Merge remote-tracking branch 'remotes/dgilbert-gitlab/tags/pull-migration-20210726a...
[qemu/armbru.git] / hw / xtensa / xtfpga.c
blob17f087b39516f947786b76577e40a98ac5ea252b
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "qemu/osdep.h"
29 #include "qemu/units.h"
30 #include "qapi/error.h"
31 #include "cpu.h"
32 #include "sysemu/sysemu.h"
33 #include "hw/boards.h"
34 #include "hw/loader.h"
35 #include "hw/qdev-properties.h"
36 #include "elf.h"
37 #include "exec/memory.h"
38 #include "hw/char/serial.h"
39 #include "net/net.h"
40 #include "hw/sysbus.h"
41 #include "hw/block/flash.h"
42 #include "chardev/char.h"
43 #include "sysemu/device_tree.h"
44 #include "sysemu/reset.h"
45 #include "sysemu/runstate.h"
46 #include "qemu/error-report.h"
47 #include "qemu/option.h"
48 #include "bootparam.h"
49 #include "xtensa_memory.h"
50 #include "hw/xtensa/mx_pic.h"
51 #include "migration/vmstate.h"
53 typedef struct XtfpgaFlashDesc {
54 hwaddr base;
55 size_t size;
56 size_t boot_base;
57 size_t sector_size;
58 } XtfpgaFlashDesc;
60 typedef struct XtfpgaBoardDesc {
61 const XtfpgaFlashDesc *flash;
62 size_t sram_size;
63 const hwaddr *io;
64 } XtfpgaBoardDesc;
66 typedef struct XtfpgaFpgaState {
67 MemoryRegion iomem;
68 uint32_t freq;
69 uint32_t leds;
70 uint32_t switches;
71 } XtfpgaFpgaState;
73 static void xtfpga_fpga_reset(void *opaque)
75 XtfpgaFpgaState *s = opaque;
77 s->leds = 0;
78 s->switches = 0;
81 static uint64_t xtfpga_fpga_read(void *opaque, hwaddr addr,
82 unsigned size)
84 XtfpgaFpgaState *s = opaque;
86 switch (addr) {
87 case 0x0: /*build date code*/
88 return 0x09272011;
90 case 0x4: /*processor clock frequency, Hz*/
91 return s->freq;
93 case 0x8: /*LEDs (off = 0, on = 1)*/
94 return s->leds;
96 case 0xc: /*DIP switches (off = 0, on = 1)*/
97 return s->switches;
99 return 0;
102 static void xtfpga_fpga_write(void *opaque, hwaddr addr,
103 uint64_t val, unsigned size)
105 XtfpgaFpgaState *s = opaque;
107 switch (addr) {
108 case 0x8: /*LEDs (off = 0, on = 1)*/
109 s->leds = val;
110 break;
112 case 0x10: /*board reset*/
113 if (val == 0xdead) {
114 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
116 break;
120 static const MemoryRegionOps xtfpga_fpga_ops = {
121 .read = xtfpga_fpga_read,
122 .write = xtfpga_fpga_write,
123 .endianness = DEVICE_NATIVE_ENDIAN,
126 static XtfpgaFpgaState *xtfpga_fpga_init(MemoryRegion *address_space,
127 hwaddr base, uint32_t freq)
129 XtfpgaFpgaState *s = g_malloc(sizeof(XtfpgaFpgaState));
131 memory_region_init_io(&s->iomem, NULL, &xtfpga_fpga_ops, s,
132 "xtfpga.fpga", 0x10000);
133 memory_region_add_subregion(address_space, base, &s->iomem);
134 s->freq = freq;
135 xtfpga_fpga_reset(s);
136 qemu_register_reset(xtfpga_fpga_reset, s);
137 return s;
140 static void xtfpga_net_init(MemoryRegion *address_space,
141 hwaddr base,
142 hwaddr descriptors,
143 hwaddr buffers,
144 qemu_irq irq, NICInfo *nd)
146 DeviceState *dev;
147 SysBusDevice *s;
148 MemoryRegion *ram;
150 dev = qdev_new("open_eth");
151 qdev_set_nic_properties(dev, nd);
153 s = SYS_BUS_DEVICE(dev);
154 sysbus_realize_and_unref(s, &error_fatal);
155 sysbus_connect_irq(s, 0, irq);
156 memory_region_add_subregion(address_space, base,
157 sysbus_mmio_get_region(s, 0));
158 memory_region_add_subregion(address_space, descriptors,
159 sysbus_mmio_get_region(s, 1));
161 ram = g_malloc(sizeof(*ram));
