qapi/parser: enable pylint checks
[qemu/armbru.git] / hw / block / fdc.c
blobfa933cd3263a43f019d5fe0089f7084159538f8b
1 /*
2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
31 #include "hw/block/fdc.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/irq.h"
36 #include "hw/isa/isa.h"
37 #include "hw/qdev-properties.h"
38 #include "hw/qdev-properties-system.h"
39 #include "migration/vmstate.h"
40 #include "hw/block/block.h"
41 #include "sysemu/block-backend.h"
42 #include "sysemu/blockdev.h"
43 #include "sysemu/sysemu.h"
44 #include "qemu/log.h"
45 #include "qemu/main-loop.h"
46 #include "qemu/module.h"
47 #include "trace.h"
48 #include "qom/object.h"
49 #include "fdc-internal.h"
51 /********************************************************/
52 /* debug Floppy devices */
54 #define DEBUG_FLOPPY 0
56 #define FLOPPY_DPRINTF(fmt, ...) \
57 do { \
58 if (DEBUG_FLOPPY) { \
59 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
60 } \
61 } while (0)
64 /********************************************************/
65 /* qdev floppy bus */
67 #define TYPE_FLOPPY_BUS "floppy-bus"
68 OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus, FLOPPY_BUS)
70 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
72 static const TypeInfo floppy_bus_info = {
73 .name = TYPE_FLOPPY_BUS,
74 .parent = TYPE_BUS,
75 .instance_size = sizeof(FloppyBus),
78 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
80 qbus_init(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
81 bus->fdc = fdc;
85 /********************************************************/
86 /* Floppy drive emulation */
88 /* In many cases, the total sector size of a format is enough to uniquely
89 * identify it. However, there are some total sector collisions between
90 * formats of different physical size, and these are noted below by
91 * highlighting the total sector size for entries with collisions. */
92 const FDFormat fd_formats[] = {
93 /* First entry is default format */
94 /* 1.44 MB 3"1/2 floppy disks */
95 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
96 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
97 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
98 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
99 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
100 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
101 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
102 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
103 /* 2.88 MB 3"1/2 floppy disks */
104 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
105 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
106 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
107 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
108 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
109 /* 720 kB 3"1/2 floppy disks */
110 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
111 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
112 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
113 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
114 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
115 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
116 /* 1.2 MB 5"1/4 floppy disks */
117 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
118 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
119 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
120 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
121 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
122 /* 720 kB 5"1/4 floppy disks */
123 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
124 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
125 /* 360 kB 5"1/4 floppy disks */
126 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
127 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
128 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
129 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
130 /* 320 kB 5"1/4 floppy disks */
131 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
132 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
133 /* 360 kB must match 5"1/4 better than 3"1/2... */
134 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
135 /* end */
136 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
139 static FDriveSize drive_size(FloppyDriveType drive)
141 switch (drive) {
142 case FLOPPY_DRIVE_TYPE_120:
143 return FDRIVE_SIZE_525;
144 case FLOPPY_DRIVE_TYPE_144:
145 case FLOPPY_DRIVE_TYPE_288:
146 return FDRIVE_SIZE_350;
147 default:
148 return FDRIVE_SIZE_UNKNOWN;
152 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
153 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
155 /* Will always be a fixed parameter for us */
156 #define FD_SECTOR_LEN 512
157 #define FD_SECTOR_SC 2 /* Sector size code */
158 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
161 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
163 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
164 * currently goes through some pains to keep seeks within the bounds
165 * established by last_sect and max_track. Correcting this is difficult,
166 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
168 * For now: allow empty drives to have large bounds so we can seek around,
169 * with the understanding that when a diskette is inserted, the bounds will
170 * properly tighten to match the geometry of that inserted medium.
172 static void fd_empty_seek_hack(FDrive *drv)
174 drv->last_sect = 0xFF;
175 drv->max_track = 0xFF;
178 static void fd_init(FDrive *drv)
180 /* Drive */
181 drv->perpendicular = 0;
182 /* Disk */
183 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
184 drv->last_sect = 0;
185 drv->max_track = 0;
186 drv->ro = true;
187 drv->media_changed = 1;
190 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
192 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
193 uint8_t last_sect, uint8_t num_sides)
195 return (((track * num_sides) + head) * last_sect) + sect - 1;
198 /* Returns current position, in sectors, for given drive */
199 static int fd_sector(FDrive *drv)
201 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
202 NUM_SIDES(drv));
205 /* Returns current position, in bytes, for given drive */
206 static int fd_offset(FDrive *drv)
208 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
209 return fd_sector(drv) << BDRV_SECTOR_BITS;
212 /* Seek to a new position:
213 * returns 0 if already on right track
214 * returns 1 if track changed
215 * returns 2 if track is invalid
216 * returns 3 if sector is invalid
217 * returns 4 if seek is disabled
219 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
220 int enable_seek)
222 uint32_t sector;
223 int ret;
225 if (track > drv->max_track ||
226 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
227 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
228 head, track, sect, 1,
229 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
230 drv->max_track, drv->last_sect);
231 return 2;
233 if (sect > drv->last_sect) {
234 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
235 head, track, sect, 1,
236 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
237 drv->max_track, drv->last_sect);
238 return 3;
240 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
241 ret = 0;
242 if (sector != fd_sector(drv)) {
243 #if 0
244 if (!enable_seek) {
245 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
246 " (max=%d %02x %02x)\n",
247 head, track, sect, 1, drv->max_track,
248 drv->last_sect);
249 return 4;
251 #endif
252 drv->head = head;
253 if (drv->track != track) {
254 if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
255 drv->media_changed = 0;
257 ret = 1;
259 drv->track = track;
260 drv->sect = sect;
263 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
264 ret = 2;
267 return ret;
270 /* Set drive back to track 0 */
271 static void fd_recalibrate(FDrive *drv)
273 FLOPPY_DPRINTF("recalibrate\n");
274 fd_seek(drv, 0, 0, 1, 1);
278 * Determine geometry based on inserted diskette.
279 * Will not operate on an empty drive.
281 * @return: 0 on success, -1 if the drive is empty.
283 static int pick_geometry(FDrive *drv)
285 BlockBackend *blk = drv->blk;
286 const FDFormat *parse;
287 uint64_t nb_sectors, size;
288 int i;
289 int match, size_match, type_match;
290 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
292 /* We can only pick a geometry if we have a diskette. */
293 if (!drv->blk || !blk_is_inserted(drv->blk) ||
294 drv->drive == FLOPPY_DRIVE_TYPE_NONE)
296 return -1;
299 /* We need to determine the likely geometry of the inserted medium.
300 * In order of preference, we look for:
301 * (1) The same drive type and number of sectors,
302 * (2) The same diskette size and number of sectors,
303 * (3) The same drive type.
305 * In all cases, matches that occur higher in the drive table will take
306 * precedence over matches that occur later in the table.
