Merge remote-tracking branch 'remotes/dgilbert-gitlab/tags/pull-migration-20210726a...
[qemu/armbru.git] / target / i386 / hax / hax-all.c
blobbf65ed6fa92cfef3642f0dd9be8ca79036a787c2
1 /*
2 * QEMU HAX support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * Copyright (c) 2011 Intel Corporation
12 * Written by:
13 * Jiang Yunhong<yunhong.jiang@intel.com>
14 * Xin Xiaohui<xiaohui.xin@intel.com>
15 * Zhang Xiantao<xiantao.zhang@intel.com>
17 * This work is licensed under the terms of the GNU GPL, version 2 or later.
18 * See the COPYING file in the top-level directory.
23 * HAX common code for both windows and darwin
26 #include "qemu/osdep.h"
27 #include "cpu.h"
28 #include "exec/address-spaces.h"
30 #include "qemu-common.h"
31 #include "qemu/accel.h"
32 #include "sysemu/reset.h"
33 #include "sysemu/runstate.h"
34 #include "hw/boards.h"
36 #include "hax-accel-ops.h"
38 #define DEBUG_HAX 0
40 #define DPRINTF(fmt, ...) \
41 do { \
42 if (DEBUG_HAX) { \
43 fprintf(stdout, fmt, ## __VA_ARGS__); \
44 } \
45 } while (0)
47 /* Current version */
48 const uint32_t hax_cur_version = 0x4; /* API v4: unmapping and MMIO moves */
49 /* Minimum HAX kernel version */
50 const uint32_t hax_min_version = 0x4; /* API v4: supports unmapping */
52 static bool hax_allowed;
54 struct hax_state hax_global;
56 static void hax_vcpu_sync_state(CPUArchState *env, int modified);
57 static int hax_arch_get_registers(CPUArchState *env);
59 int hax_enabled(void)
61 return hax_allowed;
64 int valid_hax_tunnel_size(uint16_t size)
66 return size >= sizeof(struct hax_tunnel);
69 hax_fd hax_vcpu_get_fd(CPUArchState *env)
71 struct hax_vcpu_state *vcpu = env_cpu(env)->hax_vcpu;
72 if (!vcpu) {
73 return HAX_INVALID_FD;
75 return vcpu->fd;
78 static int hax_get_capability(struct hax_state *hax)
80 int ret;
81 struct hax_capabilityinfo capinfo, *cap = &capinfo;
83 ret = hax_capability(hax, cap);
84 if (ret) {
85 return ret;
88 if ((cap->wstatus & HAX_CAP_WORKSTATUS_MASK) == HAX_CAP_STATUS_NOTWORKING) {
89 if (cap->winfo & HAX_CAP_FAILREASON_VT) {
90 DPRINTF
91 ("VTX feature is not enabled, HAX driver will not work.\n");
92 } else if (cap->winfo & HAX_CAP_FAILREASON_NX) {
93 DPRINTF
94 ("NX feature is not enabled, HAX driver will not work.\n");
96 return -ENXIO;
100 if (!(cap->winfo & HAX_CAP_UG)) {
101 fprintf(stderr, "UG mode is not supported by the hardware.\n");
102 return -ENOTSUP;
105 hax->supports_64bit_ramblock = !!(cap->winfo & HAX_CAP_64BIT_RAMBLOCK);
107 if (cap->wstatus & HAX_CAP_MEMQUOTA) {
108 if (cap->mem_quota < hax->mem_quota) {
109 fprintf(stderr, "The VM memory needed exceeds the driver limit.\n");
110 return -ENOSPC;
113 return 0;
116 static int hax_version_support(struct hax_state *hax)
118 int ret;
119 struct hax_module_version version;
121 ret = hax_mod_version(hax, &version);
122 if (ret < 0) {
123 return 0;
126 if (hax_min_version > version.cur_version) {
127 fprintf(stderr, "Incompatible HAX module version %d,",
128 version.cur_version);
129 fprintf(stderr, "requires minimum version %d\n", hax_min_version);
130 return 0;
132 if (hax_cur_version < version.compat_version) {
133 fprintf(stderr, "Incompatible QEMU HAX API version %x,",
134 hax_cur_version);
135 fprintf(stderr, "requires minimum HAX API version %x\n",
136 version.compat_version);
137 return 0;
140 return 1;
143 int hax_vcpu_create(int id)
145 struct hax_vcpu_state *vcpu = NULL;
146 int ret;
148 if (!hax_global.vm) {
149 fprintf(stderr, "vcpu %x created failed, vm is null\n", id);
150 return -1;
153 if (hax_global.vm->vcpus[id]) {
154 fprintf(stderr, "vcpu %x allocated already\n", id);
155 return 0;
158 vcpu = g_new0(struct hax_vcpu_state, 1);
160 ret = hax_host_create_vcpu(hax_global.vm->fd, id);
161 if (ret) {
162 fprintf(stderr, "Failed to create vcpu %x\n", id);
163 goto error;
166 vcpu->vcpu_id = id;
167 vcpu->fd = hax_host_open_vcpu(hax_global.vm->id, id);
168 if (hax_invalid_fd(vcpu->fd)) {