162 memory_region_init_ram_nomigrate(ram, OBJECT(s), "open_eth.ram", 16 * KiB,
163 &error_fatal);
164 vmstate_register_ram_global(ram);
165 memory_region_add_subregion(address_space, buffers, ram);
168 static PFlashCFI01 *xtfpga_flash_init(MemoryRegion *address_space,
169 const XtfpgaBoardDesc *board,
170 DriveInfo *dinfo, int be)
172 SysBusDevice *s;
173 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
175 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo));
176 qdev_prop_set_uint32(dev, "num-blocks",
177 board->flash->size / board->flash->sector_size);
178 qdev_prop_set_uint64(dev, "sector-length", board->flash->sector_size);
179 qdev_prop_set_uint8(dev, "width", 2);
180 qdev_prop_set_bit(dev, "big-endian", be);
181 qdev_prop_set_string(dev, "name", "xtfpga.io.flash");
182 s = SYS_BUS_DEVICE(dev);
183 sysbus_realize_and_unref(s, &error_fatal);
184 memory_region_add_subregion(address_space, board->flash->base,
185 sysbus_mmio_get_region(s, 0));
186 return PFLASH_CFI01(dev);
189 static uint64_t translate_phys_addr(void *opaque, uint64_t addr)
191 XtensaCPU *cpu = opaque;
193 return cpu_get_phys_page_debug(CPU(cpu), addr);
196 static void xtfpga_reset(void *opaque)
198 XtensaCPU *cpu = opaque;
200 cpu_reset(CPU(cpu));
203 static uint64_t xtfpga_io_read(void *opaque, hwaddr addr,
204 unsigned size)
206 return 0;
209 static void xtfpga_io_write(void *opaque, hwaddr addr,
210 uint64_t val, unsigned size)
214 static const MemoryRegionOps xtfpga_io_ops = {
215 .read = xtfpga_io_read,
216 .write = xtfpga_io_write,
217 .endianness = DEVICE_NATIVE_ENDIAN,
220 static void xtfpga_init(const XtfpgaBoardDesc *board, MachineState *machine)
222 #ifdef TARGET_WORDS_BIGENDIAN
223 int be = 1;
224 #else
225 int be = 0;
226 #endif
227 MemoryRegion *system_memory = get_system_memory();
228 XtensaCPU *cpu = NULL;
229 CPUXtensaState *env = NULL;
230 MemoryRegion *system_io;
231 XtensaMxPic *mx_pic = NULL;
232 qemu_irq *extints;
233 DriveInfo *dinfo;
234 PFlashCFI01 *flash = NULL;
235 const char *kernel_filename = machine->kernel_filename;
236 const char *kernel_cmdline = machine->kernel_cmdline;
237 const char *dtb_filename = machine->dtb;
238 const char *initrd_filename = machine->initrd_filename;
239 const unsigned system_io_size = 224 * MiB;
240 uint32_t freq = 10000000;
241 int n;
242 unsigned int smp_cpus = machine->smp.cpus;
244 if (smp_cpus > 1) {
245 mx_pic = xtensa_mx_pic_init(31);
246 qemu_register_reset(xtensa_mx_pic_reset, mx_pic);
248 for (n = 0; n < smp_cpus; n++) {
249 CPUXtensaState *cenv = NULL;
251 cpu = XTENSA_CPU(cpu_create(machine->cpu_type));
252 cenv = &cpu->env;
253 if (!env) {
254 env = cenv;
255 freq = env->config->clock_freq_khz * 1000;
258 if (mx_pic) {
259 MemoryRegion *mx_eri;
261 mx_eri = xtensa_mx_pic_register_cpu(mx_pic,
262 xtensa_get_extints(cenv),
263 xtensa_get_runstall(cenv));
264 memory_region_add_subregion(xtensa_get_er_region(cenv),
265 0, mx_eri);
267 cenv->sregs[PRID] = n;
268 xtensa_select_static_vectors(cenv, n != 0);
269 qemu_register_reset(xtfpga_reset, cpu);
270 /* Need MMU initialized prior to ELF loading,
271 * so that ELF gets loaded into virtual addresses
273 cpu_reset(CPU(cpu));
275 if (smp_cpus > 1) {
276 extints = xtensa_mx_pic_get_extints(mx_pic);
277 } else {
278 extints = xtensa_get_extints(env);
281 if (env) {
282 XtensaMemory sysram = env->config->sysram;
284 sysram.location[0].size = machine->ram_size;
