2 * Tiny Code Generator for QEMU
4 * Copyright (c) 2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "../tcg-ldst.c.inc"
26 #include "../tcg-pool.c.inc"
28 #ifdef CONFIG_DEBUG_TCG
29 static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
30 #if TCG_TARGET_REG_BITS == 64
31 "%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi",
33 "%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi",
35 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
36 "%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7",
37 #if TCG_TARGET_REG_BITS == 64
38 "%xmm8", "%xmm9", "%xmm10", "%xmm11",
39 "%xmm12", "%xmm13", "%xmm14", "%xmm15",
44 static const int tcg_target_reg_alloc_order[] = {
45 #if TCG_TARGET_REG_BITS == 64
77 /* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save
78 any of them. Therefore only allow xmm0-xmm5 to be allocated. */
81 #if TCG_TARGET_REG_BITS == 64
94 static const int tcg_target_call_iarg_regs[] = {
95 #if TCG_TARGET_REG_BITS == 64
108 /* 32 bit mode uses stack based calling convention (GCC default). */
112 static const int tcg_target_call_oarg_regs[] = {
114 #if TCG_TARGET_REG_BITS == 32
119 /* Constants we accept. */
120 #define TCG_CT_CONST_S32 0x100
121 #define TCG_CT_CONST_U32 0x200
122 #define TCG_CT_CONST_I32 0x400
123 #define TCG_CT_CONST_WSZ 0x800
125 /* Registers used with L constraint, which are the first argument
126 registers on x86_64, and two random call clobbered registers on
128 #if TCG_TARGET_REG_BITS == 64
129 # define TCG_REG_L0 tcg_target_call_iarg_regs[0]
130 # define TCG_REG_L1 tcg_target_call_iarg_regs[1]
132 # define TCG_REG_L0 TCG_REG_EAX
133 # define TCG_REG_L1 TCG_REG_EDX
136 #define ALL_BYTEH_REGS 0x0000000fu
137 #if TCG_TARGET_REG_BITS == 64
138 # define ALL_GENERAL_REGS 0x0000ffffu
139 # define ALL_VECTOR_REGS 0xffff0000u
140 # define ALL_BYTEL_REGS ALL_GENERAL_REGS
142 # define ALL_GENERAL_REGS 0x000000ffu
143 # define ALL_VECTOR_REGS 0x00ff0000u
144 # define ALL_BYTEL_REGS ALL_BYTEH_REGS
146 #ifdef CONFIG_SOFTMMU
147 # define SOFTMMU_RESERVE_REGS ((1 << TCG_REG_L0) | (1 << TCG_REG_L1))
149 # define SOFTMMU_RESERVE_REGS 0
152 /* The host compiler should supply <cpuid.h> to enable runtime features
153 detection, as we're not going to go so far as our own inline assembly.
154 If not available, default values will be assumed. */
155 #if defined(CONFIG_CPUID_H)
156 #include "qemu/cpuid.h"
159 /* For 64-bit, we always know that CMOV is available. */
160 #if TCG_TARGET_REG_BITS == 64
162 #elif defined(CONFIG_CPUID_H)
163 static bool have_cmov;
168 /* We need these symbols in tcg-target.h, and we can't properly conditionalize
169 it there. Therefore we always define the variable. */
176 bool have_avx512vbmi2;
180 #ifdef CONFIG_CPUID_H
181 static bool have_bmi2;
182 static bool have_lzcnt;
185 # define have_lzcnt 0
188 static const tcg_insn_unit *tb_ret_addr;
190 static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
191 intptr_t value, intptr_t addend)
196 value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
197 if (value != (int32_t)value) {
202 tcg_patch32(code_ptr, value);
205 value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
206 if (value != (int8_t)value) {
209 tcg_patch8(code_ptr, value);
217 /* test if a constant matches the constraint */
218 static bool tcg_target_const_match(int64_t val, TCGType type, int ct)
220 if (ct & TCG_CT_CONST) {
223 if (type == TCG_TYPE_I32) {
224 if (ct & (TCG_CT_CONST_S32 | TCG_CT_CONST_U32 | TCG_CT_CONST_I32)) {
228 if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
231 if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
234 if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) {
238 if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
244 # define LOWREGMASK(x) ((x) & 7)
246 #define P_EXT 0x100 /* 0x0f opcode prefix */
247 #define P_EXT38 0x200 /* 0x0f 0x38 opcode prefix */
248 #define P_DATA16 0x400 /* 0x66 opcode prefix */
249 #define P_VEXW 0x1000 /* Set VEX.W = 1 */
250 #if TCG_TARGET_REG_BITS == 64
251 # define P_REXW P_VEXW /* Set REX.W = 1; match VEXW */
252 # define P_REXB_R 0x2000 /* REG field as byte register */
253 # define P_REXB_RM 0x4000 /* R/M field as byte register */
254 # define P_GS 0x8000 /* gs segment override */
261 #define P_EXT3A 0x10000 /* 0x0f 0x3a opcode prefix */
262 #define P_SIMDF3 0x20000 /* 0xf3 opcode prefix */
263 #define P_SIMDF2 0x40000 /* 0xf2 opcode prefix */
264 #define P_VEXL 0x80000 /* Set VEX.L = 1 */
265 #define P_EVEX 0x100000 /* Requires EVEX encoding */
267 #define OPC_ARITH_EvIz (0x81)
268 #define OPC_ARITH_EvIb (0x83)
269 #define OPC_ARITH_GvEv (0x03) /* ... plus (ARITH_FOO << 3) */
270 #define OPC_ANDN (0xf2 | P_EXT38)
271 #define OPC_ADD_GvEv (OPC_ARITH_GvEv | (ARITH_ADD << 3))
272 #define OPC_AND_GvEv (OPC_ARITH_GvEv | (ARITH_AND << 3))
273 #define OPC_BLENDPS (0x0c | P_EXT3A | P_DATA16)
274 #define OPC_BSF (0xbc | P_EXT)
275 #define OPC_BSR (0xbd | P_EXT)
276 #define OPC_BSWAP (0xc8 | P_EXT)
277 #define OPC_CALL_Jz (0xe8)
278 #define OPC_CMOVCC (0x40 | P_EXT) /* ... plus condition code */
279 #define OPC_CMP_GvEv (OPC_ARITH_GvEv | (ARITH_CMP << 3))
280 #define OPC_DEC_r32 (0x48)
281 #define OPC_IMUL_GvEv (0xaf | P_EXT)
282 #define OPC_IMUL_GvEvIb (0x6b)
283 #define OPC_IMUL_GvEvIz (0x69)
284 #define OPC_INC_r32 (0x40)
285 #define OPC_JCC_long (0x80 | P_EXT) /* ... plus condition code */
286 #define OPC_JCC_short (0x70) /* ... plus condition code */
287 #define OPC_JMP_long (0xe9)
288 #define OPC_JMP_short (0xeb)
289 #define OPC_LEA (0x8d)
290 #define OPC_LZCNT (0xbd | P_EXT | P_SIMDF3)
291 #define OPC_MOVB_EvGv (0x88) /* stores, more or less */
292 #define OPC_MOVL_EvGv (0x89) /* stores, more or less */
293 #define OPC_MOVL_GvEv (0x8b) /* loads, more or less */
294 #define OPC_MOVB_EvIz (0xc6)
295 #define OPC_MOVL_EvIz (0xc7)
296 #define OPC_MOVL_Iv (0xb8)
297 #define OPC_MOVBE_GyMy (0xf0 | P_EXT38)
298 #define OPC_MOVBE_MyGy (0xf1 | P_EXT38)
299 #define OPC_MOVD_VyEy (0x6e | P_EXT | P_DATA16)
300 #define OPC_MOVD_EyVy (0x7e | P_EXT | P_DATA16)
301 #define OPC_MOVDDUP (0x12 | P_EXT | P_SIMDF2)
302 #define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16)
303 #define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16)
304 #define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3)
305 #define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3)
306 #define OPC_MOVQ_VqWq (0x7e | P_EXT | P_SIMDF3)
307 #define OPC_MOVQ_WqVq (0xd6 | P_EXT | P_DATA16)
308 #define OPC_MOVSBL (0xbe | P_EXT)
309 #define OPC_MOVSWL (0xbf | P_EXT)
310 #define OPC_MOVSLQ (0x63 | P_REXW)
311 #define OPC_MOVZBL (0xb6 | P_EXT)
312 #define OPC_MOVZWL (0xb7 | P_EXT)
313 #define OPC_PABSB (0x1c | P_EXT38 | P_DATA16)
314 #define OPC_PABSW (0x1d | P_EXT38 | P_DATA16)
315 #define OPC_PABSD (0x1e | P_EXT38 | P_DATA16)
316 #define OPC_VPABSQ (0x1f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
317 #define OPC_PACKSSDW (0x6b | P_EXT | P_DATA16)
318 #define OPC_PACKSSWB (0x63 | P_EXT | P_DATA16)
319 #define OPC_PACKUSDW (0x2b | P_EXT38 | P_DATA16)
320 #define OPC_PACKUSWB (0x67 | P_EXT | P_DATA16)
321 #define OPC_PADDB (0xfc | P_EXT | P_DATA16)
322 #define OPC_PADDW (0xfd | P_EXT | P_DATA16)
323 #define OPC_PADDD (0xfe | P_EXT | P_DATA16)
324 #define OPC_PADDQ (0xd4 | P_EXT | P_DATA16)
325 #define OPC_PADDSB (0xec | P_EXT | P_DATA16)
326 #define OPC_PADDSW (0xed | P_EXT | P_DATA16)
327 #define OPC_PADDUB (0xdc | P_EXT | P_DATA16)
328 #define OPC_PADDUW (0xdd | P_EXT | P_DATA16)
329 #define OPC_PAND (0xdb | P_EXT | P_DATA16)
330 #define OPC_PANDN (0xdf | P_EXT | P_DATA16)
331 #define OPC_PBLENDW (0x0e | P_EXT3A | P_DATA16)
332 #define OPC_PCMPEQB (0x74 | P_EXT | P_DATA16)
333 #define OPC_PCMPEQW (0x75 | P_EXT | P_DATA16)
334 #define OPC_PCMPEQD (0x76 | P_EXT | P_DATA16)
335 #define OPC_PCMPEQQ (0x29 | P_EXT38 | P_DATA16)
336 #define OPC_PCMPGTB (0x64 | P_EXT | P_DATA16)
337 #define OPC_PCMPGTW (0x65 | P_EXT | P_DATA16)
338 #define OPC_PCMPGTD (0x66 | P_EXT | P_DATA16)
339 #define OPC_PCMPGTQ (0x37 | P_EXT38 | P_DATA16)
340 #define OPC_PMAXSB (0x3c | P_EXT38 | P_DATA16)
341 #define OPC_PMAXSW (0xee | P_EXT | P_DATA16)
342 #define OPC_PMAXSD (0x3d | P_EXT38 | P_DATA16)
343 #define OPC_VPMAXSQ (0x3d | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
344 #define OPC_PMAXUB (0xde | P_EXT | P_DATA16)
345 #define OPC_PMAXUW (0x3e | P_EXT38 | P_DATA16)
346 #define OPC_PMAXUD (0x3f | P_EXT38 | P_DATA16)
347 #define OPC_VPMAXUQ (0x3f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
348 #define OPC_PMINSB (0x38 | P_EXT38 | P_DATA16)
349 #define OPC_PMINSW (0xea | P_EXT | P_DATA16)
350 #define OPC_PMINSD (0x39 | P_EXT38 | P_DATA16)
351 #define OPC_VPMINSQ (0x39 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
352 #define OPC_PMINUB (0xda | P_EXT | P_DATA16)
353 #define OPC_PMINUW (0x3a | P_EXT38 | P_DATA16)
354 #define OPC_PMINUD (0x3b | P_EXT38 | P_DATA16)
355 #define OPC_VPMINUQ (0x3b | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
356 #define OPC_PMOVSXBW (0x20 | P_EXT38 | P_DATA16)
357 #define OPC_PMOVSXWD (0x23 | P_EXT38 | P_DATA16)
358 #define OPC_PMOVSXDQ (0x25 | P_EXT38 | P_DATA16)
359 #define OPC_PMOVZXBW (0x30 | P_EXT38 | P_DATA16)
360 #define OPC_PMOVZXWD (0x33 | P_EXT38 | P_DATA16)
361 #define OPC_PMOVZXDQ (0x35 | P_EXT38 | P_DATA16)
362 #define OPC_PMULLW (0xd5 | P_EXT | P_DATA16)
363 #define OPC_PMULLD (0x40 | P_EXT38 | P_DATA16)
364 #define OPC_VPMULLQ (0x40 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
365 #define OPC_POR (0xeb | P_EXT | P_DATA16)
366 #define OPC_PSHUFB (0x00 | P_EXT38 | P_DATA16)
367 #define OPC_PSHUFD (0x70 | P_EXT | P_DATA16)
368 #define OPC_PSHUFLW (0x70 | P_EXT | P_SIMDF2)
369 #define OPC_PSHUFHW (0x70 | P_EXT | P_SIMDF3)
370 #define OPC_PSHIFTW_Ib (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */
371 #define OPC_PSHIFTD_Ib (0x72 | P_EXT | P_DATA16) /* /1 /2 /6 /4 */
372 #define OPC_PSHIFTQ_Ib (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */
373 #define OPC_PSLLW (0xf1 | P_EXT | P_DATA16)
374 #define OPC_PSLLD (0xf2 | P_EXT | P_DATA16)
375 #define OPC_PSLLQ (0xf3 | P_EXT | P_DATA16)
376 #define OPC_PSRAW (0xe1 | P_EXT | P_DATA16)
377 #define OPC_PSRAD (0xe2 | P_EXT | P_DATA16)
378 #define OPC_VPSRAQ (0x72 | P_EXT | P_DATA16 | P_VEXW | P_EVEX)
379 #define OPC_PSRLW (0xd1 | P_EXT | P_DATA16)
380 #define OPC_PSRLD (0xd2 | P_EXT | P_DATA16)
381 #define OPC_PSRLQ (0xd3 | P_EXT | P_DATA16)
382 #define OPC_PSUBB (0xf8 | P_EXT | P_DATA16)
383 #define OPC_PSUBW (0xf9 | P_EXT | P_DATA16)
384 #define OPC_PSUBD (0xfa | P_EXT | P_DATA16)
385 #define OPC_PSUBQ (0xfb | P_EXT | P_DATA16)
386 #define OPC_PSUBSB (0xe8 | P_EXT | P_DATA16)
387 #define OPC_PSUBSW (0xe9 | P_EXT | P_DATA16)
388 #define OPC_PSUBUB (0xd8 | P_EXT | P_DATA16)
389 #define OPC_PSUBUW (0xd9 | P_EXT | P_DATA16)
390 #define OPC_PUNPCKLBW (0x60 | P_EXT | P_DATA16)
391 #define OPC_PUNPCKLWD (0x61 | P_EXT | P_DATA16)
392 #define OPC_PUNPCKLDQ (0x62 | P_EXT | P_DATA16)
393 #define OPC_PUNPCKLQDQ (0x6c | P_EXT | P_DATA16)
394 #define OPC_PUNPCKHBW (0x68 | P_EXT | P_DATA16)
395 #define OPC_PUNPCKHWD (0x69 | P_EXT | P_DATA16)
396 #define OPC_PUNPCKHDQ (0x6a | P_EXT | P_DATA16)
397 #define OPC_PUNPCKHQDQ (0x6d | P_EXT | P_DATA16)
398 #define OPC_PXOR (0xef | P_EXT | P_DATA16)
399 #define OPC_POP_r32 (0x58)
400 #define OPC_POPCNT (0xb8 | P_EXT | P_SIMDF3)
401 #define OPC_PUSH_r32 (0x50)
402 #define OPC_PUSH_Iv (0x68)
403 #define OPC_PUSH_Ib (0x6a)
404 #define OPC_RET (0xc3)
405 #define OPC_SETCC (0x90 | P_EXT | P_REXB_RM) /* ... plus cc */
406 #define OPC_SHIFT_1 (0xd1)
407 #define OPC_SHIFT_Ib (0xc1)
408 #define OPC_SHIFT_cl (0xd3)
409 #define OPC_SARX (0xf7 | P_EXT38 | P_SIMDF3)
410 #define OPC_SHUFPS (0xc6 | P_EXT)
411 #define OPC_SHLX (0xf7 | P_EXT38 | P_DATA16)
412 #define OPC_SHRX (0xf7 | P_EXT38 | P_SIMDF2)
413 #define OPC_SHRD_Ib (0xac | P_EXT)
414 #define OPC_TESTL (0x85)
415 #define OPC_TZCNT (0xbc | P_EXT | P_SIMDF3)
416 #define OPC_UD2 (0x0b | P_EXT)
417 #define OPC_VPBLENDD (0x02 | P_EXT3A | P_DATA16)
418 #define OPC_VPBLENDVB (0x4c | P_EXT3A | P_DATA16)
419 #define OPC_VPINSRB (0x20 | P_EXT3A | P_DATA16)
420 #define OPC_VPINSRW (0xc4 | P_EXT | P_DATA16)
421 #define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16)
422 #define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16)
423 #define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16)
424 #define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16)
425 #define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16)
426 #define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16)
427 #define OPC_VPERMQ (0x00 | P_EXT3A | P_DATA16 | P_VEXW)
428 #define OPC_VPERM2I128 (0x46 | P_EXT3A | P_DATA16 | P_VEXL)
429 #define OPC_VPROLVD (0x15 | P_EXT38 | P_DATA16 | P_EVEX)
430 #define OPC_VPROLVQ (0x15 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
431 #define OPC_VPRORVD (0x14 | P_EXT38 | P_DATA16 | P_EVEX)
432 #define OPC_VPRORVQ (0x14 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
433 #define OPC_VPSHLDW (0x70 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
434 #define OPC_VPSHLDD (0x71 | P_EXT3A | P_DATA16 | P_EVEX)
435 #define OPC_VPSHLDQ (0x71 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
436 #define OPC_VPSHLDVW (0x70 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
437 #define OPC_VPSHLDVD (0x71 | P_EXT38 | P_DATA16 | P_EVEX)
438 #define OPC_VPSHLDVQ (0x71 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
439 #define OPC_VPSHRDVW (0x72 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
440 #define OPC_VPSHRDVD (0x73 | P_EXT38 | P_DATA16 | P_EVEX)
441 #define OPC_VPSHRDVQ (0x73 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
442 #define OPC_VPSLLVW (0x12 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
443 #define OPC_VPSLLVD (0x47 | P_EXT38 | P_DATA16)
444 #define OPC_VPSLLVQ (0x47 | P_EXT38 | P_DATA16 | P_VEXW)
445 #define OPC_VPSRAVW (0x11 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
446 #define OPC_VPSRAVD (0x46 | P_EXT38 | P_DATA16)
447 #define OPC_VPSRAVQ (0x46 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
448 #define OPC_VPSRLVW (0x10 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
449 #define OPC_VPSRLVD (0x45 | P_EXT38 | P_DATA16)
450 #define OPC_VPSRLVQ (0x45 | P_EXT38 | P_DATA16 | P_VEXW)
451 #define OPC_VPTERNLOGQ (0x25 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
452 #define OPC_VZEROUPPER (0x77 | P_EXT)
453 #define OPC_XCHG_ax_r32 (0x90)
455 #define OPC_GRP3_Eb (0xf6)
456 #define OPC_GRP3_Ev (0xf7)
457 #define OPC_GRP5 (0xff)
458 #define OPC_GRP14 (0x73 | P_EXT | P_DATA16)
460 /* Group 1 opcode extensions for 0x80-0x83.