169 fprintf(stderr, "Failed to open the vcpu\n");
170 ret = -ENODEV;
171 goto error;
174 hax_global.vm->vcpus[id] = vcpu;
176 ret = hax_host_setup_vcpu_channel(vcpu);
177 if (ret) {
178 fprintf(stderr, "Invalid hax tunnel size\n");
179 ret = -EINVAL;
180 goto error;
182 return 0;
184 error:
185 /* vcpu and tunnel will be closed automatically */
186 if (vcpu && !hax_invalid_fd(vcpu->fd)) {
187 hax_close_fd(vcpu->fd);
190 hax_global.vm->vcpus[id] = NULL;
191 g_free(vcpu);
192 return -1;
195 int hax_vcpu_destroy(CPUState *cpu)
197 struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
199 if (!hax_global.vm) {
200 fprintf(stderr, "vcpu %x destroy failed, vm is null\n", vcpu->vcpu_id);
201 return -1;
204 if (!vcpu) {
205 return 0;
209 * 1. The hax_tunnel is also destroyed when vcpu is destroyed
210 * 2. close fd will cause hax module vcpu be cleaned
212 hax_close_fd(vcpu->fd);
213 hax_global.vm->vcpus[vcpu->vcpu_id] = NULL;
214 g_free(vcpu);
215 return 0;
218 int hax_init_vcpu(CPUState *cpu)
220 int ret;
222 ret = hax_vcpu_create(cpu->cpu_index);
223 if (ret < 0) {
224 fprintf(stderr, "Failed to create HAX vcpu\n");
225 exit(-1);
228 cpu->hax_vcpu = hax_global.vm->vcpus[cpu->cpu_index];
229 cpu->vcpu_dirty = true;
230 qemu_register_reset(hax_reset_vcpu_state, (CPUArchState *) (cpu->env_ptr));
232 return ret;
235 struct hax_vm *hax_vm_create(struct hax_state *hax, int max_cpus)
237 struct hax_vm *vm;
238 int vm_id = 0, ret, i;
240 if (hax_invalid_fd(hax->fd)) {
241 return NULL;
244 if (hax->vm) {
245 return hax->vm;
248 if (max_cpus > HAX_MAX_VCPU) {
249 fprintf(stderr, "Maximum VCPU number QEMU supported is %d\n", HAX_MAX_VCPU);
250 return NULL;
253 vm = g_new0(struct hax_vm, 1);
255 ret = hax_host_create_vm(hax, &vm_id);
256 if (ret) {
257 fprintf(stderr, "Failed to create vm %x\n", ret);
258 goto error;
260 vm->id = vm_id;
261 vm->fd = hax_host_open_vm(hax, vm_id);
262 if (hax_invalid_fd(vm->fd)) {
263 fprintf(stderr, "Failed to open vm %d\n", vm_id);
264 goto error;
267 vm->numvcpus = max_cpus;
268 vm->vcpus = g_new0(struct hax_vcpu_state *, vm->numvcpus);
269 for (i = 0; i < vm->numvcpus; i++) {
270 vm->vcpus[i] = NULL;
273 hax->vm = vm;
274 return vm;
276 error:
277 g_free(vm);
278 hax->vm = NULL;
279 return NULL;
282 int hax_vm_destroy(struct hax_vm *vm)
284 int i;
286 for (i = 0; i < vm->numvcpus; i++)
287 if (vm->vcpus[i]) {
288 fprintf(stderr, "VCPU should be cleaned before vm clean\n");
289 return -1;
291 hax_close_fd(vm->fd);
292 vm->numvcpus = 0;
293 g_free(vm->vcpus);
294 g_free(vm);
295 hax_global.vm = NULL;
296 return 0;
299 static int hax_init(ram_addr_t ram_size, int max_cpus)
301 struct hax_state *hax = NULL;
302 struct hax_qemu_version qversion;
303 int ret;
305 hax = &hax_global;
307 memset(hax, 0, sizeof(struct hax_state));
308 hax->mem_quota = ram_size;
310 hax->fd = hax_mod_open();
311 if (hax_invalid_fd(hax->fd)) {
312 hax->fd = 0;
313 ret = -ENODEV;
314 goto error;
317 ret = hax_get_capability(hax);
319 if (ret) {
320 if (ret != -ENOSPC) {
321 ret = -EINVAL;
323 goto error;
326 if (!hax_version_support(hax)) {
327 ret = -EINVAL;
328 goto error;
331 hax->vm = hax_vm_create(hax, max_cpus);
332 if (!hax->vm) {
333 fprintf(stderr, "Failed to create HAX VM\n");
334 ret = -EINVAL;
335 goto error;
338 hax_memory_init();
340 qversion.cur_version = hax_cur_version;
341 qversion.min_version = hax_min_version;
342 hax_notify_qemu_version(hax->vm->fd, &qversion);
344 return ret;
345 error:
346 if (hax->vm) {
347 hax_vm_destroy(hax->vm);
349 if (hax->fd) {
350 hax_mod_close(hax);
353 return ret;
356 static int hax_accel_init(MachineState *ms)
358 int ret = hax_init(ms->ram_size, (int)ms->smp.max_cpus);
360 if (ret && (ret != -ENOSPC)) {
361 fprintf(stderr, "No accelerator found.\n");
362 } else {
363 fprintf(stdout, "HAX is %s and emulator runs in %s mode.\n",
364 !ret ? "working" : "not working",