285 xtensa_create_memory_regions(&env->config->instrom, "xtensa.instrom",
286 system_memory);
287 xtensa_create_memory_regions(&env->config->instram, "xtensa.instram",
288 system_memory);
289 xtensa_create_memory_regions(&env->config->datarom, "xtensa.datarom",
290 system_memory);
291 xtensa_create_memory_regions(&env->config->dataram, "xtensa.dataram",
292 system_memory);
293 xtensa_create_memory_regions(&sysram, "xtensa.sysram",
294 system_memory);
297 system_io = g_malloc(sizeof(*system_io));
298 memory_region_init_io(system_io, NULL, &xtfpga_io_ops, NULL, "xtfpga.io",
299 system_io_size);
300 memory_region_add_subregion(system_memory, board->io[0], system_io);
301 if (board->io[1]) {
302 MemoryRegion *io = g_malloc(sizeof(*io));
304 memory_region_init_alias(io, NULL, "xtfpga.io.cached",
305 system_io, 0, system_io_size);
306 memory_region_add_subregion(system_memory, board->io[1], io);
308 xtfpga_fpga_init(system_io, 0x0d020000, freq);
309 if (nd_table[0].used) {
310 xtfpga_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000,
311 extints[1], nd_table);
314 serial_mm_init(system_io, 0x0d050020, 2, extints[0],
315 115200, serial_hd(0), DEVICE_NATIVE_ENDIAN);
317 dinfo = drive_get(IF_PFLASH, 0, 0);
318 if (dinfo) {
319 flash = xtfpga_flash_init(system_io, board, dinfo, be);
322 /* Use presence of kernel file name as 'boot from SRAM' switch. */
323 if (kernel_filename) {
324 uint32_t entry_point = env->pc;
325 size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */
326 uint32_t tagptr = env->config->sysrom.location[0].addr +
327 board->sram_size;
328 uint32_t cur_tagptr;
329 BpMemInfo memory_location = {
330 .type = tswap32(MEMORY_TYPE_CONVENTIONAL),
331 .start = tswap32(env->config->sysram.location[0].addr),
332 .end = tswap32(env->config->sysram.location[0].addr +
333 machine->ram_size),
335 uint32_t lowmem_end = machine->ram_size < 0x08000000 ?
336 machine->ram_size : 0x08000000;
337 uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096);
339 lowmem_end += env->config->sysram.location[0].addr;
340 cur_lowmem += env->config->sysram.location[0].addr;
342 xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
343 system_memory);
345 if (kernel_cmdline) {
346 bp_size += get_tag_size(strlen(kernel_cmdline) + 1);
348 if (dtb_filename) {
349 bp_size += get_tag_size(sizeof(uint32_t));
351 if (initrd_filename) {
352 bp_size += get_tag_size(sizeof(BpMemInfo));
355 /* Put kernel bootparameters to the end of that SRAM */
356 tagptr = (tagptr - bp_size) & ~0xff;
357 cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL);
358 cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY,
359 sizeof(memory_location), &memory_location);
361 if (kernel_cmdline) {
362 cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE,
363 strlen(kernel_cmdline) + 1, kernel_cmdline);
365 #ifdef CONFIG_FDT
366 if (dtb_filename) {
367 int fdt_size;
368 void *fdt = load_device_tree(dtb_filename, &fdt_size);
369 uint32_t dtb_addr = tswap32(cur_lowmem);
371 if (!fdt) {
372 error_report("could not load DTB '%s'", dtb_filename);
373 exit(EXIT_FAILURE);
376 cpu_physical_memory_write(cur_lowmem, fdt, fdt_size);
377 cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT,
378 sizeof(dtb_addr), &dtb_addr);
379 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4 * KiB);
380 g_free(fdt);
382 #else
383 if (dtb_filename) {
384 error_report("could not load DTB '%s': "
