qapi: fix example of dump-guest-memory
[qemu/armbru.git] / tcg / tcg-op-gvec.c
blob079a761b04023817eb128f7ffc041eb413131617
1 /*
2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "tcg/tcg.h"
22 #include "tcg/tcg-op.h"
23 #include "tcg/tcg-op-gvec.h"
24 #include "qemu/main-loop.h"
25 #include "tcg/tcg-gvec-desc.h"
27 #define MAX_UNROLL 4
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty[1] = { 0 };
31 #else
32 #define vecop_list_empty NULL
33 #endif
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz, uint32_t maxsz, uint32_t ofs)
40 uint32_t max_align;
42 switch (oprsz) {
43 case 8:
44 case 16:
45 case 32:
46 tcg_debug_assert(oprsz <= maxsz);
47 break;
48 default:
49 tcg_debug_assert(oprsz == maxsz);
50 break;
52 tcg_debug_assert(maxsz <= (8 << SIMD_MAXSZ_BITS));
54 max_align = maxsz >= 16 ? 15 : 7;
55 tcg_debug_assert((maxsz & max_align) == 0);
56 tcg_debug_assert((ofs & max_align) == 0);
59 /* Verify vector overlap rules for two operands. */
60 static void check_overlap_2(uint32_t d, uint32_t a, uint32_t s)
62 tcg_debug_assert(d == a || d + s <= a || a + s <= d);
65 /* Verify vector overlap rules for three operands. */
66 static void check_overlap_3(uint32_t d, uint32_t a, uint32_t b, uint32_t s)
68 check_overlap_2(d, a, s);
69 check_overlap_2(d, b, s);
70 check_overlap_2(a, b, s);
73 /* Verify vector overlap rules for four operands. */
74 static void check_overlap_4(uint32_t d, uint32_t a, uint32_t b,
75 uint32_t c, uint32_t s)
77 check_overlap_2(d, a, s);
78 check_overlap_2(d, b, s);
79 check_overlap_2(d, c, s);
80 check_overlap_2(a, b, s);
81 check_overlap_2(a, c, s);
82 check_overlap_2(b, c, s);
85 /* Create a descriptor from components. */
86 uint32_t simd_desc(uint32_t oprsz, uint32_t maxsz, int32_t data)
88 uint32_t desc = 0;
90 check_size_align(oprsz, maxsz, 0);
91 tcg_debug_assert(data == sextract32(data, 0, SIMD_DATA_BITS));
93 oprsz = (oprsz / 8) - 1;
94 maxsz = (maxsz / 8) - 1;
97 * We have just asserted in check_size_align that either
98 * oprsz is {8,16,32} or matches maxsz. Encode the final
99 * case with '2', as that would otherwise map to 24.
101 if (oprsz == maxsz) {
102 oprsz = 2;
105 desc = deposit32(desc, SIMD_OPRSZ_SHIFT, SIMD_OPRSZ_BITS, oprsz);
106 desc = deposit32(desc, SIMD_MAXSZ_SHIFT, SIMD_MAXSZ_BITS, maxsz);
107 desc = deposit32(desc, SIMD_DATA_SHIFT, SIMD_DATA_BITS, data);
109 return desc;
112 /* Generate a call to a gvec-style helper with two vector operands. */
113 void tcg_gen_gvec_2_ool(uint32_t dofs, uint32_t aofs,
114 uint32_t oprsz, uint32_t maxsz, int32_t data,
115 gen_helper_gvec_2 *fn)
117 TCGv_ptr a0, a1;
118 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
120 a0 = tcg_temp_new_ptr();
121 a1 = tcg_temp_new_ptr();
123 tcg_gen_addi_ptr(a0, cpu_env, dofs);
124 tcg_gen_addi_ptr(a1, cpu_env, aofs);
126 fn(a0, a1, desc);
128 tcg_temp_free_ptr(a0);
129 tcg_temp_free_ptr(a1);
132 /* Generate a call to a gvec-style helper with two vector operands
133 and one scalar operand. */
134 void tcg_gen_gvec_2i_ool(uint32_t dofs, uint32_t aofs, TCGv_i64 c,
135 uint32_t oprsz, uint32_t maxsz, int32_t data,
136 gen_helper_gvec_2i *fn)
138 TCGv_ptr a0, a1;
139 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
141 a0 = tcg_temp_new_ptr();
142 a1 = tcg_temp_new_ptr();
144 tcg_gen_addi_ptr(a0, cpu_env, dofs);
145 tcg_gen_addi_ptr(a1, cpu_env, aofs);
147 fn(a0, a1, c, desc);
149 tcg_temp_free_ptr(a0);
150 tcg_temp_free_ptr(a1);
153 /* Generate a call to a gvec-style helper with three vector operands. */
154 void tcg_gen_gvec_3_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
155 uint32_t oprsz, uint32_t maxsz, int32_t data,
156 gen_helper_gvec_3 *fn)
158 TCGv_ptr a0, a1, a2;
159 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
161 a0 = tcg_temp_new_ptr();
162 a1 = tcg_temp_new_ptr();
163 a2 = tcg_temp_new_ptr();
165 tcg_gen_addi_ptr(a0, cpu_env, dofs);
166 tcg_gen_addi_ptr(a1, cpu_env, aofs);
167 tcg_gen_addi_ptr(a2, cpu_env, bofs);
169 fn(a0, a1, a2, desc);
171 tcg_temp_free_ptr(a0);
172 tcg_temp_free_ptr(a1);
173 tcg_temp_free_ptr(a2);
176 /* Generate a call to a gvec-style helper with four vector operands. */
177 void tcg_gen_gvec_4_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
178 uint32_t cofs, uint32_t oprsz, uint32_t maxsz,
179 int32_t data, gen_helper_gvec_4 *fn)
181 TCGv_ptr a0, a1, a2, a3;
182 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
184 a0 = tcg_temp_new_ptr();
185 a1 = tcg_temp_new_ptr();
186 a2 = tcg_temp_new_ptr();
187 a3 = tcg_temp_new_ptr();
189 tcg_gen_addi_ptr(a0, cpu_env, dofs);
190 tcg_gen_addi_ptr(a1, cpu_env, aofs);
191 tcg_gen_addi_ptr(a2, cpu_env, bofs);
192 tcg_gen_addi_ptr(a3, cpu_env, cofs);
194 fn(a0, a1, a2, a3, desc);
196 tcg_temp_free_ptr(a0);
197 tcg_temp_free_ptr(a1);
198 tcg_temp_free_ptr(a2);
199 tcg_temp_free_ptr(a3);
202 /* Generate a call to a gvec-style helper with five vector operands. */
203 void tcg_gen_gvec_5_ool(uint32_t dofs, uint32_t aofs, uint32_t bofs,
204 uint32_t cofs, uint32_t xofs, uint32_t oprsz,
205 uint32_t maxsz, int32_t data, gen_helper_gvec_5 *fn)
207 TCGv_ptr a0, a1, a2, a3, a4;
208 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
210 a0 = tcg_temp_new_ptr();
211 a1 = tcg_temp_new_ptr();
212 a2 = tcg_temp_new_ptr();
213 a3 = tcg_temp_new_ptr();
214 a4 = tcg_temp_new_ptr();
216 tcg_gen_addi_ptr(a0, cpu_env, dofs);
217 tcg_gen_addi_ptr(a1, cpu_env, aofs);
218 tcg_gen_addi_ptr(a2, cpu_env, bofs);
219 tcg_gen_addi_ptr(a3, cpu_env, cofs);
220 tcg_gen_addi_ptr(a4, cpu_env, xofs);
222 fn(a0, a1, a2, a3, a4, desc);
224 tcg_temp_free_ptr(a0);
225 tcg_temp_free_ptr(a1);
226 tcg_temp_free_ptr(a2);
227 tcg_temp_free_ptr(a3);
228 tcg_temp_free_ptr(a4);
231 /* Generate a call to a gvec-style helper with three vector operands
232 and an extra pointer operand. */
233 void tcg_gen_gvec_2_ptr(uint32_t dofs, uint32_t aofs,
234 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
235 int32_t data, gen_helper_gvec_2_ptr *fn)
237 TCGv_ptr a0, a1;
238 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
240 a0 = tcg_temp_new_ptr();
241 a1 = tcg_temp_new_ptr();
243 tcg_gen_addi_ptr(a0, cpu_env, dofs);
244 tcg_gen_addi_ptr(a1, cpu_env, aofs);
246 fn(a0, a1, ptr, desc);
248 tcg_temp_free_ptr(a0);
249 tcg_temp_free_ptr(a1);
252 /* Generate a call to a gvec-style helper with three vector operands
253 and an extra pointer operand. */
254 void tcg_gen_gvec_3_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
255 TCGv_ptr ptr, uint32_t oprsz, uint32_t maxsz,
256 int32_t data, gen_helper_gvec_3_ptr *fn)
258 TCGv_ptr a0, a1, a2;
259 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
261 a0 = tcg_temp_new_ptr();
262 a1 = tcg_temp_new_ptr();
263 a2 = tcg_temp_new_ptr();
265 tcg_gen_addi_ptr(a0, cpu_env, dofs);
266 tcg_gen_addi_ptr(a1, cpu_env, aofs);
267 tcg_gen_addi_ptr(a2, cpu_env, bofs);
269 fn(a0, a1, a2, ptr, desc);
271 tcg_temp_free_ptr(a0);
272 tcg_temp_free_ptr(a1);
273 tcg_temp_free_ptr(a2);
276 /* Generate a call to a gvec-style helper with four vector operands
277 and an extra pointer operand. */
278 void tcg_gen_gvec_4_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
279 uint32_t cofs, TCGv_ptr ptr, uint32_t oprsz,
280 uint32_t maxsz, int32_t data,
281 gen_helper_gvec_4_ptr *fn)
283 TCGv_ptr a0, a1, a2, a3;
284 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
286 a0 = tcg_temp_new_ptr();
287 a1 = tcg_temp_new_ptr();
288 a2 = tcg_temp_new_ptr();
289 a3 = tcg_temp_new_ptr();
291 tcg_gen_addi_ptr(a0, cpu_env, dofs);
292 tcg_gen_addi_ptr(a1, cpu_env, aofs);
293 tcg_gen_addi_ptr(a2, cpu_env, bofs);
294 tcg_gen_addi_ptr(a3, cpu_env, cofs);
296 fn(a0, a1, a2, a3, ptr, desc);
298 tcg_temp_free_ptr(a0);
299 tcg_temp_free_ptr(a1);
300 tcg_temp_free_ptr(a2);
301 tcg_temp_free_ptr(a3);
304 /* Generate a call to a gvec-style helper with five vector operands
305 and an extra pointer operand. */
306 void tcg_gen_gvec_5_ptr(uint32_t dofs, uint32_t aofs, uint32_t bofs,
307 uint32_t cofs, uint32_t eofs, TCGv_ptr ptr,
308 uint32_t oprsz, uint32_t maxsz, int32_t data,
309 gen_helper_gvec_5_ptr *fn)
311 TCGv_ptr a0, a1, a2, a3, a4;
312 TCGv_i32 desc = tcg_constant_i32(simd_desc(oprsz, maxsz, data));
314 a0 = tcg_temp_new_ptr();
315 a1 = tcg_temp_new_ptr();
316 a2 = tcg_temp_new_ptr();
317 a3 = tcg_temp_new_ptr();
318 a4 = tcg_temp_new_ptr();
320 tcg_gen_addi_ptr(a0, cpu_env, dofs);
321 tcg_gen_addi_ptr(a1, cpu_env, aofs);
322 tcg_gen_addi_ptr(a2, cpu_env, bofs);
323 tcg_gen_addi_ptr(a3, cpu_env, cofs);
324 tcg_gen_addi_ptr(a4, cpu_env, eofs);
326 fn(a0, a1, a2, a3, a4, ptr, desc);
328 tcg_temp_free_ptr(a0);
329 tcg_temp_free_ptr(a1);
330 tcg_temp_free_ptr(a2);
331 tcg_temp_free_ptr(a3);
332 tcg_temp_free_ptr(a4);
335 /* Return true if we want to implement something of OPRSZ bytes
336 in units of LNSZ. This limits the expansion of inline code. */
337 static inline bool check_size_impl(uint32_t oprsz, uint32_t lnsz)
339 uint32_t q, r;
341 if (oprsz < lnsz) {
342 return false;
345 q = oprsz / lnsz;
346 r = oprsz % lnsz;
347 tcg_debug_assert((r & 7) == 0);
349 if (lnsz < 16) {
350 /* For sizes below 16, accept no remainder. */
351 if (r != 0) {
352 return false;
354 } else {
356 * Recall that ARM SVE allows vector sizes that are not a
357 * power of 2, but always a multiple of 16. The intent is
358 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
359 * In addition, expand_clr needs to handle a multiple of 8.
360 * Thus we can handle the tail with one more operation per
361 * diminishing power of 2.
363 q += ctpop32(r);
366 return q <= MAX_UNROLL;
369 static void expand_clr(uint32_t dofs, uint32_t maxsz);
371 /* Duplicate C as per VECE. */
372 uint64_t (dup_const)(unsigned vece, uint64_t c)
374 switch (vece) {
375 case MO_8:
376 return 0x0101010101010101ull * (uint8_t)c;
377 case MO_16:
378 return 0x0001000100010001ull * (uint16_t)c;
379 case MO_32:
380 return 0x0000000100000001ull * (uint32_t)c;
381 case MO_64:
382 return c;
383 default:
384 g_assert_not_reached();
388 /* Duplicate IN into OUT as per VECE. */
389 void tcg_gen_dup_i32(unsigned vece, TCGv_i32 out, TCGv_i32 in)
391 switch (vece) {
392 case MO_8:
393 tcg_gen_ext8u_i32(out, in);
394 tcg_gen_muli_i32(out, out, 0x01010101);
395 break;
396 case MO_16:
397 tcg_gen_deposit_i32(out, in, in, 16, 16);
398 break;
399 case MO_32:
400 tcg_gen_mov_i32(out, in);
401 break;
402 default:
403 g_assert_not_reached();
407 void tcg_gen_dup_i64(unsigned vece, TCGv_i64 out, TCGv_i64 in)
409 switch (vece) {
410 case MO_8:
411 tcg_gen_ext8u_i64(out, in);
412 tcg_gen_muli_i64(out, out, 0x0101010101010101ull);
413 break;
414 case MO_16:
415 tcg_gen_ext16u_i64(out, in);
416 tcg_gen_muli_i64(out, out, 0x0001000100010001ull);
417 break;
418 case MO_32:
419 tcg_gen_deposit_i64(out, in, in, 32, 32);
420 break;
421 case MO_64:
422 tcg_gen_mov_i64(out, in);
423 break;
424 default:
425 g_assert_not_reached();
429 /* Select a supported vector type for implementing an operation on SIZE
430 * bytes. If OP is 0, assume that the real operation to be performed is
431 * required by all backends. Otherwise, make sure than OP can be performed
432 * on elements of size VECE in the selected type. Do not select V64 if
433 * PREFER_I64 is true. Return 0 if no vector type is selected.
435 static TCGType choose_vector_type(const TCGOpcode *list, unsigned vece,
436 uint32_t size, bool prefer_i64)
439 * Recall that ARM SVE allows vector sizes that are not a
440 * power of 2, but always a multiple of 16. The intent is
441 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
442 * It is hard to imagine a case in which v256 is supported
443 * but v128 is not, but check anyway.
444 * In addition, expand_clr needs to handle a multiple of 8.
446 if (TCG_TARGET_HAS_v256 &&
447 check_size_impl(size, 32) &&
448 tcg_can_emit_vecop_list(list, TCG_TYPE_V256, vece) &&
449 (!(size & 16) ||
450 (TCG_TARGET_HAS_v128 &&
451 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece))) &&
452 (!(size & 8) ||
453 (TCG_TARGET_HAS_v64 &&
454 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
455 return TCG_TYPE_V256;
457 if (TCG_TARGET_HAS_v128 &&
458 check_size_impl(size, 16) &&
459 tcg_can_emit_vecop_list(list, TCG_TYPE_V128, vece) &&
460 (!(size & 8) ||
461 (TCG_TARGET_HAS_v64 &&
462 tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)))) {
463 return TCG_TYPE_V128;
465 if (TCG_TARGET_HAS_v64 && !prefer_i64 && check_size_impl(size, 8)
466 && tcg_can_emit_vecop_list(list, TCG_TYPE_V64, vece)) {
467 return TCG_TYPE_V64;
469 return 0;
472 static void do_dup_store(TCGType type, uint32_t dofs, uint32_t oprsz,
473 uint32_t maxsz, TCGv_vec t_vec)
475 uint32_t i = 0;
477 tcg_debug_assert(oprsz >= 8);
480 * This may be expand_clr for the tail of an operation, e.g.
481 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
482 * are misaligned wrt the maximum vector size, so do that first.
484 if (dofs & 8) {
485 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
486 i += 8;
489 switch (type) {
490 case TCG_TYPE_V256:
492 * Recall that ARM SVE allows vector sizes that are not a
493 * power of 2, but always a multiple of 16. The intent is
494 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
496 for (; i + 32 <= oprsz; i += 32) {
497 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V256);
499 /* fallthru */
500 case TCG_TYPE_V128:
501 for (; i + 16 <= oprsz; i += 16) {
502 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V128);
504 break;
505 case TCG_TYPE_V64:
506 for (; i < oprsz; i += 8) {
507 tcg_gen_stl_vec(t_vec, cpu_env, dofs + i, TCG_TYPE_V64);
509 break;
510 default:
511 g_assert_not_reached();
514 if (oprsz < maxsz) {
515 expand_clr(dofs + oprsz, maxsz - oprsz);
519 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
520 * Only one of IN_32 or IN_64 may be set;
521 * IN_C is used if IN_32 and IN_64 are unset.