365 !ret ? "fast virt" : "emulation");
367 return ret;
370 static int hax_handle_fastmmio(CPUArchState *env, struct hax_fastmmio *hft)
372 if (hft->direction < 2) {
373 cpu_physical_memory_rw(hft->gpa, &hft->value, hft->size,
374 hft->direction);
375 } else {
377 * HAX API v4 supports transferring data between two MMIO addresses,
378 * hft->gpa and hft->gpa2 (instructions such as MOVS require this):
379 * hft->direction == 2: gpa ==> gpa2
381 uint64_t value;
382 cpu_physical_memory_read(hft->gpa, &value, hft->size);
383 cpu_physical_memory_write(hft->gpa2, &value, hft->size);
386 return 0;
389 static int hax_handle_io(CPUArchState *env, uint32_t df, uint16_t port,
390 int direction, int size, int count, void *buffer)
392 uint8_t *ptr;
393 int i;
394 MemTxAttrs attrs = { 0 };
396 if (!df) {
397 ptr = (uint8_t *) buffer;
398 } else {
399 ptr = buffer + size * count - size;
401 for (i = 0; i < count; i++) {
402 address_space_rw(&address_space_io, port, attrs,
403 ptr, size, direction == HAX_EXIT_IO_OUT);
404 if (!df) {
405 ptr += size;
406 } else {
407 ptr -= size;
411 return 0;
414 static int hax_vcpu_interrupt(CPUArchState *env)
416 CPUState *cpu = env_cpu(env);
417 struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
418 struct hax_tunnel *ht = vcpu->tunnel;
421 * Try to inject an interrupt if the guest can accept it
422 * Unlike KVM, HAX kernel check for the eflags, instead of qemu
424 if (ht->ready_for_interrupt_injection &&
425 (cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
426 int irq;
428 irq = cpu_get_pic_interrupt(env);
429 if (irq >= 0) {
430 hax_inject_interrupt(env, irq);
431 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
435 /* If we have an interrupt but the guest is not ready to receive an
436 * interrupt, request an interrupt window exit. This will
437 * cause a return to userspace as soon as the guest is ready to
438 * receive interrupts. */
439 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
440 ht->request_interrupt_window = 1;
441 } else {
442 ht->request_interrupt_window = 0;
444 return 0;
447 void hax_raise_event(CPUState *cpu)
449 struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
451 if (!vcpu) {
452 return;
454 vcpu->tunnel->user_event_pending = 1;
458 * Ask hax kernel module to run the CPU for us till:
459 * 1. Guest crash or shutdown
460 * 2. Need QEMU's emulation like guest execute MMIO instruction
461 * 3. Guest execute HLT
462 * 4. QEMU have Signal/event pending
463 * 5. An unknown VMX exit happens
465 static int hax_vcpu_hax_exec(CPUArchState *env)
467 int ret = 0;
468 CPUState *cpu = env_cpu(env);
469 X86CPU *x86_cpu = X86_CPU(cpu);
470 struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
471 struct hax_tunnel *ht = vcpu->tunnel;
473 if (!hax_enabled()) {
474 DPRINTF("Trying to vcpu execute at eip:" TARGET_FMT_lx "\n", env->eip);
475 return 0;
478 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
479 cpu->interrupt_request &= ~CPU_INTERRUPT_POLL;
480 apic_poll_irq(x86_cpu->apic_state);
483 /* After a vcpu is halted (either because it is an AP and has just been
484 * reset, or because it has executed the HLT instruction), it will not be
485 * run (hax_vcpu_run()) until it is unhalted. The next few if blocks check
486 * for events that may change the halted state of this vcpu:
487 * a) Maskable interrupt, when RFLAGS.IF is 1;
488 * Note: env->eflags may not reflect the current RFLAGS state, because
489 * it is not updated after each hax_vcpu_run(). We cannot afford
490 * to fail to recognize any unhalt-by-maskable-interrupt event
491 * (in which case the vcpu will halt forever), and yet we cannot
492 * afford the overhead of hax_vcpu_sync_state(). The current
493 * solution is to err on the side of caution and have the HLT
494 * handler (see case HAX_EXIT_HLT below) unconditionally set the
495 * IF_MASK bit in env->eflags, which, in effect, disables the
496 * RFLAGS.IF check.
