4 * Copyright (c) 2006-2007 CodeSourcery
5 * Written by Paul Brook
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
23 #include "exec/exec-all.h"
24 #include "exec/gdbstub.h"
25 #include "exec/helper-proto.h"
26 #include "fpu/softfloat.h"
27 #include "qemu/qemu-print.h"
29 #define SIGNBIT (1u << 31)
31 /* Sort alphabetically, except for "any". */
32 static gint
m68k_cpu_list_compare(gconstpointer a
, gconstpointer b
)
34 ObjectClass
*class_a
= (ObjectClass
*)a
;
35 ObjectClass
*class_b
= (ObjectClass
*)b
;
36 const char *name_a
, *name_b
;
38 name_a
= object_class_get_name(class_a
);
39 name_b
= object_class_get_name(class_b
);
40 if (strcmp(name_a
, "any-" TYPE_M68K_CPU
) == 0) {
42 } else if (strcmp(name_b
, "any-" TYPE_M68K_CPU
) == 0) {
45 return strcasecmp(name_a
, name_b
);
49 static void m68k_cpu_list_entry(gpointer data
, gpointer user_data
)
51 ObjectClass
*c
= data
;
55 typename
= object_class_get_name(c
);
56 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_M68K_CPU
));
57 qemu_printf("%s\n", name
);
61 void m68k_cpu_list(void)
65 list
= object_class_get_list(TYPE_M68K_CPU
, false);
66 list
= g_slist_sort(list
, m68k_cpu_list_compare
);
67 g_slist_foreach(list
, m68k_cpu_list_entry
, NULL
);
71 static int cf_fpu_gdb_get_reg(CPUM68KState
*env
, uint8_t *mem_buf
, int n
)
75 stfq_p(mem_buf
, floatx80_to_float64(env
->fregs
[n
].d
, &s
));
79 case 8: /* fpcontrol */
80 stl_be_p(mem_buf
, env
->fpcr
);
82 case 9: /* fpstatus */
83 stl_be_p(mem_buf
, env
->fpsr
);
85 case 10: /* fpiar, not implemented */
86 memset(mem_buf
, 0, 4);
92 static int cf_fpu_gdb_set_reg(CPUM68KState
*env
, uint8_t *mem_buf
, int n
)
96 env
->fregs
[n
].d
= float64_to_floatx80(ldfq_p(mem_buf
), &s
);
100 case 8: /* fpcontrol */
101 cpu_m68k_set_fpcr(env
, ldl_p(mem_buf
));
103 case 9: /* fpstatus */
104 env
->fpsr
= ldl_p(mem_buf
);
106 case 10: /* fpiar, not implemented */
112 static int m68k_fpu_gdb_get_reg(CPUM68KState
*env
, uint8_t *mem_buf
, int n
)
115 stw_be_p(mem_buf
, env
->fregs
[n
].l
.upper
);
116 memset(mem_buf
+ 2, 0, 2);
117 stq_be_p(mem_buf
+ 4, env
->fregs
[n
].l
.lower
);
121 case 8: /* fpcontrol */
122 stl_be_p(mem_buf
, env
->fpcr
);
124 case 9: /* fpstatus */
125 stl_be_p(mem_buf
, env
->fpsr
);
127 case 10: /* fpiar, not implemented */
128 memset(mem_buf
, 0, 4);
134 static int m68k_fpu_gdb_set_reg(CPUM68KState
*env
, uint8_t *mem_buf
, int n
)
137 env
->fregs
[n
].l
.upper
= lduw_be_p(mem_buf
);
138 env
->fregs
[n
].l
.lower
= ldq_be_p(mem_buf
+ 4);
142 case 8: /* fpcontrol */
143 cpu_m68k_set_fpcr(env
, ldl_p(mem_buf
));
145 case 9: /* fpstatus */
146 env
->fpsr
= ldl_p(mem_buf
);
148 case 10: /* fpiar, not implemented */
154 void m68k_cpu_init_gdb(M68kCPU
*cpu
)
156 CPUState
*cs
= CPU(cpu
);
157 CPUM68KState
*env
= &cpu
->env
;
159 if (m68k_feature(env
, M68K_FEATURE_CF_FPU
)) {
160 gdb_register_coprocessor(cs
, cf_fpu_gdb_get_reg
, cf_fpu_gdb_set_reg
,
161 11, "cf-fp.xml", 18);
162 } else if (m68k_feature(env
, M68K_FEATURE_FPU
)) {
163 gdb_register_coprocessor(cs
, m68k_fpu_gdb_get_reg
,
164 m68k_fpu_gdb_set_reg
, 11, "m68k-fp.xml", 18);
166 /* TODO: Add [E]MAC registers. */
169 void HELPER(cf_movec_to