461 These are also used as modifiers for OPC_ARITH. */
471 /* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3. */
478 /* Group 3 opcode extensions for 0xf6, 0xf7. To be used with OPC_GRP3. */
487 /* Group 5 opcode extensions for 0xff. To be used with OPC_GRP5. */
488 #define EXT5_INC_Ev 0
489 #define EXT5_DEC_Ev 1
490 #define EXT5_CALLN_Ev 2
491 #define EXT5_JMPN_Ev 4
493 /* Condition codes to be added to OPC_JCC_{long,short}. */
512 static const uint8_t tcg_cond_to_jcc[] = {
513 [TCG_COND_EQ] = JCC_JE,
514 [TCG_COND_NE] = JCC_JNE,
515 [TCG_COND_LT] = JCC_JL,
516 [TCG_COND_GE] = JCC_JGE,
517 [TCG_COND_LE] = JCC_JLE,
518 [TCG_COND_GT] = JCC_JG,
519 [TCG_COND_LTU] = JCC_JB,
520 [TCG_COND_GEU] = JCC_JAE,
521 [TCG_COND_LEU] = JCC_JBE,
522 [TCG_COND_GTU] = JCC_JA,
525 #if TCG_TARGET_REG_BITS == 64
526 static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x)
533 if (opc & P_DATA16) {
534 /* We should never be asking for both 16 and 64-bit operation. */
535 tcg_debug_assert((opc & P_REXW) == 0);
538 if (opc & P_SIMDF3) {
540 } else if (opc & P_SIMDF2) {
545 rex |= (opc & P_REXW) ? 0x8 : 0x0; /* REX.W */
546 rex |= (r & 8) >> 1; /* REX.R */
547 rex |= (x & 8) >> 2; /* REX.X */
548 rex |= (rm & 8) >> 3; /* REX.B */
550 /* P_REXB_{R,RM} indicates that the given register is the low byte.
551 For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do,
552 as otherwise the encoding indicates %[abcd]h. Note that the values
553 that are ORed in merely indicate that the REX byte must be present;
554 those bits get discarded in output. */
555 rex |= opc & (r >= 4 ? P_REXB_R : 0);
556 rex |= opc & (rm >= 4 ? P_REXB_RM : 0);
559 tcg_out8(s, (uint8_t)(rex | 0x40));
562 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
566 } else if (opc & P_EXT3A) {
574 static void tcg_out_opc(TCGContext *s, int opc)
576 if (opc & P_DATA16) {
579 if (opc & P_SIMDF3) {
581 } else if (opc & P_SIMDF2) {
584 if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
588 } else if (opc & P_EXT3A) {
594 /* Discard the register arguments to tcg_out_opc early, so as not to penalize
595 the 32-bit compilation paths. This method works with all versions of gcc,
596 whereas relying on optimization may not be able to exclude them. */
597 #define tcg_out_opc(s, opc, r, rm, x) (tcg_out_opc)(s, opc)
600 static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm)
602 tcg_out_opc(s, opc, r, rm, 0);
603 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
606 static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v,
611 /* Use the two byte form if possible, which cannot encode
612 VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT. */
613 if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_VEXW)) == P_EXT
614 && ((rm | index) & 8) == 0) {
615 /* Two byte VEX prefix. */
618 tmp = (r & 8 ? 0 : 0x80); /* VEX.R */
620 /* Three byte VEX prefix. */
626 } else if (opc & P_EXT38) {
628 } else if (opc & P_EXT) {
631 g_assert_not_reached();
633 tmp |= (r & 8 ? 0 : 0x80); /* VEX.R */
634 tmp |= (index & 8 ? 0 : 0x40); /* VEX.X */
635 tmp |= (rm & 8 ? 0 : 0x20); /* VEX.B */
638 tmp = (opc & P_VEXW ? 0x80 : 0); /* VEX.W */
641 tmp |= (opc & P_VEXL ? 0x04 : 0); /* VEX.L */
643 if (opc & P_DATA16) {
645 } else if (opc & P_SIMDF3) {
647 } else if (opc & P_SIMDF2) {
650 tmp |= (~v & 15) << 3; /* VEX.vvvv */
655 static void tcg_out_evex_opc(TCGContext *s, int opc, int r, int v,
658 /* The entire 4-byte evex prefix; with R' and V' set. */
659 uint32_t p = 0x08041062;
662 tcg_debug_assert(have_avx512vl);
667 } else if (opc & P_EXT38) {
669 } else if (opc & P_EXT) {
672 g_assert_not_reached();
676 if (opc & P_DATA16) {
678 } else if (opc & P_SIMDF3) {
680 } else if (opc & P_SIMDF2) {
686 p = deposit32(p, 8, 2, mm);
687 p = deposit32(p, 13, 1, (rm & 8) == 0); /* EVEX.RXB.B */
688 p = deposit32(p, 14, 1, (index & 8) == 0); /* EVEX.RXB.X */
689 p = deposit32(p, 15, 1, (r & 8) == 0); /* EVEX.RXB.R */
690 p = deposit32(p, 16, 2, pp);
691 p = deposit32(p, 19, 4, ~v);
692 p = deposit32(p, 23, 1, (opc & P_VEXW) != 0);
693 p = deposit32(p, 29, 2, (opc & P_VEXL) != 0);
699 static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm)
702 tcg_out_evex_opc(s, opc, r, v, rm, 0);
704 tcg_out_vex_opc(s, opc, r, v, rm, 0);
706 tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
709 /* Output an opcode with a full "rm + (index<<shift) + offset" address mode.
710 We handle either RM and INDEX missing with a negative value. In 64-bit
711 mode for absolute addresses, ~RM is the size of the immediate operand
712 that will follow the instruction. */
714 static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index,
715 int shift, intptr_t offset)
719 if (index < 0 && rm < 0) {
720 if (TCG_TARGET_REG_BITS == 64) {
721 /* Try for a rip-relative addressing mode. This has replaced
722 the 32-bit-mode absolute addressing encoding. */
723 intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm;
724 intptr_t disp = offset - pc;
725 if (disp == (int32_t)disp) {
726 tcg_out8(s, (LOWREGMASK(r) << 3) | 5);
731 /* Try for an absolute address encoding. This requires the
732 use of the MODRM+SIB encoding and is therefore larger than
733 rip-relative addressing. */
734 if (offset == (int32_t)offset) {
735 tcg_out8(s, (LOWREGMASK(r) << 3) | 4);
736 tcg_out8(s, (4 << 3) | 5);
737 tcg_out32(s, offset);
741 /* ??? The memory isn't directly addressable. */
742 g_assert_not_reached();
744 /* Absolute address. */
745 tcg_out8(s, (r << 3) | 5);
746 tcg_out32(s, offset);
751 /* Find the length of the immediate addend. Note that the encoding
752 that would be used for (%ebp) indicates absolute addressing. */
754 mod = 0, len = 4, rm = 5;
755 } else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) {
757 } else if (offset == (int8_t)offset) {
763 /* Use a single byte MODRM format if possible. Note that the encoding
764 that would be used for %esp is the escape to the two byte form. */
765 if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) {
766 /* Single byte MODRM format. */
767 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
769 /* Two byte MODRM+SIB format. */
771 /* Note that the encoding that would place %esp into the index
772 field indicates no index register. In 64-bit mode, the REX.X
773 bit counts, so %r12 can be used as the index. */
777 tcg_debug_assert(index != TCG_REG_ESP);
780 tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4);
781 tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm));
786 } else if (len == 4) {
787 tcg_out32(s, offset);
791 static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm,
792 int index, int shift, intptr_t offset)
794 tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
795 tcg_out_sib_offset(s, r, rm, index, shift, offset);
798 static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v,
799 int rm, int index, int shift,
802 tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
803 tcg_out_sib_offset(s, r, rm, index, shift, offset);
806 /* A simplification of the above with no index or shift. */
807 static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r,
808 int rm, intptr_t offset)
810 tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset);
813 static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r,
814 int v, int rm, intptr_t offset)
816 tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset);
819 /* Output an opcode with an expected reference to the constant pool. */
820 static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r)
822 tcg_out_opc(s, opc, r, 0, 0);
823 /* Absolute for 32-bit, pc-relative for 64-bit. */
824 tcg_out8(s, LOWREGMASK(r) << 3 | 5);
828 /* Output an opcode with an expected reference to the constant pool. */
829 static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r)
831 tcg_out_vex_opc(s, opc, r, 0, 0, 0);
832 /* Absolute for 32-bit, pc-relative for 64-bit. */
833 tcg_out8(s, LOWREGMASK(r) << 3 | 5);
837 /* Generate dest op= src. Uses the same ARITH_* codes as tgen_arithi. */
838 static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src)
840 /* Propagate an opcode prefix, such as P_REXW. */
841 int ext = subop & ~0x7;
844 tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src);
847 static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
861 tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg);
863 tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret);
867 tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg);
869 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
875 tcg_debug_assert(ret >= 16 && arg >= 16);
876 tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
879 tcg_debug_assert(ret >= 16 && arg >= 16);
880 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg);
883 tcg_debug_assert(ret >= 16 && arg >= 16);
884 tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg);
888 g_assert_not_reached();
893 static const int avx2_dup_insn[4] = {
894 OPC_VPBROADCASTB, OPC_VPBROADCASTW,
895 OPC_VPBROADCASTD, OPC_VPBROADCASTQ,
898 static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
902 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
903 tcg_out_vex_modrm(s, avx2_dup_insn[vece] + vex_l, r, 0, a);
907 /* ??? With zero in a register, use PSHUFB. */
908 tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a);
912 tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a);
916 tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a);
917 /* imm8 operand: all output lanes selected from input lane 0. */
921 tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a);
924 g_assert_not_reached();
930 static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
931 TCGReg r, TCGReg base, intptr_t offset)
934 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
935 tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l,
940 tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset);
943 tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset);
946 tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset);
947 tcg_out8(s, 0); /* imm8 */
948 tcg_out_dup_vec(s, type, vece, r, r);
951 tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset);
952 tcg_out8(s, 0); /* imm8 */
953 tcg_out_dup_vec(s, type, vece, r, r);
956 g_assert_not_reached();
962 static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
963 TCGReg ret, int64_t arg)
965 int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
968 tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
972 tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret);
976 if (TCG_TARGET_REG_BITS == 32 && vece < MO_64) {
978 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret);
980 tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret);
982 new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
984 if (type == TCG_TYPE_V64) {
985 tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret);
986 } else if (have_avx2) {
987 tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret);
989 tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret);
991 if (TCG_TARGET_REG_BITS == 64) {
992 new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
994 new_pool_l2(s, R_386_32, s->code_ptr - 4, 0, arg, arg >> 32);
999 static void tcg_out_movi_vec(TCGContext *s, TCGType type,
1000 TCGReg ret, tcg_target_long arg)
1003 tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
1007 tcg_out_vex_modrm(s, OPC_PCMPEQB, ret, ret, ret);
1011 int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
1012 tcg_out_vex_modrm_pool(s, OPC_MOVD_VyEy + rexw, ret);
1013 if (TCG_TARGET_REG_BITS == 64) {
1014 new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
1016 new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
1020 static void tcg_out_movi_int(TCGContext *s, TCGType type,
1021 TCGReg ret, tcg_target_long arg)
1023 tcg_target_long diff;
1026 tgen_arithr(s, ARITH_XOR, ret, ret);
1029 if (arg == (uint32_t)arg || type == TCG_TYPE_I32) {
1030 tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0);
1034 if (arg == (int32_t)arg) {
1035 tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret);
1040 /* Try a 7 byte pc-relative lea before the 10 byte movq. */
1041 diff = tcg_pcrel_diff(s, (const void *)arg) - 7;
1042 if (diff == (int32_t)diff) {
1043 tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0);
1044 tcg_out8(s, (LOWREGMASK(ret) << 3) | 5);
1049 tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0);
1053 static void tcg_out_movi(TCGContext *s, TCGType type,
1054 TCGReg ret, tcg_target_long arg)
1058 #if TCG_TARGET_REG_BITS == 64
1062 tcg_out_movi_int(s, type, ret, arg);
1064 tcg_out_movi_vec(s, type, ret, arg);
1068 g_assert_not_reached();
1072 static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val)
1074 if (val == (int8_t)val) {
1075 tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0);
1077 } else if (val == (int32_t)val) {
1078 tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0);
1085 static inline void tcg_out_mb(TCGContext *s, TCGArg a0)
1087 /* Given the strength of x86 memory ordering, we only need care for
1088 store-load ordering. Experimentally, "lock orl $0,0(%esp)" is
1089 faster than "mfence", so don't bother with the sse insn. */
1090 if (a0 & TCG_MO_ST_LD) {
1092 tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0);
1097 static inline void tcg_out_push(TCGContext *s, int reg)
1099 tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0);
1102 static inline void tcg_out_pop(TCGContext *s, int reg)
1104 tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0);
1107 static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
1108 TCGReg arg1, intptr_t arg2)
1113 tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2);
1115 tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2);
1120 tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2);
1125 /* There is no instruction that can validate 8-byte alignment. */
1126 tcg_debug_assert(ret >= 16);
1127 tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2);
1131 * The gvec infrastructure is asserts that v128 vector loads
1132 * and stores use a 16-byte aligned offset. Validate that the
1133 * final pointer is aligned by using an insn that will SIGSEGV.
