f\n",
3645 s->code_in_len ? (double)tot / s->code_in_len : 0);
3646 cpu_fprintf(f, "cycles/out byte %0.1f\n",
3647 s->code_out_len ? (double)tot / s->code_out_len : 0);
3648 cpu_fprintf(f, "cycles/search byte %0.1f\n",
3649 s->search_out_len ? (double)tot / s->search_out_len : 0);
3650 if (tot == 0) {
3651 tot = 1;
3653 cpu_fprintf(f, " gen_interm time %0.1f%%\n",
3654 (double)s->interm_time / tot * 100.0);
3655 cpu_fprintf(f, " gen_code time %0.1f%%\n",
3656 (double)s->code_time / tot * 100.0);
3657 cpu_fprintf(f, "optim./code time %0.1f%%\n",
3658 (double)s->opt_time / (s->code_time ? s->code_time : 1)
3659 * 100.0);
3660 cpu_fprintf(f, "liveness/code time %0.1f%%\n",
3661 (double)s->la_time / (s->code_time ? s->code_time : 1) * 100.0);
3662 cpu_fprintf(f, "cpu_restore count %" PRId64 "\n",
3663 s->restore_count);
3664 cpu_fprintf(f, " avg cycles %0.1f\n",
3665 s->restore_count ? (double)s->restore_time / s->restore_count : 0);
3667 #else
3668 void tcg_dump_info(FILE *f, fprintf_function cpu_fprintf)
3670 cpu_fprintf(f, "[TCG profiler not compiled]\n");
3672 #endif
3674 #ifdef ELF_HOST_MACHINE
3675 /* In order to use this feature, the backend needs to do three things:
3677 (1) Define ELF_HOST_MACHINE to indicate both what value to
3678 put into the ELF image and to indicate support for the feature.
3680 (2) Define tcg_register_jit. This should create a buffer containing
3681 the contents of a .debug_frame section that describes the post-
3682 prologue unwind info for the tcg machine.
3684 (3) Call tcg_register_jit_int, with the constructed .debug_frame.
3687 /* Begin GDB interface. THE FOLLOWING MUST MATCH GDB DOCS. */
3688 typedef enum {
3689 JIT_NOACTION = 0,
3690 JIT_REGISTER_FN,
3691 JIT_UNREGISTER_FN
3692 } jit_actions_t;
3694 struct jit_code_entry {
3695 struct jit_code_entry *next_entry;
3696 struct jit_code_entry *prev_entry;
3697 const void *symfile_addr;
3698 uint64_t symfile_size;
3701 struct jit_descriptor {
3702 uint32_t version;
3703 uint32_t action_flag;
3704 struct jit_code_entry *relevant_entry;
3705 struct jit_code_entry *first_entry;
3708 void __jit_debug_register_code(void) __attribute__((noinline));
3709 void __jit_debug_register_code(void)
3711 asm("");
3714 /* Must statically initialize the version, because GDB may check
3715 the version before we can set it. */
3716 struct jit_descriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
3718 /* End GDB interface. */
3720 static int find_string(const char *strtab, const char *str)
3722 const char *p = strtab + 1;
3724 while (1) {
3725 if (strcmp(p, str) == 0) {
3726 return p - strtab;
3728 p += strlen(p) + 1;
3732 static void tcg_register_jit_int(void *buf_ptr, size_t buf_size,
3733 const void *debug_frame,
3734 size_t debug_frame_size)
3736 struct __attribute__((packed)) DebugInfo {
3737 uint32_t len;
3738 uint16_t version;
3739 uint32_t abbrev;
3740 uint8_t ptr_size;
3741 uint8_t cu_die;
3742 uint16_t cu_lang;
3743 uintptr_t cu_low_pc;
3744 uintptr_t cu_high_pc;
3745 uint8_t fn_die;