)(CPUM68KState
*env
, uint32_t reg
, uint32_t val
)
180 /* TODO: Implement Access Control Registers. */
185 /* TODO: Implement control registers. */
187 cpu_abort(env_cpu(env
),
188 "Unimplemented control register write 0x%x = 0x%x\n",
193 void HELPER(m68k_movec_to
)(CPUM68KState
*env
, uint32_t reg
, uint32_t val
)
216 env
->mmu
.mmusr
= val
;
225 env
->sp
[M68K_USP
] = val
;
228 env
->sp
[M68K_SSP
] = val
;
231 env
->sp
[M68K_ISP
] = val
;
233 /* MC68040/MC68LC040 */
235 env
->mmu
.ttr
[M68K_ITTR0
] = val
;
238 env
->mmu
.ttr
[M68K_ITTR1
] = val
;
241 env
->mmu
.ttr
[M68K_DTTR0
] = val
;
244 env
->mmu
.ttr
[M68K_DTTR1
] = val
;
247 cpu_abort(env_cpu(env
),
248 "Unimplemented control register write 0x%x = 0x%x\n",
252 uint32_t HELPER(m68k_movec_from
)(CPUM68KState
*env
, uint32_t reg
)
269 return env
->mmu
.mmusr
;
273 return env
->sp
[M68K_USP
];
275 return env
->sp
[M68K_SSP
];
277 return env
->sp
[M68K_ISP
];
278 /* MC68040/MC68LC040 */
282 return env
->mmu
.ttr
[M68K_ITTR0
];
284 return env
->mmu
.ttr
[M68K_ITTR1
];
286 return env
->mmu
.ttr
[M68K_DTTR0
];
288 return env
->mmu
.ttr
[M68K_DTTR1
];
290 cpu_abort(env_cpu(env
), "Unimplemented control register read 0x%x\n",
294 void HELPER(set_macsr
)(CPUM68KState
*env
, uint32_t val
)
301 if ((env
->macsr
^ val
) & (MACSR_FI
| MACSR_SU
)) {
302 for (i
= 0; i
< 4; i
++) {
303 regval
= env
->macc
[i
];
304 exthigh
= regval
>> 40;
305 if (env
->macsr
& MACSR_FI
) {
310 extlow
= regval
>> 32;
312 if (env
->macsr
& MACSR_FI
) {
313 regval
= (((uint64_t)acc
) << 8) | extlow
;
314 regval
|= ((int64_t)exthigh
) << 40;
315 } else if (env
->macsr
& MACSR_SU
) {
316 regval
= acc
| (((int64_t)extlow
) << 32);
317 regval
|= ((int64_t)exthigh
) << 40;
319 regval
= acc
| (((uint64_t)extlow
) << 32);
320 regval
|= ((uint64_t)(uint8_t)exthigh
) << 40;
322 env
->macc
[i
] = regval
;
328 void m68k_switch_sp(CPUM68KState
*env
)
332 env
->sp
[env
->current_sp
] = env
->aregs
[7];
333 if (m68k_feature(env
, M68K_FEATURE_M68000
)) {
334 if (env
->sr
& SR_S
) {
335 if (env
->sr
& SR_M
) {
344 new_sp
= (env
->sr
& SR_S
&& env
->cacr
& M68K_CACR_EUSP
)
345 ? M68K_SSP
: M68K_USP
;
347 env
->aregs
[7] = env
->sp
[new_sp
];
348 env
->current_sp
= new_sp
;
351 #if !defined(CONFIG_USER_ONLY)
352 /* MMU: 68040 only */
354 static void print_address_zone(uint32_t logical
, uint32_t physical
,
355 uint32_t size
, int attr
)
357 qemu_printf("%08x - %08x -> %08x - %08x %c ",
358 logical
, logical
+ size
- 1,
359 physical
, physical
+ size
- 1,
360 attr
& 4 ? 'W' : '-');
363 qemu_printf("(%d KiB)\n", size
);
367 qemu_printf("(%d MiB)\n", size
);
370 qemu_printf("(%d GiB)\n", size
);
375 static void dump_address_map(CPUM68KState
*env
, uint32_t root_pointer
)
378 int tic_size
, tic_shift
;
380 uint32_t tia
, tib
, tic
;
381 uint32_t logical
= 0xffffffff, physical
= 0xffffffff;
382 uint32_t first_logical
= 0xffffffff, first_physical
= 0xffffffff;
383 uint32_t last_logical
, last_physical
;
385 int last_attr
= -1, attr
= -1;
386 CPUState
*cs
= env_cpu(env
);
389 if (env
->mmu
.tcr
& M68K_TCR_PAGE_8K
) {
393 tib_mask
= M68K_8K_PAGE_MASK
;
398 tib_mask
= M68K_4K_PAGE_MASK
;
400 for (i