497 * b) NMI;
498 * c) INIT signal;
499 * d) SIPI signal.
501 if (((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
502 (env->eflags & IF_MASK)) ||
503 (cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
504 cpu->halted = 0;
507 if (cpu->interrupt_request & CPU_INTERRUPT_INIT) {
508 DPRINTF("\nhax_vcpu_hax_exec: handling INIT for %d\n",
509 cpu->cpu_index);
510 do_cpu_init(x86_cpu);
511 hax_vcpu_sync_state(env, 1);
514 if (cpu->interrupt_request & CPU_INTERRUPT_SIPI) {
515 DPRINTF("hax_vcpu_hax_exec: handling SIPI for %d\n",
516 cpu->cpu_index);
517 hax_vcpu_sync_state(env, 0);
518 do_cpu_sipi(x86_cpu);
519 hax_vcpu_sync_state(env, 1);
522 if (cpu->halted) {
523 /* If this vcpu is halted, we must not ask HAXM to run it. Instead, we
524 * break out of hax_smp_cpu_exec() as if this vcpu had executed HLT.
525 * That way, this vcpu thread will be trapped in qemu_wait_io_event(),
526 * until the vcpu is unhalted.
528 cpu->exception_index = EXCP_HLT;
529 return 0;
532 do {
533 int hax_ret;
535 if (cpu->exit_request) {
536 ret = 1;
537 break;
540 hax_vcpu_interrupt(env);
542 qemu_mutex_unlock_iothread();
543 cpu_exec_start(cpu);
544 hax_ret = hax_vcpu_run(vcpu);
545 cpu_exec_end(cpu);
546 qemu_mutex_lock_iothread();
548 /* Simply continue the vcpu_run if system call interrupted */
549 if (hax_ret == -EINTR || hax_ret == -EAGAIN) {
550 DPRINTF("io window interrupted\n");
551 continue;
554 if (hax_ret < 0) {
555 fprintf(stderr, "vcpu run failed for vcpu %x\n", vcpu->vcpu_id);
556 abort();
558 switch (ht->_exit_status) {
559 case HAX_EXIT_IO:
560 ret = hax_handle_io(env, ht->pio._df, ht->pio._port,
561 ht->pio._direction,
562 ht->pio._size, ht->pio._count, vcpu->iobuf);
563 break;
564 case HAX_EXIT_FAST_MMIO:
565 ret = hax_handle_fastmmio(env, (struct hax_fastmmio *) vcpu->iobuf);
566 break;
567 /* Guest state changed, currently only for shutdown */
568 case HAX_EXIT_STATECHANGE:
569 fprintf(stdout, "VCPU shutdown request\n");
570 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
571 hax_vcpu_sync_state(env, 0);
572 ret = 1;
573 break;
574 case HAX_EXIT_UNKNOWN_VMEXIT:
575 fprintf(stderr, "Unknown VMX exit %x from guest\n",
576 ht->_exit_reason);
577 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
578 hax_vcpu_sync_state(env, 0);
579 cpu_dump_state(cpu, stderr, 0);
580 ret = -1;
581 break;
582 case HAX_EXIT_HLT:
583 if (!(cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
584 !(cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
585 /* hlt instruction with interrupt disabled is shutdown */
586 env->eflags |= IF_MASK;
587 cpu->halted = 1;
588 cpu->exception_index = EXCP_HLT;
589 ret = 1;
591 break;
592 /* these situations will continue to hax module */
593 case HAX_EXIT_INTERRUPT:
594 case HAX_EXIT_PAUSED:
595 break;
596 case HAX_EXIT_MMIO:
597 /* Should not happen on UG system */
598 fprintf(stderr, "HAX: unsupported MMIO emulation\n");
599 ret = -1;
600 break;
601 case HAX_EXIT_REAL:
602 /* Should not happen on UG system */
603 fprintf(stderr, "HAX: unimplemented real mode emulation\n");
604 ret = -1;
605 break;
606 default:
607 fprintf(stderr, "Unknown exit %x from HAX\n", ht->_exit_status);
608 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
609 hax_vcpu_sync_state(env, 0);
610 cpu_dump_state(cpu, stderr, 0);