385 "FDT support is not configured in QEMU",
386 dtb_filename);
387 exit(EXIT_FAILURE);
389 #endif
390 if (initrd_filename) {
391 BpMemInfo initrd_location = { 0 };
392 int initrd_size = load_ramdisk(initrd_filename, cur_lowmem,
393 lowmem_end - cur_lowmem);
395 if (initrd_size < 0) {
396 initrd_size = load_image_targphys(initrd_filename,
397 cur_lowmem,
398 lowmem_end - cur_lowmem);
400 if (initrd_size < 0) {
401 error_report("could not load initrd '%s'", initrd_filename);
402 exit(EXIT_FAILURE);
404 initrd_location.start = tswap32(cur_lowmem);
405 initrd_location.end = tswap32(cur_lowmem + initrd_size);
406 cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD,
407 sizeof(initrd_location), &initrd_location);
408 cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4 * KiB);
410 cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL);
411 env->regs[2] = tagptr;
413 uint64_t elf_entry;
414 int success = load_elf(kernel_filename, NULL, translate_phys_addr, cpu,
415 &elf_entry, NULL, NULL, NULL, be, EM_XTENSA, 0, 0);
416 if (success > 0) {
417 entry_point = elf_entry;
418 } else {
419 hwaddr ep;
420 int is_linux;
421 success = load_uimage(kernel_filename, &ep, NULL, &is_linux,
422 translate_phys_addr, cpu);
423 if (success > 0 && is_linux) {
424 entry_point = ep;
425 } else {
426 error_report("could not load kernel '%s'",
427 kernel_filename);
428 exit(EXIT_FAILURE);
431 if (entry_point != env->pc) {
432 uint8_t boot[] = {
433 #ifdef TARGET_WORDS_BIGENDIAN
434 0x60, 0x00, 0x08, /* j 1f */
435 0x00, /* .literal_position */
436 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
437 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
438 /* 1: */
439 0x10, 0xff, 0xfe, /* l32r a0, entry_pc */
440 0x12, 0xff, 0xfe, /* l32r a2, entry_a2 */
441 0x0a, 0x00, 0x00, /* jx a0 */
442 #else
443 0x06, 0x02, 0x00, /* j 1f */
444 0x00, /* .literal_position */
445 0x00, 0x00, 0x00, 0x00, /* .literal entry_pc */
446 0x00, 0x00, 0x00, 0x00, /* .literal entry_a2 */
447 /* 1: */
448 0x01, 0xfe, 0xff, /* l32r a0, entry_pc */
449 0x21, 0xfe, 0xff, /* l32r a2, entry_a2 */
450 0xa0, 0x00, 0x00, /* jx a0 */
451 #endif
453 uint32_t entry_pc = tswap32(entry_point);
454 uint32_t entry_a2 = tswap32(tagptr);
456 memcpy(boot + 4, &entry_pc, sizeof(entry_pc));
457 memcpy(boot + 8, &entry_a2, sizeof(entry_a2));
458 cpu_physical_memory_write(env->pc, boot, sizeof(boot));
460 } else {
461 if (flash) {
462 MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash);
463 MemoryRegion *flash_io = g_malloc(sizeof(*flash_io));
464 uint32_t size = env->config->sysrom.location[0].size;
466 if (board->flash->size - board->flash->boot_base < size) {
467 size = board->flash->size - board->flash->boot_base;
470 memory_region_init_alias(flash_io, NULL, "xtfpga.flash",
471 flash_mr, board->flash->boot_base, size);
472 memory_region_add_subregion(system_memory,
473 env->config->sysrom.location[0].addr,
474 flash_io);
475 } else {
476 xtensa_create_memory_regions(&env->config->sysrom, "xtensa.sysrom",
477 system_memory);
482 #define XTFPGA_MMU_RESERVED_MEMORY_SIZE (128 * MiB)
484 static const hwaddr xtfpga_mmu_io[2] = {
485 0xf0000000,
488 static const hwaddr xtfpga_nommu_io[2] = {
489 0x90000000,
490 0x70000000,
493 static const XtfpgaFlashDesc lx60_flash = {
494 .base = 0x08000000,
495 .size = 0x00400000,
496 .sector_size = 0x10000,