1135 tcg_debug_assert(ret >= 16);
1136 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2);
1140 * The gvec infrastructure only requires 16-byte alignment,
1141 * so here we must use an unaligned load.
1143 tcg_debug_assert(ret >= 16);
1144 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL,
1145 ret, 0, arg1, arg2);
1148 g_assert_not_reached();
1152 static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
1153 TCGReg arg1, intptr_t arg2)
1158 tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2);
1160 tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2);
1165 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2);
1170 /* There is no instruction that can validate 8-byte alignment. */
1171 tcg_debug_assert(arg >= 16);
1172 tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2);
1176 * The gvec infrastructure is asserts that v128 vector loads
1177 * and stores use a 16-byte aligned offset. Validate that the
1178 * final pointer is aligned by using an insn that will SIGSEGV.
1180 tcg_debug_assert(arg >= 16);
1181 tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2);
1185 * The gvec infrastructure only requires 16-byte alignment,
1186 * so here we must use an unaligned store.
1188 tcg_debug_assert(arg >= 16);
1189 tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL,
1190 arg, 0, arg1, arg2);
1193 g_assert_not_reached();
1197 static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
1198 TCGReg base, intptr_t ofs)
1201 if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) {
1202 if (val != (int32_t)val) {
1206 } else if (type != TCG_TYPE_I32) {
1209 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs);
1214 static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count)
1216 /* Propagate an opcode prefix, such as P_DATA16. */
1217 int ext = subopc & ~0x7;
1221 tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg);
1223 tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg);
1228 static inline void tcg_out_bswap32(TCGContext *s, int reg)
1230 tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0);
1233 static inline void tcg_out_rolw_8(TCGContext *s, int reg)
1235 tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8);
1238 static inline void tcg_out_ext8u(TCGContext *s, int dest, int src)
1241 tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64);
1242 tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src);
1245 static void tcg_out_ext8s(TCGContext *s, int dest, int src, int rexw)
1248 tcg_debug_assert(src < 4 || TCG_TARGET_REG_BITS == 64);
1249 tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src);
1252 static inline void tcg_out_ext16u(TCGContext *s, int dest, int src)
1255 tcg_out_modrm(s, OPC_MOVZWL, dest, src);
1258 static inline void tcg_out_ext16s(TCGContext *s, int dest, int src, int rexw)
1261 tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src);
1264 static inline void tcg_out_ext32u(TCGContext *s, int dest, int src)
1266 /* 32-bit mov zero extends. */
1267 tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src);
1270 static inline void tcg_out_ext32s(TCGContext *s, int dest, int src)
1272 tcg_out_modrm(s, OPC_MOVSLQ, dest, src);
1275 static inline void tcg_out_bswap64(TCGContext *s, int reg)
1277 tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0);
1280 static void tgen_arithi(TCGContext *s, int c, int r0,
1281 tcg_target_long val, int cf)
1285 if (TCG_TARGET_REG_BITS == 64) {
1290 /* ??? While INC is 2 bytes shorter than ADDL $1, they also induce
1291 partial flags update stalls on Pentium4 and are not recommended
1292 by current Intel optimization manuals. */
1293 if (!cf && (c == ARITH_ADD || c == ARITH_SUB) && (val == 1 || val == -1)) {
1294 int is_inc = (c == ARITH_ADD) ^ (val < 0);
1295 if (TCG_TARGET_REG_BITS == 64) {
1296 /* The single-byte increment encodings are re-tasked as the
1297 REX prefixes. Use the MODRM encoding. */
1298 tcg_out_modrm(s, OPC_GRP5 + rexw,
1299 (is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0);
1301 tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0);
1306 if (c == ARITH_AND) {
1307 if (TCG_TARGET_REG_BITS == 64) {
1308 if (val == 0xffffffffu) {
1309 tcg_out_ext32u(s, r0, r0);
1312 if (val == (uint32_t)val) {
1313 /* AND with no high bits set can use a 32-bit operation. */
1317 if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
1318 tcg_out_ext8u(s, r0, r0);
1321 if (val == 0xffffu) {
1322 tcg_out_ext16u(s, r0, r0);
1327 if (val == (int8_t)val) {
1328 tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0);
1332 if (rexw == 0 || val == (int32_t)val) {
1333 tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0);
1341 static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val)
1344 tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0);
1348 /* Use SMALL != 0 to force a short forward branch. */
1349 static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, int small)
1354 val = tcg_pcrel_diff(s, l->u.value_ptr);
1356 if ((int8_t)val1 == val1) {
1358 tcg_out8(s, OPC_JMP_short);
1360 tcg_out8(s, OPC_JCC_short + opc);
1368 tcg_out8(s, OPC_JMP_long);
1369 tcg_out32(s, val - 5);
1371 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1372 tcg_out32(s, val - 6);
1377 tcg_out8(s, OPC_JMP_short);
1379 tcg_out8(s, OPC_JCC_short + opc);
1381 tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1);
1385 tcg_out8(s, OPC_JMP_long);
1387 tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
1389 tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4);
1394 static void tcg_out_cmp(TCGContext *s, TCGArg arg1, TCGArg arg2,
1395 int const_arg2, int rexw)
1400 tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1);
1402 tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0);
1405 tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2);
1409 static void tcg_out_brcond32(TCGContext *s, TCGCond cond,
1410 TCGArg arg1, TCGArg arg2, int const_arg2,
1411 TCGLabel *label, int small)
1413 tcg_out_cmp(s, arg1, arg2, const_arg2, 0);
1414 tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small);
1417 #if TCG_TARGET_REG_BITS == 64
1418 static void tcg_out_brcond64(TCGContext *s, TCGCond cond,
1419 TCGArg arg1, TCGArg arg2, int const_arg2,
1420 TCGLabel *label, int small)
1422 tcg_out_cmp(s, arg1, arg2, const_arg2, P_REXW);
1423 tcg_out_jxx(s, tcg_cond_to_jcc[cond], label, small);
1426 /* XXX: we implement it at the target level to avoid having to
1427 handle cross basic blocks temporaries */
1428 static void tcg_out_brcond2(TCGContext *s, const TCGArg *args,
1429 const int *const_args, int small)
1431 TCGLabel *label_next = gen_new_label();
1432 TCGLabel *label_this = arg_label(args[5]);
1436 tcg_out_brcond32(s, TCG_COND_NE, args[0], args[2], const_args[2],
1438 tcg_out_brcond32(s, TCG_COND_EQ, args[1], args[3], const_args[3],
1442 tcg_out_brcond32(s, TCG_COND_NE, args[0], args[2], const_args[2],
1444 tcg_out_brcond32(s, TCG_COND_NE, args[1], args[3], const_args[3],
1448 tcg_out_brcond32(s, TCG_COND_LT, args[1], args[3], const_args[3],
1450 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1451 tcg_out_brcond32(s, TCG_COND_LTU, args[0], args[2], const_args[2],
1455 tcg_out_brcond32(s, TCG_COND_LT, args[1], args[3], const_args[3],
1457 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1458 tcg_out_brcond32(s, TCG_COND_LEU, args[0], args[2], const_args[2],
1462 tcg_out_brcond32(s, TCG_COND_GT, args[1], args[3], const_args[3],
1464 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1465 tcg_out_brcond32(s, TCG_COND_GTU, args[0], args[2], const_args[2],
1469 tcg_out_brcond32(s, TCG_COND_GT, args[1], args[3], const_args[3],
1471 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1472 tcg_out_brcond32(s, TCG_COND_GEU, args[0], args[2], const_args[2],
1476 tcg_out_brcond32(s, TCG_COND_LTU, args[1], args[3], const_args[3],
1478 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1479 tcg_out_brcond32(s, TCG_COND_LTU, args[0], args[2], const_args[2],
1483 tcg_out_brcond32(s, TCG_COND_LTU, args[1], args[3], const_args[3],
1485 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1486 tcg_out_brcond32(s, TCG_COND_LEU, args[0], args[2], const_args[2],
1490 tcg_out_brcond32(s, TCG_COND_GTU, args[1], args[3], const_args[3],
1492 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1493 tcg_out_brcond32(s, TCG_COND_GTU, args[0], args[2], const_args[2],
1497 tcg_out_brcond32(s, TCG_COND_GTU, args[1], args[3], const_args[3],
1499 tcg_out_jxx(s, JCC_JNE, label_next, 1);
1500 tcg_out_brcond32(s, TCG_COND_GEU, args[0], args[2], const_args[2],
1506 tcg_out_label(s, label_next);
1510 static void tcg_out_setcond32(TCGContext *s, TCGCond cond, TCGArg dest,
1511 TCGArg arg1, TCGArg arg2, int const_arg2)
1513 tcg_out_cmp(s, arg1, arg2, const_arg2, 0);
1514 tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest);
1515 tcg_out_ext8u(s, dest, dest);
1518 #if TCG_TARGET_REG_BITS == 64
1519 static void tcg_out_setcond64(TCGContext *s, TCGCond cond, TCGArg dest,
1520 TCGArg arg1, TCGArg arg2, int const_arg2)
1522 tcg_out_cmp(s, arg1, arg2, const_arg2, P_REXW);
1523 tcg_out_modrm(s, OPC_SETCC | tcg_cond_to_jcc[cond], 0, dest);
1524 tcg_out_ext8u(s, dest, dest);
1527 static void tcg_out_setcond2(TCGContext *s, const TCGArg *args,
1528 const int *const_args)
1531 TCGLabel *label_true, *label_over;
1533 memcpy(new_args, args+1, 5*sizeof(TCGArg));
1535 if (args[0] == args[1] || args[0] == args[2]
1536 || (!const_args[3] && args[0] == args[3])
1537 || (!const_args[4] && args[0] == args[4])) {
1538 /* When the destination overlaps with one of the argument
1539 registers, don't do anything tricky. */
1540 label_true = gen_new_label();
1541 label_over = gen_new_label();
1543 new_args[5] = label_arg(label_true);
1544 tcg_out_brcond2(s, new_args, const_args+1, 1);
1546 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1547 tcg_out_jxx(s, JCC_JMP, label_over, 1);
1548 tcg_out_label(s, label_true);
1550 tcg_out_movi(s, TCG_TYPE_I32, args[0], 1);
1551 tcg_out_label(s, label_over);
1553 /* When the destination does not overlap one of the arguments,
1554 clear the destination first, jump if cond false, and emit an
1555 increment in the true case. This results in smaller code. */
1557 tcg_out_movi(s, TCG_TYPE_I32, args[0], 0);
1559 label_over = gen_new_label();
1560 new_args[4] = tcg_invert_cond(new_args[4]);
1561 new_args[5] = label_arg(label_over);
1562 tcg_out_brcond2(s, new_args, const_args+1, 1);
1564 tgen_arithi(s, ARITH_ADD, args[0], 1, 0);
1565 tcg_out_label(s, label_over);
1570 static void tcg_out_cmov(TCGContext *s, TCGCond cond, int rexw,
1571 TCGReg dest, TCGReg v1)
1574 tcg_out_modrm(s, OPC_CMOVCC | tcg_cond_to_jcc[cond] | rexw, dest, v1);
1576 TCGLabel *over = gen_new_label();
1577 tcg_out_jxx(s, tcg_cond_to_jcc[tcg_invert_cond(cond)], over, 1);
1578 tcg_out_mov(s, TCG_TYPE_I32, dest, v1);
1579 tcg_out_label(s, over);
1583 static void tcg_out_movcond32(TCGContext *s, TCGCond cond, TCGReg dest,
1584 TCGReg c1, TCGArg c2, int const_c2,
1587 tcg_out_cmp(s, c1, c2, const_c2, 0);
1588 tcg_out_cmov(s, cond, 0, dest, v1);
1591 #if TCG_TARGET_REG_BITS == 64
1592 static void tcg_out_movcond64(TCGContext *s, TCGCond cond, TCGReg dest,
1593 TCGReg c1, TCGArg c2, int const_c2,
1596 tcg_out_cmp(s, c1, c2, const_c2, P_REXW);
1597 tcg_out_cmov(s, cond, P_REXW, dest, v1);
1601 static void tcg_out_ctz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1602 TCGArg arg2, bool const_a2)
1605 tcg_out_modrm(s, OPC_TZCNT + rexw, dest, arg1);
1607 tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1609 tcg_debug_assert(dest != arg2);
1610 tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2);
1613 tcg_debug_assert(dest != arg2);
1614 tcg_out_modrm(s, OPC_BSF + rexw, dest, arg1);
1615 tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2);
1619 static void tcg_out_clz(TCGContext *s, int rexw, TCGReg dest, TCGReg arg1,
1620 TCGArg arg2, bool const_a2)
1623 tcg_out_modrm(s, OPC_LZCNT + rexw, dest, arg1);
1625 tcg_debug_assert(arg2 == (rexw ? 64 : 32));
1627 tcg_debug_assert(dest != arg2);
1628 tcg_out_cmov(s, TCG_COND_LTU, rexw, dest, arg2);
1631 tcg_debug_assert(!const_a2);
1632 tcg_debug_assert(dest != arg1);
1633 tcg_debug_assert(dest != arg2);
1635 /* Recall that the output of BSR is the index not the count. */
1636 tcg_out_modrm(s, OPC_BSR + rexw, dest, arg1);
1637 tgen_arithi(s, ARITH_XOR + rexw, dest, rexw ? 63 : 31, 0);
1639 /* Since we have destroyed the flags from BSR, we have to re-test. */
1640 tcg_out_cmp(s, arg1, 0, 1, rexw);
1641 tcg_out_cmov(s, TCG_COND_EQ, rexw, dest, arg2);
1645 static void tcg_out_branch(TCGContext *s, int call, const tcg_insn_unit *dest)
1647 intptr_t disp = tcg_pcrel_diff(s, dest) - 5;
1649 if (disp == (int32_t)disp) {
1650 tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0);
1653 /* rip-relative addressing into the constant pool.