523 static void do_dup(unsigned vece, uint32_t dofs, uint32_t oprsz,
524 uint32_t maxsz, TCGv_i32 in_32, TCGv_i64 in_64,
525 uint64_t in_c)
527 TCGType type;
528 TCGv_i64 t_64;
529 TCGv_i32 t_32, t_desc;
530 TCGv_ptr t_ptr;
531 uint32_t i;
533 assert(vece <= (in_32 ? MO_32 : MO_64));
534 assert(in_32 == NULL || in_64 == NULL);
536 /* If we're storing 0, expand oprsz to maxsz. */
537 if (in_32 == NULL && in_64 == NULL) {
538 in_c = dup_const(vece, in_c);
539 if (in_c == 0) {
540 oprsz = maxsz;
541 vece = MO_8;
542 } else if (in_c == dup_const(MO_8, in_c)) {
543 vece = MO_8;
547 /* Implement inline with a vector type, if possible.
548 * Prefer integer when 64-bit host and no variable dup.
550 type = choose_vector_type(NULL, vece, oprsz,
551 (TCG_TARGET_REG_BITS == 64 && in_32 == NULL
552 && (in_64 == NULL || vece == MO_64)));
553 if (type != 0) {
554 TCGv_vec t_vec = tcg_temp_new_vec(type);
556 if (in_32) {
557 tcg_gen_dup_i32_vec(vece, t_vec, in_32);
558 } else if (in_64) {
559 tcg_gen_dup_i64_vec(vece, t_vec, in_64);
560 } else {
561 tcg_gen_dupi_vec(vece, t_vec, in_c);
563 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
564 tcg_temp_free_vec(t_vec);
565 return;
568 /* Otherwise, inline with an integer type, unless "large". */
569 if (check_size_impl(oprsz, TCG_TARGET_REG_BITS / 8)) {
570 t_64 = NULL;
571 t_32 = NULL;
573 if (in_32) {
574 /* We are given a 32-bit variable input. For a 64-bit host,
575 use a 64-bit operation unless the 32-bit operation would
576 be simple enough. */
577 if (TCG_TARGET_REG_BITS == 64
578 && (vece != MO_32 || !check_size_impl(oprsz, 4))) {
579 t_64 = tcg_temp_new_i64();
580 tcg_gen_extu_i32_i64(t_64, in_32);
581 tcg_gen_dup_i64(vece, t_64, t_64);
582 } else {
583 t_32 = tcg_temp_new_i32();
584 tcg_gen_dup_i32(vece, t_32, in_32);
586 } else if (in_64) {
587 /* We are given a 64-bit variable input. */
588 t_64 = tcg_temp_new_i64();
589 tcg_gen_dup_i64(vece, t_64, in_64);
590 } else {
591 /* We are given a constant input. */
592 /* For 64-bit hosts, use 64-bit constants for "simple" constants
593 or when we'd need too many 32-bit stores, or when a 64-bit
594 constant is really required. */
595 if (vece == MO_64
596 || (TCG_TARGET_REG_BITS == 64
597 && (in_c == 0 || in_c == -1
598 || !check_size_impl(oprsz, 4)))) {
599 t_64 = tcg_constant_i64(in_c);
600 } else {
601 t_32 = tcg_constant_i32(in_c);
605 /* Implement inline if we picked an implementation size above. */
606 if (t_32) {
607 for (i = 0; i < oprsz; i += 4) {
608 tcg_gen_st_i32(t_32, cpu_env, dofs + i);
610 tcg_temp_free_i32(t_32);
611 goto done;
613 if (t_64) {
614 for (i = 0; i < oprsz; i += 8) {
615 tcg_gen_st_i64(t_64, cpu_env, dofs + i);
617 tcg_temp_free_i64(t_64);
618 goto done;
622 /* Otherwise implement out of line. */
623 t_ptr = tcg_temp_new_ptr();
624 tcg_gen_addi_ptr(t_ptr, cpu_env, dofs);
627 * This may be expand_clr for the tail of an operation, e.g.
628 * oprsz == 8 && maxsz == 64. The size of the clear is misaligned
629 * wrt simd_desc and will assert. Simply pass all replicated byte
630 * stores through to memset.
632 if (oprsz == maxsz && vece == MO_8) {
633 TCGv_ptr t_size = tcg_const_ptr(oprsz);
634 TCGv_i32 t_val;
636 if (in_32) {
637 t_val = in_32;
638 } else if (in_64) {
639 t_val = tcg_temp_new_i32();
640 tcg_gen_extrl_i64_i32(t_val, in_64);
641 } else {
642 t_val = tcg_constant_i32(in_c);
644 gen_helper_memset(t_ptr, t_ptr, t_val, t_size);
646 if (in_64) {
647 tcg_temp_free_i32(t_val);
649 tcg_temp_free_ptr(t_size);
650 tcg_temp_free_ptr(t_ptr);
651 return;
654 t_desc = tcg_constant_i32(simd_desc(oprsz, maxsz, 0));
656 if (vece == MO_64) {
657 if (in_64) {
658 gen_helper_gvec_dup64(t_ptr, t_desc, in_64);
659 } else {
660 t_64 = tcg_constant_i64(in_c);
661 gen_helper_gvec_dup64(t_ptr, t_desc, t_64);
663 } else {
664 typedef void dup_fn(TCGv_ptr, TCGv_i32, TCGv_i32);
665 static dup_fn * const fns[3] = {
666 gen_helper_gvec_dup8,
667 gen_helper_gvec_dup16,
668 gen_helper_gvec_dup32
671 if (in_32) {
672 fns[vece](t_ptr, t_desc, in_32);
673 } else if (in_64) {
674 t_32 = tcg_temp_new_i32();
675 tcg_gen_extrl_i64_i32(t_32, in_64);
676 fns[vece](t_ptr, t_desc, t_32);
677 tcg_temp_free_i32(t_32);
678 } else {
679 if (vece == MO_8) {
680 in_c &= 0xff;
681 } else if (vece == MO_16) {
682 in_c &= 0xffff;
684 t_32 = tcg_constant_i32(in_c);
685 fns[vece](t_ptr, t_desc, t_32);
689 tcg_temp_free_ptr(t_ptr);
690 return;
692 done:
693 if (oprsz < maxsz) {
694 expand_clr(dofs + oprsz, maxsz - oprsz);
698 /* Likewise, but with zero. */
699 static void expand_clr(uint32_t dofs, uint32_t maxsz)
701 do_dup(MO_8, dofs, maxsz, maxsz, NULL, NULL, 0);
704 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
705 static void expand_2_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
706 bool load_dest, void (*fni)(TCGv_i32, TCGv_i32))
708 TCGv_i32 t0 = tcg_temp_new_i32();
709 TCGv_i32 t1 = tcg_temp_new_i32();
710 uint32_t i;
712 for (i = 0; i < oprsz; i += 4) {
713 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
714 if (load_dest) {
715 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
717 fni(t1, t0);
718 tcg_gen_st_i32(t1, cpu_env, dofs + i);
720 tcg_temp_free_i32(t0);
721 tcg_temp_free_i32(t1);
724 static void expand_2i_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
725 int32_t c, bool load_dest,
726 void (*fni)(TCGv_i32, TCGv_i32, int32_t))
728 TCGv_i32 t0 = tcg_temp_new_i32();
729 TCGv_i32 t1 = tcg_temp_new_i32();
730 uint32_t i;
732 for (i = 0; i < oprsz; i += 4) {
733 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
734 if (load_dest) {
735 tcg_gen_ld_i32(t1, cpu_env, dofs + i);
737 fni(t1, t0, c);
738 tcg_gen_st_i32(t1, cpu_env, dofs + i);
740 tcg_temp_free_i32(t0);
741 tcg_temp_free_i32(t1);
744 static void expand_2s_i32(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
745 TCGv_i32 c, bool scalar_first,
746 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
748 TCGv_i32 t0 = tcg_temp_new_i32();
749 TCGv_i32 t1 = tcg_temp_new_i32();
750 uint32_t i;
752 for (i = 0; i < oprsz; i += 4) {
753 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
754 if (scalar_first) {
755 fni(t1, c, t0);
756 } else {
757 fni(t1, t0, c);
759 tcg_gen_st_i32(t1, cpu_env, dofs + i);
761 tcg_temp_free_i32(t0);
762 tcg_temp_free_i32(t1);
765 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
766 static void expand_3_i32(uint32_t dofs, uint32_t aofs,
767 uint32_t bofs, uint32_t oprsz, bool load_dest,
768 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32))
770 TCGv_i32 t0 = tcg_temp_new_i32();
771 TCGv_i32 t1 = tcg_temp_new_i32();
772 TCGv_i32 t2 = tcg_temp_new_i32();
773 uint32_t i;
775 for (i = 0; i < oprsz; i += 4) {
776 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
777 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
778 if (load_dest) {
779 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
781 fni(t2, t0, t1);
782 tcg_gen_st_i32(t2, cpu_env, dofs + i);
784 tcg_temp_free_i32(t2);
785 tcg_temp_free_i32(t1);
786 tcg_temp_free_i32(t0);
789 static void expand_3i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
790 uint32_t oprsz, int32_t c, bool load_dest,
791 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, int32_t))
793 TCGv_i32 t0 = tcg_temp_new_i32();
794 TCGv_i32 t1 = tcg_temp_new_i32();
795 TCGv_i32 t2 = tcg_temp_new_i32();
796 uint32_t i;
798 for (i = 0; i < oprsz; i += 4) {
799 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
800 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
801 if (load_dest) {
802 tcg_gen_ld_i32(t2, cpu_env, dofs + i);
804 fni(t2, t0, t1, c);
805 tcg_gen_st_i32(t2, cpu_env, dofs + i);
807 tcg_temp_free_i32(t0);
808 tcg_temp_free_i32(t1);
809 tcg_temp_free_i32(t2);
812 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
813 static void expand_4_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
814 uint32_t cofs, uint32_t oprsz, bool write_aofs,
815 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32))
817 TCGv_i32 t0 = tcg_temp_new_i32();
818 TCGv_i32 t1 = tcg_temp_new_i32();
819 TCGv_i32 t2 = tcg_temp_new_i32();
820 TCGv_i32 t3 = tcg_temp_new_i32();
821 uint32_t i;
823 for (i = 0; i < oprsz; i += 4) {
824 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
825 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
826 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
827 fni(t0, t1, t2, t3);
828 tcg_gen_st_i32(t0, cpu_env, dofs + i);
829 if (write_aofs) {
830 tcg_gen_st_i32(t1, cpu_env, aofs + i);
833 tcg_temp_free_i32(t3);
834 tcg_temp_free_i32(t2);
835 tcg_temp_free_i32(t1);
836 tcg_temp_free_i32(t0);
839 static void expand_4i_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
840 uint32_t cofs, uint32_t oprsz, int32_t c,
841 void (*fni)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_i32,
842 int32_t))
844 TCGv_i32 t0 = tcg_temp_new_i32();
845 TCGv_i32 t1 = tcg_temp_new_i32();
846 TCGv_i32 t2 = tcg_temp_new_i32();
847 TCGv_i32 t3 = tcg_temp_new_i32();
848 uint32_t i;
850 for (i = 0; i < oprsz; i += 4) {
851 tcg_gen_ld_i32(t1, cpu_env, aofs + i);
852 tcg_gen_ld_i32(t2, cpu_env, bofs + i);
853 tcg_gen_ld_i32(t3, cpu_env, cofs + i);
854 fni(t0, t1, t2, t3, c);
855 tcg_gen_st_i32(t0, cpu_env, dofs + i);
857 tcg_temp_free_i32(t3);
858 tcg_temp_free_i32(t2);
859 tcg_temp_free_i32(t1);
860 tcg_temp_free_i32(t0);
863 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
864 static void expand_2_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
865 bool load_dest, void (*fni)(TCGv_i64, TCGv_i64))
867 TCGv_i64 t0 = tcg_temp_new_i64();
868 TCGv_i64 t1 = tcg_temp_new_i64();
869 uint32_t i;
871 for (i = 0; i < oprsz; i += 8) {
872 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
873 if (load_dest) {
874 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
876 fni(t1, t0);
877 tcg_gen_st_i64(t1, cpu_env, dofs + i);
879 tcg_temp_free_i64(t0);
880 tcg_temp_free_i64(t1);
883 static void expand_2i_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
884 int64_t c, bool load_dest,
885 void (*fni)(TCGv_i64, TCGv_i64, int64_t))
887 TCGv_i64 t0 = tcg_temp_new_i64();
888 TCGv_i64 t1 = tcg_temp_new_i64();
889 uint32_t i;
891 for (i = 0; i < oprsz; i += 8) {
892 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
893 if (load_dest) {
894 tcg_gen_ld_i64(t1, cpu_env, dofs + i);
896 fni(t1, t0, c);
897 tcg_gen_st_i64(t1, cpu_env, dofs + i);
899 tcg_temp_free_i64(t0);
900 tcg_temp_free_i64(t1);
903 static void expand_2s_i64(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
904 TCGv_i64 c, bool scalar_first,
905 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
907 TCGv_i64 t0 = tcg_temp_new_i64();
908 TCGv_i64 t1 = tcg_temp_new_i64();
909 uint32_t i;
911 for (i = 0; i < oprsz; i += 8) {
912 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
913 if (scalar_first) {
914 fni(t1, c, t0);
915 } else {
916 fni(t1, t0, c);
918 tcg_gen_st_i64(t1, cpu_env, dofs + i);
920 tcg_temp_free_i64(t0);
921 tcg_temp_free_i64(t1);
924 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
925 static void expand_3_i64(uint32_t dofs, uint32_t aofs,
926 uint32_t bofs, uint32_t oprsz, bool load_dest,
927 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64))
929 TCGv_i64 t0 = tcg_temp_new_i64();
930 TCGv_i64 t1 = tcg_temp_new_i64();
931 TCGv_i64 t2 = tcg_temp_new_i64();
932 uint32_t i;
934 for (i = 0; i < oprsz; i += 8) {
935 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
936 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
937 if (load_dest) {
938 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
940 fni(t2, t0, t1);
941 tcg_gen_st_i64(t2, cpu_env, dofs + i);
943 tcg_temp_free_i64(t2);
944 tcg_temp_free_i64(t1);
945 tcg_temp_free_i64(t0);
948 static void expand_3i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
949 uint32_t oprsz, int64_t c, bool load_dest,
950 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, int64_t))
952 TCGv_i64 t0 = tcg_temp_new_i64();
953 TCGv_i64 t1 = tcg_temp_new_i64();
954 TCGv_i64 t2 = tcg_temp_new_i64();
955 uint32_t i;
957 for (i = 0; i < oprsz; i += 8) {
958 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
959 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
960 if (load_dest) {
961 tcg_gen_ld_i64(t2, cpu_env, dofs + i);
963 fni(t2, t0, t1, c);
964 tcg_gen_st_i64(t2, cpu_env, dofs + i);
966 tcg_temp_free_i64(t0);
967 tcg_temp_free_i64(t1);
968 tcg_temp_free_i64(t2);
971 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
972 static void expand_4_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
973 uint32_t cofs, uint32_t oprsz, bool write_aofs,
974 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64))
976 TCGv_i64 t0 = tcg_temp_new_i64();
977 TCGv_i64 t1 = tcg_temp_new_i64();
978 TCGv_i64 t2 = tcg_temp_new_i64();
979 TCGv_i64 t3 = tcg_temp_new_i64();
980 uint32_t i;
982 for (i = 0; i < oprsz; i += 8) {
983 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
984 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
985 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
986 fni(t0, t1, t2, t3);
987 tcg_gen_st_i64(t0, cpu_env, dofs + i);
988 if (write_aofs) {
989 tcg_gen_st_i64(t1, cpu_env, aofs + i);
992 tcg_temp_free_i64(t3);
993 tcg_temp_free_i64(t2);
994 tcg_temp_free_i64(t1);
995 tcg_temp_free_i64(t0);
998 static void expand_4i_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
999 uint32_t cofs, uint32_t oprsz, int64_t c,
1000 void (*fni)(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_i64,
1001 int64_t))
1003 TCGv_i64 t0 = tcg_temp_new_i64();
1004 TCGv_i64 t1 = tcg_temp_new_i64();
1005 TCGv_i64 t2 = tcg_temp_new_i64();
1006 TCGv_i64 t3 = tcg_temp_new_i64();
1007 uint32_t i;
1009 for (i = 0; i < oprsz; i += 8) {
1010 tcg_gen_ld_i64(t1, cpu_env, aofs + i);
1011 tcg_gen_ld_i64(t2, cpu_env, bofs + i);
1012 tcg_gen_ld_i64(t3, cpu_env, cofs + i);
1013 fni(t0, t1, t2, t3, c);
1014 tcg_gen_st_i64(t0, cpu_env, dofs + i);
1016 tcg_temp_free_i64(t3);
1017 tcg_temp_free_i64(t2);
1018 tcg_temp_free_i64(t1);
1019 tcg_temp_free_i64(t0);
1022 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
1023 static void expand_2_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1024 uint32_t oprsz, uint32_t tysz, TCGType type,
1025 bool load_dest,
1026 void (*fni)(unsigned, TCGv_vec, TCGv_vec))
1028 TCGv_vec t0 = tcg_temp_new_vec(type);
1029 TCGv_vec t1 = tcg_temp_new_vec(type);
1030 uint32_t i;
1032 for (i = 0; i < oprsz; i += tysz) {
1033 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1034 if (load_dest) {
1035 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
1037 fni(vece, t1, t0);
1038 tcg_gen_st_vec(t1, cpu_env, dofs + i);
1040 tcg_temp_free_vec(t0);
1041 tcg_temp_free_vec(t1);
1044 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
1045 using host vectors. */
1046 static void expand_2i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1047 uint32_t oprsz, uint32_t tysz, TCGType type,
1048 int64_t c, bool load_dest,
1049 void (*fni)(unsigned, TCGv_vec, TCGv_vec, int64_t))
1051 TCGv_vec t0 = tcg_temp_new_vec(type);
1052 TCGv_vec t1 = tcg_temp_new_vec(type);
1053 uint32_t i;
1055 for (i = 0; i < oprsz; i += tysz) {
1056 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1057 if (load_dest) {
1058 tcg_gen_ld_vec(t1, cpu_env, dofs + i);
1060 fni(vece, t1, t0, c);
1061 tcg_gen_st_vec(t1, cpu_env, dofs + i);
1063 tcg_temp_free_vec(t0);
1064 tcg_temp_free_vec(t1);
1067 static void expand_2s_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1068 uint32_t oprsz, uint32_t tysz, TCGType type,
1069 TCGv_vec c, bool scalar_first,
1070 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1072 TCGv_vec t0 = tcg_temp_new_vec(type);
1073 TCGv_vec t1 = tcg_temp_new_vec(type);
1074 uint32_t i;
1076 for (i = 0; i < oprsz; i += tysz) {
1077 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1078 if (scalar_first) {
1079 fni(vece, t1, c, t0);
1080 } else {
1081 fni(vece, t1, t0, c);
1083 tcg_gen_st_vec(t1, cpu_env, dofs + i);
1085 tcg_temp_free_vec(t0);
1086 tcg_temp_free_vec(t1);
1089 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1090 static void expand_3_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1091 uint32_t bofs, uint32_t oprsz,
1092 uint32_t tysz, TCGType type, bool load_dest,
1093 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec))
1095 TCGv_vec t0 = tcg_temp_new_vec(type);
1096 TCGv_vec t1 = tcg_temp_new_vec(type);
1097 TCGv_vec t2 = tcg_temp_new_vec(type);
1098 uint32_t i;
1100 for (i = 0; i < oprsz; i += tysz) {
1101 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1102 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1103 if (load_dest) {
1104 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1106 fni(vece, t2, t0, t1);
1107 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1109 tcg_temp_free_vec(t2);
1110 tcg_temp_free_vec(t1);
1111 tcg_temp_free_vec(t0);
1115 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1116 * using host vectors.