= 0; i
< M68K_ROOT_POINTER_ENTRIES
; i
++) {
401 tia
= address_space_ldl(cs
->as
, M68K_POINTER_BASE(root_pointer
) + i
* 4,
402 MEMTXATTRS_UNSPECIFIED
, &txres
);
403 if (txres
!= MEMTX_OK
|| !M68K_UDT_VALID(tia
)) {
406 for (j
= 0; j
< M68K_ROOT_POINTER_ENTRIES
; j
++) {
407 tib
= address_space_ldl(cs
->as
, M68K_POINTER_BASE(tia
) + j
* 4,
408 MEMTXATTRS_UNSPECIFIED
, &txres
);
409 if (txres
!= MEMTX_OK
|| !M68K_UDT_VALID(tib
)) {
412 for (k
= 0; k
< tic_size
; k
++) {
413 tic
= address_space_ldl(cs
->as
, (tib
& tib_mask
) + k
* 4,
414 MEMTXATTRS_UNSPECIFIED
, &txres
);
415 if (txres
!= MEMTX_OK
|| !M68K_PDT_VALID(tic
)) {
418 if (M68K_PDT_INDIRECT(tic
)) {
419 tic
= address_space_ldl(cs
->as
, M68K_INDIRECT_POINTER(tic
),
420 MEMTXATTRS_UNSPECIFIED
, &txres
);
421 if (txres
!= MEMTX_OK
) {
426 last_logical
= logical
;
427 logical
= (i
<< M68K_TTS_ROOT_SHIFT
) |
428 (j
<< M68K_TTS_POINTER_SHIFT
) |
431 last_physical
= physical
;
432 physical
= tic
& ~((1 << tic_shift
) - 1);
435 attr
= tic
& ((1 << tic_shift
) - 1);
437 if ((logical
!= (last_logical
+ (1 << tic_shift
))) ||
438 (physical
!= (last_physical
+ (1 << tic_shift
))) ||
439 (attr
& 4) != (last_attr
& 4)) {
441 if (first_logical
!= 0xffffffff) {
442 size
= last_logical
+ (1 << tic_shift
) -
444 print_address_zone(first_logical
,
445 first_physical
, size
, last_attr
);
447 first_logical
= logical
;
448 first_physical
= physical
;
453 if (first_logical
!= logical
|| (attr
& 4) != (last_attr
& 4)) {
454 size
= logical
+ (1 << tic_shift
) - first_logical
;
455 print_address_zone(first_logical
, first_physical
, size
, last_attr
);
459 #define DUMP_CACHEFLAGS(a) \
460 switch (a & M68K_DESC_CACHEMODE) { \
461 case M68K_DESC_CM_WRTHRU: /* cachable, write-through */ \
464 case M68K_DESC_CM_COPYBK: /* cachable, copyback */ \
467 case M68K_DESC_CM_SERIAL: /* noncachable, serialized */ \
470 case M68K_DESC_CM_NCACHE: /* noncachable */ \
475 static void dump_ttr(uint32_t ttr
)
477 if ((ttr
& M68K_TTR_ENABLED
) == 0) {
478 qemu_printf("disabled\n");
481 qemu_printf("Base: 0x%08x Mask: 0x%08x Control: ",
482 ttr
& M68K_TTR_ADDR_BASE
,
483 (ttr
& M68K_TTR_ADDR_MASK
) << M68K_TTR_ADDR_MASK_SHIFT
);
484 switch (ttr
& M68K_TTR_SFIELD
) {
485 case M68K_TTR_SFIELD_USER
:
488 case M68K_TTR_SFIELD_SUPER
:
495 DUMP_CACHEFLAGS(ttr
);
496 if (ttr
& M68K_DESC_WRITEPROT
) {
501 qemu_printf(" U: %d\n", (ttr
& M68K_DESC_USERATTR
) >>
502 M68K_DESC_USERATTR_SHIFT
);
505 void dump_mmu(CPUM68KState
*env
)
507 if ((env
->mmu
.tcr
& M68K_TCR_ENABLED
) == 0) {
508 qemu_printf("Translation disabled\n");
511 qemu_printf("Page Size: ");
512 if (env
->mmu
.tcr
& M68K_TCR_PAGE_8K
) {
513 qemu_printf("8kB\n");
515 qemu_printf("4kB\n");
518 qemu_printf("MMUSR: ");
519 if (env
->mmu
.mmusr
& M68K_MMU_B_040
) {
520 qemu_printf("BUS ERROR\n");
522 qemu_printf("Phy=%08x Flags: ", env
->mmu
.mmusr
& 0xfffff000);
523 /* flags found on the page descriptor */
524 if (env
->mmu
.mmusr
& M68K_MMU_G_040
) {
525 qemu_printf("G"); /* Global */
529 if (env
->mmu
.mmusr
& M68K_MMU_S_040
) {
530 qemu_printf("S"); /* Supervisor */
534 if (env
->mmu
.mmusr
& M68K_MMU_M_040
) {
535 qemu_printf("M"); /* Modified */