1654 This is 6 + 8 = 14 bytes, as compared to using an
1655 an immediate load 10 + 6 = 16 bytes, plus we may
1656 be able to re-use the pool constant for more calls. */
1657 tcg_out_opc(s, OPC_GRP5, 0, 0, 0);
1658 tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5);
1659 new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4);
1664 static inline void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest)
1666 tcg_out_branch(s, 1, dest);
1669 static void tcg_out_jmp(TCGContext *s, const tcg_insn_unit *dest)
1671 tcg_out_branch(s, 0, dest);
1674 static void tcg_out_nopn(TCGContext *s, int n)
1677 /* Emit 1 or 2 operand size prefixes for the standard one byte nop,
1678 * "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the
1679 * duplicate prefix, and all of the interesting recent cores can
1680 * decode and discard the duplicates in a single cycle.
1682 tcg_debug_assert(n >= 1);
1683 for (i = 1; i < n; ++i) {
1689 #if defined(CONFIG_SOFTMMU)
1690 /* helper signature: helper_ret_ld_mmu(CPUState *env, target_ulong addr,
1691 * int mmu_idx, uintptr_t ra)
1693 static void * const qemu_ld_helpers[(MO_SIZE | MO_BSWAP) + 1] = {
1694 [MO_UB] = helper_ret_ldub_mmu,
1695 [MO_LEUW] = helper_le_lduw_mmu,
1696 [MO_LEUL] = helper_le_ldul_mmu,
1697 [MO_LEUQ] = helper_le_ldq_mmu,
1698 [MO_BEUW] = helper_be_lduw_mmu,
1699 [MO_BEUL] = helper_be_ldul_mmu,
1700 [MO_BEUQ] = helper_be_ldq_mmu,
1703 /* helper signature: helper_ret_st_mmu(CPUState *env, target_ulong addr,
1704 * uintxx_t val, int mmu_idx, uintptr_t ra)
1706 static void * const qemu_st_helpers[(MO_SIZE | MO_BSWAP) + 1] = {
1707 [MO_UB] = helper_ret_stb_mmu,
1708 [MO_LEUW] = helper_le_stw_mmu,
1709 [MO_LEUL] = helper_le_stl_mmu,
1710 [MO_LEUQ] = helper_le_stq_mmu,
1711 [MO_BEUW] = helper_be_stw_mmu,
1712 [MO_BEUL] = helper_be_stl_mmu,
1713 [MO_BEUQ] = helper_be_stq_mmu,
1716 /* Perform the TLB load and compare.
1719 ADDRLO and ADDRHI contain the low and high part of the address.
1721 MEM_INDEX and S_BITS are the memory context and log2 size of the load.
1723 WHICH is the offset into the CPUTLBEntry structure of the slot to read.
1724 This should be offsetof addr_read or addr_write.
1727 LABEL_PTRS is filled with 1 (32-bit addresses) or 2 (64-bit addresses)
1728 positions of the displacements of forward jumps to the TLB miss case.
1730 Second argument register is loaded with the low part of the address.
1731 In the TLB hit case, it has been adjusted as indicated by the TLB
1732 and so is a host address. In the TLB miss case, it continues to
1733 hold a guest address.
1735 First argument register is clobbered. */
1737 static inline void tcg_out_tlb_load(TCGContext *s, TCGReg addrlo, TCGReg addrhi,
1738 int mem_index, MemOp opc,
1739 tcg_insn_unit **label_ptr, int which)
1741 const TCGReg r0 = TCG_REG_L0;
1742 const TCGReg r1 = TCG_REG_L1;
1743 TCGType ttype = TCG_TYPE_I32;
1744 TCGType tlbtype = TCG_TYPE_I32;
1745 int trexw = 0, hrexw = 0, tlbrexw = 0;
1746 unsigned a_bits = get_alignment_bits(opc);
1747 unsigned s_bits = opc & MO_SIZE;
1748 unsigned a_mask = (1 << a_bits) - 1;
1749 unsigned s_mask = (1 << s_bits) - 1;
1750 target_ulong tlb_mask;
1752 if (TCG_TARGET_REG_BITS == 64) {
1753 if (TARGET_LONG_BITS == 64) {
1754 ttype = TCG_TYPE_I64;
1757 if (TCG_TYPE_PTR == TCG_TYPE_I64) {
1759 if (TARGET_PAGE_BITS + CPU_TLB_DYN_MAX_BITS > 32) {
1760 tlbtype = TCG_TYPE_I64;
1766 tcg_out_mov(s, tlbtype, r0, addrlo);
1767 tcg_out_shifti(s, SHIFT_SHR + tlbrexw, r0,
1768 TARGET_PAGE_BITS - CPU_TLB_ENTRY_BITS);
1770 tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, r0, TCG_AREG0,
1771 TLB_MASK_TABLE_OFS(mem_index) +
1772 offsetof(CPUTLBDescFast, mask));
1774 tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, r0, TCG_AREG0,
1775 TLB_MASK_TABLE_OFS(mem_index) +
1776 offsetof(CPUTLBDescFast, table));
1778 /* If the required alignment is at least as large as the access, simply
1779 copy the address and mask. For lesser alignments, check that we don't
1780 cross pages for the complete access. */
1781 if (a_bits >= s_bits) {
1782 tcg_out_mov(s, ttype, r1, addrlo);
1784 tcg_out_modrm_offset(s, OPC_LEA + trexw, r1, addrlo, s_mask - a_mask);
1786 tlb_mask = (target_ulong)TARGET_PAGE_MASK | a_mask;
1787 tgen_arithi(s, ARITH_AND + trexw, r1, tlb_mask, 0);
1790 tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw, r1, r0, which);
1792 /* Prepare for both the fast path add of the tlb addend, and the slow
1793 path function argument setup. */
1794 tcg_out_mov(s, ttype, r1, addrlo);
1797 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
1798 label_ptr[0] = s->code_ptr;
1801 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1802 /* cmp 4(r0), addrhi */
1803 tcg_out_modrm_offset(s, OPC_CMP_GvEv, addrhi, r0, which + 4);
1806 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
1807 label_ptr[1] = s->code_ptr;
1813 /* add addend(r0), r1 */
1814 tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, r1, r0,
1815 offsetof(CPUTLBEntry, addend));
1819 * Record the context of a call to the out of line helper code for the slow path
1820 * for a load or store, so that we can later generate the correct helper code
1822 static void add_qemu_ldst_label(TCGContext *s, bool is_ld, bool is_64,
1824 TCGReg datalo, TCGReg datahi,
1825 TCGReg addrlo, TCGReg addrhi,
1826 tcg_insn_unit *raddr,
1827 tcg_insn_unit **label_ptr)
1829 TCGLabelQemuLdst *label = new_ldst_label(s);
1831 label->is_ld = is_ld;
1833 label->type = is_64 ? TCG_TYPE_I64 : TCG_TYPE_I32;
1834 label->datalo_reg = datalo;
1835 label->datahi_reg = datahi;
1836 label->addrlo_reg = addrlo;
1837 label->addrhi_reg = addrhi;
1838 label->raddr = tcg_splitwx_to_rx(raddr);
1839 label->label_ptr[0] = label_ptr[0];
1840 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1841 label->label_ptr[1] = label_ptr[1];
1846 * Generate code for the slow path for a load at the end of block
1848 static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1850 MemOpIdx oi = l->oi;
1851 MemOp opc = get_memop(oi);
1853 tcg_insn_unit **label_ptr = &l->label_ptr[0];
1854 int rexw = (l->type == TCG_TYPE_I64 ? P_REXW : 0);
1856 /* resolve label address */
1857 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
1858 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1859 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
1862 if (TCG_TARGET_REG_BITS == 32) {
1865 tcg_out_st(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, ofs);
1868 tcg_out_st(s, TCG_TYPE_I32, l->addrlo_reg, TCG_REG_ESP, ofs);
1871 if (TARGET_LONG_BITS == 64) {
1872 tcg_out_st(s, TCG_TYPE_I32, l->addrhi_reg, TCG_REG_ESP, ofs);
1876 tcg_out_sti(s, TCG_TYPE_I32, oi, TCG_REG_ESP, ofs);
1879 tcg_out_sti(s, TCG_TYPE_PTR, (uintptr_t)l->raddr, TCG_REG_ESP, ofs);
1881 tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
1882 /* The second argument is already loaded with addrlo. */
1883 tcg_out_movi(s, TCG_TYPE_I32, tcg_target_call_iarg_regs[2], oi);
1884 tcg_out_movi(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[3],
1885 (uintptr_t)l->raddr);
1888 tcg_out_call(s, qemu_ld_helpers[opc & (MO_BSWAP | MO_SIZE)]);
1890 data_reg = l->datalo_reg;
1891 switch (opc & MO_SSIZE) {
1893 tcg_out_ext8s(s, data_reg, TCG_REG_EAX, rexw);
1896 tcg_out_ext16s(s, data_reg, TCG_REG_EAX, rexw);
1898 #if TCG_TARGET_REG_BITS == 64
1900 tcg_out_ext32s(s, data_reg, TCG_REG_EAX);
1905 /* Note that the helpers have zero-extended to tcg_target_long. */
1907 tcg_out_mov(s, TCG_TYPE_I32, data_reg, TCG_REG_EAX);
1910 if (TCG_TARGET_REG_BITS == 64) {
1911 tcg_out_mov(s, TCG_TYPE_I64, data_reg, TCG_REG_RAX);
1912 } else if (data_reg == TCG_REG_EDX) {
1913 /* xchg %edx, %eax */
1914 tcg_out_opc(s, OPC_XCHG_ax_r32 + TCG_REG_EDX, 0, 0, 0);
1915 tcg_out_mov(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_EAX);
1917 tcg_out_mov(s, TCG_TYPE_I32, data_reg, TCG_REG_EAX);
1918 tcg_out_mov(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_EDX);
1925 /* Jump to the code corresponding to next IR of qemu_st */
1926 tcg_out_jmp(s, l->raddr);
1931 * Generate code for the slow path for a store at the end of block
1933 static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
1935 MemOpIdx oi = l->oi;
1936 MemOp opc = get_memop(oi);
1937 MemOp s_bits = opc & MO_SIZE;
1938 tcg_insn_unit **label_ptr = &l->label_ptr[0];
1941 /* resolve label address */
1942 tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
1943 if (TARGET_LONG_BITS > TCG_TARGET_REG_BITS) {
1944 tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
1947 if (TCG_TARGET_REG_BITS == 32) {
1950 tcg_out_st(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, ofs);
1953 tcg_out_st(s, TCG_TYPE_I32, l->addrlo_reg, TCG_REG_ESP, ofs);
1956 if (TARGET_LONG_BITS == 64) {
1957 tcg_out_st(s, TCG_TYPE_I32, l->addrhi_reg, TCG_REG_ESP, ofs);
1961 tcg_out_st(s, TCG_TYPE_I32, l->datalo_reg, TCG_REG_ESP, ofs);
1964 if (s_bits == MO_64) {
1965 tcg_out_st(s, TCG_TYPE_I32, l->datahi_reg, TCG_REG_ESP, ofs);
1969 tcg_out_sti(s, TCG_TYPE_I32, oi, TCG_REG_ESP, ofs);
1972 retaddr = TCG_REG_EAX;
1973 tcg_out_movi(s, TCG_TYPE_PTR, retaddr, (uintptr_t)l->raddr);
1974 tcg_out_st(s, TCG_TYPE_PTR, retaddr, TCG_REG_ESP, ofs);
1976 tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
1977 /* The second argument is already loaded with addrlo. */
1978 tcg_out_mov(s, (s_bits == MO_64 ? TCG_TYPE_I64 : TCG_TYPE_I32),
1979 tcg_target_call_iarg_regs[2], l->datalo_reg);
1980 tcg_out_movi(s, TCG_TYPE_I32, tcg_target_call_iarg_regs[3], oi);
1982 if (ARRAY_SIZE(tcg_target_call_iarg_regs) > 4) {
1983 retaddr = tcg_target_call_iarg_regs[4];
1984 tcg_out_movi(s, TCG_TYPE_PTR, retaddr, (uintptr_t)l->raddr);
1986 retaddr = TCG_REG_RAX;
1987 tcg_out_movi(s, TCG_TYPE_PTR, retaddr, (uintptr_t)l->raddr);
1988 tcg_out_st(s, TCG_TYPE_PTR, retaddr, TCG_REG_ESP,
1989 TCG_TARGET_CALL_STACK_OFFSET);
1993 /* "Tail call" to the helper, with the return address back inline. */
1994 tcg_out_push(s, retaddr);
1995 tcg_out_jmp(s, qemu_st_helpers[opc & (MO_BSWAP | MO_SIZE)]);
2000 static void tcg_out_test_alignment(TCGContext *s, bool is_ld, TCGReg addrlo,
2001 TCGReg addrhi, unsigned a_bits)
2003 unsigned a_mask = (1 << a_bits) - 1;
2004 TCGLabelQemuLdst *label;
2007 * We are expecting a_bits to max out at 7, so we can usually use testb.
2008 * For i686, we have to use testl for %esi/%edi.