1118 static void expand_3i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1119 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
1120 TCGType type, int64_t c, bool load_dest,
1121 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec,
1122 int64_t))
1124 TCGv_vec t0 = tcg_temp_new_vec(type);
1125 TCGv_vec t1 = tcg_temp_new_vec(type);
1126 TCGv_vec t2 = tcg_temp_new_vec(type);
1127 uint32_t i;
1129 for (i = 0; i < oprsz; i += tysz) {
1130 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
1131 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
1132 if (load_dest) {
1133 tcg_gen_ld_vec(t2, cpu_env, dofs + i);
1135 fni(vece, t2, t0, t1, c);
1136 tcg_gen_st_vec(t2, cpu_env, dofs + i);
1138 tcg_temp_free_vec(t0);
1139 tcg_temp_free_vec(t1);
1140 tcg_temp_free_vec(t2);
1143 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1144 static void expand_4_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1145 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
1146 uint32_t tysz, TCGType type, bool write_aofs,
1147 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1148 TCGv_vec, TCGv_vec))
1150 TCGv_vec t0 = tcg_temp_new_vec(type);
1151 TCGv_vec t1 = tcg_temp_new_vec(type);
1152 TCGv_vec t2 = tcg_temp_new_vec(type);
1153 TCGv_vec t3 = tcg_temp_new_vec(type);
1154 uint32_t i;
1156 for (i = 0; i < oprsz; i += tysz) {
1157 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
1158 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
1159 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
1160 fni(vece, t0, t1, t2, t3);
1161 tcg_gen_st_vec(t0, cpu_env, dofs + i);
1162 if (write_aofs) {
1163 tcg_gen_st_vec(t1, cpu_env, aofs + i);
1166 tcg_temp_free_vec(t3);
1167 tcg_temp_free_vec(t2);
1168 tcg_temp_free_vec(t1);
1169 tcg_temp_free_vec(t0);
1173 * Expand OPSZ bytes worth of four-vector operands and an immediate operand
1174 * using host vectors.
1176 static void expand_4i_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
1177 uint32_t bofs, uint32_t cofs, uint32_t oprsz,
1178 uint32_t tysz, TCGType type, int64_t c,
1179 void (*fni)(unsigned, TCGv_vec, TCGv_vec,
1180 TCGv_vec, TCGv_vec, int64_t))
1182 TCGv_vec t0 = tcg_temp_new_vec(type);
1183 TCGv_vec t1 = tcg_temp_new_vec(type);
1184 TCGv_vec t2 = tcg_temp_new_vec(type);
1185 TCGv_vec t3 = tcg_temp_new_vec(type);
1186 uint32_t i;
1188 for (i = 0; i < oprsz; i += tysz) {
1189 tcg_gen_ld_vec(t1, cpu_env, aofs + i);
1190 tcg_gen_ld_vec(t2, cpu_env, bofs + i);
1191 tcg_gen_ld_vec(t3, cpu_env, cofs + i);
1192 fni(vece, t0, t1, t2, t3, c);
1193 tcg_gen_st_vec(t0, cpu_env, dofs + i);
1195 tcg_temp_free_vec(t3);
1196 tcg_temp_free_vec(t2);
1197 tcg_temp_free_vec(t1);
1198 tcg_temp_free_vec(t0);
1201 /* Expand a vector two-operand operation. */
1202 void tcg_gen_gvec_2(uint32_t dofs, uint32_t aofs,
1203 uint32_t oprsz, uint32_t maxsz, const GVecGen2 *g)
1205 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1206 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1207 TCGType type;
1208 uint32_t some;
1210 check_size_align(oprsz, maxsz, dofs | aofs);
1211 check_overlap_2(dofs, aofs, maxsz);
1213 type = 0;
1214 if (g->fniv) {
1215 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1217 switch (type) {
1218 case TCG_TYPE_V256:
1219 /* Recall that ARM SVE allows vector sizes that are not a
1220 * power of 2, but always a multiple of 16. The intent is
1221 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1223 some = QEMU_ALIGN_DOWN(oprsz, 32);
1224 expand_2_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1225 g->load_dest, g->fniv);
1226 if (some == oprsz) {
1227 break;
1229 dofs += some;
1230 aofs += some;
1231 oprsz -= some;
1232 maxsz -= some;
1233 /* fallthru */
1234 case TCG_TYPE_V128:
1235 expand_2_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1236 g->load_dest, g->fniv);
1237 break;
1238 case TCG_TYPE_V64:
1239 expand_2_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1240 g->load_dest, g->fniv);
1241 break;
1243 case 0:
1244 if (g->fni8 && check_size_impl(oprsz, 8)) {
1245 expand_2_i64(dofs, aofs, oprsz, g->load_dest, g->fni8);
1246 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1247 expand_2_i32(dofs, aofs, oprsz, g->load_dest, g->fni4);
1248 } else {
1249 assert(g->fno != NULL);
1250 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, g->data, g->fno);
1251 oprsz = maxsz;
1253 break;
1255 default:
1256 g_assert_not_reached();
1258 tcg_swap_vecop_list(hold_list);
1260 if (oprsz < maxsz) {
1261 expand_clr(dofs + oprsz, maxsz - oprsz);
1265 /* Expand a vector operation with two vectors and an immediate. */
1266 void tcg_gen_gvec_2i(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1267 uint32_t maxsz, int64_t c, const GVecGen2i *g)
1269 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1270 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1271 TCGType type;
1272 uint32_t some;
1274 check_size_align(oprsz, maxsz, dofs | aofs);
1275 check_overlap_2(dofs, aofs, maxsz);
1277 type = 0;
1278 if (g->fniv) {
1279 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1281 switch (type) {
1282 case TCG_TYPE_V256:
1283 /* Recall that ARM SVE allows vector sizes that are not a
1284 * power of 2, but always a multiple of 16. The intent is
1285 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1287 some = QEMU_ALIGN_DOWN(oprsz, 32);
1288 expand_2i_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1289 c, g->load_dest, g->fniv);
1290 if (some == oprsz) {
1291 break;
1293 dofs += some;
1294 aofs += some;
1295 oprsz -= some;
1296 maxsz -= some;
1297 /* fallthru */
1298 case TCG_TYPE_V128:
1299 expand_2i_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1300 c, g->load_dest, g->fniv);
1301 break;
1302 case TCG_TYPE_V64:
1303 expand_2i_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1304 c, g->load_dest, g->fniv);
1305 break;
1307 case 0:
1308 if (g->fni8 && check_size_impl(oprsz, 8)) {
1309 expand_2i_i64(dofs, aofs, oprsz, c, g->load_dest, g->fni8);
1310 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1311 expand_2i_i32(dofs, aofs, oprsz, c, g->load_dest, g->fni4);
1312 } else {
1313 if (g->fno) {
1314 tcg_gen_gvec_2_ool(dofs, aofs, oprsz, maxsz, c, g->fno);
1315 } else {
1316 TCGv_i64 tcg_c = tcg_constant_i64(c);
1317 tcg_gen_gvec_2i_ool(dofs, aofs, tcg_c, oprsz,
1318 maxsz, c, g->fnoi);
1320 oprsz = maxsz;
1322 break;
1324 default:
1325 g_assert_not_reached();
1327 tcg_swap_vecop_list(hold_list);
1329 if (oprsz < maxsz) {
1330 expand_clr(dofs + oprsz, maxsz - oprsz);
1334 /* Expand a vector operation with two vectors and a scalar. */
1335 void tcg_gen_gvec_2s(uint32_t dofs, uint32_t aofs, uint32_t oprsz,
1336 uint32_t maxsz, TCGv_i64 c, const GVecGen2s *g)
1338 TCGType type;
1340 check_size_align(oprsz, maxsz, dofs | aofs);
1341 check_overlap_2(dofs, aofs, maxsz);
1343 type = 0;
1344 if (g->fniv) {
1345 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1347 if (type != 0) {
1348 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1349 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1350 TCGv_vec t_vec = tcg_temp_new_vec(type);
1351 uint32_t some;
1353 tcg_gen_dup_i64_vec(g->vece, t_vec, c);
1355 switch (type) {
1356 case TCG_TYPE_V256:
1357 /* Recall that ARM SVE allows vector sizes that are not a
1358 * power of 2, but always a multiple of 16. The intent is
1359 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1361 some = QEMU_ALIGN_DOWN(oprsz, 32);
1362 expand_2s_vec(g->vece, dofs, aofs, some, 32, TCG_TYPE_V256,
1363 t_vec, g->scalar_first, g->fniv);
1364 if (some == oprsz) {
1365 break;
1367 dofs += some;
1368 aofs += some;
1369 oprsz -= some;
1370 maxsz -= some;
1371 /* fallthru */
1373 case TCG_TYPE_V128:
1374 expand_2s_vec(g->vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
1375 t_vec, g->scalar_first, g->fniv);
1376 break;
1378 case TCG_TYPE_V64:
1379 expand_2s_vec(g->vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
1380 t_vec, g->scalar_first, g->fniv);
1381 break;
1383 default:
1384 g_assert_not_reached();
1386 tcg_temp_free_vec(t_vec);
1387 tcg_swap_vecop_list(hold_list);
1388 } else if (g->fni8 && check_size_impl(oprsz, 8)) {
1389 TCGv_i64 t64 = tcg_temp_new_i64();
1391 tcg_gen_dup_i64(g->vece, t64, c);
1392 expand_2s_i64(dofs, aofs, oprsz, t64, g->scalar_first, g->fni8);
1393 tcg_temp_free_i64(t64);
1394 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1395 TCGv_i32 t32 = tcg_temp_new_i32();
1397 tcg_gen_extrl_i64_i32(t32, c);
1398 tcg_gen_dup_i32(g->vece, t32, t32);
1399 expand_2s_i32(dofs, aofs, oprsz, t32, g->scalar_first, g->fni4);
1400 tcg_temp_free_i32(t32);
1401 } else {
1402 tcg_gen_gvec_2i_ool(dofs, aofs, c, oprsz, maxsz, 0, g->fno);
1403 return;
1406 if (oprsz < maxsz) {
1407 expand_clr(dofs + oprsz, maxsz - oprsz);
1411 /* Expand a vector three-operand operation. */
1412 void tcg_gen_gvec_3(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1413 uint32_t oprsz, uint32_t maxsz, const GVecGen3 *g)
1415 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1416 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1417 TCGType type;
1418 uint32_t some;
1420 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1421 check_overlap_3(dofs, aofs, bofs, maxsz);
1423 type = 0;
1424 if (g->fniv) {
1425 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1427 switch (type) {
1428 case TCG_TYPE_V256:
1429 /* Recall that ARM SVE allows vector sizes that are not a
1430 * power of 2, but always a multiple of 16. The intent is
1431 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1433 some = QEMU_ALIGN_DOWN(oprsz, 32);
1434 expand_3_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1435 g->load_dest, g->fniv);
1436 if (some == oprsz) {
1437 break;
1439 dofs += some;
1440 aofs += some;
1441 bofs += some;
1442 oprsz -= some;
1443 maxsz -= some;
1444 /* fallthru */
1445 case TCG_TYPE_V128:
1446 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1447 g->load_dest, g->fniv);
1448 break;
1449 case TCG_TYPE_V64:
1450 expand_3_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1451 g->load_dest, g->fniv);
1452 break;
1454 case 0:
1455 if (g->fni8 && check_size_impl(oprsz, 8)) {
1456 expand_3_i64(dofs, aofs, bofs, oprsz, g->load_dest, g->fni8);
1457 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1458 expand_3_i32(dofs, aofs, bofs, oprsz, g->load_dest, g->fni4);
1459 } else {
1460 assert(g->fno != NULL);
1461 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz,
1462 maxsz, g->data, g->fno);
1463 oprsz = maxsz;
1465 break;
1467 default:
1468 g_assert_not_reached();
1470 tcg_swap_vecop_list(hold_list);
1472 if (oprsz < maxsz) {
1473 expand_clr(dofs + oprsz, maxsz - oprsz);
1477 /* Expand a vector operation with three vectors and an immediate. */
1478 void tcg_gen_gvec_3i(uint32_t dofs, uint32_t aofs, uint32_t bofs,
1479 uint32_t oprsz, uint32_t maxsz, int64_t c,
1480 const GVecGen3i *g)
1482 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1483 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1484 TCGType type;
1485 uint32_t some;
1487 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
1488 check_overlap_3(dofs, aofs, bofs, maxsz);
1490 type = 0;
1491 if (g->fniv) {
1492 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1494 switch (type) {
1495 case TCG_TYPE_V256:
1497 * Recall that ARM SVE allows vector sizes that are not a
1498 * power of 2, but always a multiple of 16. The intent is
1499 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1501 some = QEMU_ALIGN_DOWN(oprsz, 32);
1502 expand_3i_vec(g->vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256,
1503 c, g->load_dest, g->fniv);
1504 if (some == oprsz) {
1505 break;
1507 dofs += some;
1508 aofs += some;
1509 bofs += some;
1510 oprsz -= some;
1511 maxsz -= some;
1512 /* fallthru */
1513 case TCG_TYPE_V128:
1514 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128,
1515 c, g->load_dest, g->fniv);
1516 break;
1517 case TCG_TYPE_V64:
1518 expand_3i_vec(g->vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64,
1519 c, g->load_dest, g->fniv);
1520 break;
1522 case 0:
1523 if (g->fni8 && check_size_impl(oprsz, 8)) {
1524 expand_3i_i64(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni8);
1525 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1526 expand_3i_i32(dofs, aofs, bofs, oprsz, c, g->load_dest, g->fni4);
1527 } else {
1528 assert(g->fno != NULL);
1529 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, c, g->fno);
1530 oprsz = maxsz;
1532 break;
1534 default:
1535 g_assert_not_reached();
1537 tcg_swap_vecop_list(hold_list);
1539 if (oprsz < maxsz) {
1540 expand_clr(dofs + oprsz, maxsz - oprsz);
1544 /* Expand a vector four-operand operation. */
1545 void tcg_gen_gvec_4(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1546 uint32_t oprsz, uint32_t maxsz, const GVecGen4 *g)
1548 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1549 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1550 TCGType type;
1551 uint32_t some;
1553 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1554 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1556 type = 0;
1557 if (g->fniv) {
1558 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1560 switch (type) {
1561 case TCG_TYPE_V256:
1562 /* Recall that ARM SVE allows vector sizes that are not a
1563 * power of 2, but always a multiple of 16. The intent is
1564 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1566 some = QEMU_ALIGN_DOWN(oprsz, 32);
1567 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, some,
1568 32, TCG_TYPE_V256, g->write_aofs, g->fniv);
1569 if (some == oprsz) {
1570 break;
1572 dofs += some;
1573 aofs += some;
1574 bofs += some;
1575 cofs += some;
1576 oprsz -= some;
1577 maxsz -= some;
1578 /* fallthru */
1579 case TCG_TYPE_V128:
1580 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1581 16, TCG_TYPE_V128, g->write_aofs, g->fniv);
1582 break;
1583 case TCG_TYPE_V64:
1584 expand_4_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1585 8, TCG_TYPE_V64, g->write_aofs, g->fniv);
1586 break;
1588 case 0:
1589 if (g->fni8 && check_size_impl(oprsz, 8)) {
1590 expand_4_i64(dofs, aofs, bofs, cofs, oprsz,
1591 g->write_aofs, g->fni8);
1592 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1593 expand_4_i32(dofs, aofs, bofs, cofs, oprsz,
1594 g->write_aofs, g->fni4);
1595 } else {
1596 assert(g->fno != NULL);
1597 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1598 oprsz, maxsz, g->data, g->fno);
1599 oprsz = maxsz;
1601 break;
1603 default:
1604 g_assert_not_reached();
1606 tcg_swap_vecop_list(hold_list);
1608 if (oprsz < maxsz) {
1609 expand_clr(dofs + oprsz, maxsz - oprsz);
1613 /* Expand a vector four-operand operation. */
1614 void tcg_gen_gvec_4i(uint32_t dofs, uint32_t aofs, uint32_t bofs, uint32_t cofs,
1615 uint32_t oprsz, uint32_t maxsz, int64_t c,
1616 const GVecGen4i *g)
1618 const TCGOpcode *this_list = g->opt_opc ? : vecop_list_empty;
1619 const TCGOpcode *hold_list = tcg_swap_vecop_list(this_list);
1620 TCGType type;
1621 uint32_t some;
1623 check_size_align(oprsz, maxsz, dofs | aofs | bofs | cofs);
1624 check_overlap_4(dofs, aofs, bofs, cofs, maxsz);
1626 type = 0;
1627 if (g->fniv) {
1628 type = choose_vector_type(g->opt_opc, g->vece, oprsz, g->prefer_i64);
1630 switch (type) {
1631 case TCG_TYPE_V256:
1633 * Recall that ARM SVE allows vector sizes that are not a
1634 * power of 2, but always a multiple of 16. The intent is
1635 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1637 some = QEMU_ALIGN_DOWN(oprsz, 32);
1638 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, some,
1639 32, TCG_TYPE_V256, c, g->fniv);
1640 if (some == oprsz) {
1641 break;
1643 dofs += some;
1644 aofs += some;
1645 bofs += some;
1646 cofs += some;
1647 oprsz -= some;
1648 maxsz -= some;
1649 /* fallthru */
1650 case TCG_TYPE_V128:
1651 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1652 16, TCG_TYPE_V128, c, g->fniv);
1653 break;
1654 case TCG_TYPE_V64:
1655 expand_4i_vec(g->vece, dofs, aofs, bofs, cofs, oprsz,
1656 8, TCG_TYPE_V64, c, g->fniv);
1657 break;
1659 case 0:
1660 if (g->fni8 && check_size_impl(oprsz, 8)) {
1661 expand_4i_i64(dofs, aofs, bofs, cofs, oprsz, c, g->fni8);
1662 } else if (g->fni4 && check_size_impl(oprsz, 4)) {
1663 expand_4i_i32(dofs, aofs, bofs, cofs, oprsz, c, g->fni4);
1664 } else {
1665 assert(g->fno != NULL);
1666 tcg_gen_gvec_4_ool(dofs, aofs, bofs, cofs,
1667 oprsz, maxsz, c, g->fno);
1668 oprsz = maxsz;
1670 break;
1672 default:
1673 g_assert_not_reached();
1675 tcg_swap_vecop_list(hold_list);
1677 if (oprsz < maxsz) {
1678 expand_clr(dofs + oprsz, maxsz - oprsz);
1683 * Expand specific vector operations.