611 ret = 1;
612 break;
614 } while (!ret);
616 if (cpu->exit_request) {
617 cpu->exit_request = 0;
618 cpu->exception_index = EXCP_INTERRUPT;
620 return ret < 0;
623 static void do_hax_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
625 CPUArchState *env = cpu->env_ptr;
627 hax_arch_get_registers(env);
628 cpu->vcpu_dirty = true;
631 void hax_cpu_synchronize_state(CPUState *cpu)
633 if (!cpu->vcpu_dirty) {
634 run_on_cpu(cpu, do_hax_cpu_synchronize_state, RUN_ON_CPU_NULL);
638 static void do_hax_cpu_synchronize_post_reset(CPUState *cpu,
639 run_on_cpu_data arg)
641 CPUArchState *env = cpu->env_ptr;
643 hax_vcpu_sync_state(env, 1);
644 cpu->vcpu_dirty = false;
647 void hax_cpu_synchronize_post_reset(CPUState *cpu)
649 run_on_cpu(cpu, do_hax_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
652 static void do_hax_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
654 CPUArchState *env = cpu->env_ptr;
656 hax_vcpu_sync_state(env, 1);
657 cpu->vcpu_dirty = false;
660 void hax_cpu_synchronize_post_init(CPUState *cpu)
662 run_on_cpu(cpu, do_hax_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
665 static void do_hax_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
667 cpu->vcpu_dirty = true;
670 void hax_cpu_synchronize_pre_loadvm(CPUState *cpu)
672 run_on_cpu(cpu, do_hax_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
675 int hax_smp_cpu_exec(CPUState *cpu)
677 CPUArchState *env = (CPUArchState *) (cpu->env_ptr);
678 int fatal;
679 int ret;
681 while (1) {
682 if (cpu->exception_index >= EXCP_INTERRUPT) {
683 ret = cpu->exception_index;
684 cpu->exception_index = -1;
685 break;
688 fatal = hax_vcpu_hax_exec(env);
690 if (fatal) {
691 fprintf(stderr, "Unsupported HAX vcpu return\n");
692 abort();
696 return ret;
699 static void set_v8086_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
701 memset(lhs, 0, sizeof(struct segment_desc_t));
702 lhs->selector = rhs->selector;
703 lhs->base = rhs->base;
704 lhs->limit = rhs->limit;
705 lhs->type = 3;
706 lhs->present = 1;
707 lhs->dpl = 3;
708 lhs->operand_size = 0;
709 lhs->desc = 1;
710 lhs->long_mode = 0;
711 lhs->granularity = 0;
712 lhs->available = 0;
715 static void get_seg(SegmentCache *lhs, const struct segment_desc_t *rhs)
717 lhs->selector = rhs->selector;
718 lhs->base = rhs->base;
719 lhs->limit = rhs->limit;
720 lhs->flags = (rhs->type << DESC_TYPE_SHIFT)
721 | (rhs->present * DESC_P_MASK)
722 | (rhs->dpl << DESC_DPL_SHIFT)
723 | (rhs->operand_size << DESC_B_SHIFT)
724 | (rhs->desc * DESC_S_MASK)
725 | (rhs->long_mode << DESC_L_SHIFT)
726 | (rhs->granularity * DESC_G_MASK) | (rhs->available * DESC_AVL_MASK);
729 static void set_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
731 unsigned flags = rhs->flags;
733 memset(lhs, 0, sizeof(struct segment_desc_t));
734 lhs->selector = rhs->selector;
735 lhs->base = rhs->base;
736 lhs->limit = rhs->limit;
737 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
738 lhs->present = (flags & DESC_P_MASK) != 0;
739 lhs->dpl = rhs->selector & 3;
740 lhs->operand_size = (flags >> DESC_B_SHIFT) & 1;
741 lhs->desc = (flags & DESC_S_MASK) != 0;
742 lhs->long_mode = (flags >> DESC_L_SHIFT) & 1;
743 lhs->granularity = (flags & DESC_G_MASK) != 0;
744 lhs->available = (flags & DESC_AVL_MASK) != 0;