2010 if (a_mask <= 0xff && (TCG_TARGET_REG_BITS == 64 || addrlo < 4)) {
2011 tcg_out_modrm(s, OPC_GRP3_Eb | P_REXB_RM, EXT3_TESTi, addrlo);
2012 tcg_out8(s, a_mask);
2014 tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_TESTi, addrlo);
2015 tcg_out32(s, a_mask);
2019 tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
2021 label = new_ldst_label(s);
2022 label->is_ld = is_ld;
2023 label->addrlo_reg = addrlo;
2024 label->addrhi_reg = addrhi;
2025 label->raddr = tcg_splitwx_to_rx(s->code_ptr + 4);
2026 label->label_ptr[0] = s->code_ptr;
2031 static bool tcg_out_fail_alignment(TCGContext *s, TCGLabelQemuLdst *l)
2033 /* resolve label address */
2034 tcg_patch32(l->label_ptr[0], s->code_ptr - l->label_ptr[0] - 4);
2036 if (TCG_TARGET_REG_BITS == 32) {
2039 tcg_out_st(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP, ofs);
2042 tcg_out_st(s, TCG_TYPE_I32, l->addrlo_reg, TCG_REG_ESP, ofs);
2044 if (TARGET_LONG_BITS == 64) {
2045 tcg_out_st(s, TCG_TYPE_I32, l->addrhi_reg, TCG_REG_ESP, ofs);
2049 tcg_out_pushi(s, (uintptr_t)l->raddr);
2051 tcg_out_mov(s, TCG_TYPE_TL, tcg_target_call_iarg_regs[1],
2053 tcg_out_mov(s, TCG_TYPE_PTR, tcg_target_call_iarg_regs[0], TCG_AREG0);
2055 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_RAX, (uintptr_t)l->raddr);
2056 tcg_out_push(s, TCG_REG_RAX);
2059 /* "Tail call" to the helper, with the return address back inline. */
2060 tcg_out_jmp(s, (const void *)(l->is_ld ? helper_unaligned_ld
2061 : helper_unaligned_st));
2065 static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2067 return tcg_out_fail_alignment(s, l);
2070 static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
2072 return tcg_out_fail_alignment(s, l);
2075 #if TCG_TARGET_REG_BITS == 32
2076 # define x86_guest_base_seg 0
2077 # define x86_guest_base_index -1
2078 # define x86_guest_base_offset guest_base
2080 static int x86_guest_base_seg;
2081 static int x86_guest_base_index = -1;
2082 static int32_t x86_guest_base_offset;
2083 # if defined(__x86_64__) && defined(__linux__)
2084 # include <asm/prctl.h>
2085 # include <sys/prctl.h>
2086 int arch_prctl(int code, unsigned long addr);
2087 static inline int setup_guest_base_seg(void)
2089 if (arch_prctl(ARCH_SET_GS, guest_base) == 0) {
2094 # elif defined (__FreeBSD__) || defined (__FreeBSD_kernel__)
2095 # include <machine/sysarch.h>
2096 static inline int setup_guest_base_seg(void)
2098 if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) {
2104 static inline int setup_guest_base_seg(void)
2110 #endif /* SOFTMMU */
2112 static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2113 TCGReg base, int index, intptr_t ofs,
2114 int seg, bool is64, MemOp memop)
2116 bool use_movbe = false;
2117 int rexw = is64 * P_REXW;
2118 int movop = OPC_MOVL_GvEv;
2120 /* Do big-endian loads with movbe. */
2121 if (memop & MO_BSWAP) {
2122 tcg_debug_assert(have_movbe);
2124 movop = OPC_MOVBE_GyMy;
2127 switch (memop & MO_SSIZE) {
2129 tcg_out_modrm_sib_offset(s, OPC_MOVZBL + seg, datalo,
2130 base, index, 0, ofs);
2133 tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + seg, datalo,
2134 base, index, 0, ofs);
2138 /* There is no extending movbe; only low 16-bits are modified. */
2139 if (datalo != base && datalo != index) {
2140 /* XOR breaks dependency chains. */
2141 tgen_arithr(s, ARITH_XOR, datalo, datalo);
2142 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + seg,
2143 datalo, base, index, 0, ofs);
2145 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + seg,
2146 datalo, base, index, 0, ofs);
2147 tcg_out_ext16u(s, datalo, datalo);
2150 tcg_out_modrm_sib_offset(s, OPC_MOVZWL + seg, datalo,
2151 base, index, 0, ofs);
2156 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + seg,
2157 datalo, base, index, 0, ofs);
2158 tcg_out_ext16s(s, datalo, datalo, rexw);
2160 tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + seg,
2161 datalo, base, index, 0, ofs);
2165 tcg_out_modrm_sib_offset(s, movop + seg, datalo, base, index, 0, ofs);
2167 #if TCG_TARGET_REG_BITS == 64
2170 tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + seg, datalo,
2171 base, index, 0, ofs);
2172 tcg_out_ext32s(s, datalo, datalo);
2174 tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + seg, datalo,
2175 base, index, 0, ofs);
2180 if (TCG_TARGET_REG_BITS == 64) {
2181 tcg_out_modrm_sib_offset(s, movop + P_REXW + seg, datalo,
2182 base, index, 0, ofs);
2189 if (base != datalo) {
2190 tcg_out_modrm_sib_offset(s, movop + seg, datalo,
2191 base, index, 0, ofs);
2192 tcg_out_modrm_sib_offset(s, movop + seg, datahi,
2193 base, index, 0, ofs + 4);
2195 tcg_out_modrm_sib_offset(s, movop + seg, datahi,
2196 base, index, 0, ofs + 4);
2197 tcg_out_modrm_sib_offset(s, movop + seg, datalo,
2198 base, index, 0, ofs);
2203 g_assert_not_reached();
2207 /* XXX: qemu_ld and qemu_st could be modified to clobber only EDX and
2208 EAX. It will be useful once fixed registers globals are less
2210 static void tcg_out_qemu_ld(TCGContext *s, const TCGArg *args, bool is64)
2212 TCGReg datalo, datahi, addrlo;
2213 TCGReg addrhi __attribute__((unused));
2216 #if defined(CONFIG_SOFTMMU)
2218 tcg_insn_unit *label_ptr[2];
2224 datahi = (TCG_TARGET_REG_BITS == 32 && is64 ? *args++ : 0);
2226 addrhi = (TARGET_LONG_BITS > TCG_TARGET_REG_BITS ? *args++ : 0);
2228 opc = get_memop(oi);
2230 #if defined(CONFIG_SOFTMMU)
2231 mem_index = get_mmuidx(oi);
2233 tcg_out_tlb_load(s, addrlo, addrhi, mem_index, opc,
2234 label_ptr, offsetof(CPUTLBEntry, addr_read));
2237 tcg_out_qemu_ld_direct(s, datalo, datahi, TCG_REG_L1, -1, 0, 0, is64, opc);
2239 /* Record the current context of a load into ldst label */
2240 add_qemu_ldst_label(s, true, is64, oi, datalo, datahi, addrlo, addrhi,
2241 s->code_ptr, label_ptr);
2243 a_bits = get_alignment_bits(opc);
2245 tcg_out_test_alignment(s, true, addrlo, addrhi, a_bits);
2248 tcg_out_qemu_ld_direct(s, datalo, datahi, addrlo, x86_guest_base_index,
2249 x86_guest_base_offset, x86_guest_base_seg,
2254 static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
2255 TCGReg base, int index, intptr_t ofs,
2256 int seg, MemOp memop)
2258 bool use_movbe = false;
2259 int movop = OPC_MOVL_EvGv;
2262 * Do big-endian stores with movbe or softmmu.
2263 * User-only without movbe will have its swapping done generically.
2265 if (memop & MO_BSWAP) {
2266 tcg_debug_assert(have_movbe);
2268 movop = OPC_MOVBE_MyGy;
2271 switch (memop & MO_SIZE) {
2273 /* This is handled with constraints on INDEX_op_qemu_st8_i32. */
2274 tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || datalo < 4);
2275 tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + seg,
2276 datalo, base, index, 0, ofs);
2279 tcg_out_modrm_sib_offset(s, movop + P_DATA16 + seg, datalo,
2280 base, index, 0, ofs);
2283 tcg_out_modrm_sib_offset(s, movop + seg, datalo, base, index, 0, ofs);
2286 if (TCG_TARGET_REG_BITS == 64) {
2287 tcg_out_modrm_sib_offset(s, movop + P_REXW + seg, datalo,
2288 base, index, 0, ofs);
2295 tcg_out_modrm_sib_offset(s, movop + seg, datalo,
2296 base, index, 0, ofs);
2297 tcg_out_modrm_sib_offset(s, movop + seg, datahi,
2298 base, index, 0, ofs + 4);
2302 g_assert_not_reached();
2306 static void tcg_out_qemu_st(TCGContext *s, const TCGArg *args, bool is64)
2308 TCGReg datalo, datahi, addrlo;
2309 TCGReg addrhi __attribute__((unused));
2312 #if defined(CONFIG_SOFTMMU)
2314 tcg_insn_unit *label_ptr[2];
2320 datahi = (TCG_TARGET_REG_BITS == 32 && is64 ? *args++ : 0);
2322 addrhi = (TARGET_LONG_BITS > TCG_TARGET_REG_BITS ? *args++ : 0);
2324 opc = get_memop(oi);
2326 #if defined(CONFIG_SOFTMMU)
2327 mem_index = get_mmuidx(oi);
2329 tcg_out_tlb_load(s, addrlo, addrhi, mem_index, opc,
2330 label_ptr, offsetof(CPUTLBEntry, addr_write));
2333 tcg_out_qemu_st_direct(s, datalo, datahi, TCG_REG_L1, -1, 0, 0, opc);
2335 /* Record the current context of a store into ldst label */
2336 add_qemu_ldst_label(s, false, is64, oi, datalo, datahi, addrlo, addrhi,
2337 s->code_ptr, label_ptr);
2339 a_bits = get_alignment_bits(opc);
2341 tcg_out_test_alignment(s, false, addrlo, addrhi, a_bits);
2344 tcg_out_qemu_st_direct(s, datalo, datahi, addrlo, x86_guest_base_index,
2345 x86_guest_base_offset, x86_guest_base_seg, opc);
2349 static inline void tcg_out_op(TCGContext *s, TCGOpcode opc,
2350 const TCGArg args[TCG_MAX_OP_ARGS],
2351 const int const_args[TCG_MAX_OP_ARGS])
2354 int c, const_a2, vexop, rexw = 0;
2356 #if TCG_TARGET_REG_BITS == 64
2357 # define OP_32_64(x) \
2358 case glue(glue(INDEX_op_, x), _i64): \
2359 rexw = P_REXW; /* FALLTHRU */ \
2360 case glue(glue(INDEX_op_, x), _i32)
2362 # define OP_32_64(x) \
2363 case glue(glue(INDEX_op_, x), _i32)
2366 /* Hoist the loads of the most common arguments. */
2370 const_a2 = const_args[2];
2373 case INDEX_op_exit_tb:
2374 /* Reuse the zeroing that exists for goto_ptr. */
2376 tcg_out_jmp(s, tcg_code_gen_epilogue);
2378 tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0);
2379 tcg_out_jmp(s, tb_ret_addr);
2382 case INDEX_op_goto_tb:
2383 if (s->tb_jmp_insn_offset) {
2384 /* direct jump method */
2386 /* jump displacement must be aligned for atomic patching;
2387 * see if we need to add extra nops before jump
2389 gap = QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4) - s->code_ptr;
2391 tcg_out_nopn(s, gap - 1);
2393 tcg_out8(s, OPC_JMP_long); /* jmp im */
2394 s->tb_jmp_insn_offset[a0] = tcg_current_code_size(s);
2397 /* indirect jump method */
2398 tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, -1,
2399 (intptr_t)(s->tb_jmp_target_addr + a0));
2401 set_jmp_reset_offset(s, a0);
2403 case INDEX_op_goto_ptr:
2404 /* jmp to the given host address (could be epilogue) */
2405 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0);
2408 tcg_out_jxx(s, JCC_JMP, arg_label(a0), 0);
2411 /* Note that we can ignore REXW for the zero-extend to 64-bit. */
2412 tcg_out_modrm_offset(s, OPC_MOVZBL, a0, a1, a2);
2415 tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, a0, a1, a2);
2418 /* Note that we can ignore REXW for the zero-extend to 64-bit. */
2419 tcg_out_modrm_offset(s, OPC_MOVZWL, a0, a1, a2);
2422 tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, a0, a1, a2);
2424 #if TCG_TARGET_REG_BITS == 64
2425 case INDEX_op_ld32u_i64:
2427 case INDEX_op_ld_i32:
2428 tcg_out_ld(s, TCG_TYPE_I32, a0, a1, a2);
2432 if (const_args[0]) {
2433 tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, a1, a2);
2436 tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, a0, a1, a2);
2440 if (const_args[0]) {
2441 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, a1, a2);
2444 tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, a0, a1, a2);
2447 #if TCG_TARGET_REG_BITS == 64
2448 case INDEX_op_st32_i64:
2450 case INDEX_op_st_i32:
2451 if (const_args[0]) {
2452 tcg_out_modrm_offset(s, OPC_MOVL_EvIz, 0, a1, a2);
2455 tcg_out_st(s, TCG_TYPE_I32, a0, a1, a2);
2460 /* For 3-operand addition, use LEA. */
2465 } else if (a0 == a2) {
2466 /* Watch out for dest = src + dest, since we've removed
2467 the matching constraint on the add. */
2468 tgen_arithr(s, ARITH_ADD + rexw, a0, a1);
2472 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, c3);
2491 tgen_arithi(s, c + rexw, a0, a2, 0);
2493 tgen_arithr(s, c + rexw, a0, a2);
2499 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
2500 tgen_arithi(s, ARITH_AND + rexw, a0, ~a2, 0);
2502 tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1);
2510 if (val == (int8_t)val) {
2511 tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0);
2514 tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0);
2518 tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2);
2523 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, args[4]);
2526 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, args[4]);
2530 /* For small constant 3-operand shift, use LEA. */
2531 if (const_a2 && a0 != a1 && (a2 - 1) < 3) {
2533 /* shl $1,a1,a0 -> lea (a1,a1),a0 */
2534 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0);
2536 /* shl $n,a1,a0 -> lea 0(,a1,n),a0 */
2537 tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0);
2543 goto gen_shift_maybe_vex;
2547 goto gen_shift_maybe_vex;
2551 goto gen_shift_maybe_vex;
2558 gen_shift_maybe_vex:
2561 tcg_out_vex_modrm(s, vexop + rexw, a0, a2, a1);
2564 tcg_out_mov(s, rexw ? TCG_TYPE_I64 : TCG_TYPE_I32, a0, a1);
2569 tcg_out_shifti(s, c + rexw, a0, a2);
2571 tcg_out_modrm(s, OPC_SHIFT_cl + rexw, c, a0);
2576 tcg_out_ctz(s, rexw, args[0], args[1], args[2], const_args[2]);
2579 tcg_out_clz(s, rexw, args[0], args[1], args[2], const_args[2]);
2582 tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1);
2585 case INDEX_op_brcond_i32:
2586 tcg_out_brcond32(s, a2, a0, a1, const_args[1], arg_label(args[3]), 0);
2588 case INDEX_op_setcond_i32:
2589 tcg_out_setcond32(s, args[3], a0, a1, a2, const_a2);
2591 case INDEX_op_movcond_i32:
2592 tcg_out_movcond32(s, args[5], a0, a1, a2, const_a2, args[3]);
2596 if (a2 & TCG_BSWAP_OS) {
2597 /* Output must be sign-extended. */
2599 tcg_out_bswap64(s, a0);
2600 tcg_out_shifti(s, SHIFT_SAR + rexw, a0, 48);
2602 tcg_out_bswap32(s, a0);
2603 tcg_out_shifti(s, SHIFT_SAR, a0, 16);
2605 } else if ((a2 & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
2606 /* Output must be zero-extended, but input isn't. */
2607 tcg_out_bswap32(s, a0);
2608 tcg_out_shifti(s, SHIFT_SHR, a0, 16);
2610 tcg_out_rolw_8(s, a0);
2614 tcg_out_bswap32(s, a0);
2615 if (rexw && (a2 & TCG_BSWAP_OS)) {
2616 tcg_out_ext32s(s, a0, a0);
2621 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0);
2624 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0);
2628 tcg_out_ext8s(s, a0, a1, rexw);
2631 tcg_out_ext16s(s, a0, a1, rexw);
2634 tcg_out_ext8u(s, a0, a1);
2637 tcg_out_ext16u(s, a0, a1);
2640 case INDEX_op_qemu_ld_i32:
2641 tcg_out_qemu_ld(s, args, 0);
2643 case INDEX_op_qemu_ld_i64:
2644 tcg_out_qemu_ld(s, args, 1);
2646 case INDEX_op_qemu_st_i32:
2647 case INDEX_op_qemu_st8_i32:
2648 tcg_out_qemu_st(s, args, 0);
2650 case INDEX_op_qemu_st_i64:
2651 tcg_out_qemu_st(s, args, 1);
2655 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, args[3]);
2658 tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, args[3]);
2661 if (const_args[4]) {
2662 tgen_arithi(s, ARITH_ADD + rexw, a0, args[4], 1);
2664 tgen_arithr(s, ARITH_ADD + rexw, a0, args[4]);
2666 if (const_args[5]) {
2667 tgen_arithi(s, ARITH_ADC + rexw, a1, args[5], 1);
2669 tgen_arithr(s, ARITH_ADC + rexw, a1, args[5]);
2673 if (const_args[4]) {
2674 tgen_arithi(s, ARITH_SUB + rexw, a0, args[4], 1);
2676 tgen_arithr(s, ARITH_SUB + rexw, a0, args[4]);
2678 if (const_args[5]) {
2679 tgen_arithi(s, ARITH_SBB + rexw, a1, args[5], 1);
2681 tgen_arithr(s, ARITH_SBB + rexw, a1, args[5]);
2685 #if TCG_TARGET_REG_BITS == 32
2686 case INDEX_op_brcond2_i32:
2687 tcg_out_brcond2(s, args, const_args, 0);
2689 case INDEX_op_setcond2_i32:
2690 tcg_out_setcond2(s, args, const_args);
2692 #else /* TCG_TARGET_REG_BITS == 64 */
2693 case INDEX_op_ld32s_i64:
2694 tcg_out_modrm_offset(s, OPC_MOVSLQ, a0, a1, a2);
2696 case INDEX_op_ld_i64:
2697 tcg_out_ld(s, TCG_TYPE_I64, a0, a1, a2);
2699 case INDEX_op_st_i64:
2700 if (const_args[0]) {
2701 tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_REXW, 0, a1, a2);
2704 tcg_out_st(s, TCG_TYPE_I64, a0, a1, a2);
2708 case INDEX_op_brcond_i64:
2709 tcg_out_brcond64(s, a2, a0, a1, const_args[1], arg_label(args[3]), 0);
2711 case INDEX_op_setcond_i64:
2712 tcg_out_setcond64(s, args[3], a0, a1, a2, const_a2);
2714 case INDEX_op_movcond_i64:
2715 tcg_out_movcond64(s, args[5], a0, a1, a2, const_a2, args[3]);
2718 case INDEX_op_bswap64_i64:
2719 tcg_out_bswap64(s, a0);
2721 case INDEX_op_extu_i32_i64:
2722 case INDEX_op_ext32u_i64:
2723 case INDEX_op_extrl_i64_i32:
2724 tcg_out_ext32u(s, a0, a1);
2726 case INDEX_op_ext_i32_i64:
2727 case INDEX_op_ext32s_i64:
2728 tcg_out_ext32s(s, a0, a1);
2730 case INDEX_op_extrh_i64_i32:
2731 tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32);
2736 if (args[3] == 0 && args[4] == 8) {
2737 /* load bits 0..7 */
2738 tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0);
2739 } else if (args[3] == 8 && args[4] == 8) {
2740 /* load bits 8..15 */
2741 tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4);
2742 } else if (args[3] == 0 && args[4] == 16) {
2743 /* load bits 0..15 */
2744 tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0);
2750 case INDEX_op_extract_i64:
2751 if (a2 + args[3] == 32) {
2752 /* This is a 32-bit zero-extending right shift. */
2753 tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
2754 tcg_out_shifti(s, SHIFT_SHR, a0, a2);
2758 case INDEX_op_extract_i32:
2759 /* On the off-chance that we can use the high-byte registers.
