Merge remote-tracking branch 'remotes/dgilbert-gitlab/tags/pull-migration-20210726a...
[qemu/armbru.git] / tests / tcg / arm / fcvt.c
blob7ac47b564e24ffc3113af9f29e7b1c884a78e118
1 /*
2 * Test Floating Point Conversion
3 */
5 /* we want additional float type definitions */
6 #define __STDC_WANT_IEC_60559_BFP_EXT__
7 #define __STDC_WANT_IEC_60559_TYPES_EXT__
9 #include <stdio.h>
10 #include <inttypes.h>
11 #include <math.h>
12 #include <float.h>
13 #include <fenv.h>
15 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
17 static char flag_str[256];
19 static char *get_flag_state(int flags)
21 if (flags) {
22 snprintf(flag_str, sizeof(flag_str), "%s %s %s %s %s",
23 flags & FE_OVERFLOW ? "OVERFLOW" : "",
24 flags & FE_UNDERFLOW ? "UNDERFLOW" : "",
25 flags & FE_DIVBYZERO ? "DIV0" : "",
26 flags & FE_INEXACT ? "INEXACT" : "",
27 flags & FE_INVALID ? "INVALID" : "");
28 } else {
29 snprintf(flag_str, sizeof(flag_str), "OK");
32 return flag_str;
35 static void print_double_number(int i, double num)
37 uint64_t double_as_hex = *(uint64_t *) &num;
38 int flags = fetestexcept(FE_ALL_EXCEPT);
39 char *fstr = get_flag_state(flags);
41 printf("%02d DOUBLE: %02.20e / %#020" PRIx64 " (%#x => %s)\n",
42 i, num, double_as_hex, flags, fstr);
45 static void print_single_number(int i, float num)
47 uint32_t single_as_hex = *(uint32_t *) &num;
48 int flags = fetestexcept(FE_ALL_EXCEPT);
49 char *fstr = get_flag_state(flags);
51 printf("%02d SINGLE: %02.20e / %#010x (%#x => %s)\n",
52 i, num, single_as_hex, flags, fstr);
55 static void print_half_number(int i, uint16_t num)
57 int flags = fetestexcept(FE_ALL_EXCEPT);
58 char *fstr = get_flag_state(flags);
60 printf("%02d HALF: %#04x (%#x => %s)\n",
61 i, num, flags, fstr);
64 static void print_int64(int i, int64_t num)
66 uint64_t int64_as_hex = *(uint64_t *) &num;
67 int flags = fetestexcept(FE_ALL_EXCEPT);
68 char *fstr = get_flag_state(flags);
70 printf("%02d INT64: %20" PRId64 "/%#020" PRIx64 " (%#x => %s)\n",
71 i, num, int64_as_hex, flags, fstr);
74 #ifndef SNANF
75 /* Signaling NaN macros, if supported. */
76 # define SNANF (__builtin_nansf (""))
77 # define SNAN (__builtin_nans (""))
78 # define SNANL (__builtin_nansl (""))
79 #endif
81 float single_numbers[] = { -SNANF,
82 -NAN,
83 -INFINITY,
84 -FLT_MAX,
85 -1.111E+31,
86 -1.111E+30,
87 -1.08700982e-12,
88 -1.78051176e-20,
89 -FLT_MIN,
90 0.0,
91 FLT_MIN,
92 2.98023224e-08,
93 5.96046E-8, /* min positive FP16 subnormal */
94 6.09756E-5, /* max subnormal FP16 */
95 6.10352E-5, /* min positive normal FP16 */
96 1.0,
97 1.0009765625, /* smallest float after 1.0 FP16 */
98 2.0,
99 M_E, M_PI,
100 65503.0,
101 65504.0, /* max FP16 */
102 65505.0,
103 131007.0,
104 131008.0, /* max AFP */
105 131009.0,
106 1.111E+30,
107 FLT_MAX,
108 INFINITY,
109 NAN,
110 SNANF };
112 static void convert_single_to_half(void)
114 int i;
116 printf("Converting single-precision to half-precision\n");
118 for (i = 0; i < ARRAY_SIZE(single_numbers); ++i) {
119 float input = single_numbers[i];
121 feclearexcept(FE_ALL_EXCEPT);
123 print_single_number(i, input);
124 #if defined(__arm__)
125 uint32_t output;
126 asm("vcvtb.f16.f32 %0, %1" : "=t" (output) : "x" (input));
127 #else
128 uint16_t output;
129 asm("fcvt %h0, %s1" : "=w" (output) : "x" (input));
130 #endif
131 print_half_number(i, output);
135 static void convert_single_to_double(void)
137 int i;
139 printf("Converting single-precision to double-precision\n");
141 for (i = 0; i < ARRAY_SIZE(single_numbers); ++i) {
142 float input = single_numbers[i];
143 /* uint64_t output; */
144 double output;
146 feclearexcept(FE_ALL_EXCEPT);