499 static void xtfpga_lx60_init(MachineState *machine)
501 static const XtfpgaBoardDesc lx60_board = {
502 .flash = &lx60_flash,
503 .sram_size = 0x20000,
504 .io = xtfpga_mmu_io,
506 xtfpga_init(&lx60_board, machine);
509 static void xtfpga_lx60_nommu_init(MachineState *machine)
511 static const XtfpgaBoardDesc lx60_board = {
512 .flash = &lx60_flash,
513 .sram_size = 0x20000,
514 .io = xtfpga_nommu_io,
516 xtfpga_init(&lx60_board, machine);
519 static const XtfpgaFlashDesc lx200_flash = {
520 .base = 0x08000000,
521 .size = 0x01000000,
522 .sector_size = 0x20000,
525 static void xtfpga_lx200_init(MachineState *machine)
527 static const XtfpgaBoardDesc lx200_board = {
528 .flash = &lx200_flash,
529 .sram_size = 0x2000000,
530 .io = xtfpga_mmu_io,
532 xtfpga_init(&lx200_board, machine);
535 static void xtfpga_lx200_nommu_init(MachineState *machine)
537 static const XtfpgaBoardDesc lx200_board = {
538 .flash = &lx200_flash,
539 .sram_size = 0x2000000,
540 .io = xtfpga_nommu_io,
542 xtfpga_init(&lx200_board, machine);
545 static const XtfpgaFlashDesc ml605_flash = {
546 .base = 0x08000000,
547 .size = 0x01000000,
548 .sector_size = 0x20000,
551 static void xtfpga_ml605_init(MachineState *machine)
553 static const XtfpgaBoardDesc ml605_board = {
554 .flash = &ml605_flash,
555 .sram_size = 0x2000000,
556 .io = xtfpga_mmu_io,
558 xtfpga_init(&ml605_board, machine);
561 static void xtfpga_ml605_nommu_init(MachineState *machine)
563 static const XtfpgaBoardDesc ml605_board = {
564 .flash = &ml605_flash,
565 .sram_size = 0x2000000,
566 .io = xtfpga_nommu_io,
568 xtfpga_init(&ml605_board, machine);
571 static const XtfpgaFlashDesc kc705_flash = {
572 .base = 0x00000000,
573 .size = 0x08000000,
574 .boot_base = 0x06000000,
575 .sector_size = 0x20000,
578 static void xtfpga_kc705_init(MachineState *machine)
580 static const XtfpgaBoardDesc kc705_board = {
581 .flash = &kc705_flash,
582 .sram_size = 0x2000000,
583 .io = xtfpga_mmu_io,
585 xtfpga_init(&kc705_board, machine);
588 static void xtfpga_kc705_nommu_init(MachineState *machine)
590 static const XtfpgaBoardDesc kc705_board = {
591 .flash = &kc705_flash,
592 .sram_size = 0x2000000,
593 .io = xtfpga_nommu_io,
595 xtfpga_init(&kc705_board, machine);
598 static void xtfpga_lx60_class_init(ObjectClass *oc, void *data)
600 MachineClass *mc = MACHINE_CLASS(oc);
602 mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
603 mc->init = xtfpga_lx60_init;
604 mc->max_cpus = 32;
605 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
606 mc->default_ram_size = 64 * MiB;
609 static const TypeInfo xtfpga_lx60_type = {
610 .name = MACHINE_TYPE_NAME("lx60"),
611 .parent = TYPE_MACHINE,
612 .class_init = xtfpga_lx60_class_init,
615 static void xtfpga_lx60_nommu_class_init(ObjectClass *oc, void *data)
617 MachineClass *mc = MACHINE_CLASS(oc);
619 mc->desc = "lx60 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
620 mc->init = xtfpga_lx60_nommu_init;
621 mc->max_cpus = 32;
622 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
623 mc->default_ram_size = 64 * MiB;
626 static const TypeInfo xtfpga_lx60_nommu_type = {
627 .name = MACHINE_TYPE_NAME("lx60-nommu"),
628 .parent = TYPE_MACHINE,
629 .class_init = xtfpga_lx60_nommu_class_init,
632 static void xtfpga_lx200_class_init(ObjectClass *oc, void *data)
634 MachineClass *mc = MACHINE_CLASS(oc);
636 mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