1686 static void vec_mov2(unsigned vece, TCGv_vec a, TCGv_vec b)
1688 tcg_gen_mov_vec(a, b);
1691 void tcg_gen_gvec_mov(unsigned vece, uint32_t dofs, uint32_t aofs,
1692 uint32_t oprsz, uint32_t maxsz)
1694 static const GVecGen2 g = {
1695 .fni8 = tcg_gen_mov_i64,
1696 .fniv = vec_mov2,
1697 .fno = gen_helper_gvec_mov,
1698 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1700 if (dofs != aofs) {
1701 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1702 } else {
1703 check_size_align(oprsz, maxsz, dofs);
1704 if (oprsz < maxsz) {
1705 expand_clr(dofs + oprsz, maxsz - oprsz);
1710 void tcg_gen_gvec_dup_i32(unsigned vece, uint32_t dofs, uint32_t oprsz,
1711 uint32_t maxsz, TCGv_i32 in)
1713 check_size_align(oprsz, maxsz, dofs);
1714 tcg_debug_assert(vece <= MO_32);
1715 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1718 void tcg_gen_gvec_dup_i64(unsigned vece, uint32_t dofs, uint32_t oprsz,
1719 uint32_t maxsz, TCGv_i64 in)
1721 check_size_align(oprsz, maxsz, dofs);
1722 tcg_debug_assert(vece <= MO_64);
1723 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1726 void tcg_gen_gvec_dup_mem(unsigned vece, uint32_t dofs, uint32_t aofs,
1727 uint32_t oprsz, uint32_t maxsz)
1729 check_size_align(oprsz, maxsz, dofs);
1730 if (vece <= MO_64) {
1731 TCGType type = choose_vector_type(NULL, vece, oprsz, 0);
1732 if (type != 0) {
1733 TCGv_vec t_vec = tcg_temp_new_vec(type);
1734 tcg_gen_dup_mem_vec(vece, t_vec, cpu_env, aofs);
1735 do_dup_store(type, dofs, oprsz, maxsz, t_vec);
1736 tcg_temp_free_vec(t_vec);
1737 } else if (vece <= MO_32) {
1738 TCGv_i32 in = tcg_temp_new_i32();
1739 switch (vece) {
1740 case MO_8:
1741 tcg_gen_ld8u_i32(in, cpu_env, aofs);
1742 break;
1743 case MO_16:
1744 tcg_gen_ld16u_i32(in, cpu_env, aofs);
1745 break;
1746 default:
1747 tcg_gen_ld_i32(in, cpu_env, aofs);
1748 break;
1750 do_dup(vece, dofs, oprsz, maxsz, in, NULL, 0);
1751 tcg_temp_free_i32(in);
1752 } else {
1753 TCGv_i64 in = tcg_temp_new_i64();
1754 tcg_gen_ld_i64(in, cpu_env, aofs);
1755 do_dup(vece, dofs, oprsz, maxsz, NULL, in, 0);
1756 tcg_temp_free_i64(in);
1758 } else if (vece == 4) {
1759 /* 128-bit duplicate. */
1760 int i;
1762 tcg_debug_assert(oprsz >= 16);
1763 if (TCG_TARGET_HAS_v128) {
1764 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V128);
1766 tcg_gen_ld_vec(in, cpu_env, aofs);
1767 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1768 tcg_gen_st_vec(in, cpu_env, dofs + i);
1770 tcg_temp_free_vec(in);
1771 } else {
1772 TCGv_i64 in0 = tcg_temp_new_i64();
1773 TCGv_i64 in1 = tcg_temp_new_i64();
1775 tcg_gen_ld_i64(in0, cpu_env, aofs);
1776 tcg_gen_ld_i64(in1, cpu_env, aofs + 8);
1777 for (i = (aofs == dofs) * 16; i < oprsz; i += 16) {
1778 tcg_gen_st_i64(in0, cpu_env, dofs + i);
1779 tcg_gen_st_i64(in1, cpu_env, dofs + i + 8);
1781 tcg_temp_free_i64(in0);
1782 tcg_temp_free_i64(in1);
1784 if (oprsz < maxsz) {
1785 expand_clr(dofs + oprsz, maxsz - oprsz);
1787 } else if (vece == 5) {
1788 /* 256-bit duplicate. */
1789 int i;
1791 tcg_debug_assert(oprsz >= 32);
1792 tcg_debug_assert(oprsz % 32 == 0);
1793 if (TCG_TARGET_HAS_v256) {
1794 TCGv_vec in = tcg_temp_new_vec(TCG_TYPE_V256);
1796 tcg_gen_ld_vec(in, cpu_env, aofs);
1797 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1798 tcg_gen_st_vec(in, cpu_env, dofs + i);
1800 tcg_temp_free_vec(in);
1801 } else if (TCG_TARGET_HAS_v128) {
1802 TCGv_vec in0 = tcg_temp_new_vec(TCG_TYPE_V128);
1803 TCGv_vec in1 = tcg_temp_new_vec(TCG_TYPE_V128);
1805 tcg_gen_ld_vec(in0, cpu_env, aofs);
1806 tcg_gen_ld_vec(in1, cpu_env, aofs + 16);
1807 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1808 tcg_gen_st_vec(in0, cpu_env, dofs + i);
1809 tcg_gen_st_vec(in1, cpu_env, dofs + i + 16);
1811 tcg_temp_free_vec(in0);
1812 tcg_temp_free_vec(in1);
1813 } else {
1814 TCGv_i64 in[4];
1815 int j;
1817 for (j = 0; j < 4; ++j) {
1818 in[j] = tcg_temp_new_i64();
1819 tcg_gen_ld_i64(in[j], cpu_env, aofs + j * 8);
1821 for (i = (aofs == dofs) * 32; i < oprsz; i += 32) {
1822 for (j = 0; j < 4; ++j) {
1823 tcg_gen_st_i64(in[j], cpu_env, dofs + i + j * 8);
1826 for (j = 0; j < 4; ++j) {
1827 tcg_temp_free_i64(in[j]);
1830 if (oprsz < maxsz) {
1831 expand_clr(dofs + oprsz, maxsz - oprsz);
1833 } else {
1834 g_assert_not_reached();
1838 void tcg_gen_gvec_dup_imm(unsigned vece, uint32_t dofs, uint32_t oprsz,
1839 uint32_t maxsz, uint64_t x)
1841 check_size_align(oprsz, maxsz, dofs);
1842 do_dup(vece, dofs, oprsz, maxsz, NULL, NULL, x);
1845 void tcg_gen_gvec_not(unsigned vece, uint32_t dofs, uint32_t aofs,
1846 uint32_t oprsz, uint32_t maxsz)
1848 static const GVecGen2 g = {
1849 .fni8 = tcg_gen_not_i64,
1850 .fniv = tcg_gen_not_vec,
1851 .fno = gen_helper_gvec_not,
1852 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1854 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g);
1857 /* Perform a vector addition using normal addition and a mask. The mask
1858 should be the sign bit of each lane. This 6-operation form is more
1859 efficient than separate additions when there are 4 or more lanes in
1860 the 64-bit operation. */
1861 static void gen_addv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
1863 TCGv_i64 t1 = tcg_temp_new_i64();
1864 TCGv_i64 t2 = tcg_temp_new_i64();
1865 TCGv_i64 t3 = tcg_temp_new_i64();
1867 tcg_gen_andc_i64(t1, a, m);
1868 tcg_gen_andc_i64(t2, b, m);
1869 tcg_gen_xor_i64(t3, a, b);
1870 tcg_gen_add_i64(d, t1, t2);
1871 tcg_gen_and_i64(t3, t3, m);
1872 tcg_gen_xor_i64(d, d, t3);
1874 tcg_temp_free_i64(t1);
1875 tcg_temp_free_i64(t2);
1876 tcg_temp_free_i64(t3);
1879 void tcg_gen_vec_add8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1881 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
1882 gen_addv_mask(d, a, b, m);
1885 void tcg_gen_vec_add8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1887 TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80));
1888 TCGv_i32 t1 = tcg_temp_new_i32();
1889 TCGv_i32 t2 = tcg_temp_new_i32();
1890 TCGv_i32 t3 = tcg_temp_new_i32();
1892 tcg_gen_andc_i32(t1, a, m);
1893 tcg_gen_andc_i32(t2, b, m);
1894 tcg_gen_xor_i32(t3, a, b);
1895 tcg_gen_add_i32(d, t1, t2);
1896 tcg_gen_and_i32(t3, t3, m);
1897 tcg_gen_xor_i32(d, d, t3);
1899 tcg_temp_free_i32(t1);
1900 tcg_temp_free_i32(t2);
1901 tcg_temp_free_i32(t3);
1904 void tcg_gen_vec_add16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1906 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
1907 gen_addv_mask(d, a, b, m);
1910 void tcg_gen_vec_add16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
1912 TCGv_i32 t1 = tcg_temp_new_i32();
1913 TCGv_i32 t2 = tcg_temp_new_i32();
1915 tcg_gen_andi_i32(t1, a, ~0xffff);
1916 tcg_gen_add_i32(t2, a, b);
1917 tcg_gen_add_i32(t1, t1, b);
1918 tcg_gen_deposit_i32(d, t1, t2, 0, 16);
1920 tcg_temp_free_i32(t1);
1921 tcg_temp_free_i32(t2);
1924 void tcg_gen_vec_add32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
1926 TCGv_i64 t1 = tcg_temp_new_i64();
1927 TCGv_i64 t2 = tcg_temp_new_i64();
1929 tcg_gen_andi_i64(t1, a, ~0xffffffffull);
1930 tcg_gen_add_i64(t2, a, b);
1931 tcg_gen_add_i64(t1, t1, b);
1932 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
1934 tcg_temp_free_i64(t1);
1935 tcg_temp_free_i64(t2);
1938 static const TCGOpcode vecop_list_add[] = { INDEX_op_add_vec, 0 };
1940 void tcg_gen_gvec_add(unsigned vece, uint32_t dofs, uint32_t aofs,
1941 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
1943 static const GVecGen3 g[4] = {
1944 { .fni8 = tcg_gen_vec_add8_i64,
1945 .fniv = tcg_gen_add_vec,
1946 .fno = gen_helper_gvec_add8,
1947 .opt_opc = vecop_list_add,
1948 .vece = MO_8 },
1949 { .fni8 = tcg_gen_vec_add16_i64,
1950 .fniv = tcg_gen_add_vec,
1951 .fno = gen_helper_gvec_add16,
1952 .opt_opc = vecop_list_add,
1953 .vece = MO_16 },
1954 { .fni4 = tcg_gen_add_i32,
1955 .fniv = tcg_gen_add_vec,
1956 .fno = gen_helper_gvec_add32,
1957 .opt_opc = vecop_list_add,
1958 .vece = MO_32 },
1959 { .fni8 = tcg_gen_add_i64,
1960 .fniv = tcg_gen_add_vec,
1961 .fno = gen_helper_gvec_add64,
1962 .opt_opc = vecop_list_add,
1963 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1964 .vece = MO_64 },
1967 tcg_debug_assert(vece <= MO_64);
1968 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
1971 void tcg_gen_gvec_adds(unsigned vece, uint32_t dofs, uint32_t aofs,
1972 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
1974 static const GVecGen2s g[4] = {
1975 { .fni8 = tcg_gen_vec_add8_i64,
1976 .fniv = tcg_gen_add_vec,
1977 .fno = gen_helper_gvec_adds8,
1978 .opt_opc = vecop_list_add,
1979 .vece = MO_8 },
1980 { .fni8 = tcg_gen_vec_add16_i64,
1981 .fniv = tcg_gen_add_vec,
1982 .fno = gen_helper_gvec_adds16,
1983 .opt_opc = vecop_list_add,
1984 .vece = MO_16 },
1985 { .fni4 = tcg_gen_add_i32,
1986 .fniv = tcg_gen_add_vec,
1987 .fno = gen_helper_gvec_adds32,
1988 .opt_opc = vecop_list_add,
1989 .vece = MO_32 },
1990 { .fni8 = tcg_gen_add_i64,
1991 .fniv = tcg_gen_add_vec,
1992 .fno = gen_helper_gvec_adds64,
1993 .opt_opc = vecop_list_add,
1994 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1995 .vece = MO_64 },
1998 tcg_debug_assert(vece <= MO_64);
1999 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
2002 void tcg_gen_gvec_addi(unsigned vece, uint32_t dofs, uint32_t aofs,
2003 int64_t c, uint32_t oprsz, uint32_t maxsz)
2005 TCGv_i64 tmp = tcg_constant_i64(c);
2006 tcg_gen_gvec_adds(vece, dofs, aofs, tmp, oprsz, maxsz);
2009 static const TCGOpcode vecop_list_sub[] = { INDEX_op_sub_vec, 0 };
2011 void tcg_gen_gvec_subs(unsigned vece, uint32_t dofs, uint32_t aofs,
2012 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2014 static const GVecGen2s g[4] = {
2015 { .fni8 = tcg_gen_vec_sub8_i64,
2016 .fniv = tcg_gen_sub_vec,
2017 .fno = gen_helper_gvec_subs8,
2018 .opt_opc = vecop_list_sub,
2019 .vece = MO_8 },
2020 { .fni8 = tcg_gen_vec_sub16_i64,
2021 .fniv = tcg_gen_sub_vec,
2022 .fno = gen_helper_gvec_subs16,
2023 .opt_opc = vecop_list_sub,
2024 .vece = MO_16 },
2025 { .fni4 = tcg_gen_sub_i32,
2026 .fniv = tcg_gen_sub_vec,
2027 .fno = gen_helper_gvec_subs32,
2028 .opt_opc = vecop_list_sub,
2029 .vece = MO_32 },
2030 { .fni8 = tcg_gen_sub_i64,
2031 .fniv = tcg_gen_sub_vec,
2032 .fno = gen_helper_gvec_subs64,
2033 .opt_opc = vecop_list_sub,
2034 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2035 .vece = MO_64 },
2038 tcg_debug_assert(vece <= MO_64);
2039 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
2042 /* Perform a vector subtraction using normal subtraction and a mask.