308 blk_get_geometry(blk, &nb_sectors);
309 match = size_match = type_match = -1;
310 for (i = 0; ; i++) {
311 parse = &fd_formats[i];
312 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
313 break;
315 size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
316 if (nb_sectors == size) {
317 if (magic || parse->drive == drv->drive) {
318 /* (1) perfect match -- nb_sectors and drive type */
319 goto out;
320 } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
321 /* (2) size match -- nb_sectors and physical medium size */
322 match = (match == -1) ? i : match;
323 } else {
324 /* This is suspicious -- Did the user misconfigure? */
325 size_match = (size_match == -1) ? i : size_match;
327 } else if (type_match == -1) {
328 if ((parse->drive == drv->drive) ||
329 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
330 /* (3) type match -- nb_sectors mismatch, but matches the type
331 * specified explicitly by the user, or matches the fallback
332 * default type when using the drive autodetect mechanism */
333 type_match = i;
338 /* No exact match found */
339 if (match == -1) {
340 if (size_match != -1) {
341 parse = &fd_formats[size_match];
342 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
343 "but inserted medium appears to be a "
344 "%"PRId64" sector '%s' type\n",
345 FloppyDriveType_str(drv->drive),
346 nb_sectors,
347 FloppyDriveType_str(parse->drive));
349 assert(type_match != -1 && "misconfigured fd_format");
350 match = type_match;
352 parse = &(fd_formats[match]);
354 out:
355 if (parse->max_head == 0) {
356 drv->flags &= ~FDISK_DBL_SIDES;
357 } else {
358 drv->flags |= FDISK_DBL_SIDES;
360 drv->max_track = parse->max_track;
361 drv->last_sect = parse->last_sect;
362 drv->disk = parse->drive;
363 drv->media_rate = parse->rate;
364 return 0;
367 static void pick_drive_type(FDrive *drv)
369 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
370 return;
373 if (pick_geometry(drv) == 0) {
374 drv->drive = drv->disk;
375 } else {
376 drv->drive = get_fallback_drive_type(drv);
379 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
382 /* Revalidate a disk drive after a disk change */
383 static void fd_revalidate(FDrive *drv)
385 int rc;
387 FLOPPY_DPRINTF("revalidate\n");
388 if (drv->blk != NULL) {
389 drv->ro = !blk_is_writable(drv->blk);
390 if (!blk_is_inserted(drv->blk)) {
391 FLOPPY_DPRINTF("No disk in drive\n");
392 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
393 fd_empty_seek_hack(drv);
394 } else if (!drv->media_validated) {
395 rc = pick_geometry(drv);
396 if (rc) {
397 FLOPPY_DPRINTF("Could not validate floppy drive media");
398 } else {
399 drv->media_validated = true;
400 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
401 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
402 drv->max_track, drv->last_sect,
403 drv->ro ? "ro" : "rw");
406 } else {
407 FLOPPY_DPRINTF("No drive connected\n");
408 drv->last_sect = 0;
409 drv->max_track = 0;
410 drv->flags &= ~FDISK_DBL_SIDES;
411 drv->drive = FLOPPY_DRIVE_TYPE_NONE;
412 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
416 static void fd_change_cb(void *opaque, bool load, Error **errp)
418 FDrive *drive = opaque;
420 if (!load) {
421 blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
422 } else {
423 if (!blkconf_apply_backend_options(drive->conf,
424 !blk_supports_write_perm(drive->blk),
425 false, errp)) {
426 return;
430 drive->media_changed = 1;
431 drive->media_validated = false;
432 fd_revalidate(drive);
435 static const BlockDevOps fd_block_ops = {
436 .change_media_cb = fd_change_cb,
440 #define TYPE_FLOPPY_DRIVE "floppy"
441 OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive, FLOPPY_DRIVE)
443 struct FloppyDrive {
444 DeviceState qdev;
445 uint32_t unit;
446 BlockConf conf;
447 FloppyDriveType type;
450 static Property floppy_drive_properties[] = {
451 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
452 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
453 DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
454 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
455 FloppyDriveType),
456 DEFINE_PROP_END_OF_LIST(),
459 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
461 FloppyDrive *dev = FLOPPY_DRIVE(qdev);
462 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
463 FDrive *drive;
464 bool read_only;
465 int ret;
467 if (dev->unit == -1) {
468 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
469 drive = get_drv(bus->fdc, dev->unit);
470 if (!drive->blk) {
471 break;
476 if (dev->unit >= MAX_FD) {
477 error_setg(errp, "Can't create floppy unit %d, bus supports "
478 "only %d units", dev->unit, MAX_FD);
479 return;
482 drive = get_drv(bus->fdc, dev->unit);
483 if (drive->blk) {
484 error_setg(errp, "Floppy unit %d is in use", dev->unit);
485 return;
488 if (!dev->conf.blk) {
489 /* Anonymous BlockBackend for an empty drive */
490 dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
491 ret = blk_attach_dev(dev->conf.blk, qdev);
492 assert(ret == 0);
494 /* Don't take write permissions on an empty drive to allow attaching a
495 * read-only node later */
496 read_only = true;
497 } else {
498 read_only = !blk_bs(dev->conf.blk) ||
499 !blk_supports_write_perm(dev->conf.blk);
502 if (!blkconf_blocksizes(&dev->conf, errp)) {
503 return;
506 if (dev->conf.logical_block_size != 512 ||
507 dev->conf.physical_block_size != 512)
509 error_setg(errp, "Physical and logical block size must "
510 "be 512 for floppy");
511 return;
514 /* rerror/werror aren't supported by fdc and therefore not even registered
515 * with qdev. So set the defaults manually before they are used in
516 * blkconf_apply_backend_options(). */
517 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
518 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
520 if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
521 return;
524 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
525 * for empty drives. */
526 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
527 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
528 error_setg(errp, "fdc doesn't support drive option werror");
529 return;
531 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
532 error_setg(errp, "fdc doesn't support drive option rerror");
533 return;
536 drive->conf = &dev->conf;
537 drive->blk = dev->conf.blk;
538 drive->fdctrl = bus->fdc;
540 fd_init(drive);
541 blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
543 /* Keep 'type' qdev property and FDrive->drive in sync */
544 drive->drive = dev->type;
545 pick_drive_type(drive);
546 dev->type = drive->drive;
548 fd_revalidate(drive);
551 static void floppy_drive_class_init(ObjectClass *klass, void *data)
553 DeviceClass *k = DEVICE_CLASS(klass);
554 k->realize = floppy_drive_realize;
555 set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
556 k->bus_type = TYPE_FLOPPY_BUS;
557 device_class_set_props(k, floppy_drive_properties);
558 k->desc = "virtual floppy drive";
561 static const TypeInfo floppy_drive_info = {
562 .name = TYPE_FLOPPY_DRIVE,
563 .parent = TYPE_DEVICE,
564 .instance_size = sizeof(FloppyDrive),
565 .class_init = floppy_drive_class_init,
568 /********************************************************/
569 /* Intel 82078 floppy disk controller emulation */
571 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
572 static void fdctrl_raise_irq(FDCtrl *fdctrl);
573 static FDrive *get_cur_drv(FDCtrl *fdctrl);
575 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
576 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
577 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
578 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
579 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
580 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
581 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
582 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
583 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