747 static void hax_getput_reg(uint64_t *hax_reg, target_ulong *qemu_reg, int set)
749 target_ulong reg = *hax_reg;
751 if (set) {
752 *hax_reg = *qemu_reg;
753 } else {
754 *qemu_reg = reg;
758 /* The sregs has been synced with HAX kernel already before this call */
759 static int hax_get_segments(CPUArchState *env, struct vcpu_state_t *sregs)
761 get_seg(&env->segs[R_CS], &sregs->_cs);
762 get_seg(&env->segs[R_DS], &sregs->_ds);
763 get_seg(&env->segs[R_ES], &sregs->_es);
764 get_seg(&env->segs[R_FS], &sregs->_fs);
765 get_seg(&env->segs[R_GS], &sregs->_gs);
766 get_seg(&env->segs[R_SS], &sregs->_ss);
768 get_seg(&env->tr, &sregs->_tr);
769 get_seg(&env->ldt, &sregs->_ldt);
770 env->idt.limit = sregs->_idt.limit;
771 env->idt.base = sregs->_idt.base;
772 env->gdt.limit = sregs->_gdt.limit;
773 env->gdt.base = sregs->_gdt.base;
774 return 0;
777 static int hax_set_segments(CPUArchState *env, struct vcpu_state_t *sregs)
779 if ((env->eflags & VM_MASK)) {
780 set_v8086_seg(&sregs->_cs, &env->segs[R_CS]);
781 set_v8086_seg(&sregs->_ds, &env->segs[R_DS]);
782 set_v8086_seg(&sregs->_es, &env->segs[R_ES]);
783 set_v8086_seg(&sregs->_fs, &env->segs[R_FS]);
784 set_v8086_seg(&sregs->_gs, &env->segs[R_GS]);
785 set_v8086_seg(&sregs->_ss, &env->segs[R_SS]);
786 } else {
787 set_seg(&sregs->_cs, &env->segs[R_CS]);
788 set_seg(&sregs->_ds, &env->segs[R_DS]);
789 set_seg(&sregs->_es, &env->segs[R_ES]);
790 set_seg(&sregs->_fs, &env->segs[R_FS]);
791 set_seg(&sregs->_gs, &env->segs[R_GS]);
792 set_seg(&sregs->_ss, &env->segs[R_SS]);
794 if (env->cr[0] & CR0_PE_MASK) {
795 /* force ss cpl to cs cpl */
796 sregs->_ss.selector = (sregs->_ss.selector & ~3) |
797 (sregs->_cs.selector & 3);
798 sregs->_ss.dpl = sregs->_ss.selector & 3;
802 set_seg(&sregs->_tr, &env->tr);
803 set_seg(&sregs->_ldt, &env->ldt);
804 sregs->_idt.limit = env->idt.limit;
805 sregs->_idt.base = env->idt.base;
806 sregs->_gdt.limit = env->gdt.limit;
807 sregs->_gdt.base = env->gdt.base;
808 return 0;
811 static int hax_sync_vcpu_register(CPUArchState *env, int set)
813 struct vcpu_state_t regs;
814 int ret;
815 memset(&regs, 0, sizeof(struct vcpu_state_t));
817 if (!set) {
818 ret = hax_sync_vcpu_state(env, &regs, 0);
819 if (ret < 0) {
820 return -1;
824 /* generic register */
825 hax_getput_reg(&regs._rax, &env->regs[R_EAX], set);
826 hax_getput_reg(&regs._rbx, &env->regs[R_EBX], set);
827 hax_getput_reg(&regs._rcx, &env->regs[R_ECX], set);
828 hax_getput_reg(&regs._rdx, &env->regs[R_EDX], set);
829 hax_getput_reg(&regs._rsi, &env->regs[R_ESI], set);
830 hax_getput_reg(&regs._rdi, &env->regs[R_EDI], set);
831 hax_getput_reg(&regs._rsp, &env->regs[R_ESP], set);
832 hax_getput_reg(&regs._rbp, &env->regs[R_EBP], set);
833 #ifdef TARGET_X86_64
834 hax_getput_reg(&regs._r8, &env->regs[8], set);
835 hax_getput_reg(&regs._r9, &env->regs[9], set);
836 hax_getput_reg(&regs._r10, &env->regs[10], set);
837 hax_getput_reg(&regs._r11, &env->regs[11], set);
838 hax_getput_reg(&regs._r12, &env->regs[12], set);
839 hax_getput_reg(&regs._r13, &env->regs[13], set);
840 hax_getput_reg(&regs._r14, &env->regs[14], set);
841 hax_getput_reg(&regs._r15, &env->regs[15], set);
842 #endif
843 hax_getput_reg(&regs._rflags, &env->eflags, set);
844 hax_getput_reg(&regs._rip, &env->eip, set);