2043 Compare gen_addv_mask above. */
2044 static void gen_subv_mask(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 m)
2046 TCGv_i64 t1 = tcg_temp_new_i64();
2047 TCGv_i64 t2 = tcg_temp_new_i64();
2048 TCGv_i64 t3 = tcg_temp_new_i64();
2050 tcg_gen_or_i64(t1, a, m);
2051 tcg_gen_andc_i64(t2, b, m);
2052 tcg_gen_eqv_i64(t3, a, b);
2053 tcg_gen_sub_i64(d, t1, t2);
2054 tcg_gen_and_i64(t3, t3, m);
2055 tcg_gen_xor_i64(d, d, t3);
2057 tcg_temp_free_i64(t1);
2058 tcg_temp_free_i64(t2);
2059 tcg_temp_free_i64(t3);
2062 void tcg_gen_vec_sub8_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2064 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
2065 gen_subv_mask(d, a, b, m);
2068 void tcg_gen_vec_sub8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2070 TCGv_i32 m = tcg_constant_i32((int32_t)dup_const(MO_8, 0x80));
2071 TCGv_i32 t1 = tcg_temp_new_i32();
2072 TCGv_i32 t2 = tcg_temp_new_i32();
2073 TCGv_i32 t3 = tcg_temp_new_i32();
2075 tcg_gen_or_i32(t1, a, m);
2076 tcg_gen_andc_i32(t2, b, m);
2077 tcg_gen_eqv_i32(t3, a, b);
2078 tcg_gen_sub_i32(d, t1, t2);
2079 tcg_gen_and_i32(t3, t3, m);
2080 tcg_gen_xor_i32(d, d, t3);
2082 tcg_temp_free_i32(t1);
2083 tcg_temp_free_i32(t2);
2084 tcg_temp_free_i32(t3);
2087 void tcg_gen_vec_sub16_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2089 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
2090 gen_subv_mask(d, a, b, m);
2093 void tcg_gen_vec_sub16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2095 TCGv_i32 t1 = tcg_temp_new_i32();
2096 TCGv_i32 t2 = tcg_temp_new_i32();
2098 tcg_gen_andi_i32(t1, b, ~0xffff);
2099 tcg_gen_sub_i32(t2, a, b);
2100 tcg_gen_sub_i32(t1, a, t1);
2101 tcg_gen_deposit_i32(d, t1, t2, 0, 16);
2103 tcg_temp_free_i32(t1);
2104 tcg_temp_free_i32(t2);
2107 void tcg_gen_vec_sub32_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2109 TCGv_i64 t1 = tcg_temp_new_i64();
2110 TCGv_i64 t2 = tcg_temp_new_i64();
2112 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2113 tcg_gen_sub_i64(t2, a, b);
2114 tcg_gen_sub_i64(t1, a, t1);
2115 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2117 tcg_temp_free_i64(t1);
2118 tcg_temp_free_i64(t2);
2121 void tcg_gen_gvec_sub(unsigned vece, uint32_t dofs, uint32_t aofs,
2122 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2124 static const GVecGen3 g[4] = {
2125 { .fni8 = tcg_gen_vec_sub8_i64,
2126 .fniv = tcg_gen_sub_vec,
2127 .fno = gen_helper_gvec_sub8,
2128 .opt_opc = vecop_list_sub,
2129 .vece = MO_8 },
2130 { .fni8 = tcg_gen_vec_sub16_i64,
2131 .fniv = tcg_gen_sub_vec,
2132 .fno = gen_helper_gvec_sub16,
2133 .opt_opc = vecop_list_sub,
2134 .vece = MO_16 },
2135 { .fni4 = tcg_gen_sub_i32,
2136 .fniv = tcg_gen_sub_vec,
2137 .fno = gen_helper_gvec_sub32,
2138 .opt_opc = vecop_list_sub,
2139 .vece = MO_32 },
2140 { .fni8 = tcg_gen_sub_i64,
2141 .fniv = tcg_gen_sub_vec,
2142 .fno = gen_helper_gvec_sub64,
2143 .opt_opc = vecop_list_sub,
2144 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2145 .vece = MO_64 },
2148 tcg_debug_assert(vece <= MO_64);
2149 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2152 static const TCGOpcode vecop_list_mul[] = { INDEX_op_mul_vec, 0 };
2154 void tcg_gen_gvec_mul(unsigned vece, uint32_t dofs, uint32_t aofs,
2155 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2157 static const GVecGen3 g[4] = {
2158 { .fniv = tcg_gen_mul_vec,
2159 .fno = gen_helper_gvec_mul8,
2160 .opt_opc = vecop_list_mul,
2161 .vece = MO_8 },
2162 { .fniv = tcg_gen_mul_vec,
2163 .fno = gen_helper_gvec_mul16,
2164 .opt_opc = vecop_list_mul,
2165 .vece = MO_16 },
2166 { .fni4 = tcg_gen_mul_i32,
2167 .fniv = tcg_gen_mul_vec,
2168 .fno = gen_helper_gvec_mul32,
2169 .opt_opc = vecop_list_mul,
2170 .vece = MO_32 },
2171 { .fni8 = tcg_gen_mul_i64,
2172 .fniv = tcg_gen_mul_vec,
2173 .fno = gen_helper_gvec_mul64,
2174 .opt_opc = vecop_list_mul,
2175 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2176 .vece = MO_64 },
2179 tcg_debug_assert(vece <= MO_64);
2180 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2183 void tcg_gen_gvec_muls(unsigned vece, uint32_t dofs, uint32_t aofs,
2184 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2186 static const GVecGen2s g[4] = {
2187 { .fniv = tcg_gen_mul_vec,
2188 .fno = gen_helper_gvec_muls8,
2189 .opt_opc = vecop_list_mul,
2190 .vece = MO_8 },
2191 { .fniv = tcg_gen_mul_vec,
2192 .fno = gen_helper_gvec_muls16,
2193 .opt_opc = vecop_list_mul,
2194 .vece = MO_16 },
2195 { .fni4 = tcg_gen_mul_i32,
2196 .fniv = tcg_gen_mul_vec,
2197 .fno = gen_helper_gvec_muls32,
2198 .opt_opc = vecop_list_mul,
2199 .vece = MO_32 },
2200 { .fni8 = tcg_gen_mul_i64,
2201 .fniv = tcg_gen_mul_vec,
2202 .fno = gen_helper_gvec_muls64,
2203 .opt_opc = vecop_list_mul,
2204 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2205 .vece = MO_64 },
2208 tcg_debug_assert(vece <= MO_64);
2209 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, c, &g[vece]);
2212 void tcg_gen_gvec_muli(unsigned vece, uint32_t dofs, uint32_t aofs,
2213 int64_t c, uint32_t oprsz, uint32_t maxsz)
2215 TCGv_i64 tmp = tcg_constant_i64(c);
2216 tcg_gen_gvec_muls(vece, dofs, aofs, tmp, oprsz, maxsz);
2219 void tcg_gen_gvec_ssadd(unsigned vece, uint32_t dofs, uint32_t aofs,
2220 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2222 static const TCGOpcode vecop_list[] = { INDEX_op_ssadd_vec, 0 };
2223 static const GVecGen3 g[4] = {
2224 { .fniv = tcg_gen_ssadd_vec,
2225 .fno = gen_helper_gvec_ssadd8,
2226 .opt_opc = vecop_list,
2227 .vece = MO_8 },
2228 { .fniv = tcg_gen_ssadd_vec,
2229 .fno = gen_helper_gvec_ssadd16,
2230 .opt_opc = vecop_list,
2231 .vece = MO_16 },
2232 { .fniv = tcg_gen_ssadd_vec,
2233 .fno = gen_helper_gvec_ssadd32,
2234 .opt_opc = vecop_list,
2235 .vece = MO_32 },
2236 { .fniv = tcg_gen_ssadd_vec,
2237 .fno = gen_helper_gvec_ssadd64,
2238 .opt_opc = vecop_list,
2239 .vece = MO_64 },
2241 tcg_debug_assert(vece <= MO_64);
2242 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2245 void tcg_gen_gvec_sssub(unsigned vece, uint32_t dofs, uint32_t aofs,
2246 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2248 static const TCGOpcode vecop_list[] = { INDEX_op_sssub_vec, 0 };
2249 static const GVecGen3 g[4] = {
2250 { .fniv = tcg_gen_sssub_vec,
2251 .fno = gen_helper_gvec_sssub8,
2252 .opt_opc = vecop_list,
2253 .vece = MO_8 },
2254 { .fniv = tcg_gen_sssub_vec,
2255 .fno = gen_helper_gvec_sssub16,
2256 .opt_opc = vecop_list,
2257 .vece = MO_16 },
2258 { .fniv = tcg_gen_sssub_vec,
2259 .fno = gen_helper_gvec_sssub32,
2260 .opt_opc = vecop_list,
2261 .vece = MO_32 },
2262 { .fniv = tcg_gen_sssub_vec,
2263 .fno = gen_helper_gvec_sssub64,
2264 .opt_opc = vecop_list,
2265 .vece = MO_64 },
2267 tcg_debug_assert(vece <= MO_64);
2268 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2271 static void tcg_gen_usadd_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2273 TCGv_i32 max = tcg_constant_i32(-1);
2274 tcg_gen_add_i32(d, a, b);
2275 tcg_gen_movcond_i32(TCG_COND_LTU, d, d, a, max, d);
2278 static void tcg_gen_usadd_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2280 TCGv_i64 max = tcg_constant_i64(-1);
2281 tcg_gen_add_i64(d, a, b);
2282 tcg_gen_movcond_i64(TCG_COND_LTU, d, d, a, max, d);
2285 void tcg_gen_gvec_usadd(unsigned vece, uint32_t dofs, uint32_t aofs,
2286 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2288 static const TCGOpcode vecop_list[] = { INDEX_op_usadd_vec, 0 };
2289 static const GVecGen3 g[4] = {
2290 { .fniv = tcg_gen_usadd_vec,
2291 .fno = gen_helper_gvec_usadd8,
2292 .opt_opc = vecop_list,
2293 .vece = MO_8 },
2294 { .fniv = tcg_gen_usadd_vec,
2295 .fno = gen_helper_gvec_usadd16,
2296 .opt_opc = vecop_list,
2297 .vece = MO_16 },
2298 { .fni4 = tcg_gen_usadd_i32,
2299 .fniv = tcg_gen_usadd_vec,
2300 .fno = gen_helper_gvec_usadd32,
2301 .opt_opc = vecop_list,
2302 .vece = MO_32 },
2303 { .fni8 = tcg_gen_usadd_i64,
2304 .fniv = tcg_gen_usadd_vec,
2305 .fno = gen_helper_gvec_usadd64,
2306 .opt_opc = vecop_list,
2307 .vece = MO_64 }
2309 tcg_debug_assert(vece <= MO_64);
2310 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2313 static void tcg_gen_ussub_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
2315 TCGv_i32 min = tcg_constant_i32(0);
2316 tcg_gen_sub_i32(d, a, b);
2317 tcg_gen_movcond_i32(TCG_COND_LTU, d, a, b, min, d);
2320 static void tcg_gen_ussub_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
2322 TCGv_i64 min = tcg_constant_i64(0);
2323 tcg_gen_sub_i64(d, a, b);
2324 tcg_gen_movcond_i64(TCG_COND_LTU, d, a, b, min, d);
2327 void tcg_gen_gvec_ussub(unsigned vece, uint32_t dofs, uint32_t aofs,
2328 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2330 static const TCGOpcode vecop_list[] = { INDEX_op_ussub_vec, 0 };
2331 static const GVecGen3 g[4] = {
2332 { .fniv = tcg_gen_ussub_vec,
2333 .fno = gen_helper_gvec_ussub8,
2334 .opt_opc = vecop_list,
2335 .vece = MO_8 },
2336 { .fniv = tcg_gen_ussub_vec,
2337 .fno = gen_helper_gvec_ussub16,
2338 .opt_opc = vecop_list,
2339 .vece = MO_16 },
2340 { .fni4 = tcg_gen_ussub_i32,
2341 .fniv = tcg_gen_ussub_vec,
2342 .fno = gen_helper_gvec_ussub32,
2343 .opt_opc = vecop_list,
2344 .vece = MO_32 },
2345 { .fni8 = tcg_gen_ussub_i64,
2346 .fniv = tcg_gen_ussub_vec,
2347 .fno = gen_helper_gvec_ussub64,
2348 .opt_opc = vecop_list,
2349 .vece = MO_64 }
2351 tcg_debug_assert(vece <= MO_64);
2352 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2355 void tcg_gen_gvec_smin(unsigned vece, uint32_t dofs, uint32_t aofs,
2356 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2358 static const TCGOpcode vecop_list[] = { INDEX_op_smin_vec, 0 };
2359 static const GVecGen3 g[4] = {
2360 { .fniv = tcg_gen_smin_vec,
2361 .fno = gen_helper_gvec_smin8,
2362 .opt_opc = vecop_list,
2363 .vece = MO_8 },
2364 { .fniv = tcg_gen_smin_vec,
2365 .fno = gen_helper_gvec_smin16,
2366 .opt_opc = vecop_list,
2367 .vece = MO_16 },
2368 { .fni4 = tcg_gen_smin_i32,
2369 .fniv = tcg_gen_smin_vec,
2370 .fno = gen_helper_gvec_smin32,
2371 .opt_opc = vecop_list,
2372 .vece = MO_32 },
2373 { .fni8 = tcg_gen_smin_i64,
2374 .fniv = tcg_gen_smin_vec,
2375 .fno = gen_helper_gvec_smin64,
2376 .opt_opc = vecop_list,
2377 .vece = MO_64 }
2379 tcg_debug_assert(vece <= MO_64);
2380 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2383 void tcg_gen_gvec_umin(unsigned vece, uint32_t dofs, uint32_t aofs,
2384 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2386 static const TCGOpcode vecop_list[] = { INDEX_op_umin_vec, 0 };
2387 static const GVecGen3 g[4] = {
2388 { .fniv = tcg_gen_umin_vec,
2389 .fno = gen_helper_gvec_umin8,
2390 .opt_opc = vecop_list,
2391 .vece = MO_8 },
2392 { .fniv = tcg_gen_umin_vec,
2393 .fno = gen_helper_gvec_umin16,
2394 .opt_opc = vecop_list,
2395 .vece = MO_16 },
2396 { .fni4 = tcg_gen_umin_i32,
2397 .fniv = tcg_gen_umin_vec,
2398 .fno = gen_helper_gvec_umin32,
2399 .opt_opc = vecop_list,
2400 .vece = MO_32 },
2401 { .fni8 = tcg_gen_umin_i64,
2402 .fniv = tcg_gen_umin_vec,
2403 .fno = gen_helper_gvec_umin64,
2404 .opt_opc = vecop_list,
2405 .vece = MO_64 }
2407 tcg_debug_assert(vece <= MO_64);
2408 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2411 void tcg_gen_gvec_smax(unsigned vece, uint32_t dofs, uint32_t aofs,
2412 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2414 static const TCGOpcode vecop_list[] = { INDEX_op_smax_vec, 0 };
2415 static const GVecGen3 g[4] = {
2416 { .fniv = tcg_gen_smax_vec,
2417 .fno = gen_helper_gvec_smax8,
2418 .opt_opc = vecop_list,
2419 .vece = MO_8 },
2420 { .fniv = tcg_gen_smax_vec,
2421 .fno = gen_helper_gvec_smax16,
2422 .opt_opc = vecop_list,
2423 .vece = MO_16 },
2424 { .fni4 = tcg_gen_smax_i32,
2425 .fniv = tcg_gen_smax_vec,
2426 .fno = gen_helper_gvec_smax32,
2427 .opt_opc = vecop_list,
2428 .vece = MO_32 },
2429 { .fni8 = tcg_gen_smax_i64,
2430 .fniv = tcg_gen_smax_vec,
2431 .fno = gen_helper_gvec_smax64,
2432 .opt_opc = vecop_list,
2433 .vece = MO_64 }
2435 tcg_debug_assert(vece <= MO_64);
2436 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2439 void tcg_gen_gvec_umax(unsigned vece, uint32_t dofs, uint32_t aofs,
2440 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2442 static const TCGOpcode vecop_list[] = { INDEX_op_umax_vec, 0 };
2443 static const GVecGen3 g[4] = {
2444 { .fniv = tcg_gen_umax_vec,
2445 .fno = gen_helper_gvec_umax8,
2446 .opt_opc = vecop_list,
2447 .vece = MO_8 },
2448 { .fniv = tcg_gen_umax_vec,
2449 .fno = gen_helper_gvec_umax16,
2450 .opt_opc = vecop_list,
2451 .vece = MO_16 },
2452 { .fni4 = tcg_gen_umax_i32,
2453 .fniv = tcg_gen_umax_vec,
2454 .fno = gen_helper_gvec_umax32,
2455 .opt_opc = vecop_list,
2456 .vece = MO_32 },
2457 { .fni8 = tcg_gen_umax_i64,
2458 .fniv = tcg_gen_umax_vec,
2459 .fno = gen_helper_gvec_umax64,
2460 .opt_opc = vecop_list,
2461 .vece = MO_64 }
2463 tcg_debug_assert(vece <= MO_64);
2464 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
2467 /* Perform a vector negation using normal negation and a mask.