539 if (env
->mmu
.mmusr
& M68K_MMU_WP_040
) {
540 qemu_printf("W"); /* Write protect */
544 if (env
->mmu
.mmusr
& M68K_MMU_T_040
) {
545 qemu_printf("T"); /* Transparent */
549 if (env
->mmu
.mmusr
& M68K_MMU_R_040
) {
550 qemu_printf("R"); /* Resident */
554 qemu_printf(" Cache: ");
555 DUMP_CACHEFLAGS(env
->mmu
.mmusr
);
556 qemu_printf(" U: %d\n", (env
->mmu
.mmusr
>> 8) & 3);
560 qemu_printf("ITTR0: ");
561 dump_ttr(env
->mmu
.ttr
[M68K_ITTR0
]);
562 qemu_printf("ITTR1: ");
563 dump_ttr(env
->mmu
.ttr
[M68K_ITTR1
]);
564 qemu_printf("DTTR0: ");
565 dump_ttr(env
->mmu
.ttr
[M68K_DTTR0
]);
566 qemu_printf("DTTR1: ");
567 dump_ttr(env
->mmu
.ttr
[M68K_DTTR1
]);
569 qemu_printf("SRP: 0x%08x\n", env
->mmu
.srp
);
570 dump_address_map(env
, env
->mmu
.srp
);
572 qemu_printf("URP: 0x%08x\n", env
->mmu
.urp
);
573 dump_address_map(env
, env
->mmu
.urp
);
576 static int check_TTR(uint32_t ttr
, int *prot
, target_ulong addr
,
581 /* check if transparent translation is enabled */
582 if ((ttr
& M68K_TTR_ENABLED
) == 0) {
586 /* check mode access */
587 switch (ttr
& M68K_TTR_SFIELD
) {
588 case M68K_TTR_SFIELD_USER
:
589 /* match only if user */
590 if ((access_type
& ACCESS_SUPER
) != 0) {
594 case M68K_TTR_SFIELD_SUPER
:
595 /* match only if supervisor */
596 if ((access_type
& ACCESS_SUPER
) == 0) {
601 /* all other values disable mode matching (FC2) */
605 /* check address matching */
607 base
= ttr
& M68K_TTR_ADDR_BASE
;
608 mask
= (ttr
& M68K_TTR_ADDR_MASK
) ^ M68K_TTR_ADDR_MASK
;
609 mask
<<= M68K_TTR_ADDR_MASK_SHIFT
;
611 if ((addr
& mask
) != (base
& mask
)) {
615 *prot
= PAGE_READ
| PAGE_EXEC
;
616 if ((ttr
& M68K_DESC_WRITEPROT
) == 0) {
623 static int get_physical_address(CPUM68KState
*env
, hwaddr
*physical
,
624 int *prot
, target_ulong address
,
625 int access_type
, target_ulong
*page_size
)
627 CPUState
*cs
= env_cpu(env
);
630 target_ulong page_mask
;
631 bool debug
= access_type
& ACCESS_DEBUG
;
636 /* Transparent Translation (physical = logical) */
637 for (i
= 0; i
< M68K_MAX_TTR
; i
++) {
638 if (check_TTR(env
->mmu
.TTR(access_type
, i
),
639 prot
, address
, access_type
)) {
640 if (access_type
& ACCESS_PTEST
) {
641 /* Transparent Translation Register bit */
642 env
->mmu
.mmusr
= M68K_MMU_T_040
| M68K_MMU_R_040
;
644 *physical
= address
& TARGET_PAGE_MASK
;
645 *page_size
= TARGET_PAGE_SIZE
;
650 /* Page Table Root Pointer */
651 *prot
= PAGE_READ
| PAGE_WRITE
;
652 if (access_type
& ACCESS_CODE
) {
655 if (access_type
& ACCESS_SUPER
) {
662 entry
= M68K_POINTER_BASE(next
) | M68K_ROOT_INDEX(address
);
664 next
= address_space_ldl(cs
->as
, entry
, MEMTXATTRS_UNSPECIFIED
, &txres
);
665 if (txres
!= MEMTX_OK
) {
668 if (!M68K_UDT_VALID(next
)) {
671 if (!(next
& M68K_DESC_USED
) && !debug
) {
672 address_space_stl(cs
->as
, entry
, next
| M68K_DESC_USED
,
673 MEMTXATTRS_UNSPECIFIED
, &txres
);
674 if (txres
!= MEMTX_OK
) {
678 if (next
& M68K_DESC_WRITEPROT
) {
679 if (access_type
& ACCESS_PTEST
) {
680 env
->mmu
.mmusr
|= M68K_MMU_WP_040
;
682 *prot
&= ~PAGE_WRITE
;
683 if (access_type
& ACCESS_STORE
) {
689 entry
= M68K_POINTER_BASE(next
) | M68K_POINTER_INDEX(address
);