846 if (set) {
847 regs._cr0 = env->cr[0];
848 regs._cr2 = env->cr[2];
849 regs._cr3 = env->cr[3];
850 regs._cr4 = env->cr[4];
851 hax_set_segments(env, &regs);
852 } else {
853 env->cr[0] = regs._cr0;
854 env->cr[2] = regs._cr2;
855 env->cr[3] = regs._cr3;
856 env->cr[4] = regs._cr4;
857 hax_get_segments(env, &regs);
860 if (set) {
861 ret = hax_sync_vcpu_state(env, &regs, 1);
862 if (ret < 0) {
863 return -1;
866 return 0;
869 static void hax_msr_entry_set(struct vmx_msr *item, uint32_t index,
870 uint64_t value)
872 item->entry = index;
873 item->value = value;
876 static int hax_get_msrs(CPUArchState *env)
878 struct hax_msr_data md;
879 struct vmx_msr *msrs = md.entries;
880 int ret, i, n;
882 n = 0;
883 msrs[n++].entry = MSR_IA32_SYSENTER_CS;
884 msrs[n++].entry = MSR_IA32_SYSENTER_ESP;
885 msrs[n++].entry = MSR_IA32_SYSENTER_EIP;
886 msrs[n++].entry = MSR_IA32_TSC;
887 #ifdef TARGET_X86_64
888 msrs[n++].entry = MSR_EFER;
889 msrs[n++].entry = MSR_STAR;
890 msrs[n++].entry = MSR_LSTAR;
891 msrs[n++].entry = MSR_CSTAR;
892 msrs[n++].entry = MSR_FMASK;
893 msrs[n++].entry = MSR_KERNELGSBASE;
894 #endif
895 md.nr_msr = n;
896 ret = hax_sync_msr(env, &md, 0);
897 if (ret < 0) {
898 return ret;
901 for (i = 0; i < md.done; i++) {
902 switch (msrs[i].entry) {
903 case MSR_IA32_SYSENTER_CS:
904 env->sysenter_cs = msrs[i].value;
905 break;
906 case MSR_IA32_SYSENTER_ESP:
907 env->sysenter_esp = msrs[i].value;
908 break;
909 case MSR_IA32_SYSENTER_EIP:
910 env->sysenter_eip = msrs[i].value;
911 break;
912 case MSR_IA32_TSC:
913 env->tsc = msrs[i].value;
914 break;
915 #ifdef TARGET_X86_64
916 case MSR_EFER:
917 env->efer = msrs[i].value;
918 break;
919 case MSR_STAR:
920 env->star = msrs[i].value;
921 break;
922 case MSR_LSTAR:
923 env->lstar = msrs[i].value;
924 break;
925 case MSR_CSTAR:
926 env->cstar = msrs[i].value;
927 break;
928 case MSR_FMASK:
929 env->fmask = msrs[i].value;
930 break;
931 case MSR_KERNELGSBASE:
932 env->kernelgsbase = msrs[i].value;
933 break;
934 #endif
938 return 0;
941 static int hax_set_msrs(CPUArchState *env)
943 struct hax_msr_data md;
944 struct vmx_msr *msrs;
945 msrs = md.entries;
946 int n = 0;
948 memset(&md, 0, sizeof(struct hax_msr_data));
949 hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
950 hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
951 hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
952 hax_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
953 #ifdef TARGET_X86_64
954 hax_msr_entry_set(&msrs[n++], MSR_EFER, env->efer);
955 hax_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
956 hax_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
957 hax_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
958 hax_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
959 hax_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
960 #endif
961 md.nr_msr = n;
962 md.done = 0;
964 return hax_sync_msr(env, &md, 1);
967 static int hax_get_fpu(CPUArchState *env)
969 struct fx_layout fpu;
970 int i, ret;
972 ret = hax_sync_fpu(env, &fpu, 0);
973 if (ret < 0) {
974 return ret;
977 env->fpstt = (fpu.fsw >> 11) & 7;
978 env->fpus = fpu.fsw;
979 env->fpuc = fpu.fcw;
980 for (i = 0; i < 8; ++i) {
981 env->fptags[i] = !((fpu.ftw >> i) & 1);