2468 Compare gen_subv_mask above. */
2469 static void gen_negv_mask(TCGv_i64 d, TCGv_i64 b, TCGv_i64 m)
2471 TCGv_i64 t2 = tcg_temp_new_i64();
2472 TCGv_i64 t3 = tcg_temp_new_i64();
2474 tcg_gen_andc_i64(t3, m, b);
2475 tcg_gen_andc_i64(t2, b, m);
2476 tcg_gen_sub_i64(d, m, t2);
2477 tcg_gen_xor_i64(d, d, t3);
2479 tcg_temp_free_i64(t2);
2480 tcg_temp_free_i64(t3);
2483 void tcg_gen_vec_neg8_i64(TCGv_i64 d, TCGv_i64 b)
2485 TCGv_i64 m = tcg_constant_i64(dup_const(MO_8, 0x80));
2486 gen_negv_mask(d, b, m);
2489 void tcg_gen_vec_neg16_i64(TCGv_i64 d, TCGv_i64 b)
2491 TCGv_i64 m = tcg_constant_i64(dup_const(MO_16, 0x8000));
2492 gen_negv_mask(d, b, m);
2495 void tcg_gen_vec_neg32_i64(TCGv_i64 d, TCGv_i64 b)
2497 TCGv_i64 t1 = tcg_temp_new_i64();
2498 TCGv_i64 t2 = tcg_temp_new_i64();
2500 tcg_gen_andi_i64(t1, b, ~0xffffffffull);
2501 tcg_gen_neg_i64(t2, b);
2502 tcg_gen_neg_i64(t1, t1);
2503 tcg_gen_deposit_i64(d, t1, t2, 0, 32);
2505 tcg_temp_free_i64(t1);
2506 tcg_temp_free_i64(t2);
2509 void tcg_gen_gvec_neg(unsigned vece, uint32_t dofs, uint32_t aofs,
2510 uint32_t oprsz, uint32_t maxsz)
2512 static const TCGOpcode vecop_list[] = { INDEX_op_neg_vec, 0 };
2513 static const GVecGen2 g[4] = {
2514 { .fni8 = tcg_gen_vec_neg8_i64,
2515 .fniv = tcg_gen_neg_vec,
2516 .fno = gen_helper_gvec_neg8,
2517 .opt_opc = vecop_list,
2518 .vece = MO_8 },
2519 { .fni8 = tcg_gen_vec_neg16_i64,
2520 .fniv = tcg_gen_neg_vec,
2521 .fno = gen_helper_gvec_neg16,
2522 .opt_opc = vecop_list,
2523 .vece = MO_16 },
2524 { .fni4 = tcg_gen_neg_i32,
2525 .fniv = tcg_gen_neg_vec,
2526 .fno = gen_helper_gvec_neg32,
2527 .opt_opc = vecop_list,
2528 .vece = MO_32 },
2529 { .fni8 = tcg_gen_neg_i64,
2530 .fniv = tcg_gen_neg_vec,
2531 .fno = gen_helper_gvec_neg64,
2532 .opt_opc = vecop_list,
2533 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2534 .vece = MO_64 },
2537 tcg_debug_assert(vece <= MO_64);
2538 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2541 static void gen_absv_mask(TCGv_i64 d, TCGv_i64 b, unsigned vece)
2543 TCGv_i64 t = tcg_temp_new_i64();
2544 int nbit = 8 << vece;
2546 /* Create -1 for each negative element. */
2547 tcg_gen_shri_i64(t, b, nbit - 1);
2548 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2549 tcg_gen_muli_i64(t, t, (1 << nbit) - 1);
2552 * Invert (via xor -1) and add one.
2553 * Because of the ordering the msb is cleared,
2554 * so we never have carry into the next element.
2556 tcg_gen_xor_i64(d, b, t);
2557 tcg_gen_andi_i64(t, t, dup_const(vece, 1));
2558 tcg_gen_add_i64(d, d, t);
2560 tcg_temp_free_i64(t);
2563 static void tcg_gen_vec_abs8_i64(TCGv_i64 d, TCGv_i64 b)
2565 gen_absv_mask(d, b, MO_8);
2568 static void tcg_gen_vec_abs16_i64(TCGv_i64 d, TCGv_i64 b)
2570 gen_absv_mask(d, b, MO_16);
2573 void tcg_gen_gvec_abs(unsigned vece, uint32_t dofs, uint32_t aofs,
2574 uint32_t oprsz, uint32_t maxsz)
2576 static const TCGOpcode vecop_list[] = { INDEX_op_abs_vec, 0 };
2577 static const GVecGen2 g[4] = {
2578 { .fni8 = tcg_gen_vec_abs8_i64,
2579 .fniv = tcg_gen_abs_vec,
2580 .fno = gen_helper_gvec_abs8,
2581 .opt_opc = vecop_list,
2582 .vece = MO_8 },
2583 { .fni8 = tcg_gen_vec_abs16_i64,
2584 .fniv = tcg_gen_abs_vec,
2585 .fno = gen_helper_gvec_abs16,
2586 .opt_opc = vecop_list,
2587 .vece = MO_16 },
2588 { .fni4 = tcg_gen_abs_i32,
2589 .fniv = tcg_gen_abs_vec,
2590 .fno = gen_helper_gvec_abs32,
2591 .opt_opc = vecop_list,
2592 .vece = MO_32 },
2593 { .fni8 = tcg_gen_abs_i64,
2594 .fniv = tcg_gen_abs_vec,
2595 .fno = gen_helper_gvec_abs64,
2596 .opt_opc = vecop_list,
2597 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2598 .vece = MO_64 },
2601 tcg_debug_assert(vece <= MO_64);
2602 tcg_gen_gvec_2(dofs, aofs, oprsz, maxsz, &g[vece]);
2605 void tcg_gen_gvec_and(unsigned vece, uint32_t dofs, uint32_t aofs,
2606 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2608 static const GVecGen3 g = {
2609 .fni8 = tcg_gen_and_i64,
2610 .fniv = tcg_gen_and_vec,
2611 .fno = gen_helper_gvec_and,
2612 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2615 if (aofs == bofs) {
2616 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2617 } else {
2618 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2622 void tcg_gen_gvec_or(unsigned vece, uint32_t dofs, uint32_t aofs,
2623 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2625 static const GVecGen3 g = {
2626 .fni8 = tcg_gen_or_i64,
2627 .fniv = tcg_gen_or_vec,
2628 .fno = gen_helper_gvec_or,
2629 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2632 if (aofs == bofs) {
2633 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2634 } else {
2635 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2639 void tcg_gen_gvec_xor(unsigned vece, uint32_t dofs, uint32_t aofs,
2640 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2642 static const GVecGen3 g = {
2643 .fni8 = tcg_gen_xor_i64,
2644 .fniv = tcg_gen_xor_vec,
2645 .fno = gen_helper_gvec_xor,
2646 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2649 if (aofs == bofs) {
2650 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2651 } else {
2652 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2656 void tcg_gen_gvec_andc(unsigned vece, uint32_t dofs, uint32_t aofs,
2657 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2659 static const GVecGen3 g = {
2660 .fni8 = tcg_gen_andc_i64,
2661 .fniv = tcg_gen_andc_vec,
2662 .fno = gen_helper_gvec_andc,
2663 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2666 if (aofs == bofs) {
2667 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, 0);
2668 } else {
2669 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2673 void tcg_gen_gvec_orc(unsigned vece, uint32_t dofs, uint32_t aofs,
2674 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2676 static const GVecGen3 g = {
2677 .fni8 = tcg_gen_orc_i64,
2678 .fniv = tcg_gen_orc_vec,
2679 .fno = gen_helper_gvec_orc,
2680 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2683 if (aofs == bofs) {
2684 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2685 } else {
2686 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2690 void tcg_gen_gvec_nand(unsigned vece, uint32_t dofs, uint32_t aofs,
2691 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2693 static const GVecGen3 g = {
2694 .fni8 = tcg_gen_nand_i64,
2695 .fniv = tcg_gen_nand_vec,
2696 .fno = gen_helper_gvec_nand,
2697 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2700 if (aofs == bofs) {
2701 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2702 } else {
2703 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2707 void tcg_gen_gvec_nor(unsigned vece, uint32_t dofs, uint32_t aofs,
2708 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2710 static const GVecGen3 g = {
2711 .fni8 = tcg_gen_nor_i64,
2712 .fniv = tcg_gen_nor_vec,
2713 .fno = gen_helper_gvec_nor,
2714 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2717 if (aofs == bofs) {
2718 tcg_gen_gvec_not(vece, dofs, aofs, oprsz, maxsz);
2719 } else {
2720 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2724 void tcg_gen_gvec_eqv(unsigned vece, uint32_t dofs, uint32_t aofs,
2725 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
2727 static const GVecGen3 g = {
2728 .fni8 = tcg_gen_eqv_i64,
2729 .fniv = tcg_gen_eqv_vec,
2730 .fno = gen_helper_gvec_eqv,
2731 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2734 if (aofs == bofs) {
2735 tcg_gen_gvec_dup_imm(MO_64, dofs, oprsz, maxsz, -1);
2736 } else {
2737 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g);
2741 static const GVecGen2s gop_ands = {
2742 .fni8 = tcg_gen_and_i64,
2743 .fniv = tcg_gen_and_vec,
2744 .fno = gen_helper_gvec_ands,
2745 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2746 .vece = MO_64
2749 void tcg_gen_gvec_ands(unsigned vece, uint32_t dofs, uint32_t aofs,
2750 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2752 TCGv_i64 tmp = tcg_temp_new_i64();
2753 tcg_gen_dup_i64(vece, tmp, c);
2754 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2755 tcg_temp_free_i64(tmp);
2758 void tcg_gen_gvec_andi(unsigned vece, uint32_t dofs, uint32_t aofs,
2759 int64_t c, uint32_t oprsz, uint32_t maxsz)
2761 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2762 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ands);
2765 static const GVecGen2s gop_xors = {
2766 .fni8 = tcg_gen_xor_i64,
2767 .fniv = tcg_gen_xor_vec,
2768 .fno = gen_helper_gvec_xors,
2769 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2770 .vece = MO_64
2773 void tcg_gen_gvec_xors(unsigned vece, uint32_t dofs, uint32_t aofs,
2774 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2776 TCGv_i64 tmp = tcg_temp_new_i64();
2777 tcg_gen_dup_i64(vece, tmp, c);
2778 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2779 tcg_temp_free_i64(tmp);
2782 void tcg_gen_gvec_xori(unsigned vece, uint32_t dofs, uint32_t aofs,
2783 int64_t c, uint32_t oprsz, uint32_t maxsz)
2785 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2786 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_xors);
2789 static const GVecGen2s gop_ors = {
2790 .fni8 = tcg_gen_or_i64,
2791 .fniv = tcg_gen_or_vec,
2792 .fno = gen_helper_gvec_ors,
2793 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2794 .vece = MO_64
2797 void tcg_gen_gvec_ors(unsigned vece, uint32_t dofs, uint32_t aofs,
2798 TCGv_i64 c, uint32_t oprsz, uint32_t maxsz)
2800 TCGv_i64 tmp = tcg_temp_new_i64();
2801 tcg_gen_dup_i64(vece, tmp, c);
2802 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2803 tcg_temp_free_i64(tmp);
2806 void tcg_gen_gvec_ori(unsigned vece, uint32_t dofs, uint32_t aofs,
2807 int64_t c, uint32_t oprsz, uint32_t maxsz)
2809 TCGv_i64 tmp = tcg_constant_i64(dup_const(vece, c));
2810 tcg_gen_gvec_2s(dofs, aofs, oprsz, maxsz, tmp, &gop_ors);
2813 void tcg_gen_vec_shl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2815 uint64_t mask = dup_const(MO_8, 0xff << c);
2816 tcg_gen_shli_i64(d, a, c);
2817 tcg_gen_andi_i64(d, d, mask);
2820 void tcg_gen_vec_shl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2822 uint64_t mask = dup_const(MO_16, 0xffff << c);
2823 tcg_gen_shli_i64(d, a, c);
2824 tcg_gen_andi_i64(d, d, mask);
2827 void tcg_gen_vec_shl8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2829 uint32_t mask = dup_const(MO_8, 0xff << c);
2830 tcg_gen_shli_i32(d, a, c);
2831 tcg_gen_andi_i32(d, d, mask);
2834 void tcg_gen_vec_shl16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2836 uint32_t mask = dup_const(MO_16, 0xffff << c);
2837 tcg_gen_shli_i32(d, a, c);
2838 tcg_gen_andi_i32(d, d, mask);
2841 void tcg_gen_gvec_shli(unsigned vece, uint32_t dofs, uint32_t aofs,
2842 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2844 static const TCGOpcode vecop_list[] = { INDEX_op_shli_vec, 0 };
2845 static const GVecGen2i g[4] = {
2846 { .fni8 = tcg_gen_vec_shl8i_i64,
2847 .fniv = tcg_gen_shli_vec,
2848 .fno = gen_helper_gvec_shl8i,
2849 .opt_opc = vecop_list,
2850 .vece = MO_8 },
2851 { .fni8 = tcg_gen_vec_shl16i_i64,
2852 .fniv = tcg_gen_shli_vec,
2853 .fno = gen_helper_gvec_shl16i,
2854 .opt_opc = vecop_list,
2855 .vece = MO_16 },
2856 { .fni4 = tcg_gen_shli_i32,
2857 .fniv = tcg_gen_shli_vec,
2858 .fno = gen_helper_gvec_shl32i,
2859 .opt_opc = vecop_list,
2860 .vece = MO_32 },
2861 { .fni8 = tcg_gen_shli_i64,
2862 .fniv = tcg_gen_shli_vec,
2863 .fno = gen_helper_gvec_shl64i,
2864 .opt_opc = vecop_list,
2865 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2866 .vece = MO_64 },
2869 tcg_debug_assert(vece <= MO_64);
2870 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2871 if (shift == 0) {
2872 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2873 } else {
2874 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2878 void tcg_gen_vec_shr8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2880 uint64_t mask = dup_const(MO_8, 0xff >> c);
2881 tcg_gen_shri_i64(d, a, c);
2882 tcg_gen_andi_i64(d, d, mask);
2885 void tcg_gen_vec_shr16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2887 uint64_t mask = dup_const(MO_16, 0xffff >> c);
2888 tcg_gen_shri_i64(d, a, c);
2889 tcg_gen_andi_i64(d, d, mask);
2892 void tcg_gen_vec_shr8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2894 uint32_t mask = dup_const(MO_8, 0xff >> c);
2895 tcg_gen_shri_i32(d, a, c);
2896 tcg_gen_andi_i32(d, d, mask);
2899 void tcg_gen_vec_shr16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2901 uint32_t mask = dup_const(MO_16, 0xffff >> c);
2902 tcg_gen_shri_i32(d, a, c);
2903 tcg_gen_andi_i32(d, d, mask);
2906 void tcg_gen_gvec_shri(unsigned vece, uint32_t dofs, uint32_t aofs,
2907 int64_t shift, uint32_t oprsz, uint32_t maxsz)
2909 static const TCGOpcode vecop_list[] = { INDEX_op_shri_vec, 0 };
2910 static const GVecGen2i g[4] = {
2911 { .fni8 = tcg_gen_vec_shr8i_i64,
2912 .fniv = tcg_gen_shri_vec,
2913 .fno = gen_helper_gvec_shr8i,
2914 .opt_opc = vecop_list,
2915 .vece = MO_8 },
2916 { .fni8 = tcg_gen_vec_shr16i_i64,
2917 .fniv = tcg_gen_shri_vec,
2918 .fno = gen_helper_gvec_shr16i,
2919 .opt_opc = vecop_list,
2920 .vece = MO_16 },
2921 { .fni4 = tcg_gen_shri_i32,
2922 .fniv = tcg_gen_shri_vec,
2923 .fno = gen_helper_gvec_shr32i,
2924 .opt_opc = vecop_list,
2925 .vece = MO_32 },
2926 { .fni8 = tcg_gen_shri_i64,
2927 .fniv = tcg_gen_shri_vec,
2928 .fno = gen_helper_gvec_shr64i,
2929 .opt_opc = vecop_list,
2930 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
2931 .vece = MO_64 },
2934 tcg_debug_assert(vece <= MO_64);
2935 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
2936 if (shift == 0) {
2937 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
2938 } else {
2939 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
2943 void tcg_gen_vec_sar8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2945 uint64_t s_mask = dup_const(MO_8, 0x80 >> c);
2946 uint64_t c_mask = dup_const(MO_8, 0xff >> c);
2947 TCGv_i64 s = tcg_temp_new_i64();
2949 tcg_gen_shri_i64(d, a, c);
