2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
18 #include "qemu/main-loop.h"
20 #include "gicv3_internal.h"
24 void gicv3_set_gicv3state(CPUState
*cpu
, GICv3CPUState
*s
)
26 ARMCPU
*arm_cpu
= ARM_CPU(cpu
);
27 CPUARMState
*env
= &arm_cpu
->env
;
29 env
->gicv3state
= (void *)s
;
32 static GICv3CPUState
*icc_cs_from_env(CPUARMState
*env
)
34 return env
->gicv3state
;
37 static bool gicv3_use_ns_bank(CPUARMState
*env
)
39 /* Return true if we should use the NonSecure bank for a banked GIC
40 * CPU interface register. Note that this differs from the
41 * access_secure_reg() function because GICv3 banked registers are
42 * banked even for AArch64, unlike the other CPU system registers.
44 return !arm_is_secure_below_el3(env
);
47 /* The minimum BPR for the virtual interface is a configurable property */
48 static inline int icv_min_vbpr(GICv3CPUState
*cs
)
50 return 7 - cs
->vprebits
;
53 /* Simple accessor functions for LR fields */
54 static uint32_t ich_lr_vintid(uint64_t lr
)
56 return extract64(lr
, ICH_LR_EL2_VINTID_SHIFT
, ICH_LR_EL2_VINTID_LENGTH
);
59 static uint32_t ich_lr_pintid(uint64_t lr
)
61 return extract64(lr
, ICH_LR_EL2_PINTID_SHIFT
, ICH_LR_EL2_PINTID_LENGTH
);
64 static uint32_t ich_lr_prio(uint64_t lr
)
66 return extract64(lr
, ICH_LR_EL2_PRIORITY_SHIFT
, ICH_LR_EL2_PRIORITY_LENGTH
);
69 static int ich_lr_state(uint64_t lr
)
71 return extract64(lr
, ICH_LR_EL2_STATE_SHIFT
, ICH_LR_EL2_STATE_LENGTH
);
74 static bool icv_access(CPUARMState
*env
, int hcr_flags
)
76 /* Return true if this ICC_ register access should really be
77 * directed to an ICV_ access. hcr_flags is a mask of
78 * HCR_EL2 bits to check: we treat this as an ICV_ access
79 * if we are in NS EL1 and at least one of the specified
80 * HCR_EL2 bits is set.
82 * ICV registers fall into four categories:
83 * * access if NS EL1 and HCR_EL2.FMO == 1:
84 * all ICV regs with '0' in their name
85 * * access if NS EL1 and HCR_EL2.IMO == 1:
86 * all ICV regs with '1' in their name
87 * * access if NS EL1 and either IMO or FMO == 1:
90 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
91 bool flagmatch
= hcr_el2
& hcr_flags
& (HCR_IMO
| HCR_FMO
);
93 return flagmatch
&& arm_current_el(env
) == 1
94 && !arm_is_secure_below_el3(env
);
97 static int read_vbpr(GICv3CPUState
*cs
, int grp
)
99 /* Read VBPR value out of the VMCR field (caller must handle
100 * VCBPR effects if required)
102 if (grp
== GICV3_G0
) {
103 return extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR0_SHIFT
,
104 ICH_VMCR_EL2_VBPR0_LENGTH
);
106 return extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR1_SHIFT
,
107 ICH_VMCR_EL2_VBPR1_LENGTH
);
111 static void write_vbpr(GICv3CPUState
*cs
, int grp
, int value
)
113 /* Write new VBPR1 value, handling the "writing a value less than
114 * the minimum sets it to the minimum" semantics.
116 int min
= icv_min_vbpr(cs
);
118 if (grp
!= GICV3_G0
) {
122 value
= MAX(value
, min
);
124 if (grp
== GICV3_G0
) {
125 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR0_SHIFT
,
126 ICH_VMCR_EL2_VBPR0_LENGTH
, value
);
128 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VBPR1_SHIFT
,
129 ICH_VMCR_EL2_VBPR1_LENGTH
, value
);
133 static uint32_t icv_fullprio_mask(GICv3CPUState
*cs
)
135 /* Return a mask word which clears the unimplemented priority bits
136 * from a priority value for a virtual interrupt. (Not to be confused
137 * with the group priority, whose mask depends on the value of VBPR
138 * for the interrupt group.)
140 return ~0U << (8 - cs
->vpribits
);
143 static int ich_highest_active_virt_prio(GICv3CPUState
*cs
)
145 /* Calculate the current running priority based on the set bits
146 * in the ICH Active Priority Registers.
149 int aprmax
= 1 << (cs
->vprebits
- 5);
151 assert(aprmax
<= ARRAY_SIZE(cs
->ich_apr
[0]));
153 for (i
= 0; i
< aprmax
; i
++) {
154 uint32_t apr
= cs
->ich_apr
[GICV3_G0
][i
] |
155 cs
->ich_apr
[GICV3_G1NS
][i
];
160 return (i
* 32 + ctz32(apr
)) << (icv_min_vbpr(cs
) + 1);
162 /* No current active interrupts: return idle priority */
166 static int hppvi_index(GICv3CPUState
*cs
)
168 /* Return the list register index of the highest priority pending
169 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
170 * pseudocode. If no pending virtual interrupts, return -1.