983 memcpy(env->fpregs, fpu.st_mm, sizeof(env->fpregs));
985 for (i = 0; i < 8; i++) {
986 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.mmx_1[i][0]);
987 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.mmx_1[i][8]);
988 if (CPU_NB_REGS > 8) {
989 env->xmm_regs[i + 8].ZMM_Q(0) = ldq_p(&fpu.mmx_2[i][0]);
990 env->xmm_regs[i + 8].ZMM_Q(1) = ldq_p(&fpu.mmx_2[i][8]);
993 env->mxcsr = fpu.mxcsr;
995 return 0;
998 static int hax_set_fpu(CPUArchState *env)
1000 struct fx_layout fpu;
1001 int i;
1003 memset(&fpu, 0, sizeof(fpu));
1004 fpu.fsw = env->fpus & ~(7 << 11);
1005 fpu.fsw |= (env->fpstt & 7) << 11;
1006 fpu.fcw = env->fpuc;
1008 for (i = 0; i < 8; ++i) {
1009 fpu.ftw |= (!env->fptags[i]) << i;
1012 memcpy(fpu.st_mm, env->fpregs, sizeof(env->fpregs));
1013 for (i = 0; i < 8; i++) {
1014 stq_p(&fpu.mmx_1[i][0], env->xmm_regs[i].ZMM_Q(0));
1015 stq_p(&fpu.mmx_1[i][8], env->xmm_regs[i].ZMM_Q(1));
1016 if (CPU_NB_REGS > 8) {
1017 stq_p(&fpu.mmx_2[i][0], env->xmm_regs[i + 8].ZMM_Q(0));
1018 stq_p(&fpu.mmx_2[i][8], env->xmm_regs[i + 8].ZMM_Q(1));
1022 fpu.mxcsr = env->mxcsr;
1024 return hax_sync_fpu(env, &fpu, 1);
1027 static int hax_arch_get_registers(CPUArchState *env)
1029 int ret;
1031 ret = hax_sync_vcpu_register(env, 0);
1032 if (ret < 0) {
1033 return ret;
1036 ret = hax_get_fpu(env);
1037 if (ret < 0) {
1038 return ret;
1041 ret = hax_get_msrs(env);
1042 if (ret < 0) {
1043 return ret;
1046 x86_update_hflags(env);
1047 return 0;
1050 static int hax_arch_set_registers(CPUArchState *env)
1052 int ret;
1053 ret = hax_sync_vcpu_register(env, 1);
1055 if (ret < 0) {
1056 fprintf(stderr, "Failed to sync vcpu reg\n");
1057 return ret;
1059 ret = hax_set_fpu(env);
1060 if (ret < 0) {
1061 fprintf(stderr, "FPU failed\n");
1062 return ret;
1064 ret = hax_set_msrs(env);
1065 if (ret < 0) {
1066 fprintf(stderr, "MSR failed\n");
1067 return ret;
1070 return 0;
1073 static void hax_vcpu_sync_state(CPUArchState *env, int modified)
1075 if (hax_enabled()) {
1076 if (modified) {
1077 hax_arch_set_registers(env);
1078 } else {
1079 hax_arch_get_registers(env);
1085 * much simpler than kvm, at least in first stage because:
1086 * We don't need consider the device pass-through, we don't need
1087 * consider the framebuffer, and we may even remove the bios at all
1089 int hax_sync_vcpus(void)
1091 if (hax_enabled()) {
1092 CPUState *cpu;
1094 cpu = first_cpu;
1095 if (!cpu) {
1096 return 0;
1099 for (; cpu != NULL; cpu = CPU_NEXT(cpu)) {
1100 int ret;
1102 ret = hax_arch_set_registers(cpu->env_ptr);
1103 if (ret < 0) {
1104 return ret;
1109 return 0;
1112 void hax_reset_vcpu_state(void *opaque)
1114 CPUState *cpu;
1115 for (cpu = first_cpu; cpu != NULL; cpu = CPU_NEXT(cpu)) {
1116 cpu->hax_vcpu->tunnel->user_event_pending = 0;
1117 cpu->hax_vcpu->tunnel->ready_for_interrupt_injection = 0;
1121 static void hax_accel_class_init(ObjectClass *oc, void *data)
1123 AccelClass *ac = ACCEL_CLASS(oc);
1124 ac->name = "HAX";
1125 ac->init_machine = hax_accel_init;
1126 ac->allowed = &hax_allowed;
1129 static const TypeInfo hax_accel_type = {
1130 .name = ACCEL_CLASS_NAME("hax"),
1131 .parent = TYPE_ACCEL,
1132 .class_init = hax_accel_class_init,
1135 static void hax_type_init(void)
1137 type_register_static(&hax_accel_type);
1140 type_init(hax_type_init);