637 mc->init = xtfpga_lx200_init;
638 mc->max_cpus = 32;
639 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
640 mc->default_ram_size = 96 * MiB;
643 static const TypeInfo xtfpga_lx200_type = {
644 .name = MACHINE_TYPE_NAME("lx200"),
645 .parent = TYPE_MACHINE,
646 .class_init = xtfpga_lx200_class_init,
649 static void xtfpga_lx200_nommu_class_init(ObjectClass *oc, void *data)
651 MachineClass *mc = MACHINE_CLASS(oc);
653 mc->desc = "lx200 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
654 mc->init = xtfpga_lx200_nommu_init;
655 mc->max_cpus = 32;
656 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
657 mc->default_ram_size = 96 * MiB;
660 static const TypeInfo xtfpga_lx200_nommu_type = {
661 .name = MACHINE_TYPE_NAME("lx200-nommu"),
662 .parent = TYPE_MACHINE,
663 .class_init = xtfpga_lx200_nommu_class_init,
666 static void xtfpga_ml605_class_init(ObjectClass *oc, void *data)
668 MachineClass *mc = MACHINE_CLASS(oc);
670 mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
671 mc->init = xtfpga_ml605_init;
672 mc->max_cpus = 32;
673 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
674 mc->default_ram_size = 512 * MiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
677 static const TypeInfo xtfpga_ml605_type = {
678 .name = MACHINE_TYPE_NAME("ml605"),
679 .parent = TYPE_MACHINE,
680 .class_init = xtfpga_ml605_class_init,
683 static void xtfpga_ml605_nommu_class_init(ObjectClass *oc, void *data)
685 MachineClass *mc = MACHINE_CLASS(oc);
687 mc->desc = "ml605 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
688 mc->init = xtfpga_ml605_nommu_init;
689 mc->max_cpus = 32;
690 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
691 mc->default_ram_size = 256 * MiB;
694 static const TypeInfo xtfpga_ml605_nommu_type = {
695 .name = MACHINE_TYPE_NAME("ml605-nommu"),
696 .parent = TYPE_MACHINE,
697 .class_init = xtfpga_ml605_nommu_class_init,
700 static void xtfpga_kc705_class_init(ObjectClass *oc, void *data)
702 MachineClass *mc = MACHINE_CLASS(oc);
704 mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")";
705 mc->init = xtfpga_kc705_init;
706 mc->max_cpus = 32;
707 mc->default_cpu_type = XTENSA_DEFAULT_CPU_TYPE;
708 mc->default_ram_size = 1 * GiB - XTFPGA_MMU_RESERVED_MEMORY_SIZE;
711 static const TypeInfo xtfpga_kc705_type = {
712 .name = MACHINE_TYPE_NAME("kc705"),
713 .parent = TYPE_MACHINE,
714 .class_init = xtfpga_kc705_class_init,
717 static void xtfpga_kc705_nommu_class_init(ObjectClass *oc, void *data)
719 MachineClass *mc = MACHINE_CLASS(oc);
721 mc->desc = "kc705 noMMU EVB (" XTENSA_DEFAULT_CPU_NOMMU_MODEL ")";
722 mc->init = xtfpga_kc705_nommu_init;
723 mc->max_cpus = 32;
724 mc->default_cpu_type = XTENSA_DEFAULT_CPU_NOMMU_TYPE;
725 mc->default_ram_size = 256 * MiB;
728 static const TypeInfo xtfpga_kc705_nommu_type = {
729 .name = MACHINE_TYPE_NAME("kc705-nommu"),
730 .parent = TYPE_MACHINE,
731 .class_init = xtfpga_kc705_nommu_class_init,
734 static void xtfpga_machines_init(void)
736 type_register_static(&xtfpga_lx60_type);
737 type_register_static(&xtfpga_lx200_type);
738 type_register_static(&xtfpga_ml605_type);
739 type_register_static(&xtfpga_kc705_type);
740 type_register_static(&xtfpga_lx60_nommu_type);
741 type_register_static(&xtfpga_lx200_nommu_type);
742 type_register_static(&xtfpga_ml605_nommu_type);
743 type_register_static(&xtfpga_kc705_nommu_type);
746 type_init(xtfpga_machines_init)