3746 char fn_name[16];
3747 uintptr_t fn_low_pc;
3748 uintptr_t fn_high_pc;
3749 uint8_t cu_eoc;
3752 struct ElfImage {
3753 ElfW(Ehdr) ehdr;
3754 ElfW(Phdr) phdr;
3755 ElfW(Shdr) shdr[7];
3756 ElfW(Sym) sym[2];
3757 struct DebugInfo di;
3758 uint8_t da[24];
3759 char str[80];
3762 struct ElfImage *img;
3764 static const struct ElfImage img_template = {
3765 .ehdr = {
3766 .e_ident[EI_MAG0] = ELFMAG0,
3767 .e_ident[EI_MAG1] = ELFMAG1,
3768 .e_ident[EI_MAG2] = ELFMAG2,
3769 .e_ident[EI_MAG3] = ELFMAG3,
3770 .e_ident[EI_CLASS] = ELF_CLASS,
3771 .e_ident[EI_DATA] = ELF_DATA,
3772 .e_ident[EI_VERSION] = EV_CURRENT,
3773 .e_type = ET_EXEC,
3774 .e_machine = ELF_HOST_MACHINE,
3775 .e_version = EV_CURRENT,
3776 .e_phoff = offsetof(struct ElfImage, phdr),
3777 .e_shoff = offsetof(struct ElfImage, shdr),
3778 .e_ehsize = sizeof(ElfW(Shdr)),
3779 .e_phentsize = sizeof(ElfW(Phdr)),
3780 .e_phnum = 1,
3781 .e_shentsize = sizeof(ElfW(Shdr)),
3782 .e_shnum = ARRAY_SIZE(img->shdr),
3783 .e_shstrndx = ARRAY_SIZE(img->shdr) - 1,
3784 #ifdef ELF_HOST_FLAGS
3785 .e_flags = ELF_HOST_FLAGS,
3786 #endif
3787 #ifdef ELF_OSABI
3788 .e_ident[EI_OSABI] = ELF_OSABI,
3789 #endif
3791 .phdr = {
3792 .p_type = PT_LOAD,
3793 .p_flags = PF_X,
3795 .shdr = {
3796 [0] = { .sh_type = SHT_NULL },
3797 /* Trick: The contents of code_gen_buffer are not present in
3798 this fake ELF file; that got allocated elsewhere. Therefore
3799 we mark .text as SHT_NOBITS (similar to .bss) so that readers
3800 will not look for contents. We can record any address. */
3801 [1] = { /* .text */
3802 .sh_type = SHT_NOBITS,
3803 .sh_flags = SHF_EXECINSTR | SHF_ALLOC,
3805 [2] = { /* .debug_info */
3806 .sh_type = SHT_PROGBITS,
3807 .sh_offset = offsetof(struct ElfImage, di),
3808 .sh_size = sizeof(struct DebugInfo),
3810 [3] = { /* .debug_abbrev */
3811 .sh_type = SHT_PROGBITS,
3812 .sh_offset = offsetof(struct ElfImage, da),
3813 .sh_size = sizeof(img->da),
3815 [4] = { /* .debug_frame */
3816 .sh_type = SHT_PROGBITS,
3817 .sh_offset = sizeof(struct ElfImage),
3819 [5] = { /* .symtab */
3820 .sh_type = SHT_SYMTAB,
3821 .sh_offset = offsetof(struct ElfImage, sym),
3822 .sh_size = sizeof(img->sym),
3823 .sh_info = 1,
3824 .sh_link = ARRAY_SIZE(img->shdr) - 1,
3825 .sh_entsize = sizeof(ElfW(Sym)),
3827 [6] = { /* .strtab */
3828 .sh_type = SHT_STRTAB,
3829 .sh_offset = offsetof(struct ElfImage, str),
3830 .sh_size = sizeof(img->str),
3833 .sym = {
3834 [1] = { /* code_gen_buffer */
3835 .st_info = ELF_ST_INFO(STB_GLOBAL, STT_FUNC),
3836 .st_shndx = 1,
3839 .di = {
3840 .len = sizeof(struct DebugInfo) - 4,
3841 .version = 2,
3842 .ptr_size = sizeof(void *),
3843 .cu_die = 1,
3844 .cu_lang = 0x8001, /* DW_LANG_Mips_Assembler */
3845 .fn_die = 2,
3846 .fn_name = "code_gen_buffer"
3848 .da = {
3849 1, /* abbrev number (the cu) */
3850 0x11, 1, /* DW_TAG_compile_unit, has children */
3851 0x13, 0x5, /* DW_AT_language, DW_FORM_data2 */
3852 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */
3853 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */
3854 0, 0, /* end of abbrev */
3855 2, /* abbrev number (the fn) */
3856 0x2e, 0, /* DW_TAG_subprogram, no children */
3857 0x3, 0x8, /* DW_AT_name, DW_FORM_string */
3858 0x11, 0x1, /* DW_AT_low_pc, DW_FORM_addr */
3859 0x12, 0x1, /* DW_AT_high_pc, DW_FORM_addr */
3860 0, 0, /* end of abbrev */
3861 0 /* no more abbrev */
3863 .str = "\0" ".text\0" ".debug_info\0" ".debug_abbrev\0"
3864 ".debug_frame\0" ".symtab\0" ".strtab\0" "code_gen_buffer",
3867 /* We only need a single jit entry; statically allocate it. */
3868 static struct jit_code_entry one_entry;
3870 uintptr_t buf = (uintptr_t)buf_ptr;
3871 size_t img_size = sizeof(struct ElfImage) + debug_frame_size;
3872 DebugFrameHeader *dfh;
3874 img = g_malloc(img_size);
3875 *img = img_template;
3877 img->phdr.p_vaddr = buf;
3878 img->phdr.p_paddr = buf;
3879 img->phdr.p_memsz = buf_size;
3881 img->shdr[1].sh_name = find_string(img->str, ".text");
3882 img->shdr[1].sh_addr = buf;
3883 img->shdr[1].sh_size = buf_size;
3885 img->shdr[2].sh_name = find_string(img->str, ".debug_info");
3886 img->shdr[3].sh_name = find_string(img->str, ".debug_abbrev");
3888 img->shdr[4].sh_name = find_string(img->str, ".debug_frame");
3889 img->shdr[4].sh_size = debug_frame_size;
3891 img->shdr[5].sh_name = find_string(img->str, ".symtab");
3892 img->shdr[6].sh_name = find_string(img->str, ".strtab");
3894 img->sym[1].st_name = find_string(img->str, "code_gen_buffer");
3895 img->sym[1].st_value = buf;
3896 img->sym[1].st_size = buf_size;
3898 img->di.cu_low_pc = buf;
3899 img->di.cu_high_pc = buf + buf_size;
3900 img->di.fn_low_pc = buf;
3901 img->di.fn_high_pc = buf + buf_size;
3903 dfh = (DebugFrameHeader *)(img + 1);
3904 memcpy(dfh, debug_frame, debug_frame_size);
3905 dfh->fde.func_start = buf;
3906 dfh->fde.func_len = buf_size;
3908 #ifdef DEBUG_JIT
3909 /* Enable this block to be able to debug the ELF image file creation.
3910 One can use readelf, objdump, or other inspection utilities. */
3912 FILE *f = fopen("/tmp/qemu.jit", "w+b");
3913 if (f) {
3914 if (fwrite(img, img_size, 1, f) != img_size) {
3915 /* Avoid stupid unused return value warning for fwrite. */
3917 fclose(f);
3920 #endif
3922 one_entry.symfile_addr = img;
3923 one_entry.symfile_size = img_size;
3925 __jit_debug_descriptor.action_flag = JIT_REGISTER_FN;
3926 __jit_debug_descriptor.relevant_entry = &one_entry;
3927 __jit_debug_descriptor.first_entry = &one_entry;
3928 __jit_debug_register_code();
3930 #else
3931 /* No support for the feature. Provide the entry point expected by exec.c,
3932 and implement the internal function we declared earlier. */
3934 static void tcg_register_jit_int(void *buf, size_t size,
3935 const void *debug_frame,
3936 size_t debug_frame_size)
3940 void tcg_register_jit(void *buf, size_t buf_size)
3943 #endif /* ELF_HOST_MACHINE */
3945 #if !TCG_TARGET_MAYBE_vec
3946 void tcg_expand_vec_op(TCGOpcode o, TCGType t, unsigned e, TCGArg a0, ...)
3948 g_assert_not_reached();
3950 #endif