691 next
= address_space_ldl(cs
->as
, entry
, MEMTXATTRS_UNSPECIFIED
, &txres
);
692 if (txres
!= MEMTX_OK
) {
695 if (!M68K_UDT_VALID(next
)) {
698 if (!(next
& M68K_DESC_USED
) && !debug
) {
699 address_space_stl(cs
->as
, entry
, next
| M68K_DESC_USED
,
700 MEMTXATTRS_UNSPECIFIED
, &txres
);
701 if (txres
!= MEMTX_OK
) {
705 if (next
& M68K_DESC_WRITEPROT
) {
706 if (access_type
& ACCESS_PTEST
) {
707 env
->mmu
.mmusr
|= M68K_MMU_WP_040
;
709 *prot
&= ~PAGE_WRITE
;
710 if (access_type
& ACCESS_STORE
) {
716 if (env
->mmu
.tcr
& M68K_TCR_PAGE_8K
) {
717 entry
= M68K_8K_PAGE_BASE(next
) | M68K_8K_PAGE_INDEX(address
);
719 entry
= M68K_4K_PAGE_BASE(next
) | M68K_4K_PAGE_INDEX(address
);
722 next
= address_space_ldl(cs
->as
, entry
, MEMTXATTRS_UNSPECIFIED
, &txres
);
723 if (txres
!= MEMTX_OK
) {
727 if (!M68K_PDT_VALID(next
)) {
730 if (M68K_PDT_INDIRECT(next
)) {
731 next
= address_space_ldl(cs
->as
, M68K_INDIRECT_POINTER(next
),
732 MEMTXATTRS_UNSPECIFIED
, &txres
);
733 if (txres
!= MEMTX_OK
) {
737 if (access_type
& ACCESS_STORE
) {
738 if (next
& M68K_DESC_WRITEPROT
) {
739 if (!(next
& M68K_DESC_USED
) && !debug
) {
740 address_space_stl(cs
->as
, entry
, next
| M68K_DESC_USED
,
741 MEMTXATTRS_UNSPECIFIED
, &txres
);
742 if (txres
!= MEMTX_OK
) {
746 } else if ((next
& (M68K_DESC_MODIFIED
| M68K_DESC_USED
)) !=
747 (M68K_DESC_MODIFIED
| M68K_DESC_USED
) && !debug
) {
748 address_space_stl(cs
->as
, entry
,
749 next
| (M68K_DESC_MODIFIED
| M68K_DESC_USED
),
750 MEMTXATTRS_UNSPECIFIED
, &txres
);
751 if (txres
!= MEMTX_OK
) {
756 if (!(next
& M68K_DESC_USED
) && !debug
) {
757 address_space_stl(cs
->as
, entry
, next
| M68K_DESC_USED
,
758 MEMTXATTRS_UNSPECIFIED
, &txres
);
759 if (txres
!= MEMTX_OK
) {
765 if (env
->mmu
.tcr
& M68K_TCR_PAGE_8K
) {
770 *page_size
= 1 << page_bits
;
771 page_mask
= ~(*page_size
- 1);
772 *physical
= next
& page_mask
;
774 if (access_type
& ACCESS_PTEST
) {
775 env
->mmu
.mmusr
|= next
& M68K_MMU_SR_MASK_040
;
776 env
->mmu
.mmusr
|= *physical
& 0xfffff000;
777 env
->mmu
.mmusr
|= M68K_MMU_R_040
;
780 if (next
& M68K_DESC_WRITEPROT
) {
781 *prot
&= ~PAGE_WRITE
;
782 if (access_type
& ACCESS_STORE
) {
786 if (next
& M68K_DESC_SUPERONLY
) {
787 if ((access_type
& ACCESS_SUPER
) == 0) {
796 * A page table load/store failed. TODO: we should really raise a
797 * suitable guest fault here if this is not a debug access.
798 * For now just return that the translation failed.
803 hwaddr
m68k_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
805 M68kCPU
*cpu
= M68K_CPU(cs
);
806 CPUM68KState
*env
= &cpu
->env
;
810 target_ulong page_size
;
812 if ((env
->mmu
.tcr
& M68K_TCR_ENABLED
) == 0) {
817 access_type
= ACCESS_DATA
| ACCESS_DEBUG
;
818 if (env
->sr
& SR_S
) {
819 access_type
|= ACCESS_SUPER
;
821 if (get_physical_address(env
, &phys_addr
, &prot
,
822 addr
, access_type
, &page_size
) != 0) {
829 * Notify CPU of a pending interrupt. Prioritization and vectoring should
830 * be handled by the interrupt controller. Real hardware only requests
831 * the vector when the interrupt is acknowledged by the CPU. For
832 * simplicity we calculate it when the interrupt is signalled.