584 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
585 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
586 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
588 enum {
589 FD_DIR_WRITE = 0,
590 FD_DIR_READ = 1,
591 FD_DIR_SCANE = 2,
592 FD_DIR_SCANL = 3,
593 FD_DIR_SCANH = 4,
594 FD_DIR_VERIFY = 5,
597 enum {
598 FD_STATE_MULTI = 0x01, /* multi track flag */
599 FD_STATE_FORMAT = 0x02, /* format flag */
602 enum {
603 FD_REG_SRA = 0x00,
604 FD_REG_SRB = 0x01,
605 FD_REG_DOR = 0x02,
606 FD_REG_TDR = 0x03,
607 FD_REG_MSR = 0x04,
608 FD_REG_DSR = 0x04,
609 FD_REG_FIFO = 0x05,
610 FD_REG_DIR = 0x07,
611 FD_REG_CCR = 0x07,
614 enum {
615 FD_CMD_READ_TRACK = 0x02,
616 FD_CMD_SPECIFY = 0x03,
617 FD_CMD_SENSE_DRIVE_STATUS = 0x04,
618 FD_CMD_WRITE = 0x05,
619 FD_CMD_READ = 0x06,
620 FD_CMD_RECALIBRATE = 0x07,
621 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
622 FD_CMD_WRITE_DELETED = 0x09,
623 FD_CMD_READ_ID = 0x0a,
624 FD_CMD_READ_DELETED = 0x0c,
625 FD_CMD_FORMAT_TRACK = 0x0d,
626 FD_CMD_DUMPREG = 0x0e,
627 FD_CMD_SEEK = 0x0f,
628 FD_CMD_VERSION = 0x10,
629 FD_CMD_SCAN_EQUAL = 0x11,
630 FD_CMD_PERPENDICULAR_MODE = 0x12,
631 FD_CMD_CONFIGURE = 0x13,
632 FD_CMD_LOCK = 0x14,
633 FD_CMD_VERIFY = 0x16,
634 FD_CMD_POWERDOWN_MODE = 0x17,
635 FD_CMD_PART_ID = 0x18,
636 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
637 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
638 FD_CMD_SAVE = 0x2e,
639 FD_CMD_OPTION = 0x33,
640 FD_CMD_RESTORE = 0x4e,
641 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
642 FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
643 FD_CMD_FORMAT_AND_WRITE = 0xcd,
644 FD_CMD_RELATIVE_SEEK_IN = 0xcf,
647 enum {
648 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
649 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
650 FD_CONFIG_POLL = 0x10, /* Poll enabled */
651 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
652 FD_CONFIG_EIS = 0x40, /* No implied seeks */
655 enum {
656 FD_SR0_DS0 = 0x01,
657 FD_SR0_DS1 = 0x02,
658 FD_SR0_HEAD = 0x04,
659 FD_SR0_EQPMT = 0x10,
660 FD_SR0_SEEK = 0x20,
661 FD_SR0_ABNTERM = 0x40,
662 FD_SR0_INVCMD = 0x80,
663 FD_SR0_RDYCHG = 0xc0,
666 enum {
667 FD_SR1_MA = 0x01, /* Missing address mark */
668 FD_SR1_NW = 0x02, /* Not writable */
669 FD_SR1_EC = 0x80, /* End of cylinder */
672 enum {
673 FD_SR2_SNS = 0x04, /* Scan not satisfied */
674 FD_SR2_SEH = 0x08, /* Scan equal hit */
677 enum {
678 FD_SRA_DIR = 0x01,
679 FD_SRA_nWP = 0x02,
680 FD_SRA_nINDX = 0x04,
681 FD_SRA_HDSEL = 0x08,
682 FD_SRA_nTRK0 = 0x10,
683 FD_SRA_STEP = 0x20,
684 FD_SRA_nDRV2 = 0x40,
685 FD_SRA_INTPEND = 0x80,
688 enum {
689 FD_SRB_MTR0 = 0x01,
690 FD_SRB_MTR1 = 0x02,
691 FD_SRB_WGATE = 0x04,
692 FD_SRB_RDATA = 0x08,
693 FD_SRB_WDATA = 0x10,
694 FD_SRB_DR0 = 0x20,
697 enum {
698 #if MAX_FD == 4
699 FD_DOR_SELMASK = 0x03,
700 #else
701 FD_DOR_SELMASK = 0x01,
702 #endif
703 FD_DOR_nRESET = 0x04,
704 FD_DOR_DMAEN = 0x08,
705 FD_DOR_MOTEN0 = 0x10,
706 FD_DOR_MOTEN1 = 0x20,
707 FD_DOR_MOTEN2 = 0x40,
708 FD_DOR_MOTEN3 = 0x80,
711 enum {
712 #if MAX_FD == 4
713 FD_TDR_BOOTSEL = 0x0c,
714 #else
715 FD_TDR_BOOTSEL = 0x04,
716 #endif
719 enum {
720 FD_DSR_DRATEMASK= 0x03,
721 FD_DSR_PWRDOWN = 0x40,
722 FD_DSR_SWRESET = 0x80,
725 enum {
726 FD_MSR_DRV0BUSY = 0x01,
727 FD_MSR_DRV1BUSY = 0x02,
728 FD_MSR_DRV2BUSY = 0x04,
729 FD_MSR_DRV3BUSY = 0x08,
730 FD_MSR_CMDBUSY = 0x10,
731 FD_MSR_NONDMA = 0x20,
732 FD_MSR_DIO = 0x40,
733 FD_MSR_RQM = 0x80,
736 enum {
737 FD_DIR_DSKCHG = 0x80,
741 * See chapter 5.0 "Controller phases" of the spec:
743 * Command phase:
744 * The host writes a command and its parameters into the FIFO. The command
745 * phase is completed when all parameters for the command have been supplied,
746 * and execution phase is entered.
748 * Execution phase:
749 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
750 * contains the payload now, otherwise it's unused. When all bytes of the
751 * required data have been transferred, the state is switched to either result
752 * phase (if the command produces status bytes) or directly back into the
753 * command phase for the next command.
755 * Result phase:
756 * The host reads out the FIFO, which contains one or more result bytes now.
758 enum {
759 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
760 FD_PHASE_RECONSTRUCT = 0,
762 FD_PHASE_COMMAND = 1,
763 FD_PHASE_EXECUTION = 2,
764 FD_PHASE_RESULT = 3,
767 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
768 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
770 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
772 return drv->fdctrl->fallback;
775 uint32_t fdctrl_read(void *opaque, uint32_t reg)
777 FDCtrl *fdctrl = opaque;
778 uint32_t retval;
780 reg &= 7;
781 switch (reg) {
782 case FD_REG_SRA:
783 retval = fdctrl_read_statusA(fdctrl);
784 break;
785 case FD_REG_SRB:
786 retval = fdctrl_read_statusB(fdctrl);
787 break;
788 case FD_REG_DOR:
789 retval = fdctrl_read_dor(fdctrl);
790 break;
791 case FD_REG_TDR:
792 retval = fdctrl_read_tape(fdctrl);
793 break;
794 case FD_REG_MSR:
795 retval = fdctrl_read_main_status(fdctrl);
796 break;
797 case FD_REG_FIFO:
798 retval = fdctrl_read_data(fdctrl);
799 break;
800 case FD_REG_DIR:
801 retval = fdctrl_read_dir(fdctrl);
802 break;
803 default:
804 retval = (uint32_t)(-1);
805 break;
807 trace_fdc_ioport_read(reg, retval);
809 return retval;
812 void fdctrl_write(void *opaque, uint32_t reg, uint32_t value)
814 FDCtrl *fdctrl = opaque;
816 reg &= 7;
817 trace_fdc_ioport_write(reg, value);
818 switch (reg) {
819 case FD_REG_DOR:
820 fdctrl_write_dor(fdctrl, value);
821 break;
822 case FD_REG_TDR:
823 fdctrl_write_tape(fdctrl, value);
824 break;
825 case FD_REG_DSR:
826 fdctrl_write_rate(fdctrl, value);
827 break;
828 case FD_REG_FIFO:
829 fdctrl_write_data(fdctrl, value);
830 break;
831 case FD_REG_CCR:
832 fdctrl_write_ccr(fdctrl, value);
833 break;
834 default:
835 break;
839 static bool fdrive_media_changed_needed(void *opaque)
841 FDrive *drive = opaque;
843 return (drive->blk != NULL && drive->media_changed != 1);
846 static const VMStateDescription vmstate_fdrive_media_changed = {
847 .name = "fdrive/media_changed",
848 .version_id = 1,
849 .minimum_version_id = 1,
850 .needed = fdrive_media_changed_needed,
851 .fields = (VMStateField[]) {
852 VMSTATE_UINT8(media_changed, FDrive),
853 VMSTATE_END_OF_LIST()
857 static const VMStateDescription vmstate_fdrive_media_rate = {
858 .name = "fdrive/media_rate",
859 .version_id = 1,
860 .minimum_version_id = 1,
861 .fields = (VMStateField[]) {
862 VMSTATE_UINT8(media_rate, FDrive),
863 VMSTATE_END_OF_LIST()
867 static bool fdrive_perpendicular_needed(void *opaque)
869 FDrive *drive = opaque;
871 return drive->perpendicular != 0;
874 static const VMStateDescription vmstate_fdrive_perpendicular = {
875 .name = "fdrive/perpendicular",
876 .version_id = 1,
877 .minimum_version_id = 1,
878 .needed = fdrive_perpendicular_needed,
879 .fields = (VMStateField[]) {
880 VMSTATE_UINT8(perpendicular, FDrive),
881 VMSTATE_END_OF_LIST()
885 static int fdrive_post_load(void *opaque, int version_id)
887 fd_revalidate(opaque);
888 return 0;
891 static const VMStateDescription vmstate_fdrive = {
892 .name = "fdrive",
893 .version_id = 1,
894 .minimum_version_id = 1,
895 .post_load = fdrive_post_load,
896 .fields = (VMStateField[]) {
897 VMSTATE_UINT8(head, FDrive),
898 VMSTATE_UINT8(track, FDrive),
899 VMSTATE_UINT8(sect, FDrive),
900 VMSTATE_END_OF_LIST()
902 .subsections = (const VMStateDescription*[]) {
903 &vmstate_fdrive_media_changed,
904 &vmstate_fdrive_media_rate,
905 &vmstate_fdrive_perpendicular,
906 NULL
911 * Reconstructs the phase from register values according to the logic that was
912 * implemented in qemu 2.3. This is the default value that is used if the phase
913 * subsection is not present on migration.
915 * Don't change this function to reflect newer qemu versions, it is part of
916 * the migration ABI.