148 print_single_number(i, input);
149 #if defined(__arm__)
150 asm("vcvt.f64.f32 %P0, %1" : "=w" (output) : "t" (input));
151 #else
152 asm("fcvt %d0, %s1" : "=w" (output) : "x" (input));
153 #endif
154 print_double_number(i, output);
158 static void convert_single_to_integer(void)
160 int i;
162 printf("Converting single-precision to integer\n");
164 for (i = 0; i < ARRAY_SIZE(single_numbers); ++i) {
165 float input = single_numbers[i];
166 int64_t output;
168 feclearexcept(FE_ALL_EXCEPT);
170 print_single_number(i, input);
171 #if defined(__arm__)
172 /* asm("vcvt.s32.f32 %s0, %s1" : "=t" (output) : "t" (input)); */
173 output = input;
174 #else
175 asm("fcvtzs %0, %s1" : "=r" (output) : "w" (input));
176 #endif
177 print_int64(i, output);
181 /* This allows us to initialise some doubles as pure hex */
182 typedef union {
183 double d;
184 uint64_t h;
185 } test_doubles;
187 test_doubles double_numbers[] = {
188 {SNAN},
189 {-NAN},
190 {-INFINITY},
191 {-DBL_MAX},
192 {-FLT_MAX-1.0},
193 {-FLT_MAX},
194 {-1.111E+31},
195 {-1.111E+30}, /* half prec */
196 {-2.0}, {-1.0},
197 {-DBL_MIN},
198 {-FLT_MIN},
199 {0.0},
200 {FLT_MIN},
201 {2.98023224e-08},
202 {5.96046E-8}, /* min positive FP16 subnormal */
203 {6.09756E-5}, /* max subnormal FP16 */
204 {6.10352E-5}, /* min positive normal FP16 */
205 {1.0},
206 {1.0009765625}, /* smallest float after 1.0 FP16 */
207 {DBL_MIN},
208 {1.3789972848607228e-308},
209 {1.4914738736681624e-308},
210 {1.0}, {2.0},
211 {M_E}, {M_PI},
212 {65503.0},
213 {65504.0}, /* max FP16 */
214 {65505.0},
215 {131007.0},
216 {131008.0}, /* max AFP */
217 {131009.0},
218 {.h = 0x41dfffffffc00000 }, /* to int = 0x7fffffff */
219 {FLT_MAX},
220 {FLT_MAX + 1.0},
221 {DBL_MAX},
222 {INFINITY},
223 {NAN},
224 {.h = 0x7ff0000000000001}, /* SNAN */
225 {SNAN},
228 static void convert_double_to_half(void)
230 int i;
232 printf("Converting double-precision to half-precision\n");
234 for (i = 0; i < ARRAY_SIZE(double_numbers); ++i) {
235 double input = double_numbers[i].d;
236 uint16_t output;
238 feclearexcept(FE_ALL_EXCEPT);
240 print_double_number(i, input);
242 /* as we don't have _Float16 support */
243 #if defined(__arm__)
244 /* asm("vcvtb.f16.f64 %0, %P1" : "=t" (output) : "x" (input)); */
245 output = input;
246 #else
247 asm("fcvt %h0, %d1" : "=w" (output) : "x" (input));
248 #endif
249 print_half_number(i, output);
253 static void convert_double_to_single(void)
255 int i;
257 printf("Converting double-precision to single-precision\n");
259 for (i = 0; i < ARRAY_SIZE(double_numbers); ++i) {
260 double input = double_numbers[i].d;
261 uint32_t output;
263 feclearexcept(FE_ALL_EXCEPT);
265 print_double_number(i, input);
267 #if defined(__arm__)
268 asm("vcvt.f32.f64 %0, %P1" : "=w" (output) : "x" (input));
269 #else
270 asm("fcvt %s0, %d1" : "=w" (output) : "x" (input));
271 #endif
273 print_single_number(i, output);
277 static void convert_double_to_integer(void)
279 int i;
281 printf("Converting double-precision to integer\n");
283 for (i = 0; i < ARRAY_SIZE(double_numbers); ++i) {
284 double input = double_numbers[i].d;
285 int64_t output;
287 feclearexcept(FE_ALL_EXCEPT);
289 print_double_number(i, input);
290 #if defined(__arm__)
291 /* asm("vcvt.s32.f32 %s0, %s1" : "=t" (output) : "t" (input)); */
292 output = input;
293 #else
294 asm("fcvtzs %0, %d1" : "=r" (output) : "w" (input));
295 #endif
296 print_int64(i, output);
300 /* no handy defines for these numbers */
301 uint16_t half_numbers[] = {
302 0xffff, /* -NaN / AHP -Max */
303 0xfcff, /* -NaN / AHP */
304 0xfc01, /* -NaN / AHP */
305 0xfc00, /* -Inf */
306 0xfbff, /* -Max */