2950 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2951 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2952 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2953 tcg_gen_or_i64(d, d, s); /* include sign extension */
2954 tcg_temp_free_i64(s);
2957 void tcg_gen_vec_sar16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
2959 uint64_t s_mask = dup_const(MO_16, 0x8000 >> c);
2960 uint64_t c_mask = dup_const(MO_16, 0xffff >> c);
2961 TCGv_i64 s = tcg_temp_new_i64();
2963 tcg_gen_shri_i64(d, a, c);
2964 tcg_gen_andi_i64(s, d, s_mask); /* isolate (shifted) sign bit */
2965 tcg_gen_andi_i64(d, d, c_mask); /* clear out bits above sign */
2966 tcg_gen_muli_i64(s, s, (2 << c) - 2); /* replicate isolated signs */
2967 tcg_gen_or_i64(d, d, s); /* include sign extension */
2968 tcg_temp_free_i64(s);
2971 void tcg_gen_vec_sar8i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2973 uint32_t s_mask = dup_const(MO_8, 0x80 >> c);
2974 uint32_t c_mask = dup_const(MO_8, 0xff >> c);
2975 TCGv_i32 s = tcg_temp_new_i32();
2977 tcg_gen_shri_i32(d, a, c);
2978 tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */
2979 tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */
2980 tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */
2981 tcg_gen_or_i32(d, d, s); /* include sign extension */
2982 tcg_temp_free_i32(s);
2985 void tcg_gen_vec_sar16i_i32(TCGv_i32 d, TCGv_i32 a, int32_t c)
2987 uint32_t s_mask = dup_const(MO_16, 0x8000 >> c);
2988 uint32_t c_mask = dup_const(MO_16, 0xffff >> c);
2989 TCGv_i32 s = tcg_temp_new_i32();
2991 tcg_gen_shri_i32(d, a, c);
2992 tcg_gen_andi_i32(s, d, s_mask); /* isolate (shifted) sign bit */
2993 tcg_gen_andi_i32(d, d, c_mask); /* clear out bits above sign */
2994 tcg_gen_muli_i32(s, s, (2 << c) - 2); /* replicate isolated signs */
2995 tcg_gen_or_i32(d, d, s); /* include sign extension */
2996 tcg_temp_free_i32(s);
2999 void tcg_gen_gvec_sari(unsigned vece, uint32_t dofs, uint32_t aofs,
3000 int64_t shift, uint32_t oprsz, uint32_t maxsz)
3002 static const TCGOpcode vecop_list[] = { INDEX_op_sari_vec, 0 };
3003 static const GVecGen2i g[4] = {
3004 { .fni8 = tcg_gen_vec_sar8i_i64,
3005 .fniv = tcg_gen_sari_vec,
3006 .fno = gen_helper_gvec_sar8i,
3007 .opt_opc = vecop_list,
3008 .vece = MO_8 },
3009 { .fni8 = tcg_gen_vec_sar16i_i64,
3010 .fniv = tcg_gen_sari_vec,
3011 .fno = gen_helper_gvec_sar16i,
3012 .opt_opc = vecop_list,
3013 .vece = MO_16 },
3014 { .fni4 = tcg_gen_sari_i32,
3015 .fniv = tcg_gen_sari_vec,
3016 .fno = gen_helper_gvec_sar32i,
3017 .opt_opc = vecop_list,
3018 .vece = MO_32 },
3019 { .fni8 = tcg_gen_sari_i64,
3020 .fniv = tcg_gen_sari_vec,
3021 .fno = gen_helper_gvec_sar64i,
3022 .opt_opc = vecop_list,
3023 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3024 .vece = MO_64 },
3027 tcg_debug_assert(vece <= MO_64);
3028 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
3029 if (shift == 0) {
3030 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
3031 } else {
3032 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
3036 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
3038 uint64_t mask = dup_const(MO_8, 0xff << c);
3040 tcg_gen_shli_i64(d, a, c);
3041 tcg_gen_shri_i64(a, a, 8 - c);
3042 tcg_gen_andi_i64(d, d, mask);
3043 tcg_gen_andi_i64(a, a, ~mask);
3044 tcg_gen_or_i64(d, d, a);
3047 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d, TCGv_i64 a, int64_t c)
3049 uint64_t mask = dup_const(MO_16, 0xffff << c);
3051 tcg_gen_shli_i64(d, a, c);
3052 tcg_gen_shri_i64(a, a, 16 - c);
3053 tcg_gen_andi_i64(d, d, mask);
3054 tcg_gen_andi_i64(a, a, ~mask);
3055 tcg_gen_or_i64(d, d, a);
3058 void tcg_gen_gvec_rotli(unsigned vece, uint32_t dofs, uint32_t aofs,
3059 int64_t shift, uint32_t oprsz, uint32_t maxsz)
3061 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
3062 static const GVecGen2i g[4] = {
3063 { .fni8 = tcg_gen_vec_rotl8i_i64,
3064 .fniv = tcg_gen_rotli_vec,
3065 .fno = gen_helper_gvec_rotl8i,
3066 .opt_opc = vecop_list,
3067 .vece = MO_8 },
3068 { .fni8 = tcg_gen_vec_rotl16i_i64,
3069 .fniv = tcg_gen_rotli_vec,
3070 .fno = gen_helper_gvec_rotl16i,
3071 .opt_opc = vecop_list,
3072 .vece = MO_16 },
3073 { .fni4 = tcg_gen_rotli_i32,
3074 .fniv = tcg_gen_rotli_vec,
3075 .fno = gen_helper_gvec_rotl32i,
3076 .opt_opc = vecop_list,
3077 .vece = MO_32 },
3078 { .fni8 = tcg_gen_rotli_i64,
3079 .fniv = tcg_gen_rotli_vec,
3080 .fno = gen_helper_gvec_rotl64i,
3081 .opt_opc = vecop_list,
3082 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3083 .vece = MO_64 },
3086 tcg_debug_assert(vece <= MO_64);
3087 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
3088 if (shift == 0) {
3089 tcg_gen_gvec_mov(vece, dofs, aofs, oprsz, maxsz);
3090 } else {
3091 tcg_gen_gvec_2i(dofs, aofs, oprsz, maxsz, shift, &g[vece]);
3095 void tcg_gen_gvec_rotri(unsigned vece, uint32_t dofs, uint32_t aofs,
3096 int64_t shift, uint32_t oprsz, uint32_t maxsz)
3098 tcg_debug_assert(vece <= MO_64);
3099 tcg_debug_assert(shift >= 0 && shift < (8 << vece));
3100 tcg_gen_gvec_rotli(vece, dofs, aofs, -shift & ((8 << vece) - 1),
3101 oprsz, maxsz);
3105 * Specialized generation vector shifts by a non-constant scalar.
3108 typedef struct {
3109 void (*fni4)(TCGv_i32, TCGv_i32, TCGv_i32);
3110 void (*fni8)(TCGv_i64, TCGv_i64, TCGv_i64);
3111 void (*fniv_s)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32);
3112 void (*fniv_v)(unsigned, TCGv_vec, TCGv_vec, TCGv_vec);
3113 gen_helper_gvec_2 *fno[4];
3114 TCGOpcode s_list[2];
3115 TCGOpcode v_list[2];
3116 } GVecGen2sh;
3118 static void expand_2sh_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3119 uint32_t oprsz, uint32_t tysz, TCGType type,
3120 TCGv_i32 shift,
3121 void (*fni)(unsigned, TCGv_vec, TCGv_vec, TCGv_i32))
3123 TCGv_vec t0 = tcg_temp_new_vec(type);
3124 uint32_t i;
3126 for (i = 0; i < oprsz; i += tysz) {
3127 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
3128 fni(vece, t0, t0, shift);
3129 tcg_gen_st_vec(t0, cpu_env, dofs + i);
3131 tcg_temp_free_vec(t0);
3134 static void
3135 do_gvec_shifts(unsigned vece, uint32_t dofs, uint32_t aofs, TCGv_i32 shift,
3136 uint32_t oprsz, uint32_t maxsz, const GVecGen2sh *g)
3138 TCGType type;
3139 uint32_t some;
3141 check_size_align(oprsz, maxsz, dofs | aofs);
3142 check_overlap_2(dofs, aofs, maxsz);
3144 /* If the backend has a scalar expansion, great. */
3145 type = choose_vector_type(g->s_list, vece, oprsz, vece == MO_64);
3146 if (type) {
3147 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
3148 switch (type) {
3149 case TCG_TYPE_V256:
3150 some = QEMU_ALIGN_DOWN(oprsz, 32);
3151 expand_2sh_vec(vece, dofs, aofs, some, 32,
3152 TCG_TYPE_V256, shift, g->fniv_s);
3153 if (some == oprsz) {
3154 break;
3156 dofs += some;
3157 aofs += some;
3158 oprsz -= some;
3159 maxsz -= some;
3160 /* fallthru */
3161 case TCG_TYPE_V128:
3162 expand_2sh_vec(vece, dofs, aofs, oprsz, 16,
3163 TCG_TYPE_V128, shift, g->fniv_s);
3164 break;
3165 case TCG_TYPE_V64:
3166 expand_2sh_vec(vece, dofs, aofs, oprsz, 8,
3167 TCG_TYPE_V64, shift, g->fniv_s);
3168 break;
3169 default:
3170 g_assert_not_reached();
3172 tcg_swap_vecop_list(hold_list);
3173 goto clear_tail;
3176 /* If the backend supports variable vector shifts, also cool. */
3177 type = choose_vector_type(g->v_list, vece, oprsz, vece == MO_64);
3178 if (type) {
3179 const TCGOpcode *hold_list = tcg_swap_vecop_list(NULL);
3180 TCGv_vec v_shift = tcg_temp_new_vec(type);
3182 if (vece == MO_64) {
3183 TCGv_i64 sh64 = tcg_temp_new_i64();
3184 tcg_gen_extu_i32_i64(sh64, shift);
3185 tcg_gen_dup_i64_vec(MO_64, v_shift, sh64);
3186 tcg_temp_free_i64(sh64);
3187 } else {
3188 tcg_gen_dup_i32_vec(vece, v_shift, shift);
3191 switch (type) {
3192 case TCG_TYPE_V256:
3193 some = QEMU_ALIGN_DOWN(oprsz, 32);
3194 expand_2s_vec(vece, dofs, aofs, some, 32, TCG_TYPE_V256,
3195 v_shift, false, g->fniv_v);
3196 if (some == oprsz) {
3197 break;
3199 dofs += some;
3200 aofs += some;
3201 oprsz -= some;
3202 maxsz -= some;
3203 /* fallthru */
3204 case TCG_TYPE_V128:
3205 expand_2s_vec(vece, dofs, aofs, oprsz, 16, TCG_TYPE_V128,
3206 v_shift, false, g->fniv_v);
3207 break;
3208 case TCG_TYPE_V64:
3209 expand_2s_vec(vece, dofs, aofs, oprsz, 8, TCG_TYPE_V64,
3210 v_shift, false, g->fniv_v);
3211 break;
3212 default:
3213 g_assert_not_reached();
3215 tcg_temp_free_vec(v_shift);
3216 tcg_swap_vecop_list(hold_list);
3217 goto clear_tail;
3220 /* Otherwise fall back to integral... */
3221 if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3222 expand_2s_i32(dofs, aofs, oprsz, shift, false, g->fni4);
3223 } else if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3224 TCGv_i64 sh64 = tcg_temp_new_i64();
3225 tcg_gen_extu_i32_i64(sh64, shift);
3226 expand_2s_i64(dofs, aofs, oprsz, sh64, false, g->fni8);
3227 tcg_temp_free_i64(sh64);
3228 } else {
3229 TCGv_ptr a0 = tcg_temp_new_ptr();
3230 TCGv_ptr a1 = tcg_temp_new_ptr();
3231 TCGv_i32 desc = tcg_temp_new_i32();
3233 tcg_gen_shli_i32(desc, shift, SIMD_DATA_SHIFT);
3234 tcg_gen_ori_i32(desc, desc, simd_desc(oprsz, maxsz, 0));
3235 tcg_gen_addi_ptr(a0, cpu_env, dofs);
3236 tcg_gen_addi_ptr(a1, cpu_env, aofs);
3238 g->fno[vece](a0, a1, desc);
3240 tcg_temp_free_ptr(a0);
3241 tcg_temp_free_ptr(a1);
3242 tcg_temp_free_i32(desc);
3243 return;
3246 clear_tail:
3247 if (oprsz < maxsz) {
3248 expand_clr(dofs + oprsz, maxsz - oprsz);
3252 void tcg_gen_gvec_shls(unsigned vece, uint32_t dofs, uint32_t aofs,
3253 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3255 static const GVecGen2sh g = {
3256 .fni4 = tcg_gen_shl_i32,
3257 .fni8 = tcg_gen_shl_i64,
3258 .fniv_s = tcg_gen_shls_vec,
3259 .fniv_v = tcg_gen_shlv_vec,
3260 .fno = {
3261 gen_helper_gvec_shl8i,
3262 gen_helper_gvec_shl16i,
3263 gen_helper_gvec_shl32i,
3264 gen_helper_gvec_shl64i,
3266 .s_list = { INDEX_op_shls_vec, 0 },
3267 .v_list = { INDEX_op_shlv_vec, 0 },
3270 tcg_debug_assert(vece <= MO_64);
3271 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3274 void tcg_gen_gvec_shrs(unsigned vece, uint32_t dofs, uint32_t aofs,
3275 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3277 static const GVecGen2sh g = {
3278 .fni4 = tcg_gen_shr_i32,
3279 .fni8 = tcg_gen_shr_i64,
3280 .fniv_s = tcg_gen_shrs_vec,
3281 .fniv_v = tcg_gen_shrv_vec,
3282 .fno = {
3283 gen_helper_gvec_shr8i,
3284 gen_helper_gvec_shr16i,
3285 gen_helper_gvec_shr32i,
3286 gen_helper_gvec_shr64i,
3288 .s_list = { INDEX_op_shrs_vec, 0 },
3289 .v_list = { INDEX_op_shrv_vec, 0 },
3292 tcg_debug_assert(vece <= MO_64);
3293 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3296 void tcg_gen_gvec_sars(unsigned vece, uint32_t dofs, uint32_t aofs,
3297 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3299 static const GVecGen2sh g = {
3300 .fni4 = tcg_gen_sar_i32,
3301 .fni8 = tcg_gen_sar_i64,
3302 .fniv_s = tcg_gen_sars_vec,
3303 .fniv_v = tcg_gen_sarv_vec,
3304 .fno = {
3305 gen_helper_gvec_sar8i,
3306 gen_helper_gvec_sar16i,
3307 gen_helper_gvec_sar32i,
3308 gen_helper_gvec_sar64i,
3310 .s_list = { INDEX_op_sars_vec, 0 },
3311 .v_list = { INDEX_op_sarv_vec, 0 },
3314 tcg_debug_assert(vece <= MO_64);
3315 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3318 void tcg_gen_gvec_rotls(unsigned vece, uint32_t dofs, uint32_t aofs,
3319 TCGv_i32 shift, uint32_t oprsz, uint32_t maxsz)
3321 static const GVecGen2sh g = {
3322 .fni4 = tcg_gen_rotl_i32,
3323 .fni8 = tcg_gen_rotl_i64,
3324 .fniv_s = tcg_gen_rotls_vec,
3325 .fniv_v = tcg_gen_rotlv_vec,
3326 .fno = {
3327 gen_helper_gvec_rotl8i,
3328 gen_helper_gvec_rotl16i,
3329 gen_helper_gvec_rotl32i,
3330 gen_helper_gvec_rotl64i,
3332 .s_list = { INDEX_op_rotls_vec, 0 },
3333 .v_list = { INDEX_op_rotlv_vec, 0 },
3336 tcg_debug_assert(vece <= MO_64);
3337 do_gvec_shifts(vece, dofs, aofs, shift, oprsz, maxsz, &g);
3341 * Expand D = A << (B % element bits)
3343 * Unlike scalar shifts, where it is easy for the target front end
3344 * to include the modulo as part of the expansion. If the target
3345 * naturally includes the modulo as part of the operation, great!
3346 * If the target has some other behaviour from out-of-range shifts,
3347 * then it could not use this function anyway, and would need to
3348 * do it's own expansion with custom functions.
3350 static void tcg_gen_shlv_mod_vec(unsigned vece, TCGv_vec d,
3351 TCGv_vec a, TCGv_vec b)
3353 TCGv_vec t = tcg_temp_new_vec_matching(d);
3354 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3356 tcg_gen_and_vec(vece, t, b, m);
3357 tcg_gen_shlv_vec(vece, d, a, t);
3358 tcg_temp_free_vec(t);
3361 static void tcg_gen_shl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3363 TCGv_i32 t = tcg_temp_new_i32();
3365 tcg_gen_andi_i32(t, b, 31);
3366 tcg_gen_shl_i32(d, a, t);
3367 tcg_temp_free_i32(t);
3370 static void tcg_gen_shl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3372 TCGv_i64 t = tcg_temp_new_i64();
3374 tcg_gen_andi_i64(t, b, 63);
3375 tcg_gen_shl_i64(d, a, t);
3376 tcg_temp_free_i64(t);
3379 void tcg_gen_gvec_shlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3380 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3382 static const TCGOpcode vecop_list[] = { INDEX_op_shlv_vec, 0 };
3383 static const GVecGen3 g[4] = {
3384 { .fniv = tcg_gen_shlv_mod_vec,
3385 .fno = gen_helper_gvec_shl8v,
3386 .opt_opc = vecop_list,
3387 .vece = MO_8 },
3388 { .fniv = tcg_gen_shlv_mod_vec,
3389 .fno = gen_helper_gvec_shl16v,
3390 .opt_opc = vecop_list,
3391 .vece = MO_16 },
3392 { .fni4 = tcg_gen_shl_mod_i32,
3393 .fniv = tcg_gen_shlv_mod_vec,
3394 .fno = gen_helper_gvec_shl32v,
3395 .opt_opc = vecop_list,
3396 .vece = MO_32 },
3397 { .fni8 = tcg_gen_shl_mod_i64,
3398 .fniv = tcg_gen_shlv_mod_vec,
3399 .fno = gen_helper_gvec_shl64v,
3400 .opt_opc = vecop_list,
3401 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3402 .vece = MO_64 },
3405 tcg_debug_assert(vece <= MO_64);
3406 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3410 * Similarly for logical right shifts.