2760 Otherwise we emit the same ext16 + shift pattern that we
2761 would have gotten from the normal tcg-op.c expansion. */
2762 tcg_debug_assert(a2 == 8 && args[3] == 8);
2763 if (a1 < 4 && a0 < 8) {
2764 tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4);
2766 tcg_out_ext16u(s, a0, a1);
2767 tcg_out_shifti(s, SHIFT_SHR, a0, 8);
2771 case INDEX_op_sextract_i32:
2772 /* We don't implement sextract_i64, as we cannot sign-extend to
2773 64-bits without using the REX prefix that explicitly excludes
2774 access to the high-byte registers. */
2775 tcg_debug_assert(a2 == 8 && args[3] == 8);
2776 if (a1 < 4 && a0 < 8) {
2777 tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4);
2779 tcg_out_ext16s(s, a0, a1, 0);
2780 tcg_out_shifti(s, SHIFT_SAR, a0, 8);
2785 /* Note that SHRD outputs to the r/m operand. */
2786 tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0);
2787 tcg_out8(s, args[3]);
2793 case INDEX_op_mov_i32: /* Always emitted via tcg_out_mov. */
2794 case INDEX_op_mov_i64:
2795 case INDEX_op_call: /* Always emitted via tcg_out_call. */
2803 static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
2804 unsigned vecl, unsigned vece,
2805 const TCGArg args[TCG_MAX_OP_ARGS],
2806 const int const_args[TCG_MAX_OP_ARGS])
2808 static int const add_insn[4] = {
2809 OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ
2811 static int const ssadd_insn[4] = {
2812 OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2
2814 static int const usadd_insn[4] = {
2815 OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2
2817 static int const sub_insn[4] = {
2818 OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ
2820 static int const sssub_insn[4] = {
2821 OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2
2823 static int const ussub_insn[4] = {
2824 OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2
2826 static int const mul_insn[4] = {
2827 OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_VPMULLQ
2829 static int const shift_imm_insn[4] = {
2830 OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib
2832 static int const cmpeq_insn[4] = {
2833 OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ
2835 static int const cmpgt_insn[4] = {
2836 OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ
2838 static int const punpckl_insn[4] = {
2839 OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ
2841 static int const punpckh_insn[4] = {
2842 OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ
2844 static int const packss_insn[4] = {
2845 OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2
2847 static int const packus_insn[4] = {
2848 OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2
2850 static int const smin_insn[4] = {
2851 OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_VPMINSQ
2853 static int const smax_insn[4] = {
2854 OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_VPMAXSQ
2856 static int const umin_insn[4] = {
2857 OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_VPMINUQ
2859 static int const umax_insn[4] = {
2860 OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_VPMAXUQ
2862 static int const rotlv_insn[4] = {
2863 OPC_UD2, OPC_UD2, OPC_VPROLVD, OPC_VPROLVQ
2865 static int const rotrv_insn[4] = {
2866 OPC_UD2, OPC_UD2, OPC_VPRORVD, OPC_VPRORVQ
2868 static int const shlv_insn[4] = {
2869 OPC_UD2, OPC_VPSLLVW, OPC_VPSLLVD, OPC_VPSLLVQ
2871 static int const shrv_insn[4] = {
2872 OPC_UD2, OPC_VPSRLVW, OPC_VPSRLVD, OPC_VPSRLVQ
2874 static int const sarv_insn[4] = {
2875 OPC_UD2, OPC_VPSRAVW, OPC_VPSRAVD, OPC_VPSRAVQ
2877 static int const shls_insn[4] = {
2878 OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ
2880 static int const shrs_insn[4] = {
2881 OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ
2883 static int const sars_insn[4] = {
2884 OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_VPSRAQ
2886 static int const vpshldi_insn[4] = {
2887 OPC_UD2, OPC_VPSHLDW, OPC_VPSHLDD, OPC_VPSHLDQ
2889 static int const vpshldv_insn[4] = {
2890 OPC_UD2, OPC_VPSHLDVW, OPC_VPSHLDVD, OPC_VPSHLDVQ
2892 static int const vpshrdv_insn[4] = {
2893 OPC_UD2, OPC_VPSHRDVW, OPC_VPSHRDVD, OPC_VPSHRDVQ
2895 static int const abs_insn[4] = {
2896 OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_VPABSQ
2899 TCGType type = vecl + TCG_TYPE_V64;
2901 TCGArg a0, a1, a2, a3;
2908 case INDEX_op_add_vec:
2909 insn = add_insn[vece];
2911 case INDEX_op_ssadd_vec:
2912 insn = ssadd_insn[vece];
2914 case INDEX_op_usadd_vec:
2915 insn = usadd_insn[vece];
2917 case INDEX_op_sub_vec:
2918 insn = sub_insn[vece];
2920 case INDEX_op_sssub_vec:
2921 insn = sssub_insn[vece];
2923 case INDEX_op_ussub_vec:
2924 insn = ussub_insn[vece];
2926 case INDEX_op_mul_vec:
2927 insn = mul_insn[vece];
2929 case INDEX_op_and_vec:
2932 case INDEX_op_or_vec:
2935 case INDEX_op_xor_vec:
2938 case INDEX_op_smin_vec:
2939 insn = smin_insn[vece];
2941 case INDEX_op_umin_vec:
2942 insn = umin_insn[vece];
2944 case INDEX_op_smax_vec:
2945 insn = smax_insn[vece];
2947 case INDEX_op_umax_vec:
2948 insn = umax_insn[vece];
2950 case INDEX_op_shlv_vec:
2951 insn = shlv_insn[vece];
2953 case INDEX_op_shrv_vec:
2954 insn = shrv_insn[vece];
2956 case INDEX_op_sarv_vec:
2957 insn = sarv_insn[vece];
2959 case INDEX_op_rotlv_vec:
2960 insn = rotlv_insn[vece];
2962 case INDEX_op_rotrv_vec:
2963 insn = rotrv_insn[vece];
2965 case INDEX_op_shls_vec:
2966 insn = shls_insn[vece];
2968 case INDEX_op_shrs_vec:
2969 insn = shrs_insn[vece];
2971 case INDEX_op_sars_vec:
2972 insn = sars_insn[vece];
2974 case INDEX_op_x86_punpckl_vec:
2975 insn = punpckl_insn[vece];
2977 case INDEX_op_x86_punpckh_vec:
2978 insn = punpckh_insn[vece];
2980 case INDEX_op_x86_packss_vec:
2981 insn = packss_insn[vece];
2983 case INDEX_op_x86_packus_vec:
2984 insn = packus_insn[vece];
2986 case INDEX_op_x86_vpshldv_vec:
2987 insn = vpshldv_insn[vece];
2991 case INDEX_op_x86_vpshrdv_vec:
2992 insn = vpshrdv_insn[vece];
2996 #if TCG_TARGET_REG_BITS == 32
2997 case INDEX_op_dup2_vec:
2998 /* First merge the two 32-bit inputs to a single 64-bit element. */
2999 tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2);
3000 /* Then replicate the 64-bit elements across the rest of the vector. */
3001 if (type != TCG_TYPE_V64) {
3002 tcg_out_dup_vec(s, type, MO_64, a0, a0);
3006 case INDEX_op_abs_vec:
3007 insn = abs_insn[vece];
3012 tcg_debug_assert(insn != OPC_UD2);
3013 if (type == TCG_TYPE_V256) {
3016 tcg_out_vex_modrm(s, insn, a0, a1, a2);
3019 case INDEX_op_cmp_vec:
3021 if (sub == TCG_COND_EQ) {
3022 insn = cmpeq_insn[vece];
3023 } else if (sub == TCG_COND_GT) {
3024 insn = cmpgt_insn[vece];
3026 g_assert_not_reached();
3030 case INDEX_op_andc_vec:
3032 if (type == TCG_TYPE_V256) {
3035 tcg_out_vex_modrm(s, insn, a0, a2, a1);
3038 case INDEX_op_shli_vec:
3039 insn = shift_imm_insn[vece];
3042 case INDEX_op_shri_vec:
3043 insn = shift_imm_insn[vece];
3046 case INDEX_op_sari_vec:
3047 if (vece == MO_64) {
3048 insn = OPC_PSHIFTD_Ib | P_VEXW | P_EVEX;
3050 insn = shift_imm_insn[vece];
3054 case INDEX_op_rotli_vec:
3055 insn = OPC_PSHIFTD_Ib | P_EVEX; /* VPROL[DQ] */
3056 if (vece == MO_64) {
3062 tcg_debug_assert(vece != MO_8);
3063 if (type == TCG_TYPE_V256) {
3066 tcg_out_vex_modrm(s, insn, sub, a0, a1);
3070 case INDEX_op_ld_vec:
3071 tcg_out_ld(s, type, a0, a1, a2);
3073 case INDEX_op_st_vec:
3074 tcg_out_st(s, type, a0, a1, a2);
3076 case INDEX_op_dupm_vec:
3077 tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
3080 case INDEX_op_x86_shufps_vec:
3084 case INDEX_op_x86_blend_vec:
3085 if (vece == MO_16) {
3087 } else if (vece == MO_32) {
3088 insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS);
3090 g_assert_not_reached();
3094 case INDEX_op_x86_vperm2i128_vec:
3095 insn = OPC_VPERM2I128;
3098 case INDEX_op_x86_vpshldi_vec:
3099 insn = vpshldi_insn[vece];
3103 case INDEX_op_not_vec:
3104 insn = OPC_VPTERNLOGQ;
3106 sub = 0x33; /* !B */
3108 case INDEX_op_nor_vec:
3109 insn = OPC_VPTERNLOGQ;
3110 sub = 0x11; /* norCB */
3112 case INDEX_op_nand_vec:
3113 insn = OPC_VPTERNLOGQ;
3114 sub = 0x77; /* nandCB */
3116 case INDEX_op_eqv_vec:
3117 insn = OPC_VPTERNLOGQ;
3118 sub = 0x99; /* xnorCB */
3120 case INDEX_op_orc_vec:
3121 insn = OPC_VPTERNLOGQ;
3122 sub = 0xdd; /* orB!C */
3125 case INDEX_op_bitsel_vec:
3126 insn = OPC_VPTERNLOGQ;
3131 sub = 0xca; /* A?B:C */
3132 } else if (a0 == a2) {
3134 sub = 0xe2; /* B?A:C */
3136 tcg_out_mov(s, type, a0, a3);
3137 sub = 0xb8; /* B?C:A */
3142 tcg_debug_assert(insn != OPC_UD2);
3143 if (type == TCG_TYPE_V256) {
3146 tcg_out_vex_modrm(s, insn, a0, a1, a2);
3150 case INDEX_op_x86_vpblendvb_vec:
3151 insn = OPC_VPBLENDVB;
3152 if (type == TCG_TYPE_V256) {
3155 tcg_out_vex_modrm(s, insn, a0, a1, a2);
3156 tcg_out8(s, args[3] << 4);
3159 case INDEX_op_x86_psrldq_vec:
3160 tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1);
3164 case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */
3165 case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */
3167 g_assert_not_reached();
3171 static TCGConstraintSetIndex tcg_target_op_def(TCGOpcode op)
3174 case INDEX_op_goto_ptr:
3177 case INDEX_op_ld8u_i32:
3178 case INDEX_op_ld8u_i64:
3179 case INDEX_op_ld8s_i32:
3180 case INDEX_op_ld8s_i64:
3181 case INDEX_op_ld16u_i32:
3182 case INDEX_op_ld16u_i64:
3183 case INDEX_op_ld16s_i32:
3184 case INDEX_op_ld16s_i64:
3185 case INDEX_op_ld_i32:
3186 case INDEX_op_ld32u_i64:
3187 case INDEX_op_ld32s_i64:
3188 case INDEX_op_ld_i64:
3189 return C_O1_I1(r, r);
3191 case INDEX_op_st8_i32:
3192 case INDEX_op_st8_i64:
3193 return C_O0_I2(qi, r);
3195 case INDEX_op_st16_i32:
3196 case INDEX_op_st16_i64:
3197 case INDEX_op_st_i32:
3198 case INDEX_op_st32_i64:
3199 return C_O0_I2(ri, r);
3201 case INDEX_op_st_i64:
3202 return C_O0_I2(re, r);
3204 case INDEX_op_add_i32:
3205 case INDEX_op_add_i64:
3206 return C_O1_I2(r, r, re);
3208 case INDEX_op_sub_i32:
3209 case INDEX_op_sub_i64:
3210 case INDEX_op_mul_i32:
3211 case INDEX_op_mul_i64:
3212 case INDEX_op_or_i32:
3213 case INDEX_op_or_i64:
3214 case INDEX_op_xor_i32:
3215 case INDEX_op_xor_i64:
3216 return C_O1_I2(r, 0, re);
3218 case INDEX_op_and_i32:
3219 case INDEX_op_and_i64:
3220 return C_O1_I2(r, 0, reZ);
3222 case INDEX_op_andc_i32:
3223 case INDEX_op_andc_i64:
3224 return C_O1_I2(r, r, rI);
3226 case INDEX_op_shl_i32:
3227 case INDEX_op_shl_i64:
3228 case INDEX_op_shr_i32:
3229 case INDEX_op_shr_i64:
3230 case INDEX_op_sar_i32:
3231 case INDEX_op_sar_i64:
3232 return have_bmi2 ? C_O1_I2(r, r, ri) : C_O1_I2(r, 0, ci);
3234 case INDEX_op_rotl_i32:
3235 case INDEX_op_rotl_i64:
3236 case INDEX_op_rotr_i32:
3237 case INDEX_op_rotr_i64:
3238 return C_O1_I2(r, 0, ci);
3240 case INDEX_op_brcond_i32:
3241 case INDEX_op_brcond_i64:
3242 return C_O0_I2(r, re);
3244 case INDEX_op_bswap16_i32:
3245 case INDEX_op_bswap16_i64:
3246 case INDEX_op_bswap32_i32:
3247 case INDEX_op_bswap32_i64:
3248 case INDEX_op_bswap64_i64:
3249 case INDEX_op_neg_i32:
3250 case INDEX_op_neg_i64:
3251 case INDEX_op_not_i32:
3252 case INDEX_op_not_i64:
3253 case INDEX_op_extrh_i64_i32:
3254 return C_O1_I1(r, 0);
3256 case INDEX_op_ext8s_i32:
3257 case INDEX_op_ext8s_i64:
3258 case INDEX_op_ext8u_i32:
3259 case INDEX_op_ext8u_i64:
3260 return C_O1_I1(r, q);
3262 case INDEX_op_ext16s_i32:
3263 case INDEX_op_ext16s_i64:
3264 case INDEX_op_ext16u_i32:
3265 case INDEX_op_ext16u_i64:
3266 case INDEX_op_ext32s_i64:
3267 case INDEX_op_ext32u_i64:
3268 case INDEX_op_ext_i32_i64:
3269 case INDEX_op_extu_i32_i64:
3270 case INDEX_op_extrl_i64_i32:
3271 case INDEX_op_extract_i32:
3272 case INDEX_op_extract_i64:
3273 case INDEX_op_sextract_i32:
3274 case INDEX_op_ctpop_i32:
3275 case INDEX_op_ctpop_i64:
3276 return C_O1_I1(r, r);
3278 case INDEX_op_extract2_i32:
3279 case INDEX_op_extract2_i64:
3280 return C_O1_I2(r, 0, r);
3282 case INDEX_op_deposit_i32:
3283 case INDEX_op_deposit_i64:
3284 return C_O1_I2(Q, 0, Q);
3286 case INDEX_op_setcond_i32:
3287 case INDEX_op_setcond_i64:
3288 return C_O1_I2(q, r, re);
3290 case INDEX_op_movcond_i32:
3291 case INDEX_op_movcond_i64:
3292 return C_O1_I4(r, r, re, r, 0);
3294 case INDEX_op_div2_i32:
3295 case INDEX_op_div2_i64:
3296 case INDEX_op_divu2_i32:
3297 case INDEX_op_divu2_i64:
3298 return C_O2_I3(a, d, 0, 1, r);
3300 case INDEX_op_mulu2_i32:
3301 case INDEX_op_mulu2_i64:
3302 case INDEX_op_muls2_i32:
3303 case INDEX_op_muls2_i64:
3304 return C_O2_I2(a, d, a, r);
3306 case INDEX_op_add2_i32:
3307 case INDEX_op_add2_i64:
3308 case INDEX_op_sub2_i32:
3309 case INDEX_op_sub2_i64:
3310 return C_O2_I4(r, r, 0, 1, re, re);
3312 case INDEX_op_ctz_i32:
3313 case INDEX_op_ctz_i64:
3314 return have_bmi1 ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
3316 case INDEX_op_clz_i32:
3317 case INDEX_op_clz_i64:
3318 return have_lzcnt ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
3320 case INDEX_op_qemu_ld_i32:
3321 return (TARGET_LONG_BITS <= TCG_TARGET_REG_BITS
3322 ? C_O1_I1(r, L) : C_O1_I2(r, L, L));
3324 case INDEX_op_qemu_st_i32:
3325 return (TARGET_LONG_BITS <= TCG_TARGET_REG_BITS
3326 ? C_O0_I2(L, L) : C_O0_I3(L, L, L));
3327 case INDEX_op_qemu_st8_i32:
3328 return (TARGET_LONG_BITS <= TCG_TARGET_REG_BITS
3329 ? C_O0_I2(s, L) : C_O0_I3(s, L, L));
3331 case INDEX_op_qemu_ld_i64:
3332 return (TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, L)
3333 : TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? C_O2_I1(r, r, L)
3334 : C_O2_I2(r, r, L, L));
3336 case INDEX_op_qemu_st_i64:
3337 return (TCG_TARGET_REG_BITS == 64 ? C_O0_I2(L, L)
3338 : TARGET_LONG_BITS <= TCG_TARGET_REG_BITS ? C_O0_I3(L, L, L)
3339 : C_O0_I4(L, L, L, L));
3341 case INDEX_op_brcond2_i32:
3342 return C_O0_I4(r, r, ri, ri);
3344 case INDEX_op_setcond2_i32:
3345 return C_O1_I4(r, r, r, ri, ri);
3347 case INDEX_op_ld_vec:
3348 case INDEX_op_dupm_vec:
3349 return C_O1_I1(x, r);
3351 case INDEX_op_st_vec:
3352 return C_O0_I2(x, r);
3354 case INDEX_op_add_vec:
3355 case INDEX_op_sub_vec:
3356 case INDEX_op_mul_vec:
3357 case INDEX_op_and_vec:
3358 case INDEX_op_or_vec:
3359 case INDEX_op_xor_vec:
3360 case INDEX_op_andc_vec:
3361 case INDEX_op_orc_vec:
3362 case INDEX_op_nand_vec:
3363 case INDEX_op_nor_vec:
3364 case INDEX_op_eqv_vec:
3365 case INDEX_op_ssadd_vec:
3366 case INDEX_op_usadd_vec:
3367 case INDEX_op_sssub_vec:
3368 case INDEX_op_ussub_vec:
3369 case INDEX_op_smin_vec:
3370 case INDEX_op_umin_vec:
3371 case INDEX_op_smax_vec:
3372 case INDEX_op_umax_vec:
3373 case INDEX_op_shlv_vec:
3374 case INDEX_op_shrv_vec:
3375 case INDEX_op_sarv_vec:
3376 case INDEX_op_rotlv_vec:
3377 case INDEX_op_rotrv_vec:
3378 case INDEX_op_shls_vec:
3379 case INDEX_op_shrs_vec:
3380 case INDEX_op_sars_vec:
3381 case INDEX_op_cmp_vec:
3382 case INDEX_op_x86_shufps_vec:
3383 case INDEX_op_x86_blend_vec:
3384 case INDEX_op_x86_packss_vec:
3385 case INDEX_op_x86_packus_vec:
3386 case INDEX_op_x86_vperm2i128_vec:
3387 case INDEX_op_x86_punpckl_vec:
3388 case INDEX_op_x86_punpckh_vec:
3389 case INDEX_op_x86_vpshldi_vec:
3390 #if TCG_TARGET_REG_BITS == 32
3391 case INDEX_op_dup2_vec:
3393 return C_O1_I2(x, x, x);
3395 case INDEX_op_abs_vec:
3396 case INDEX_op_dup_vec:
3397 case INDEX_op_not_vec:
3398 case INDEX_op_shli_vec:
3399 case INDEX_op_shri_vec:
3400 case INDEX_op_sari_vec:
3401 case INDEX_op_rotli_vec:
3402 case INDEX_op_x86_psrldq_vec:
3403 return C_O1_I1(x, x);
3405 case INDEX_op_x86_vpshldv_vec:
3406 case INDEX_op_x86_vpshrdv_vec:
3407 return C_O1_I3(x, 0, x, x);
3409 case INDEX_op_bitsel_vec:
3410 case INDEX_op_x86_vpblendvb_vec:
3411 return C_O1_I3(x, x, x, x);
3414 g_assert_not_reached();
3418 int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
3421 case INDEX_op_add_vec:
3422 case INDEX_op_sub_vec:
3423 case INDEX_op_and_vec:
3424 case INDEX_op_or_vec:
3425 case INDEX_op_xor_vec:
3426 case INDEX_op_andc_vec:
3427 case INDEX_op_orc_vec:
3428 case INDEX_op_nand_vec:
3429 case INDEX_op_nor_vec:
3430 case INDEX_op_eqv_vec:
3431 case INDEX_op_not_vec:
3432 case INDEX_op_bitsel_vec:
3434 case INDEX_op_cmp_vec:
3435 case INDEX_op_cmpsel_vec:
3438 case INDEX_op_rotli_vec:
3439 return have_avx512vl && vece >= MO_32 ? 1 : -1;
3441 case INDEX_op_shli_vec:
3442 case INDEX_op_shri_vec:
3443 /* We must expand the operation for MO_8. */
3444 return vece == MO_8 ? -1 : 1;
3446 case INDEX_op_sari_vec:
3454 if (have_avx512vl) {
3458 * We can emulate this for MO_64, but it does not pay off
3459 * unless we're producing at least 4 values.
3461 return type >= TCG_TYPE_V256 ? -1 : 0;
3465 case INDEX_op_shls_vec:
3466 case INDEX_op_shrs_vec:
3467 return vece >= MO_16;
3468 case INDEX_op_sars_vec:
3474 return have_avx512vl;
3477 case INDEX_op_rotls_vec:
3478 return vece >= MO_16 ? -1 : 0;
3480 case INDEX_op_shlv_vec:
3481 case INDEX_op_shrv_vec:
3484 return have_avx512bw;
3490 case INDEX_op_sarv_vec:
3493 return have_avx512bw;
3497 return have_avx512vl;
3500 case INDEX_op_rotlv_vec:
3501 case INDEX_op_rotrv_vec:
3504 return have_avx512vbmi2 ? -1 : 0;
3507 return have_avx512vl ? 1 : have_avx2 ? -1 : 0;
3511 case INDEX_op_mul_vec:
3516 return have_avx512dq;
3520 case INDEX_op_ssadd_vec:
3521 case INDEX_op_usadd_vec:
3522 case INDEX_op_sssub_vec:
3523 case INDEX_op_ussub_vec:
3524 return vece <= MO_16;
3525 case INDEX_op_smin_vec:
3526 case INDEX_op_smax_vec:
3527 case INDEX_op_umin_vec:
3528 case INDEX_op_umax_vec:
3529 case INDEX_op_abs_vec:
3530 return vece <= MO_32 || have_avx512vl;
3537 static void expand_vec_shi(TCGType type, unsigned vece, TCGOpcode opc,
3538 TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3542 tcg_debug_assert(vece == MO_8);
3544 t1 = tcg_temp_new_vec(type);
3545 t2 = tcg_temp_new_vec(type);
3548 * Unpack to W, shift, and repack. Tricky bits:
3549 * (1) Use punpck*bw x,x to produce DDCCBBAA,
3550 * i.e. duplicate in other half of the 16-bit lane.
3551 * (2) For right-shift, add 8 so that the high half of the lane
3552 * becomes zero. For left-shift, and left-rotate, we must
3553 * shift up and down again.
3554 * (3) Step 2 leaves high half zero such that PACKUSWB
3555 * (pack with unsigned saturation) does not modify
3558 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3559 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3560 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3561 tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3563 if (opc != INDEX_op_rotli_vec) {
3566 if (opc == INDEX_op_shri_vec) {
3567 tcg_gen_shri_vec(MO_16, t1, t1, imm);
3568 tcg_gen_shri_vec(MO_16, t2, t2, imm);
3570 tcg_gen_shli_vec(MO_16, t1, t1, imm);
3571 tcg_gen_shli_vec(MO_16, t2, t2, imm);
3572 tcg_gen_shri_vec(MO_16, t1, t1, 8);
3573 tcg_gen_shri_vec(MO_16, t2, t2, 8);
3576 vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
3577 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3578 tcg_temp_free_vec(t1);
3579 tcg_temp_free_vec(t2);
3582 static void expand_vec_sari(TCGType type, unsigned vece,
3583 TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3589 /* Unpack to W, shift, and repack, as in expand_vec_shi. */
3590 t1 = tcg_temp_new_vec(type);
3591 t2 = tcg_temp_new_vec(type);
3592 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3593 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3594 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3595 tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
3596 tcg_gen_sari_vec(MO_16, t1, t1, imm + 8);
3597 tcg_gen_sari_vec(MO_16, t2, t2, imm + 8);
3598 vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8,
3599 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
3600 tcg_temp_free_vec(t1);
3601 tcg_temp_free_vec(t2);
3607 * We can emulate a small sign extend by performing an arithmetic
3608 * 32-bit shift and overwriting the high half of a 64-bit logical
3609 * shift. Note that the ISA says shift of 32 is valid, but TCG
3610 * does not, so we have to bound the smaller shift -- we get the
3611 * same result in the high half either way.
3613 t1 = tcg_temp_new_vec(type);
3614 tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31));
3615 tcg_gen_shri_vec(MO_64, v0, v1, imm);
3616 vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32,
3617 tcgv_vec_arg(v0), tcgv_vec_arg(v0),
3618 tcgv_vec_arg(t1), 0xaa);
3619 tcg_temp_free_vec(t1);
3621 /* Otherwise we will need to use a compare vs 0 to produce
3622 * the sign-extend, shift and merge.
3624 t1 = tcg_const_zeros_vec(type);
3625 tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1, t1, v1);
3626 tcg_gen_shri_vec(MO_64, v0, v1, imm);
3627 tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm);
3628 tcg_gen_or_vec(MO_64, v0, v0, t1);
3629 tcg_temp_free_vec(t1);
3634 g_assert_not_reached();
3638 static void expand_vec_rotli(TCGType type, unsigned vece,
3639 TCGv_vec v0, TCGv_vec v1, TCGArg imm)
3644 expand_vec_shi(type, vece, INDEX_op_rotli_vec, v0, v1, imm);
3648 if (have_avx512vbmi2) {
3649 vec_gen_4(INDEX_op_x86_vpshldi_vec, type, vece,
3650 tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v1), imm);
3654 t = tcg_temp_new_vec(type);
3655 tcg_gen_shli_vec(vece, t, v1, imm);
3656 tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm);
3657 tcg_gen_or_vec(vece, v0, v0, t);
3658 tcg_temp_free_vec(t);
3661 static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0,
3662 TCGv_vec v1, TCGv_vec sh, bool right)
3666 if (have_avx512vbmi2) {
3667 vec_gen_4(right ? INDEX_op_x86_vpshrdv_vec : INDEX_op_x86_vpshldv_vec,
3668 type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1),
3669 tcgv_vec_arg(v1), tcgv_vec_arg(sh));
3673 t = tcg_temp_new_vec(type);
3674 tcg_gen_dupi_vec(vece, t, 8 << vece);
3675 tcg_gen_sub_vec(vece, t, t, sh);
3677 tcg_gen_shlv_vec(vece, t, v1, t);
3678 tcg_gen_shrv_vec(vece, v0, v1, sh);
3680 tcg_gen_shrv_vec(vece, t, v1, t);
3681 tcg_gen_shlv_vec(vece, v0, v1, sh);
3683 tcg_gen_or_vec(vece, v0, v0, t);
3684 tcg_temp_free_vec(t);
3687 static void expand_vec_rotls(TCGType type, unsigned vece,
3688 TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh)
3690 TCGv_vec t = tcg_temp_new_vec(type);
3692 tcg_debug_assert(vece != MO_8);
3694 if (vece >= MO_32 ? have_avx512vl : have_avx512vbmi2) {
3695 tcg_gen_dup_i32_vec(vece, t, lsh);
3696 if (vece >= MO_32) {
3697 tcg_gen_rotlv_vec(vece, v0, v1, t);
3699 expand_vec_rotv(type, vece, v0, v1, t, false);
3702 TCGv_i32 rsh = tcg_temp_new_i32();
3704 tcg_gen_neg_i32(rsh, lsh);
3705 tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1);
3706 tcg_gen_shls_vec(vece, t, v1, lsh);
3707 tcg_gen_shrs_vec(vece, v0, v1, rsh);
3708 tcg_gen_or_vec(vece, v0, v0, t);
3710 tcg_temp_free_i32(rsh);
3713 tcg_temp_free_vec(t);
3716 static void expand_vec_mul(TCGType type, unsigned vece,
3717 TCGv_vec v0, TCGv_vec v1, TCGv_vec v2)
3719 TCGv_vec t1, t2, t3, t4, zero;
3721 tcg_debug_assert(vece == MO_8);
3724 * Unpack v1 bytes to words, 0 | x.