918 static int reconstruct_phase(FDCtrl *fdctrl)
920 if (fdctrl->msr & FD_MSR_NONDMA) {
921 return FD_PHASE_EXECUTION;
922 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
923 /* qemu 2.3 disabled RQM only during DMA transfers */
924 return FD_PHASE_EXECUTION;
925 } else if (fdctrl->msr & FD_MSR_DIO) {
926 return FD_PHASE_RESULT;
927 } else {
928 return FD_PHASE_COMMAND;
932 static int fdc_pre_save(void *opaque)
934 FDCtrl *s = opaque;
936 s->dor_vmstate = s->dor | GET_CUR_DRV(s);
938 return 0;
941 static int fdc_pre_load(void *opaque)
943 FDCtrl *s = opaque;
944 s->phase = FD_PHASE_RECONSTRUCT;
945 return 0;
948 static int fdc_post_load(void *opaque, int version_id)
950 FDCtrl *s = opaque;
952 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
953 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
955 if (s->phase == FD_PHASE_RECONSTRUCT) {
956 s->phase = reconstruct_phase(s);
959 return 0;
962 static bool fdc_reset_sensei_needed(void *opaque)
964 FDCtrl *s = opaque;
966 return s->reset_sensei != 0;
969 static const VMStateDescription vmstate_fdc_reset_sensei = {
970 .name = "fdc/reset_sensei",
971 .version_id = 1,
972 .minimum_version_id = 1,
973 .needed = fdc_reset_sensei_needed,
974 .fields = (VMStateField[]) {
975 VMSTATE_INT32(reset_sensei, FDCtrl),
976 VMSTATE_END_OF_LIST()
980 static bool fdc_result_timer_needed(void *opaque)
982 FDCtrl *s = opaque;
984 return timer_pending(s->result_timer);
987 static const VMStateDescription vmstate_fdc_result_timer = {
988 .name = "fdc/result_timer",
989 .version_id = 1,
990 .minimum_version_id = 1,
991 .needed = fdc_result_timer_needed,
992 .fields = (VMStateField[]) {
993 VMSTATE_TIMER_PTR(result_timer, FDCtrl),
994 VMSTATE_END_OF_LIST()
998 static bool fdc_phase_needed(void *opaque)
1000 FDCtrl *fdctrl = opaque;
1002 return reconstruct_phase(fdctrl) != fdctrl->phase;
1005 static const VMStateDescription vmstate_fdc_phase = {
1006 .name = "fdc/phase",
1007 .version_id = 1,
1008 .minimum_version_id = 1,
1009 .needed = fdc_phase_needed,
1010 .fields = (VMStateField[]) {
1011 VMSTATE_UINT8(phase, FDCtrl),
1012 VMSTATE_END_OF_LIST()
1016 const VMStateDescription vmstate_fdc = {
1017 .name = "fdc",
1018 .version_id = 2,
1019 .minimum_version_id = 2,
1020 .pre_save = fdc_pre_save,
1021 .pre_load = fdc_pre_load,
1022 .post_load = fdc_post_load,
1023 .fields = (VMStateField[]) {
1024 /* Controller State */
1025 VMSTATE_UINT8(sra, FDCtrl),
1026 VMSTATE_UINT8(srb, FDCtrl),
1027 VMSTATE_UINT8(dor_vmstate, FDCtrl),
1028 VMSTATE_UINT8(tdr, FDCtrl),
1029 VMSTATE_UINT8(dsr, FDCtrl),
1030 VMSTATE_UINT8(msr, FDCtrl),
1031 VMSTATE_UINT8(status0, FDCtrl),
1032 VMSTATE_UINT8(status1, FDCtrl),
1033 VMSTATE_UINT8(status2, FDCtrl),
1034 /* Command FIFO */
1035 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1036 uint8_t),
1037 VMSTATE_UINT32(data_pos, FDCtrl),
1038 VMSTATE_UINT32(data_len, FDCtrl),
1039 VMSTATE_UINT8(data_state, FDCtrl),
1040 VMSTATE_UINT8(data_dir, FDCtrl),
1041 VMSTATE_UINT8(eot, FDCtrl),
1042 /* States kept only to be returned back */
1043 VMSTATE_UINT8(timer0, FDCtrl),
1044 VMSTATE_UINT8(timer1, FDCtrl),
1045 VMSTATE_UINT8(precomp_trk, FDCtrl),
1046 VMSTATE_UINT8(config, FDCtrl),
1047 VMSTATE_UINT8(lock, FDCtrl),
1048 VMSTATE_UINT8(pwrd, FDCtrl),
1049 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1050 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1051 vmstate_fdrive, FDrive),
1052 VMSTATE_END_OF_LIST()
1054 .subsections = (const VMStateDescription*[]) {
1055 &vmstate_fdc_reset_sensei,
1056 &vmstate_fdc_result_timer,
1057 &vmstate_fdc_phase,
1058 NULL
1062 /* Change IRQ state */
1063 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1065 fdctrl->status0 = 0;
1066 if (!(fdctrl->sra & FD_SRA_INTPEND))
1067 return;
1068 FLOPPY_DPRINTF("Reset interrupt\n");
1069 qemu_set_irq(fdctrl->irq, 0);
1070 fdctrl->sra &= ~FD_SRA_INTPEND;
1073 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1075 if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1076 qemu_set_irq(fdctrl->irq, 1);
1077 fdctrl->sra |= FD_SRA_INTPEND;
1080 fdctrl->reset_sensei = 0;
1081 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1084 /* Reset controller */
1085 void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1087 int i;
1089 FLOPPY_DPRINTF("reset controller\n");
1090 fdctrl_reset_irq(fdctrl);
1091 /* Initialise controller */
1092 fdctrl->sra = 0;
1093 fdctrl->srb = 0xc0;
1094 if (!fdctrl->drives[1].blk) {
1095 fdctrl->sra |= FD_SRA_nDRV2;
1097 fdctrl->cur_drv = 0;
1098 fdctrl->dor = FD_DOR_nRESET;
1099 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1100 fdctrl->msr = FD_MSR_RQM;
1101 fdctrl->reset_sensei = 0;
1102 timer_del(fdctrl->result_timer);
1103 /* FIFO state */
1104 fdctrl->data_pos = 0;
1105 fdctrl->data_len = 0;
1106 fdctrl->data_state = 0;
1107 fdctrl->data_dir = FD_DIR_WRITE;
1108 for (i = 0; i < MAX_FD; i++)
1109 fd_recalibrate(&fdctrl->drives[i]);
1110 fdctrl_to_command_phase(fdctrl);
1111 if (do_irq) {
1112 fdctrl->status0 |= FD_SR0_RDYCHG;
1113 fdctrl_raise_irq(fdctrl);
1114 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1118 static inline FDrive *drv0(FDCtrl *fdctrl)
1120 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1123 static inline FDrive *drv1(FDCtrl *fdctrl)
1125 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1126 return &fdctrl->drives[1];
1127 else
1128 return &fdctrl->drives[0];
1131 #if MAX_FD == 4
1132 static inline FDrive *drv2(FDCtrl *fdctrl)
1134 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1135 return &fdctrl->drives[2];
1136 else
1137 return &fdctrl->drives[1];
1140 static inline FDrive *drv3(FDCtrl *fdctrl)
1142 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1143 return &fdctrl->drives[3];
1144 else
1145 return &fdctrl->drives[2];
1147 #endif
1149 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1151 switch (unit) {
1152 case 0: return drv0(fdctrl);
1153 case 1: return drv1(fdctrl);
1154 #if MAX_FD == 4
1155 case 2: return drv2(fdctrl);
1156 case 3: return drv3(fdctrl);
1157 #endif
1158 default: return NULL;
1162 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1164 return get_drv(fdctrl, fdctrl->cur_drv);
1167 /* Status A register : 0x00 (read-only) */
1168 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1170 uint32_t retval = fdctrl->sra;
1172 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1174 return retval;
1177 /* Status B register : 0x01 (read-only) */
1178 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1180 uint32_t retval = fdctrl->srb;
1182 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1184 return retval;
1187 /* Digital output register : 0x02 */
1188 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1190 uint32_t retval = fdctrl->dor;
1192 /* Selected drive */
1193 retval |= fdctrl->cur_drv;
1194 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1196 return retval;
1199 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1201 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1203 /* Motors */
1204 if (value & FD_DOR_MOTEN0)
1205 fdctrl->srb |= FD_SRB_MTR0;
1206 else
1207 fdctrl->srb &= ~FD_SRB_MTR0;
1208 if (value & FD_DOR_MOTEN1)
1209 fdctrl->srb |= FD_SRB_MTR1;
1210 else
1211 fdctrl->srb &= ~FD_SRB_MTR1;
1213 /* Drive */
1214 if (value & 1)
1215 fdctrl->srb |= FD_SRB_DR0;
1216 else
1217 fdctrl->srb &= ~FD_SRB_DR0;
1219 /* Reset */
1220 if (!(value & FD_DOR_nRESET)) {
1221 if (fdctrl->dor & FD_DOR_nRESET) {
1222 FLOPPY_DPRINTF("controller enter RESET state\n");
1224 } else {
1225 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1226 FLOPPY_DPRINTF("controller out of RESET state\n");
1227 fdctrl_reset(fdctrl, 1);
1228 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1231 /* Selected drive */
1232 fdctrl->cur_drv = value & FD_DOR_SELMASK;
1234 fdctrl->dor = value;
1237 /* Tape drive register : 0x03 */
1238 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1240 uint32_t retval = fdctrl->tdr;
1242 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1244 return retval;
1247 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1249 /* Reset mode */
1250 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1251 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1252 return;
1254 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1255 /* Disk boot selection indicator */
1256 fdctrl->tdr = value & FD_TDR_BOOTSEL;
1257 /* Tape indicators: never allow */
1260 /* Main status register : 0x04 (read) */
1261 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1263 uint32_t retval = fdctrl->msr;
1265 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1266 fdctrl->dor |= FD_DOR_nRESET;
1268 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1270 return retval;
1273 /* Data select rate register : 0x04 (write) */
1274 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1276 /* Reset mode */
1277 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1278 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1279 return;
1281 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1282 /* Reset: autoclear */
1283 if (value & FD_DSR_SWRESET) {
1284 fdctrl->dor &= ~FD_DOR_nRESET;
1285 fdctrl_reset(fdctrl, 1);
1286 fdctrl->dor |= FD_DOR_nRESET;
1288 if (value & FD_DSR_PWRDOWN) {
1289 fdctrl_reset(fdctrl, 1);
1291 fdctrl->dsr = value;
1294 /* Configuration control register: 0x07 (write) */
1295 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1297 /* Reset mode */
1298 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1299 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1300 return;
1302 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1304 /* Only the rate selection bits used in AT mode, and we
1305 * store those in the DSR.