3413 static void tcg_gen_shrv_mod_vec(unsigned vece, TCGv_vec d,
3414 TCGv_vec a, TCGv_vec b)
3416 TCGv_vec t = tcg_temp_new_vec_matching(d);
3417 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3419 tcg_gen_and_vec(vece, t, b, m);
3420 tcg_gen_shrv_vec(vece, d, a, t);
3421 tcg_temp_free_vec(t);
3424 static void tcg_gen_shr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3426 TCGv_i32 t = tcg_temp_new_i32();
3428 tcg_gen_andi_i32(t, b, 31);
3429 tcg_gen_shr_i32(d, a, t);
3430 tcg_temp_free_i32(t);
3433 static void tcg_gen_shr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3435 TCGv_i64 t = tcg_temp_new_i64();
3437 tcg_gen_andi_i64(t, b, 63);
3438 tcg_gen_shr_i64(d, a, t);
3439 tcg_temp_free_i64(t);
3442 void tcg_gen_gvec_shrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3443 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3445 static const TCGOpcode vecop_list[] = { INDEX_op_shrv_vec, 0 };
3446 static const GVecGen3 g[4] = {
3447 { .fniv = tcg_gen_shrv_mod_vec,
3448 .fno = gen_helper_gvec_shr8v,
3449 .opt_opc = vecop_list,
3450 .vece = MO_8 },
3451 { .fniv = tcg_gen_shrv_mod_vec,
3452 .fno = gen_helper_gvec_shr16v,
3453 .opt_opc = vecop_list,
3454 .vece = MO_16 },
3455 { .fni4 = tcg_gen_shr_mod_i32,
3456 .fniv = tcg_gen_shrv_mod_vec,
3457 .fno = gen_helper_gvec_shr32v,
3458 .opt_opc = vecop_list,
3459 .vece = MO_32 },
3460 { .fni8 = tcg_gen_shr_mod_i64,
3461 .fniv = tcg_gen_shrv_mod_vec,
3462 .fno = gen_helper_gvec_shr64v,
3463 .opt_opc = vecop_list,
3464 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3465 .vece = MO_64 },
3468 tcg_debug_assert(vece <= MO_64);
3469 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3473 * Similarly for arithmetic right shifts.
3476 static void tcg_gen_sarv_mod_vec(unsigned vece, TCGv_vec d,
3477 TCGv_vec a, TCGv_vec b)
3479 TCGv_vec t = tcg_temp_new_vec_matching(d);
3480 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3482 tcg_gen_and_vec(vece, t, b, m);
3483 tcg_gen_sarv_vec(vece, d, a, t);
3484 tcg_temp_free_vec(t);
3487 static void tcg_gen_sar_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3489 TCGv_i32 t = tcg_temp_new_i32();
3491 tcg_gen_andi_i32(t, b, 31);
3492 tcg_gen_sar_i32(d, a, t);
3493 tcg_temp_free_i32(t);
3496 static void tcg_gen_sar_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3498 TCGv_i64 t = tcg_temp_new_i64();
3500 tcg_gen_andi_i64(t, b, 63);
3501 tcg_gen_sar_i64(d, a, t);
3502 tcg_temp_free_i64(t);
3505 void tcg_gen_gvec_sarv(unsigned vece, uint32_t dofs, uint32_t aofs,
3506 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3508 static const TCGOpcode vecop_list[] = { INDEX_op_sarv_vec, 0 };
3509 static const GVecGen3 g[4] = {
3510 { .fniv = tcg_gen_sarv_mod_vec,
3511 .fno = gen_helper_gvec_sar8v,
3512 .opt_opc = vecop_list,
3513 .vece = MO_8 },
3514 { .fniv = tcg_gen_sarv_mod_vec,
3515 .fno = gen_helper_gvec_sar16v,
3516 .opt_opc = vecop_list,
3517 .vece = MO_16 },
3518 { .fni4 = tcg_gen_sar_mod_i32,
3519 .fniv = tcg_gen_sarv_mod_vec,
3520 .fno = gen_helper_gvec_sar32v,
3521 .opt_opc = vecop_list,
3522 .vece = MO_32 },
3523 { .fni8 = tcg_gen_sar_mod_i64,
3524 .fniv = tcg_gen_sarv_mod_vec,
3525 .fno = gen_helper_gvec_sar64v,
3526 .opt_opc = vecop_list,
3527 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3528 .vece = MO_64 },
3531 tcg_debug_assert(vece <= MO_64);
3532 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3536 * Similarly for rotates.
3539 static void tcg_gen_rotlv_mod_vec(unsigned vece, TCGv_vec d,
3540 TCGv_vec a, TCGv_vec b)
3542 TCGv_vec t = tcg_temp_new_vec_matching(d);
3543 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3545 tcg_gen_and_vec(vece, t, b, m);
3546 tcg_gen_rotlv_vec(vece, d, a, t);
3547 tcg_temp_free_vec(t);
3550 static void tcg_gen_rotl_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3552 TCGv_i32 t = tcg_temp_new_i32();
3554 tcg_gen_andi_i32(t, b, 31);
3555 tcg_gen_rotl_i32(d, a, t);
3556 tcg_temp_free_i32(t);
3559 static void tcg_gen_rotl_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3561 TCGv_i64 t = tcg_temp_new_i64();
3563 tcg_gen_andi_i64(t, b, 63);
3564 tcg_gen_rotl_i64(d, a, t);
3565 tcg_temp_free_i64(t);
3568 void tcg_gen_gvec_rotlv(unsigned vece, uint32_t dofs, uint32_t aofs,
3569 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3571 static const TCGOpcode vecop_list[] = { INDEX_op_rotlv_vec, 0 };
3572 static const GVecGen3 g[4] = {
3573 { .fniv = tcg_gen_rotlv_mod_vec,
3574 .fno = gen_helper_gvec_rotl8v,
3575 .opt_opc = vecop_list,
3576 .vece = MO_8 },
3577 { .fniv = tcg_gen_rotlv_mod_vec,
3578 .fno = gen_helper_gvec_rotl16v,
3579 .opt_opc = vecop_list,
3580 .vece = MO_16 },
3581 { .fni4 = tcg_gen_rotl_mod_i32,
3582 .fniv = tcg_gen_rotlv_mod_vec,
3583 .fno = gen_helper_gvec_rotl32v,
3584 .opt_opc = vecop_list,
3585 .vece = MO_32 },
3586 { .fni8 = tcg_gen_rotl_mod_i64,
3587 .fniv = tcg_gen_rotlv_mod_vec,
3588 .fno = gen_helper_gvec_rotl64v,
3589 .opt_opc = vecop_list,
3590 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3591 .vece = MO_64 },
3594 tcg_debug_assert(vece <= MO_64);
3595 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3598 static void tcg_gen_rotrv_mod_vec(unsigned vece, TCGv_vec d,
3599 TCGv_vec a, TCGv_vec b)
3601 TCGv_vec t = tcg_temp_new_vec_matching(d);
3602 TCGv_vec m = tcg_constant_vec_matching(d, vece, (8 << vece) - 1);
3604 tcg_gen_and_vec(vece, t, b, m);
3605 tcg_gen_rotrv_vec(vece, d, a, t);
3606 tcg_temp_free_vec(t);
3609 static void tcg_gen_rotr_mod_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b)
3611 TCGv_i32 t = tcg_temp_new_i32();
3613 tcg_gen_andi_i32(t, b, 31);
3614 tcg_gen_rotr_i32(d, a, t);
3615 tcg_temp_free_i32(t);
3618 static void tcg_gen_rotr_mod_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b)
3620 TCGv_i64 t = tcg_temp_new_i64();
3622 tcg_gen_andi_i64(t, b, 63);
3623 tcg_gen_rotr_i64(d, a, t);
3624 tcg_temp_free_i64(t);
3627 void tcg_gen_gvec_rotrv(unsigned vece, uint32_t dofs, uint32_t aofs,
3628 uint32_t bofs, uint32_t oprsz, uint32_t maxsz)
3630 static const TCGOpcode vecop_list[] = { INDEX_op_rotrv_vec, 0 };
3631 static const GVecGen3 g[4] = {
3632 { .fniv = tcg_gen_rotrv_mod_vec,
3633 .fno = gen_helper_gvec_rotr8v,
3634 .opt_opc = vecop_list,
3635 .vece = MO_8 },
3636 { .fniv = tcg_gen_rotrv_mod_vec,
3637 .fno = gen_helper_gvec_rotr16v,
3638 .opt_opc = vecop_list,
3639 .vece = MO_16 },
3640 { .fni4 = tcg_gen_rotr_mod_i32,
3641 .fniv = tcg_gen_rotrv_mod_vec,
3642 .fno = gen_helper_gvec_rotr32v,
3643 .opt_opc = vecop_list,
3644 .vece = MO_32 },
3645 { .fni8 = tcg_gen_rotr_mod_i64,
3646 .fniv = tcg_gen_rotrv_mod_vec,
3647 .fno = gen_helper_gvec_rotr64v,
3648 .opt_opc = vecop_list,
3649 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3650 .vece = MO_64 },
3653 tcg_debug_assert(vece <= MO_64);
3654 tcg_gen_gvec_3(dofs, aofs, bofs, oprsz, maxsz, &g[vece]);
3657 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3658 static void expand_cmp_i32(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3659 uint32_t oprsz, TCGCond cond)
3661 TCGv_i32 t0 = tcg_temp_new_i32();
3662 TCGv_i32 t1 = tcg_temp_new_i32();
3663 uint32_t i;
3665 for (i = 0; i < oprsz; i += 4) {
3666 tcg_gen_ld_i32(t0, cpu_env, aofs + i);
3667 tcg_gen_ld_i32(t1, cpu_env, bofs + i);
3668 tcg_gen_setcond_i32(cond, t0, t0, t1);
3669 tcg_gen_neg_i32(t0, t0);
3670 tcg_gen_st_i32(t0, cpu_env, dofs + i);
3672 tcg_temp_free_i32(t1);
3673 tcg_temp_free_i32(t0);
3676 static void expand_cmp_i64(uint32_t dofs, uint32_t aofs, uint32_t bofs,
3677 uint32_t oprsz, TCGCond cond)
3679 TCGv_i64 t0 = tcg_temp_new_i64();
3680 TCGv_i64 t1 = tcg_temp_new_i64();
3681 uint32_t i;
3683 for (i = 0; i < oprsz; i += 8) {
3684 tcg_gen_ld_i64(t0, cpu_env, aofs + i);
3685 tcg_gen_ld_i64(t1, cpu_env, bofs + i);
3686 tcg_gen_setcond_i64(cond, t0, t0, t1);
3687 tcg_gen_neg_i64(t0, t0);
3688 tcg_gen_st_i64(t0, cpu_env, dofs + i);
3690 tcg_temp_free_i64(t1);
3691 tcg_temp_free_i64(t0);
3694 static void expand_cmp_vec(unsigned vece, uint32_t dofs, uint32_t aofs,
3695 uint32_t bofs, uint32_t oprsz, uint32_t tysz,
3696 TCGType type, TCGCond cond)
3698 TCGv_vec t0 = tcg_temp_new_vec(type);
3699 TCGv_vec t1 = tcg_temp_new_vec(type);
3700 uint32_t i;
3702 for (i = 0; i < oprsz; i += tysz) {
3703 tcg_gen_ld_vec(t0, cpu_env, aofs + i);
3704 tcg_gen_ld_vec(t1, cpu_env, bofs + i);
3705 tcg_gen_cmp_vec(cond, vece, t0, t0, t1);
3706 tcg_gen_st_vec(t0, cpu_env, dofs + i);
3708 tcg_temp_free_vec(t1);
3709 tcg_temp_free_vec(t0);
3712 void tcg_gen_gvec_cmp(TCGCond cond, unsigned vece, uint32_t dofs,
3713 uint32_t aofs, uint32_t bofs,
3714 uint32_t oprsz, uint32_t maxsz)
3716 static const TCGOpcode cmp_list[] = { INDEX_op_cmp_vec, 0 };
3717 static gen_helper_gvec_3 * const eq_fn[4] = {
3718 gen_helper_gvec_eq8, gen_helper_gvec_eq16,
3719 gen_helper_gvec_eq32, gen_helper_gvec_eq64
3721 static gen_helper_gvec_3 * const ne_fn[4] = {
3722 gen_helper_gvec_ne8, gen_helper_gvec_ne16,
3723 gen_helper_gvec_ne32, gen_helper_gvec_ne64
3725 static gen_helper_gvec_3 * const lt_fn[4] = {
3726 gen_helper_gvec_lt8, gen_helper_gvec_lt16,
3727 gen_helper_gvec_lt32, gen_helper_gvec_lt64
3729 static gen_helper_gvec_3 * const le_fn[4] = {
3730 gen_helper_gvec_le8, gen_helper_gvec_le16,
3731 gen_helper_gvec_le32, gen_helper_gvec_le64
3733 static gen_helper_gvec_3 * const ltu_fn[4] = {
3734 gen_helper_gvec_ltu8, gen_helper_gvec_ltu16,
3735 gen_helper_gvec_ltu32, gen_helper_gvec_ltu64
3737 static gen_helper_gvec_3 * const leu_fn[4] = {
3738 gen_helper_gvec_leu8, gen_helper_gvec_leu16,
3739 gen_helper_gvec_leu32, gen_helper_gvec_leu64
3741 static gen_helper_gvec_3 * const * const fns[16] = {
3742 [TCG_COND_EQ] = eq_fn,
3743 [TCG_COND_NE] = ne_fn,
3744 [TCG_COND_LT] = lt_fn,
3745 [TCG_COND_LE] = le_fn,
3746 [TCG_COND_LTU] = ltu_fn,
3747 [TCG_COND_LEU] = leu_fn,
3750 const TCGOpcode *hold_list;
3751 TCGType type;
3752 uint32_t some;
3754 check_size_align(oprsz, maxsz, dofs | aofs | bofs);
3755 check_overlap_3(dofs, aofs, bofs, maxsz);
3757 if (cond == TCG_COND_NEVER || cond == TCG_COND_ALWAYS) {
3758 do_dup(MO_8, dofs, oprsz, maxsz,
3759 NULL, NULL, -(cond == TCG_COND_ALWAYS));
3760 return;
3764 * Implement inline with a vector type, if possible.
3765 * Prefer integer when 64-bit host and 64-bit comparison.
3767 hold_list = tcg_swap_vecop_list(cmp_list);
3768 type = choose_vector_type(cmp_list, vece, oprsz,
3769 TCG_TARGET_REG_BITS == 64 && vece == MO_64);
3770 switch (type) {
3771 case TCG_TYPE_V256:
3772 /* Recall that ARM SVE allows vector sizes that are not a
3773 * power of 2, but always a multiple of 16. The intent is
3774 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3776 some = QEMU_ALIGN_DOWN(oprsz, 32);
3777 expand_cmp_vec(vece, dofs, aofs, bofs, some, 32, TCG_TYPE_V256, cond);
3778 if (some == oprsz) {
3779 break;
3781 dofs += some;
3782 aofs += some;
3783 bofs += some;
3784 oprsz -= some;
3785 maxsz -= some;
3786 /* fallthru */
3787 case TCG_TYPE_V128:
3788 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 16, TCG_TYPE_V128, cond);
3789 break;
3790 case TCG_TYPE_V64:
3791 expand_cmp_vec(vece, dofs, aofs, bofs, oprsz, 8, TCG_TYPE_V64, cond);
3792 break;
3794 case 0:
3795 if (vece == MO_64 && check_size_impl(oprsz, 8)) {
3796 expand_cmp_i64(dofs, aofs, bofs, oprsz, cond);
3797 } else if (vece == MO_32 && check_size_impl(oprsz, 4)) {
3798 expand_cmp_i32(dofs, aofs, bofs, oprsz, cond);
3799 } else {
3800 gen_helper_gvec_3 * const *fn = fns[cond];
3802 if (fn == NULL) {
3803 uint32_t tmp;
3804 tmp = aofs, aofs = bofs, bofs = tmp;
3805 cond = tcg_swap_cond(cond);
3806 fn = fns[cond];
3807 assert(fn != NULL);
3809 tcg_gen_gvec_3_ool(dofs, aofs, bofs, oprsz, maxsz, 0, fn[vece]);
3810 oprsz = maxsz;
3812 break;
3814 default:
3815 g_assert_not_reached();
3817 tcg_swap_vecop_list(hold_list);
3819 if (oprsz < maxsz) {
3820 expand_clr(dofs + oprsz, maxsz - oprsz);
3824 static void tcg_gen_bitsel_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b, TCGv_i64 c)
3826 TCGv_i64 t = tcg_temp_new_i64();
3828 tcg_gen_and_i64(t, b, a);
3829 tcg_gen_andc_i64(d, c, a);
3830 tcg_gen_or_i64(d, d, t);
3831 tcg_temp_free_i64(t);
3834 void tcg_gen_gvec_bitsel(unsigned vece, uint32_t dofs, uint32_t aofs,
3835 uint32_t bofs, uint32_t cofs,
3836 uint32_t oprsz, uint32_t maxsz)
3838 static const GVecGen4 g = {
3839 .fni8 = tcg_gen_bitsel_i64,
3840 .fniv = tcg_gen_bitsel_vec,
3841 .fno = gen_helper_gvec_bitsel,
3844 tcg_gen_gvec_4(dofs, aofs, bofs, cofs, oprsz, maxsz, &g);