307 0xc000, /* -2 */
308 0xbc00, /* -1 */
309 0x8001, /* -MIN subnormal */
310 0x8000, /* -0 */
311 0x0000, /* +0 */
312 0x0001, /* MIN subnormal */
313 0x3c00, /* 1 */
314 0x7bff, /* Max */
315 0x7c00, /* Inf */
316 0x7c01, /* NaN / AHP */
317 0x7cff, /* NaN / AHP */
318 0x7fff, /* NaN / AHP +Max*/
321 static void convert_half_to_double(void)
323 int i;
325 printf("Converting half-precision to double-precision\n");
327 for (i = 0; i < ARRAY_SIZE(half_numbers); ++i) {
328 uint16_t input = half_numbers[i];
329 double output;
331 feclearexcept(FE_ALL_EXCEPT);
333 print_half_number(i, input);
334 #if defined(__arm__)
335 /* asm("vcvtb.f64.f16 %P0, %1" : "=w" (output) : "t" (input)); */
336 output = input;
337 #else
338 asm("fcvt %d0, %h1" : "=w" (output) : "x" (input));
339 #endif
340 print_double_number(i, output);
344 static void convert_half_to_single(void)
346 int i;
348 printf("Converting half-precision to single-precision\n");
350 for (i = 0; i < ARRAY_SIZE(half_numbers); ++i) {
351 uint16_t input = half_numbers[i];
352 float output;
354 feclearexcept(FE_ALL_EXCEPT);
356 print_half_number(i, input);
357 #if defined(__arm__)
358 asm("vcvtb.f32.f16 %0, %1" : "=w" (output) : "x" ((uint32_t)input));
359 #else
360 asm("fcvt %s0, %h1" : "=w" (output) : "x" (input));
361 #endif
362 print_single_number(i, output);
366 static void convert_half_to_integer(void)
368 int i;
370 printf("Converting half-precision to integer\n");
372 for (i = 0; i < ARRAY_SIZE(half_numbers); ++i) {
373 uint16_t input = half_numbers[i];
374 int64_t output;
376 feclearexcept(FE_ALL_EXCEPT);
378 print_half_number(i, input);
379 #if defined(__arm__)
380 /* asm("vcvt.s32.f16 %0, %1" : "=t" (output) : "t" (input)); v8.2*/
381 output = input;
382 #else
383 asm("fcvt %s0, %h1" : "=w" (output) : "x" (input));
384 #endif
385 print_int64(i, output);
389 typedef struct {
390 int flag;
391 char *desc;
392 } float_mapping;
394 float_mapping round_flags[] = {
395 { FE_TONEAREST, "to nearest" },
396 { FE_UPWARD, "upwards" },
397 { FE_DOWNWARD, "downwards" },
398 { FE_TOWARDZERO, "to zero" }
401 int main(int argc, char *argv[argc])
403 int i;
405 printf("#### Enabling IEEE Half Precision\n");
407 for (i = 0; i < ARRAY_SIZE(round_flags); ++i) {
408 fesetround(round_flags[i].flag);
409 printf("### Rounding %s\n", round_flags[i].desc);
410 convert_single_to_half();
411 convert_single_to_double();
412 convert_double_to_half();
413 convert_double_to_single();
414 convert_half_to_single();
415 convert_half_to_double();
418 /* convert to integer */
419 convert_single_to_integer();
420 convert_double_to_integer();
421 convert_half_to_integer();
423 /* And now with ARM alternative FP16 */
424 #if defined(__arm__)
425 /* See glibc sysdeps/arm/fpu_control.h */
426 asm("mrc p10, 7, r1, cr1, cr0, 0\n\t"
427 "orr r1, r1, %[flags]\n\t"
428 "mcr p10, 7, r1, cr1, cr0, 0\n\t"
429 : /* no output */ : [flags] "n" (1 << 26) : "r1" );
430 #else
431 asm("mrs x1, fpcr\n\t"
432 "orr x1, x1, %[flags]\n\t"
433 "msr fpcr, x1\n\t"
434 : /* no output */ : [flags] "n" (1 << 26) : "x1" );
435 #endif
437 printf("#### Enabling ARM Alternative Half Precision\n");
439 for (i = 0; i < ARRAY_SIZE(round_flags); ++i) {
440 fesetround(round_flags[i].flag);
441 printf("### Rounding %s\n", round_flags[i].desc);
442 convert_single_to_half();
443 convert_single_to_double();
444 convert_double_to_half();
445 convert_double_to_single();
446 convert_half_to_single();
447 convert_half_to_double();
450 /* convert to integer */
451 convert_single_to_integer();
452 convert_double_to_integer();
453 convert_half_to_integer();
455 return 0;