174 /* Note that a list register entry with a priority of 0xff will
175 * never be reported by this function; this is the architecturally
180 if (!(cs
->ich_vmcr_el2
& (ICH_VMCR_EL2_VENG0
| ICH_VMCR_EL2_VENG1
))) {
181 /* Both groups disabled, definitely nothing to do */
185 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
186 uint64_t lr
= cs
->ich_lr_el2
[i
];
189 if (ich_lr_state(lr
) != ICH_LR_EL2_STATE_PENDING
) {
194 /* Ignore interrupts if relevant group enable not set */
195 if (lr
& ICH_LR_EL2_GROUP
) {
196 if (!(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
200 if (!(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG0
)) {
205 thisprio
= ich_lr_prio(lr
);
207 if (thisprio
< prio
) {
216 static uint32_t icv_gprio_mask(GICv3CPUState
*cs
, int group
)
218 /* Return a mask word which clears the subpriority bits from
219 * a priority value for a virtual interrupt in the specified group.
220 * This depends on the VBPR value.
221 * If using VBPR0 then:
222 * a BPR of 0 means the group priority bits are [7:1];
223 * a BPR of 1 means they are [7:2], and so on down to
224 * a BPR of 7 meaning no group priority bits at all.
225 * If using VBPR1 then:
226 * a BPR of 0 is impossible (the minimum value is 1)
227 * a BPR of 1 means the group priority bits are [7:1];
228 * a BPR of 2 means they are [7:2], and so on down to
229 * a BPR of 7 meaning the group priority is [7].
231 * Which BPR to use depends on the group of the interrupt and
232 * the current ICH_VMCR_EL2.VCBPR settings.
234 * This corresponds to the VGroupBits() pseudocode.
238 if (group
== GICV3_G1NS
&& cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
) {
242 bpr
= read_vbpr(cs
, group
);
243 if (group
== GICV3_G1NS
) {
248 return ~0U << (bpr
+ 1);
251 static bool icv_hppi_can_preempt(GICv3CPUState
*cs
, uint64_t lr
)
253 /* Return true if we can signal this virtual interrupt defined by
254 * the given list register value; see the pseudocode functions
255 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
256 * Compare also icc_hppi_can_preempt() which is the non-virtual
257 * equivalent of these checks.
260 uint32_t mask
, prio
, rprio
, vpmr
;
262 if (!(cs
->ich_hcr_el2
& ICH_HCR_EL2_EN
)) {
263 /* Virtual interface disabled */
267 /* We don't need to check that this LR is in Pending state because
268 * that has already been done in hppvi_index().
271 prio
= ich_lr_prio(lr
);
272 vpmr
= extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
273 ICH_VMCR_EL2_VPMR_LENGTH
);
276 /* Priority mask masks this interrupt */
280 rprio
= ich_highest_active_virt_prio(cs
);
282 /* No running interrupt so we can preempt */
286 grp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
288 mask
= icv_gprio_mask(cs
, grp
);
290 /* We only preempt a running interrupt if the pending interrupt's
291 * group priority is sufficient (the subpriorities are not considered).
293 if ((prio
& mask
) < (rprio
& mask
)) {
300 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState
*cs
,
303 /* Return a set of bits indicating the EOI maintenance interrupt status
304 * for each list register. The EOI maintenance interrupt status is
305 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
306 * (see the GICv3 spec for the ICH_EISR_EL2 register).
307 * If misr is not NULL then we should also collect the information
308 * about the MISR.EOI, MISR.NP and MISR.U bits.
312 bool seenpending
= false;
315 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
316 uint64_t lr
= cs
->ich_lr_el2
[i
];
318 if ((lr
& (ICH_LR_EL2_STATE_MASK
| ICH_LR_EL2_HW
| ICH_LR_EL2_EOI
))
322 if ((lr
& ICH_LR_EL2_STATE_MASK
)) {
325 if (ich_lr_state(lr
) == ICH_LR_EL2_STATE_PENDING
) {
331 if (validcount
< 2 && (cs
->ich_hcr_el2
& ICH_HCR_EL2_UIE
)) {
332 *misr
|= ICH_MISR_EL2_U
;
334 if (!seenpending
&& (cs
->ich_hcr_el2
& ICH_HCR_EL2_NPIE
)) {
335 *misr
|= ICH_MISR_EL2_NP
;
338 *misr
|= ICH_MISR_EL2_EOI
;
344 static uint32_t maintenance_interrupt_state(GICv3CPUState
*cs
)
346 /* Return a set of bits indicating the maintenance interrupt status
347 * (as seen in the ICH_MISR_EL2 register).