3725 * Unpack v2 bytes to words, y | 0.
3726 * This leaves the 8-bit result, x * y, with 8 bits of right padding.
3727 * Shift logical right by 8 bits to clear the high 8 bytes before
3728 * using an unsigned saturated pack.
3730 * The difference between the V64, V128 and V256 cases is merely how
3731 * we distribute the expansion between temporaries.
3735 t1 = tcg_temp_new_vec(TCG_TYPE_V128);
3736 t2 = tcg_temp_new_vec(TCG_TYPE_V128);
3737 zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
3738 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
3739 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
3740 vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
3741 tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
3742 tcg_gen_mul_vec(MO_16, t1, t1, t2);
3743 tcg_gen_shri_vec(MO_16, t1, t1, 8);
3744 vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8,
3745 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1));
3746 tcg_temp_free_vec(t1);
3747 tcg_temp_free_vec(t2);
3752 t1 = tcg_temp_new_vec(type);
3753 t2 = tcg_temp_new_vec(type);
3754 t3 = tcg_temp_new_vec(type);
3755 t4 = tcg_temp_new_vec(type);
3756 zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
3757 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3758 tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
3759 vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
3760 tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
3761 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3762 tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
3763 vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
3764 tcgv_vec_arg(t4), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
3765 tcg_gen_mul_vec(MO_16, t1, t1, t2);
3766 tcg_gen_mul_vec(MO_16, t3, t3, t4);
3767 tcg_gen_shri_vec(MO_16, t1, t1, 8);
3768 tcg_gen_shri_vec(MO_16, t3, t3, 8);
3769 vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
3770 tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3));
3771 tcg_temp_free_vec(t1);
3772 tcg_temp_free_vec(t2);
3773 tcg_temp_free_vec(t3);
3774 tcg_temp_free_vec(t4);
3778 g_assert_not_reached();
3782 static bool expand_vec_cmp_noinv(TCGType type, unsigned vece, TCGv_vec v0,
3783 TCGv_vec v1, TCGv_vec v2, TCGCond cond)
3792 TCGv_vec t1, t2, t3;
3808 fixup = NEED_SWAP | NEED_INV;
3811 if (tcg_can_emit_vec_op(INDEX_op_umin_vec, type, vece)) {
3814 fixup = NEED_BIAS | NEED_INV;
3818 if (tcg_can_emit_vec_op(INDEX_op_umin_vec, type, vece)) {
3819 fixup = NEED_UMIN | NEED_INV;
3825 if (tcg_can_emit_vec_op(INDEX_op_umax_vec, type, vece)) {
3828 fixup = NEED_BIAS | NEED_SWAP | NEED_INV;
3832 if (tcg_can_emit_vec_op(INDEX_op_umax_vec, type, vece)) {
3833 fixup = NEED_UMAX | NEED_INV;
3835 fixup = NEED_BIAS | NEED_SWAP;
3839 g_assert_not_reached();
3842 if (fixup & NEED_INV) {
3843 cond = tcg_invert_cond(cond);
3845 if (fixup & NEED_SWAP) {
3846 t1 = v1, v1 = v2, v2 = t1;
3847 cond = tcg_swap_cond(cond);
3851 if (fixup & (NEED_UMIN | NEED_UMAX)) {
3852 t1 = tcg_temp_new_vec(type);
3853 if (fixup & NEED_UMIN) {
3854 tcg_gen_umin_vec(vece, t1, v1, v2);
3856 tcg_gen_umax_vec(vece, t1, v1, v2);
3860 } else if (fixup & NEED_BIAS) {
3861 t1 = tcg_temp_new_vec(type);
3862 t2 = tcg_temp_new_vec(type);
3863 t3 = tcg_constant_vec(type, vece, 1ull << ((8 << vece) - 1));
3864 tcg_gen_sub_vec(vece, t1, v1, t3);
3865 tcg_gen_sub_vec(vece, t2, v2, t3);
3868 cond = tcg_signed_cond(cond);
3871 tcg_debug_assert(cond == TCG_COND_EQ || cond == TCG_COND_GT);
3872 /* Expand directly; do not recurse. */
3873 vec_gen_4(INDEX_op_cmp_vec, type, vece,
3874 tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v2), cond);
3877 tcg_temp_free_vec(t1);
3879 tcg_temp_free_vec(t2);
3882 return fixup & NEED_INV;
3885 static void expand_vec_cmp(TCGType type, unsigned vece, TCGv_vec v0,
3886 TCGv_vec v1, TCGv_vec v2, TCGCond cond)
3888 if (expand_vec_cmp_noinv(type, vece, v0, v1, v2, cond)) {
3889 tcg_gen_not_vec(vece, v0, v0);
3893 static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGv_vec v0,
3894 TCGv_vec c1, TCGv_vec c2,
3895 TCGv_vec v3, TCGv_vec v4, TCGCond cond)
3897 TCGv_vec t = tcg_temp_new_vec(type);
3899 if (expand_vec_cmp_noinv(type, vece, t, c1, c2, cond)) {
3900 /* Invert the sense of the compare by swapping arguments. */
3902 x = v3, v3 = v4, v4 = x;
3904 vec_gen_4(INDEX_op_x86_vpblendvb_vec, type, vece,
3905 tcgv_vec_arg(v0), tcgv_vec_arg(v4),
3906 tcgv_vec_arg(v3), tcgv_vec_arg(t));
3907 tcg_temp_free_vec(t);
3910 void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
3915 TCGv_vec v0, v1, v2, v3, v4;
3918 v0 = temp_tcgv_vec(arg_temp(a0));
3919 v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
3920 a2 = va_arg(va, TCGArg);
3923 case INDEX_op_shli_vec:
3924 case INDEX_op_shri_vec:
3925 expand_vec_shi(type, vece, opc, v0, v1, a2);
3928 case INDEX_op_sari_vec:
3929 expand_vec_sari(type, vece, v0, v1, a2);
3932 case INDEX_op_rotli_vec:
3933 expand_vec_rotli(type, vece, v0, v1, a2);
3936 case INDEX_op_rotls_vec:
3937 expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2)));
3940 case INDEX_op_rotlv_vec:
3941 v2 = temp_tcgv_vec(arg_temp(a2));
3942 expand_vec_rotv(type, vece, v0, v1, v2, false);
3944 case INDEX_op_rotrv_vec:
3945 v2 = temp_tcgv_vec(arg_temp(a2));
3946 expand_vec_rotv(type, vece, v0, v1, v2, true);
3949 case INDEX_op_mul_vec:
3950 v2 = temp_tcgv_vec(arg_temp(a2));
3951 expand_vec_mul(type, vece, v0, v1, v2);
3954 case INDEX_op_cmp_vec:
3955 v2 = temp_tcgv_vec(arg_temp(a2));
3956 expand_vec_cmp(type, vece, v0, v1, v2, va_arg(va, TCGArg));
3959 case INDEX_op_cmpsel_vec:
3960 v2 = temp_tcgv_vec(arg_temp(a2));
3961 v3 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
3962 v4 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
3963 expand_vec_cmpsel(type, vece, v0, v1, v2, v3, v4, va_arg(va, TCGArg));
3973 static const int tcg_target_callee_save_regs[] = {
3974 #if TCG_TARGET_REG_BITS == 64
3983 TCG_REG_R14, /* Currently used for the global env. */
3986 TCG_REG_EBP, /* Currently used for the global env. */
3993 /* Compute frame size via macros, to share between tcg_target_qemu_prologue
3994 and tcg_register_jit. */
3997 ((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \
3998 * (TCG_TARGET_REG_BITS / 8))
4000 #define FRAME_SIZE \
4002 + TCG_STATIC_CALL_ARGS_SIZE \
4003 + CPU_TEMP_BUF_NLONGS * sizeof(long) \
4004 + TCG_TARGET_STACK_ALIGN - 1) \
4005 & ~(TCG_TARGET_STACK_ALIGN - 1))
4007 /* Generate global QEMU prologue and epilogue code */
4008 static void tcg_target_qemu_prologue(TCGContext *s)
4010 int i, stack_addend;
4014 /* Reserve some stack space, also for TCG temps. */
4015 stack_addend = FRAME_SIZE - PUSH_SIZE;
4016 tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE,
4017 CPU_TEMP_BUF_NLONGS * sizeof(long));
4019 /* Save all callee saved registers. */
4020 for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
4021 tcg_out_push(s, tcg_target_callee_save_regs[i]);
4024 #if TCG_TARGET_REG_BITS == 32
4025 tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP,
4026 (ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4);
4027 tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4029 tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP,
4030 (ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4
4033 # if !defined(CONFIG_SOFTMMU) && TCG_TARGET_REG_BITS == 64
4035 int seg = setup_guest_base_seg();
4037 x86_guest_base_seg = seg;
4038 } else if (guest_base == (int32_t)guest_base) {
4039 x86_guest_base_offset = guest_base;
4041 /* Choose R12 because, as a base, it requires a SIB byte. */
4042 x86_guest_base_index = TCG_REG_R12;
4043 tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base_index, guest_base);
4044 tcg_regset_set_reg(s->reserved_regs, x86_guest_base_index);
4048 tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
4049 tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
4051 tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]);
4055 * Return path for goto_ptr. Set return value to 0, a-la exit_tb,
4056 * and fall through to the rest of the epilogue.
4058 tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
4059 tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0);
4062 tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr);
4064 tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend);
4067 tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0);
4069 for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) {
4070 tcg_out_pop(s, tcg_target_callee_save_regs[i]);
4072 tcg_out_opc(s, OPC_RET, 0, 0, 0);
4075 static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
4077 memset(p, 0x90, count);
4080 static void tcg_target_init(TCGContext *s)
4082 #ifdef CONFIG_CPUID_H
4083 unsigned a, b, c, d, b7 = 0, c7 = 0;
4084 unsigned max = __get_cpuid_max(0, 0);
4087 /* BMI1 is available on AMD Piledriver and Intel Haswell CPUs. */
4088 __cpuid_count(7, 0, a, b7, c7, d);
4089 have_bmi1 = (b7 & bit_BMI) != 0;
4090 have_bmi2 = (b7 & bit_BMI2) != 0;
4094 __cpuid(1, a, b, c, d);
4096 /* For 32-bit, 99% certainty that we're running on hardware that
4097 supports cmov, but we still need to check. In case cmov is not
4098 available, we'll use a small forward branch. */
4099 have_cmov = (d & bit_CMOV) != 0;
4102 /* MOVBE is only available on Intel Atom and Haswell CPUs, so we
4103 need to probe for it. */
4104 have_movbe = (c & bit_MOVBE) != 0;
4105 have_popcnt = (c & bit_POPCNT) != 0;
4107 /* There are a number of things we must check before we can be
4108 sure of not hitting invalid opcode. */
4109 if (c & bit_OSXSAVE) {
4110 unsigned xcrl, xcrh;
4111 /* The xgetbv instruction is not available to older versions of
4112 * the assembler, so we encode the instruction manually.
4114 asm(".byte 0x0f, 0x01, 0xd0" : "=a" (xcrl), "=d" (xcrh) : "c" (0));
4115 if ((xcrl & 6) == 6) {
4116 have_avx1 = (c & bit_AVX) != 0;
4117 have_avx2 = (b7 & bit_AVX2) != 0;
4120 * There are interesting instructions in AVX512, so long
4121 * as we have AVX512VL, which indicates support for EVEX
4122 * on sizes smaller than 512 bits. We are required to
4123 * check that OPMASK and all extended ZMM state are enabled
4124 * even if we're not using them -- the insns will fault.
4126 if ((xcrl & 0xe0) == 0xe0
4127 && (b7 & bit_AVX512F)
4128 && (b7 & bit_AVX512VL)) {
4129 have_avx512vl = true;
4130 have_avx512bw = (b7 & bit_AVX512BW) != 0;
4131 have_avx512dq = (b7 & bit_AVX512DQ) != 0;
4132 have_avx512vbmi2 = (c7 & bit_AVX512VBMI2) != 0;
4138 max = __get_cpuid_max(0x8000000, 0);
4140 __cpuid(0x80000001, a, b, c, d);
4141 /* LZCNT was introduced with AMD Barcelona and Intel Haswell CPUs. */
4142 have_lzcnt = (c & bit_LZCNT) != 0;
4144 #endif /* CONFIG_CPUID_H */
4146 tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
4147 if (TCG_TARGET_REG_BITS == 64) {
4148 tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS;
4151 tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS;
4152 tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS;
4155 tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS;
4158 tcg_target_call_clobber_regs = ALL_VECTOR_REGS;
4159 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX);
4160 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX);
4161 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX);
4162 if (TCG_TARGET_REG_BITS == 64) {
4163 #if !defined(_WIN64)
4164 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI);
4165 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI);
4167 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
4168 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
4169 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
4170 tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
4173 s->reserved_regs = 0;
4174 tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
4179 uint8_t fde_def_cfa[4];
4180 uint8_t fde_reg_ofs[14];
4183 /* We're expecting a 2 byte uleb128 encoded value. */
4184 QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
4186 #if !defined(__ELF__)
4187 /* Host machine without ELF. */
4188 #elif TCG_TARGET_REG_BITS == 64
4189 #define ELF_HOST_MACHINE EM_X86_64
4190 static const DebugFrame debug_frame = {
4191 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4194 .h.cie.code_align = 1,
4195 .h.cie.data_align = 0x78, /* sleb128 -8 */
4196 .h.cie.return_column = 16,
4198 /* Total FDE size does not include the "len" member. */
4199 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4202 12, 7, /* DW_CFA_def_cfa %rsp, ... */
4203 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
4207 0x90, 1, /* DW_CFA_offset, %rip, -8 */
4208 /* The following ordering must match tcg_target_callee_save_regs. */
4209 0x86, 2, /* DW_CFA_offset, %rbp, -16 */
4210 0x83, 3, /* DW_CFA_offset, %rbx, -24 */
4211 0x8c, 4, /* DW_CFA_offset, %r12, -32 */
4212 0x8d, 5, /* DW_CFA_offset, %r13, -40 */
4213 0x8e, 6, /* DW_CFA_offset, %r14, -48 */
4214 0x8f, 7, /* DW_CFA_offset, %r15, -56 */
4218 #define ELF_HOST_MACHINE EM_386
4219 static const DebugFrame debug_frame = {
4220 .h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
4223 .h.cie.code_align = 1,
4224 .h.cie.data_align = 0x7c, /* sleb128 -4 */
4225 .h.cie.return_column = 8,
4227 /* Total FDE size does not include the "len" member. */
4228 .h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
4231 12, 4, /* DW_CFA_def_cfa %esp, ... */
4232 (FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
4236 0x88, 1, /* DW_CFA_offset, %eip, -4 */
4237 /* The following ordering must match tcg_target_callee_save_regs. */
4238 0x85, 2, /* DW_CFA_offset, %ebp, -8 */
4239 0x83, 3, /* DW_CFA_offset, %ebx, -12 */
4240 0x86, 4, /* DW_CFA_offset, %esi, -16 */
4241 0x87, 5, /* DW_CFA_offset, %edi, -20 */
4246 #if defined(ELF_HOST_MACHINE)
4247 void tcg_register_jit(const void *buf, size_t buf_size)
4249 tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));