834 void m68k_set_irq_level(M68kCPU
*cpu
, int level
, uint8_t vector
)
836 CPUState
*cs
= CPU(cpu
);
837 CPUM68KState
*env
= &cpu
->env
;
839 env
->pending_level
= level
;
840 env
->pending_vector
= vector
;
842 cpu_interrupt(cs
, CPU_INTERRUPT_HARD
);
844 cpu_reset_interrupt(cs
, CPU_INTERRUPT_HARD
);
850 bool m68k_cpu_tlb_fill(CPUState
*cs
, vaddr address
, int size
,
851 MMUAccessType qemu_access_type
, int mmu_idx
,
852 bool probe
, uintptr_t retaddr
)
854 M68kCPU
*cpu
= M68K_CPU(cs
);
855 CPUM68KState
*env
= &cpu
->env
;
857 #ifndef CONFIG_USER_ONLY
862 target_ulong page_size
;
864 if ((env
->mmu
.tcr
& M68K_TCR_ENABLED
) == 0) {
866 tlb_set_page(cs
, address
& TARGET_PAGE_MASK
,
867 address
& TARGET_PAGE_MASK
,
868 PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
,
869 mmu_idx
, TARGET_PAGE_SIZE
);
873 if (qemu_access_type
== MMU_INST_FETCH
) {
874 access_type
= ACCESS_CODE
;
876 access_type
= ACCESS_DATA
;
877 if (qemu_access_type
== MMU_DATA_STORE
) {
878 access_type
|= ACCESS_STORE
;
881 if (mmu_idx
!= MMU_USER_IDX
) {
882 access_type
|= ACCESS_SUPER
;
885 ret
= get_physical_address(&cpu
->env
, &physical
, &prot
,
886 address
, access_type
, &page_size
);
887 if (likely(ret
== 0)) {
888 address
&= TARGET_PAGE_MASK
;
889 physical
+= address
& (page_size
- 1);
890 tlb_set_page(cs
, address
, physical
,
891 prot
, mmu_idx
, TARGET_PAGE_SIZE
);
900 env
->mmu
.ssw
= M68K_ATC_040
;
903 env
->mmu
.ssw
|= M68K_BA_SIZE_BYTE
;
906 env
->mmu
.ssw
|= M68K_BA_SIZE_WORD
;
909 env
->mmu
.ssw
|= M68K_BA_SIZE_LONG
;
912 if (access_type
& ACCESS_SUPER
) {
913 env
->mmu
.ssw
|= M68K_TM_040_SUPER
;
915 if (access_type
& ACCESS_CODE
) {
916 env
->mmu
.ssw
|= M68K_TM_040_CODE
;
918 env
->mmu
.ssw
|= M68K_TM_040_DATA
;
920 if (!(access_type
& ACCESS_STORE
)) {
921 env
->mmu
.ssw
|= M68K_RW_040
;
925 cs
->exception_index
= EXCP_ACCESS
;
926 env
->mmu
.ar
= address
;
927 cpu_loop_exit_restore(cs
, retaddr
);
930 uint32_t HELPER(bitrev
)(uint32_t x
)
932 x
= ((x
>> 1) & 0x55555555u
) | ((x
<< 1) & 0xaaaaaaaau
);
933 x
= ((x
>> 2) & 0x33333333u
) | ((x
<< 2) & 0xccccccccu
);
934 x
= ((x
>> 4) & 0x0f0f0f0fu
) | ((x
<< 4) & 0xf0f0f0f0u
);
938 uint32_t HELPER(ff1
)(uint32_t x
)
946 uint32_t HELPER(sats
)(uint32_t val
, uint32_t v
)
948 /* The result has the opposite sign to the original value. */
949 if ((int32_t)v
< 0) {
950 val
= (((int32_t)val
) >> 31) ^ SIGNBIT
;
955 void cpu_m68k_set_sr(CPUM68KState
*env
, uint32_t sr
)
957 env
->sr
= sr
& 0xffe0;
958 cpu_m68k_set_ccr(env
, sr
);
962 void HELPER(set_sr
)(CPUM68KState
*env
, uint32_t val
)
964 cpu_m68k_set_sr(env
, val
);
969 * FIXME: The MAC unit implementation is a bit of a mess. Some helpers
970 * take values, others take register numbers and manipulate the contents
973 void HELPER(mac_move
)(CPUM68KState
*env
, uint32_t dest
, uint32_t src
)
976 env
->macc
[dest
] = env
->macc
[src
];
977 mask
= MACSR_PAV0
<< dest
;
978 if (env
->macsr
& (MACSR_PAV0
<< src
))
984 uint64_t HELPER(macmuls
)(CPUM68KState
*env
, uint32_t op1
, uint32_t op2
)
989 product
= (uint64_t)op1
* op2
;
990 res
= (product
<< 24) >> 24;
991 if (res
!= product
) {
992 env
->macsr
|= MACSR_V
;
993 if (env
->macsr
& MACSR_OMC
) {
994 /* Make sure the accumulate operation overflows. */
1004 uint64_t HELPER(macmulu
)(CPUM68KState
*env
, uint32_t op1
, uint32_t op2
)
1008 product
= (uint64_t)op1
* op2
;
1009 if (product
& (0xffffffull
<< 40)) {
1010 env
->macsr
|= MACSR_V
;
1011 if (env
->macsr
& MACSR_OMC
) {
1012 /* Make sure the accumulate operation overflows. */
1013 product
= 1ll << 50;
1015 product
&= ((1ull << 40) - 1);