1307 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1308 (value & FD_DSR_DRATEMASK);
1311 static int fdctrl_media_changed(FDrive *drv)
1313 return drv->media_changed;
1316 /* Digital input register : 0x07 (read-only) */
1317 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1319 uint32_t retval = 0;
1321 if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1322 retval |= FD_DIR_DSKCHG;
1324 if (retval != 0) {
1325 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1328 return retval;
1331 /* Clear the FIFO and update the state for receiving the next command */
1332 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1334 fdctrl->phase = FD_PHASE_COMMAND;
1335 fdctrl->data_dir = FD_DIR_WRITE;
1336 fdctrl->data_pos = 0;
1337 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1338 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1339 fdctrl->msr |= FD_MSR_RQM;
1342 /* Update the state to allow the guest to read out the command status.
1343 * @fifo_len is the number of result bytes to be read out. */
1344 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1346 fdctrl->phase = FD_PHASE_RESULT;
1347 fdctrl->data_dir = FD_DIR_READ;
1348 fdctrl->data_len = fifo_len;
1349 fdctrl->data_pos = 0;
1350 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1353 /* Set an error: unimplemented/unknown command */
1354 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1356 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1357 fdctrl->fifo[0]);
1358 fdctrl->fifo[0] = FD_SR0_INVCMD;
1359 fdctrl_to_result_phase(fdctrl, 1);
1362 /* Seek to next sector
1363 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1364 * otherwise returns 1
1366 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1368 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1369 cur_drv->head, cur_drv->track, cur_drv->sect,
1370 fd_sector(cur_drv));
1371 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1372 error in fact */
1373 uint8_t new_head = cur_drv->head;
1374 uint8_t new_track = cur_drv->track;
1375 uint8_t new_sect = cur_drv->sect;
1377 int ret = 1;
1379 if (new_sect >= cur_drv->last_sect ||
1380 new_sect == fdctrl->eot) {
1381 new_sect = 1;
1382 if (FD_MULTI_TRACK(fdctrl->data_state)) {
1383 if (new_head == 0 &&
1384 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1385 new_head = 1;
1386 } else {
1387 new_head = 0;
1388 new_track++;
1389 fdctrl->status0 |= FD_SR0_SEEK;
1390 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1391 ret = 0;
1394 } else {
1395 fdctrl->status0 |= FD_SR0_SEEK;
1396 new_track++;
1397 ret = 0;
1399 if (ret == 1) {
1400 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1401 new_head, new_track, new_sect, fd_sector(cur_drv));
1403 } else {
1404 new_sect++;
1406 fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1407 return ret;
1410 /* Callback for transfer end (stop or abort) */
1411 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1412 uint8_t status1, uint8_t status2)
1414 FDrive *cur_drv;
1415 cur_drv = get_cur_drv(fdctrl);
1417 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1418 fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1419 if (cur_drv->head) {
1420 fdctrl->status0 |= FD_SR0_HEAD;
1422 fdctrl->status0 |= status0;
1424 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1425 status0, status1, status2, fdctrl->status0);
1426 fdctrl->fifo[0] = fdctrl->status0;
1427 fdctrl->fifo[1] = status1;
1428 fdctrl->fifo[2] = status2;
1429 fdctrl->fifo[3] = cur_drv->track;
1430 fdctrl->fifo[4] = cur_drv->head;
1431 fdctrl->fifo[5] = cur_drv->sect;
1432 fdctrl->fifo[6] = FD_SECTOR_SC;
1433 fdctrl->data_dir = FD_DIR_READ;
1434 if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1435 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1436 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1438 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1439 fdctrl->msr &= ~FD_MSR_NONDMA;
1441 fdctrl_to_result_phase(fdctrl, 7);
1442 fdctrl_raise_irq(fdctrl);
1445 /* Prepare a data transfer (either DMA or FIFO) */
1446 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1448 FDrive *cur_drv;
1449 uint8_t kh, kt, ks;
1451 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1452 cur_drv = get_cur_drv(fdctrl);
1453 kt = fdctrl->fifo[2];
1454 kh = fdctrl->fifo[3];
1455 ks = fdctrl->fifo[4];
1456 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1457 GET_CUR_DRV(fdctrl), kh, kt, ks,
1458 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1459 NUM_SIDES(cur_drv)));
1460 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1461 case 2:
1462 /* sect too big */
1463 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1464 fdctrl->fifo[3] = kt;
1465 fdctrl->fifo[4] = kh;
1466 fdctrl->fifo[5] = ks;
1467 return;
1468 case 3:
1469 /* track too big */
1470 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1471 fdctrl->fifo[3] = kt;
1472 fdctrl->fifo[4] = kh;
1473 fdctrl->fifo[5] = ks;
1474 return;
1475 case 4:
1476 /* No seek enabled */
1477 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1478 fdctrl->fifo[3] = kt;
1479 fdctrl->fifo[4] = kh;
1480 fdctrl->fifo[5] = ks;
1481 return;
1482 case 1:
1483 fdctrl->status0 |= FD_SR0_SEEK;
1484 break;
1485 default:
1486 break;
1489 /* Check the data rate. If the programmed data rate does not match
1490 * the currently inserted medium, the operation has to fail. */
1491 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1492 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1493 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1494 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1495 fdctrl->fifo[3] = kt;
1496 fdctrl->fifo[4] = kh;
1497 fdctrl->fifo[5] = ks;
1498 return;
1501 /* Set the FIFO state */
1502 fdctrl->data_dir = direction;
1503 fdctrl->data_pos = 0;
1504 assert(fdctrl->msr & FD_MSR_CMDBUSY);
1505 if (fdctrl->fifo[0] & 0x80)
1506 fdctrl->data_state |= FD_STATE_MULTI;
1507 else
1508 fdctrl->data_state &= ~FD_STATE_MULTI;
1509 if (fdctrl->fifo[5] == 0) {
1510 fdctrl->data_len = fdctrl->fifo[8];
1511 } else {
1512 int tmp;
1513 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1514 tmp = (fdctrl->fifo[6] - ks + 1);
1515 if (fdctrl->fifo[0] & 0x80)
1516 tmp += fdctrl->fifo[6];
1517 fdctrl->data_len *= tmp;
1519 fdctrl->eot = fdctrl->fifo[6];
1520 if (fdctrl->dor & FD_DOR_DMAEN) {
1521 /* DMA transfer is enabled. */
1522 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1524 FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
1525 direction, (128 << fdctrl->fifo[5]) *
1526 (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1528 /* No access is allowed until DMA transfer has completed */
1529 fdctrl->msr &= ~FD_MSR_RQM;
1530 if (direction != FD_DIR_VERIFY) {
1532 * Now, we just have to wait for the DMA controller to
1533 * recall us...