1021 uint64_t HELPER(macmulf
)(CPUM68KState
*env
, uint32_t op1
, uint32_t op2
)
1026 product
= (uint64_t)op1
* op2
;
1027 if (env
->macsr
& MACSR_RT
) {
1028 remainder
= product
& 0xffffff;
1030 if (remainder
> 0x800000)
1032 else if (remainder
== 0x800000)
1033 product
+= (product
& 1);
1040 void HELPER(macsats
)(CPUM68KState
*env
, uint32_t acc
)
1044 tmp
= env
->macc
[acc
];
1045 result
= ((tmp
<< 16) >> 16);
1046 if (result
!= tmp
) {
1047 env
->macsr
|= MACSR_V
;
1049 if (env
->macsr
& MACSR_V
) {
1050 env
->macsr
|= MACSR_PAV0
<< acc
;
1051 if (env
->macsr
& MACSR_OMC
) {
1053 * The result is saturated to 32 bits, despite overflow occurring
1054 * at 48 bits. Seems weird, but that's what the hardware docs
1057 result
= (result
>> 63) ^ 0x7fffffff;
1060 env
->macc
[acc
] = result
;
1063 void HELPER(macsatu
)(CPUM68KState
*env
, uint32_t acc
)
1067 val
= env
->macc
[acc
];
1068 if (val
& (0xffffull
<< 48)) {
1069 env
->macsr
|= MACSR_V
;
1071 if (env
->macsr
& MACSR_V
) {
1072 env
->macsr
|= MACSR_PAV0
<< acc
;
1073 if (env
->macsr
& MACSR_OMC
) {
1074 if (val
> (1ull << 53))
1077 val
= (1ull << 48) - 1;
1079 val
&= ((1ull << 48) - 1);
1082 env
->macc
[acc
] = val
;
1085 void HELPER(macsatf
)(CPUM68KState
*env
, uint32_t acc
)
1090 sum
= env
->macc
[acc
];
1091 result
= (sum
<< 16) >> 16;
1092 if (result
!= sum
) {
1093 env
->macsr
|= MACSR_V
;
1095 if (env
->macsr
& MACSR_V
) {
1096 env
->macsr
|= MACSR_PAV0
<< acc
;
1097 if (env
->macsr
& MACSR_OMC
) {
1098 result
= (result
>> 63) ^ 0x7fffffffffffll
;
1101 env
->macc
[acc
] = result
;
1104 void HELPER(mac_set_flags
)(CPUM68KState
*env
, uint32_t acc
)
1107 val
= env
->macc
[acc
];
1109 env
->macsr
|= MACSR_Z
;
1110 } else if (val
& (1ull << 47)) {
1111 env
->macsr
|= MACSR_N
;
1113 if (env
->macsr
& (MACSR_PAV0
<< acc
)) {
1114 env
->macsr
|= MACSR_V
;
1116 if (env
->macsr
& MACSR_FI
) {
1117 val
= ((int64_t)val
) >> 40;
1118 if (val
!= 0 && val
!= -1)
1119 env
->macsr
|= MACSR_EV
;
1120 } else if (env
->macsr
& MACSR_SU
) {
1121 val
= ((int64_t)val
) >> 32;
1122 if (val
!= 0 && val
!= -1)
1123 env
->macsr
|= MACSR_EV
;
1125 if ((val
>> 32) != 0)
1126 env
->macsr
|= MACSR_EV
;
1130 #define EXTSIGN(val, index) ( \
1131 (index == 0) ? (int8_t)(val) : ((index == 1) ? (int16_t)(val) : (val)) \
1134 #define COMPUTE_CCR(op, x, n, z, v, c) { \
1137 /* Everything in place. */ \
1144 src1 = EXTSIGN(res - src2, op - CC_OP_ADDB); \
1147 v = (res ^ src1) & ~(src1 ^ src2); \
1154 src1 = EXTSIGN(res + src2, op - CC_OP_SUBB); \
1157 v = (res ^ src1) & (src1 ^ src2); \
1164 res = EXTSIGN(src1 - src2, op - CC_OP_CMPB); \
1168 v = (res ^ src1) & (src1 ^ src2); \
1175 cpu_abort(env_cpu(env), "Bad CC_OP %d", op); \
1179 uint32_t cpu_m68k_get_ccr(CPUM68KState
*env
)
1181 uint32_t x
, c
, n
, z
, v
;
1182 uint32_t res
, src1
, src2
;
1190 COMPUTE_CCR(env
->cc_op
, x
, n
, z
, v
, c
);
1196 return x
* CCF_X
+ n
* CCF_N
+ z
* CCF_Z
+ v
* CCF_V
+ c
* CCF_C
;
1199 uint32_t HELPER(get_ccr
)(CPUM68KState
*env
)
1201 return cpu_m68k_get_ccr(env
);
1204 void cpu_m68k_set_ccr(CPUM68KState
*env
, uint32_t ccr
)
1206 env
->cc_x
= (ccr
& CCF_X
? 1 : 0);
1207 env
->cc_n
= (ccr
& CCF_N
? -1 : 0);
1208 env
->cc_z
= (ccr
& CCF_Z
? 0 : 1);
1209 env
->cc_v
= (ccr
& CCF_V
? -1 : 0);
1210 env
->cc_c
= (ccr
& CCF_C
? 1 : 0);
1211 env
->cc_op
= CC_OP_FLAGS
;
1214 void HELPER(set_ccr
)(CPUM68KState
*env
, uint32_t ccr
)
1216 cpu_m68k_set_ccr(env
, ccr
);
1219 void HELPER(flush_flags
)(CPUM68KState
*env
, uint32_t cc_op
)
1221 uint32_t res
, src1
, src2
;
1223 COMPUTE_CCR(cc_op
, env
->cc_x
, env
->cc_n
, env
->cc_z
, env
->cc_v
, env
->cc_c
);
1224 env
->cc_op
= CC_OP_FLAGS
;
1227 uint32_t HELPER(get_macf
)(CPUM68KState
*env
, uint64_t val
)
1232 if (env
->macsr
& MACSR_SU
) {
1233 /* 16-bit rounding. */
1234 rem
= val
& 0xffffff;
1235 val
= (val
>> 24) & 0xffffu
;
1238 else if (rem
== 0x800000)
1240 } else if (env
->macsr
& MACSR_RT
) {
1241 /* 32-bit rounding. */
1246 else if (rem
== 0x80)
1252 if (env
->macsr
& MACSR_OMC
) {
1254 if (env
->macsr
& MACSR_SU
) {
1255 if (val
!= (uint16_t) val
) {
1256 result
= ((val
>> 63) ^ 0x7fff) & 0xffff;
1258 result
= val
& 0xffff;
1261 if (val
!= (uint32_t)val
) {
1262 result
= ((uint32_t)(val
>> 63) & 0x7fffffff);
1264 result
= (uint32_t)val
;
1268 /* No saturation. */
1269 if (env
->macsr
& MACSR_SU
) {
1270 result
= val
& 0xffff;
1272 result
= (uint32_t)val
;
1278 uint32_t HELPER(get_macs
)(uint64_t val
)
1280 if (val
== (int32_t)val
) {
1281 return (int32_t)val
;
1283 return (val
>> 61) ^ ~SIGNBIT
;
1287 uint32_t HELPER(get_macu
)(uint64_t val
)
1289 if ((val
>> 32) == 0) {
1290 return (uint32_t)val
;
1296 uint32_t HELPER(get_mac_extf
)(CPUM68KState
*env
, uint32_t acc
)
1299 val
= env
->macc
[acc
] & 0x00ff;
1300 val
|= (env
->macc
[acc
] >> 32) & 0xff00;
1301 val
|= (env
->macc
[acc
+ 1] << 16) & 0x00ff0000;
1302 val
|= (env
->macc
[acc
+ 1] >> 16) & 0xff000000;
1306 uint32_t HELPER(get_mac_exti
)(CPUM68KState
*env
, uint32_t acc
)
1309 val
= (env
->macc
[acc
] >> 32) & 0xffff;
1310 val
|= (env
->macc
[acc
+ 1] >> 16) & 0xffff0000;
1314 void HELPER(set_mac_extf
)(CPUM68KState
*env
, uint32_t val
, uint32_t acc
)
1318 res
= env
->macc
[acc
] & 0xffffffff00ull
;
1319 tmp
= (int16_t)(val
& 0xff00);
1320 res
|= ((int64_t)tmp
) << 32;
1322 env
->macc
[acc
] = res
;
1323 res
= env
->macc
[acc
+ 1] & 0xffffffff00ull
;
1324 tmp
= (val
& 0xff000000);
1325 res
|= ((int64_t)tmp
) << 16;
1326 res
|= (val
>> 16) & 0xff;
1327 env
->macc
[acc
+ 1] = res
;
1330 void HELPER(set_mac_exts
)(CPUM68KState
*env
, uint32_t val
, uint32_t acc
)
1334 res
= (uint32_t)env
->macc
[acc
];
1336 res
|= ((int64_t)tmp
) << 32;
1337 env
->macc
[acc
] = res
;
1338 res
= (uint32_t)env
->macc
[acc
+ 1];
1339 tmp
= val
& 0xffff0000;
1340 res
|= (int64_t)tmp
<< 16;
1341 env
->macc
[acc
+ 1] = res
;
1344 void HELPER(set_mac_extu
)(CPUM68KState
*env
, uint32_t val
, uint32_t acc
)
1347 res
= (uint32_t)env
->macc
[acc
];
1348 res
|= ((uint64_t)(val
& 0xffff)) << 32;
1349 env
->macc
[acc
] = res
;
1350 res
= (uint32_t)env
->macc
[acc
+ 1];
1351 res
|= (uint64_t)(val
& 0xffff0000) << 16;
1352 env
->macc
[acc
+ 1] = res
;
1355 #if defined(CONFIG_SOFTMMU)
1356 void HELPER(ptest
)(CPUM68KState
*env
, uint32_t addr
, uint32_t is_read
)
1362 target_ulong page_size
;
1364 access_type
= ACCESS_PTEST
;
1366 access_type
|= ACCESS_SUPER
;
1368 if ((env
->dfc
& 3) == 2) {
1369 access_type
|= ACCESS_CODE
;
1372 access_type
|= ACCESS_STORE
;
1377 ret
= get_physical_address(env
, &physical
, &prot
, addr
,
1378 access_type
, &page_size
);
1380 addr
&= TARGET_PAGE_MASK
;
1381 physical
+= addr
& (page_size
- 1);
1382 tlb_set_page(env_cpu(env
), addr
, physical
,
1383 prot
, access_type
& ACCESS_SUPER
?
1384 MMU_KERNEL_IDX
: MMU_USER_IDX
, page_size
);
1388 void HELPER(pflush
)(CPUM68KState
*env
, uint32_t addr
, uint32_t opmode
)
1390 CPUState
*cs
= env_cpu(env
);
1393 case 0: /* Flush page entry if not global */
1394 case 1: /* Flush page entry */
1395 tlb_flush_page(cs
, addr
);
1397 case 2: /* Flush all except global entries */
1400 case 3: /* Flush all entries */
1406 void HELPER(reset
)(CPUM68KState
*env
)
1408 /* FIXME: reset all except CPU */