1535 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1536 k->schedule(fdctrl->dma);
1537 } else {
1538 /* Start transfer */
1539 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1540 fdctrl->data_len);
1542 return;
1544 FLOPPY_DPRINTF("start non-DMA transfer\n");
1545 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1546 if (direction != FD_DIR_WRITE)
1547 fdctrl->msr |= FD_MSR_DIO;
1548 /* IO based transfer: calculate len */
1549 fdctrl_raise_irq(fdctrl);
1552 /* Prepare a transfer of deleted data */
1553 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1555 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1557 /* We don't handle deleted data,
1558 * so we don't return *ANYTHING*
1560 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1563 /* handlers for DMA transfers */
1564 int fdctrl_transfer_handler(void *opaque, int nchan, int dma_pos, int dma_len)
1566 FDCtrl *fdctrl;
1567 FDrive *cur_drv;
1568 int len, start_pos, rel_pos;
1569 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1570 IsaDmaClass *k;
1572 fdctrl = opaque;
1573 if (fdctrl->msr & FD_MSR_RQM) {
1574 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1575 return 0;
1577 k = ISADMA_GET_CLASS(fdctrl->dma);
1578 cur_drv = get_cur_drv(fdctrl);
1579 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1580 fdctrl->data_dir == FD_DIR_SCANH)
1581 status2 = FD_SR2_SNS;
1582 if (dma_len > fdctrl->data_len)
1583 dma_len = fdctrl->data_len;
1584 if (cur_drv->blk == NULL) {
1585 if (fdctrl->data_dir == FD_DIR_WRITE)
1586 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1587 else
1588 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1589 len = 0;
1590 goto transfer_error;
1592 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1593 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1594 len = dma_len - fdctrl->data_pos;
1595 if (len + rel_pos > FD_SECTOR_LEN)
1596 len = FD_SECTOR_LEN - rel_pos;
1597 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1598 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1599 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1600 cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1601 fd_sector(cur_drv) * FD_SECTOR_LEN);
1602 if (fdctrl->data_dir != FD_DIR_WRITE ||
1603 len < FD_SECTOR_LEN || rel_pos != 0) {
1604 /* READ & SCAN commands and realign to a sector for WRITE */
1605 if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1606 fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1607 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1608 fd_sector(cur_drv));
1609 /* Sure, image size is too small... */
1610 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1613 switch (fdctrl->data_dir) {
1614 case FD_DIR_READ:
1615 /* READ commands */
1616 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1617 fdctrl->data_pos, len);
1618 break;
1619 case FD_DIR_WRITE:
1620 /* WRITE commands */
1621 if (cur_drv->ro) {
1622 /* Handle readonly medium early, no need to do DMA, touch the
1623 * LED or attempt any writes. A real floppy doesn't attempt
1624 * to write to readonly media either. */
1625 fdctrl_stop_transfer(fdctrl,
1626 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1627 0x00);
1628 goto transfer_error;
1631 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1632 fdctrl->data_pos, len);
1633 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1634 fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1635 FLOPPY_DPRINTF("error writing sector %d\n",
1636 fd_sector(cur_drv));
1637 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1638 goto transfer_error;
1640 break;
1641 case FD_DIR_VERIFY:
1642 /* VERIFY commands */
1643 break;
1644 default:
1645 /* SCAN commands */
1647 uint8_t tmpbuf[FD_SECTOR_LEN];
1648 int ret;
1649 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1650 len);
1651 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1652 if (ret == 0) {
1653 status2 = FD_SR2_SEH;
1654 goto end_transfer;
1656 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1657 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1658 status2 = 0x00;
1659 goto end_transfer;
1662 break;
1664 fdctrl->data_pos += len;
1665 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1666 if (rel_pos == 0) {
1667 /* Seek to next sector */
1668 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1669 break;
1672 end_transfer:
1673 len = fdctrl->data_pos - start_pos;
1674 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1675 fdctrl->data_pos, len, fdctrl->data_len);
1676 if (fdctrl->data_dir == FD_DIR_SCANE ||
1677 fdctrl->data_dir == FD_DIR_SCANL ||
1678 fdctrl->data_dir == FD_DIR_SCANH)
1679 status2 = FD_SR2_SEH;
1680 fdctrl->data_len -= len;
1681 fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1682 transfer_error:
1684 return len;
1687 /* Data register : 0x05 */
1688 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1690 FDrive *cur_drv;
1691 uint32_t retval = 0;
1692 uint32_t pos;
1694 cur_drv = get_cur_drv(fdctrl);
1695 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1696 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1697 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1698 return 0;
1701 /* If data_len spans multiple sectors, the current position in the FIFO
1702 * wraps around while fdctrl->data_pos is the real position in the whole
1703 * request. */
1704 pos = fdctrl->data_pos;
1705 pos %= FD_SECTOR_LEN;
1707 switch (fdctrl->phase) {
1708 case FD_PHASE_EXECUTION:
1709 assert(fdctrl->msr & FD_MSR_NONDMA);
1710 if (pos == 0) {
1711 if (fdctrl->data_pos != 0)
1712 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1713 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1714 fd_sector(cur_drv));
1715 return 0;
1717 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1718 BDRV_SECTOR_SIZE)
1719 < 0) {
1720 FLOPPY_DPRINTF("error getting sector %d\n",
1721 fd_sector(cur_drv));
1722 /* Sure, image size is too small... */
1723 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1727 if (++fdctrl->data_pos == fdctrl->data_len) {
1728 fdctrl->msr &= ~FD_MSR_RQM;
1729 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1731 break;
1733 case FD_PHASE_RESULT:
1734 assert(!(fdctrl->msr & FD_MSR_NONDMA));
1735 if (++fdctrl->data_pos == fdctrl->data_len) {
1736 fdctrl->msr &= ~FD_MSR_RQM;
1737 fdctrl_to_command_phase(fdctrl);
1738 fdctrl_reset_irq(fdctrl);
1740 break;
1742 case FD_PHASE_COMMAND:
1743 default:
1744 abort();
1747 retval = fdctrl->fifo[pos];
1748 FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1750 return retval;
1753 static void fdctrl_format_sector(FDCtrl *fdctrl)
1755 FDrive *cur_drv;
1756 uint8_t kh, kt, ks;
1758 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1759 cur_drv = get_cur_drv(fdctrl);
1760 kt = fdctrl->fifo[6];
1761 kh = fdctrl->fifo[7];
1762 ks = fdctrl->fifo[8];
1763 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1764 GET_CUR_DRV(fdctrl), kh, kt, ks,
1765 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1766 NUM_SIDES(cur_drv)));
1767 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1768 case 2:
1769 /* sect too big */
1770 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1771 fdctrl->fifo[3] = kt;
1772 fdctrl->fifo[4] = kh;
1773 fdctrl->fifo[5] = ks;
1774 return;
1775 case 3:
1776 /* track too big */
1777 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1778 fdctrl->fifo[3] = kt;
1779 fdctrl->fifo[4] = kh;
1780 fdctrl->fifo[5] = ks;
1781 return;
1782 case 4:
1783 /* No seek enabled */
1784 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1785 fdctrl->fifo[3] = kt;
1786 fdctrl->fifo[4] = kh;
1787 fdctrl->fifo[5] = ks;
1788 return;
1789 case 1:
1790 fdctrl->status0 |= FD_SR0_SEEK;
1791 break;
1792 default:
1793 break;
1795 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1796 if (cur_drv->blk == NULL ||
1797 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1798 BDRV_SECTOR_SIZE, 0) < 0) {
1799 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1800 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1801 } else {
1802 if (cur_drv->sect == cur_drv->last_sect) {
1803 fdctrl->data_state &= ~FD_STATE_FORMAT;
1804 /* Last sector done */
1805 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1806 } else {
1807 /* More to do */
1808 fdctrl->data_pos = 0;
1809 fdctrl->data_len = 4;
1814 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
1816 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
1817 fdctrl->fifo[0] = fdctrl->lock << 4;
1818 fdctrl_to_result_phase(fdctrl, 1);
1821 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
1823 FDrive *cur_drv = get_cur_drv(fdctrl);
1825 /* Drives position */
1826 fdctrl->fifo[0] = drv0(fdctrl)->track;
1827 fdctrl->fifo[1] = drv1(fdctrl)->track;
1828 #if MAX_FD == 4
1829 fdctrl->fifo[2] = drv2(fdctrl)->track;
1830 fdctrl->fifo[3] = drv3(fdctrl)->track;
1831 #else
1832 fdctrl->fifo[2] = 0;
1833 fdctrl->fifo[3] = 0;
1834 #endif
1835 /* timers */
1836 fdctrl->fifo[4] = fdctrl->timer0;
1837 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
1838 fdctrl->fifo[6] = cur_drv->last_sect;
1839 fdctrl->fifo[7] = (fdctrl->lock << 7) |
1840 (cur_drv->perpendicular << 2);
1841 fdctrl->fifo[8] = fdctrl->config;
1842 fdctrl->fifo[9] = fdctrl->precomp_trk;
1843 fdctrl_to_result_phase(fdctrl, 10);
1846 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
1848 /* Controller's version */
1849 fdctrl->fifo[0] = fdctrl->version;
1850 fdctrl_to_result_phase(fdctrl, 1);
1853 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
1855 fdctrl->fifo[0] = 0x41; /* Stepping 1 */
1856 fdctrl_to_result_phase(fdctrl, 1);
1859 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
1861 FDrive *cur_drv = get_cur_drv(fdctrl);
1863 /* Drives position */
1864 drv0(fdctrl)->track = fdctrl->fifo[3];
1865 drv1(fdctrl)->track = fdctrl->fifo[4];
1866 #if MAX_FD == 4
1867 drv2(fdctrl)->track = fdctrl->fifo[5];
1868 drv3(fdctrl)->track = fdctrl->fifo[6];
1869 #endif
1870 /* timers */
1871 fdctrl->timer0 = fdctrl->fifo[7];
1872 fdctrl->timer1 = fdctrl->fifo[8];
1873 cur_drv->last_sect = fdctrl->fifo[9];
1874 fdctrl->lock = fdctrl->fifo[10] >> 7;
1875 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
1876 fdctrl->config = fdctrl->fifo[11];
1877 fdctrl->precomp_trk = fdctrl->fifo[12];
1878 fdctrl->pwrd = fdctrl->fifo[13];
1879 fdctrl_to_command_phase(fdctrl);
1882 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
1884 FDrive *cur_drv = get_cur_drv(fdctrl);
1886 fdctrl->fifo[0] = 0;
1887 fdctrl->fifo[1] = 0;
1888 /* Drives position */
1889 fdctrl->fifo[2] = drv0(fdctrl)->track;
1890 fdctrl->fifo[3] = drv1(fdctrl)->track;
1891 #if MAX_FD == 4
1892 fdctrl->fifo[4] = drv2(fdctrl)->track;
1893 fdctrl->fifo[5] = drv3(fdctrl)->track;
1894 #else
1895 fdctrl->fifo[4] = 0;
1896 fdctrl->fifo[5] = 0;
1897 #endif
1898 /* timers */
1899 fdctrl->fifo[6] = fdctrl->timer0;
1900 fdctrl->fifo[7] = fdctrl->timer1;
1901 fdctrl->fifo[8] = cur_drv->last_sect;
1902 fdctrl->fifo[9] = (fdctrl->lock << 7) |
1903 (cur_drv->perpendicular << 2);
1904 fdctrl->fifo[10] = fdctrl->config;
1905 fdctrl->fifo[11] = fdctrl->precomp_trk;
1906 fdctrl->fifo[12] = fdctrl->pwrd;
1907 fdctrl->fifo[13] = 0;
1908 fdctrl->fifo[14] = 0;
1909 fdctrl_to_result_phase(fdctrl, 15);
1912 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
1914 FDrive *cur_drv = get_cur_drv(fdctrl);
1916 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1917 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1918 (NANOSECONDS_PER_SECOND / 50));
1921 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
1923 FDrive *cur_drv;
1925 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1926 cur_drv = get_cur_drv(fdctrl);
1927 fdctrl->data_state |= FD_STATE_FORMAT;
1928 if (fdctrl->fifo[0] & 0x80)
1929 fdctrl->data_state |= FD_STATE_MULTI;
1930 else
1931 fdctrl->data_state &= ~FD_STATE_MULTI;
1932 cur_drv->bps =
1933 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
1934 #if 0
1935 cur_drv->last_sect =
1936 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
1937 fdctrl->fifo[3] / 2;
1938 #else
1939 cur_drv->last_sect = fdctrl->fifo[3];
1940 #endif
1941 /* TODO: implement format using DMA expected by the Bochs BIOS
1942 * and Linux fdformat (read 3 bytes per sector via DMA and fill
1943 * the sector with the specified fill byte
1945 fdctrl->data_state &= ~FD_STATE_FORMAT;
1946 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1949 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
1951 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
1952 fdctrl->timer1 = fdctrl->fifo[2] >> 1;
1953 if (fdctrl->fifo[2] & 1)
1954 fdctrl->dor &= ~FD_DOR_DMAEN;
1955 else
1956 fdctrl->dor |= FD_DOR_DMAEN;
1957 /* No result back */
1958 fdctrl_to_command_phase(fdctrl);
1961 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
1963 FDrive *cur_drv;
1965 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1966 cur_drv = get_cur_drv(fdctrl);
1967 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
1968 /* 1 Byte status back */
1969 fdctrl->fifo[0] = (cur_drv->ro << 6) |
1970 (cur_drv->track == 0 ? 0x10 : 0x00) |
1971 (cur_drv->head << 2) |
1972 GET_CUR_DRV(fdctrl) |
1973 0x28;
1974 fdctrl_to_result_phase(fdctrl, 1);
1977 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
1979 FDrive *cur_drv;
1981 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1982 cur_drv = get_cur_drv(fdctrl);
1983 fd_recalibrate(cur_drv);
1984 fdctrl_to_command_phase(fdctrl);
1985 /* Raise Interrupt */
1986 fdctrl->status0 |= FD_SR0_SEEK;
1987 fdctrl_raise_irq(fdctrl);
1990 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
1992 FDrive *cur_drv = get_cur_drv(fdctrl);
1994 if (fdctrl->reset_sensei > 0) {
1995 fdctrl->fifo[0] =
1996 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
1997 fdctrl->reset_sensei--;
1998 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1999 fdctrl->fifo[0] = FD_SR0_INVCMD;
2000 fdctrl_to_result_phase(fdctrl, 1);
2001 return;
2002 } else {
2003 fdctrl->fifo[0] =
2004 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2005 | GET_CUR_DRV(fdctrl);
2008 fdctrl->fifo[1] = cur_drv->track;
2009 fdctrl_to_result_phase(fdctrl, 2);
2010 fdctrl_reset_irq(fdctrl);
2011 fdctrl->status0 = FD_SR0_RDYCHG;
2014 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2016 FDrive *cur_drv;
2018 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2019 cur_drv = get_cur_drv(fdctrl);
2020 fdctrl_to_command_phase(fdctrl);
2021 /* The seek command just sends step pulses to the drive and doesn't care if
2022 * there is a medium inserted of if it's banging the head against the drive.
2024 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2025 /* Raise Interrupt */
2026 fdctrl->status0 |= FD_SR0_SEEK;
2027 fdctrl_raise_irq(fdctrl);
2030 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2032 FDrive *cur_drv = get_cur_drv(fdctrl);
2034 if (fdctrl->fifo[1] & 0x80)
2035 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2036 /* No result back */
2037 fdctrl_to_command_phase(fdctrl);
2040 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2042 fdctrl->config = fdctrl->fifo[2];
2043 fdctrl->precomp_trk = fdctrl->fifo[3];
2044 /* No result back */
2045 fdctrl_to_command_phase(fdctrl);
2048 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2050 fdctrl->pwrd = fdctrl->fifo[1];
2051 fdctrl->fifo[0] = fdctrl->fifo[1];
2052 fdctrl_to_result_phase(fdctrl, 1);
2055 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2057 /* No result back */
2058 fdctrl_to_command_phase(fdctrl);
2061 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2063 FDrive *cur_drv = get_cur_drv(fdctrl);
2064 uint32_t pos;
2066 pos = fdctrl->data_pos - 1;
2067 pos %= FD_SECTOR_LEN;
2068 if (fdctrl->fifo[pos] & 0x80) {
2069 /* Command parameters done */
2070 if (fdctrl->fifo[pos] & 0x40) {
2071 fdctrl->fifo[0] = fdctrl->fifo[1];
2072 fdctrl->fifo[2] = 0;
2073 fdctrl->fifo[3] = 0;
2074 fdctrl_to_result_phase(fdctrl, 4);
2075 } else {
2076 fdctrl_to_command_phase(fdctrl);
2078 } else if (fdctrl->data_len > 7) {
2079 /* ERROR */
2080 fdctrl->fifo[0] = 0x80 |
2081 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2082 fdctrl_to_result_phase(fdctrl, 1);
2086 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2088 FDrive *cur_drv;
2090 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2091 cur_drv = get_cur_drv(fdctrl);
2092 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2093 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2094 cur_drv->sect, 1);
2095 } else {
2096 fd_seek(cur_drv, cur_drv->head,
2097 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2099 fdctrl_to_command_phase(fdctrl);
2100 /* Raise Interrupt */
2101 fdctrl->status0 |= FD_SR0_SEEK;
2102 fdctrl_raise_irq(fdctrl);
2105 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2107 FDrive *cur_drv;
2109 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2110 cur_drv = get_cur_drv(fdctrl);
2111 if (fdctrl->fifo[2] > cur_drv->track) {
2112 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2113 } else {
2114 fd_seek(cur_drv, cur_drv->head,
2115 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2117 fdctrl_to_command_phase(fdctrl);
2118 /* Raise Interrupt */
2119 fdctrl->status0 |= FD_SR0_SEEK;
2120 fdctrl_raise_irq(fdctrl);
2124 * Handlers for the execution phase of each command
2126 typedef struct FDCtrlCommand {
2127 uint8_t value;
2128 uint8_t mask;
2129 const char* name;
2130 int parameters;
2131 void (*handler)(FDCtrl *fdctrl, int direction);
2132 int direction;
2133 } FDCtrlCommand;
2135 static const FDCtrlCommand handlers[] = {
2136 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2137 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2138 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2139 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2140 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2141 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2142 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2143 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2144 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2145 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2146 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2147 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2148 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2149 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2150 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2151 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2152 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2153 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2154 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2155 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2156 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2157 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2158 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2159 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2160 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2161 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2162 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2163 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2164 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2165 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2166 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2167 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2169 /* Associate command to an index in the 'handlers' array */
2170 static uint8_t command_to_handler[256];
2172 static const FDCtrlCommand *get_command(uint8_t cmd)
2174 int idx;
2176 idx = command_to_handler[cmd];
2177 FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2178 return &handlers[idx];
2181 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2183 FDrive *cur_drv;
2184 const FDCtrlCommand *cmd;
2185 uint32_t pos;
2187 /* Reset mode */
2188 if (!(fdctrl->dor & FD_DOR_nRESET)) {
2189 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2190 return;
2192 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2193 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2194 return;
2196 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2198 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2200 /* If data_len spans multiple sectors, the current position in the FIFO
2201 * wraps around while fdctrl->data_pos is the real position in the whole
2202 * request. */
2203 pos = fdctrl->data_pos++;
2204 pos %= FD_SECTOR_LEN;
2205 fdctrl->fifo[pos] = value;
2207 if (fdctrl->data_pos == fdctrl->data_len) {
2208 fdctrl->msr &= ~FD_MSR_RQM;
2211 switch (fdctrl->phase) {
2212 case FD_PHASE_EXECUTION:
2213 /* For DMA requests, RQM should be cleared during execution phase, so
2214 * we would have errored out above. */
2215 assert(fdctrl->msr & FD_MSR_NONDMA);
2217 /* FIFO data write */
2218 if (pos == FD_SECTOR_LEN - 1 ||
2219 fdctrl->data_pos == fdctrl->data_len) {
2220 cur_drv = get_cur_drv(fdctrl);
2221 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2222 BDRV_SECTOR_SIZE, 0) < 0) {
2223 FLOPPY_DPRINTF("error writing sector %d\n",
2224 fd_sector(cur_drv));
2225 break;
2227 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2228 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2229 fd_sector(cur_drv));
2230 break;
2234 /* Switch to result phase when done with the transfer */
2235 if (fdctrl->data_pos == fdctrl->data_len) {
2236 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2238 break;
2240 case FD_PHASE_COMMAND:
2241 assert(!(fdctrl->msr & FD_MSR_NONDMA));
2242 assert(fdctrl->data_pos < FD_SECTOR_LEN);
2244 if (pos == 0) {
2245 /* The first byte specifies the command. Now we start reading
2246 * as many parameters as this command requires. */
2247 cmd = get_command(value);
2248 fdctrl->data_len = cmd->parameters + 1;
2249 if (cmd->parameters) {
2250 fdctrl->msr |= FD_MSR_RQM;
2252 fdctrl->msr |= FD_MSR_CMDBUSY;
2255 if (fdctrl->data_pos == fdctrl->data_len) {
2256 /* We have all parameters now, execute the command */
2257 fdctrl->phase = FD_PHASE_EXECUTION;
2259 if (fdctrl->data_state & FD_STATE_FORMAT) {
2260 fdctrl_format_sector(fdctrl);
2261 break;
2264 cmd = get_command(fdctrl->fifo[0]);
2265 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2266 cmd->handler(fdctrl, cmd->direction);
2268 break;
2270 case FD_PHASE_RESULT:
2271 default:
2272 abort();
2276 static void fdctrl_result_timer(void *opaque)
2278 FDCtrl *fdctrl = opaque;
2279 FDrive *cur_drv = get_cur_drv(fdctrl);
2281 /* Pretend we are spinning.
2282 * This is needed for Coherent, which uses READ ID to check for
2283 * sector interleaving.
2285 if (cur_drv->last_sect != 0) {
2286 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2288 /* READ_ID can't automatically succeed! */
2289 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2290 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2291 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2292 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2293 } else {
2294 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2298 /* Init functions */
2300 void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds)
2302 DeviceState *dev;
2303 int i;
2305 for (i = 0; i < MAX_FD; i++) {
2306 if (fds[i]) {
2307 dev = qdev_new("floppy");
2308 qdev_prop_set_uint32(dev, "unit", i);
2309 qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO);
2310 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]),
2311 &error_fatal);
2312 qdev_realize_and_unref(dev, &bus->bus, &error_fatal);
2317 void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl, Error **errp)
2319 int i, j;
2320 FDrive *drive;
2321 static int command_tables_inited = 0;
2323 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2324 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2325 return;
2328 /* Fill 'command_to_handler' lookup table */
2329 if (!command_tables_inited) {
2330 command_tables_inited = 1;
2331 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2332 for (j = 0; j < sizeof(command_to_handler); j++) {
2333 if ((j & handlers[i].mask) == handlers[i].value) {
2334 command_to_handler[j] = i;
2340 FLOPPY_DPRINTF("init controller\n");
2341 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2342 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2343 fdctrl->fifo_size = 512;
2344 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2345 fdctrl_result_timer, fdctrl);
2347 fdctrl->version = 0x90; /* Intel 82078 controller */
2348 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2349 fdctrl->num_floppies = MAX_FD;
2351 floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2353 for (i = 0; i < MAX_FD; i++) {
2354 drive = &fdctrl->drives[i];
2355 drive->fdctrl = fdctrl;
2356 fd_init(drive);
2357 fd_revalidate(drive);
2361 static void fdc_register_types(void)
2363 type_register_static(&floppy_bus_info);
2364 type_register_static(&floppy_drive_info);
2367 type_init(fdc_register_types)