351 /* Scan list registers and fill in the U, NP and EOI bits */
352 eoi_maintenance_interrupt_state(cs
, &value
);
354 if (cs
->ich_hcr_el2
& (ICH_HCR_EL2_LRENPIE
| ICH_HCR_EL2_EOICOUNT_MASK
)) {
355 value
|= ICH_MISR_EL2_LRENP
;
358 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP0EIE
) &&
359 (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG0
)) {
360 value
|= ICH_MISR_EL2_VGRP0E
;
363 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP0DIE
) &&
364 !(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
365 value
|= ICH_MISR_EL2_VGRP0D
;
367 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP1EIE
) &&
368 (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
369 value
|= ICH_MISR_EL2_VGRP1E
;
372 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_VGRP1DIE
) &&
373 !(cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VENG1
)) {
374 value
|= ICH_MISR_EL2_VGRP1D
;
380 static void gicv3_cpuif_virt_update(GICv3CPUState
*cs
)
382 /* Tell the CPU about any pending virtual interrupts or
383 * maintenance interrupts, following a change to the state
384 * of the CPU interface relevant to virtual interrupts.
386 * CAUTION: this function will call qemu_set_irq() on the
387 * CPU maintenance IRQ line, which is typically wired up
388 * to the GIC as a per-CPU interrupt. This means that it
389 * will recursively call back into the GIC code via
390 * gicv3_redist_set_irq() and thus into the CPU interface code's
391 * gicv3_cpuif_update(). It is therefore important that this
392 * function is only called as the final action of a CPU interface
393 * register write implementation, after all the GIC state
394 * fields have been updated. gicv3_cpuif_update() also must
395 * not cause this function to be called, but that happens
396 * naturally as a result of there being no architectural
397 * linkage between the physical and virtual GIC logic.
403 ARMCPU
*cpu
= ARM_CPU(cs
->cpu
);
405 idx
= hppvi_index(cs
);
406 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs
), idx
);
408 uint64_t lr
= cs
->ich_lr_el2
[idx
];
410 if (icv_hppi_can_preempt(cs
, lr
)) {
411 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
412 if (lr
& ICH_LR_EL2_GROUP
) {
420 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_EN
) &&
421 maintenance_interrupt_state(cs
) != 0) {
425 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs
), fiqlevel
,
426 irqlevel
, maintlevel
);
428 qemu_set_irq(cs
->parent_vfiq
, fiqlevel
);
429 qemu_set_irq(cs
->parent_virq
, irqlevel
);
430 qemu_set_irq(cpu
->gicv3_maintenance_interrupt
, maintlevel
);
433 static uint64_t icv_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
435 GICv3CPUState
*cs
= icc_cs_from_env(env
);
436 int regno
= ri
->opc2
& 3;
437 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
438 uint64_t value
= cs
->ich_apr
[grp
][regno
];
440 trace_gicv3_icv_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
444 static void icv_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
447 GICv3CPUState
*cs
= icc_cs_from_env(env
);
448 int regno
= ri
->opc2
& 3;
449 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
451 trace_gicv3_icv_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
453 cs
->ich_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
455 gicv3_cpuif_virt_update(cs
);
459 static uint64_t icv_bpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
461 GICv3CPUState
*cs
= icc_cs_from_env(env
);
462 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1NS
;
466 if (grp
== GICV3_G1NS
&& (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
)) {
467 /* reads return bpr0 + 1 saturated to 7, writes ignored */
472 bpr
= read_vbpr(cs
, grp
);
479 trace_gicv3_icv_bpr_read(ri
->crm
== 8 ? 0 : 1, gicv3_redist_affid(cs
), bpr
);
484 static void icv_bpr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
487 GICv3CPUState
*cs
= icc_cs_from_env(env
);
488 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1NS
;
490 trace_gicv3_icv_bpr_write(ri
->crm
== 8 ? 0 : 1,
491 gicv3_redist_affid(cs
), value
);
493 if (grp
== GICV3_G1NS
&& (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
)) {
494 /* reads return bpr0 + 1 saturated to 7, writes ignored */
498 write_vbpr(cs
, grp
, value
);
500 gicv3_cpuif_virt_update(cs
);
503 static uint64_t icv_pmr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
505 GICv3CPUState
*cs
= icc_cs_from_env(env
);
508 value
= extract64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
509 ICH_VMCR_EL2_VPMR_LENGTH
);
511 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs
), value
);
515 static void icv_pmr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
518 GICv3CPUState
*cs
= icc_cs_from_env(env
);
520 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs
), value
);
522 value
&= icv_fullprio_mask(cs
);
524 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VPMR_SHIFT
,
525 ICH_VMCR_EL2_VPMR_LENGTH
, value
);
527 gicv3_cpuif_virt_update(cs
);
530 static uint64_t icv_igrpen_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
532 GICv3CPUState
*cs
= icc_cs_from_env(env
);
536 enbit
= ri
->opc2
& 1 ? ICH_VMCR_EL2_VENG1_SHIFT
: ICH_VMCR_EL2_VENG0_SHIFT
;
537 value
= extract64(cs
->ich_vmcr_el2
, enbit
, 1);
539 trace_gicv3_icv_igrpen_read(ri
->opc2
& 1 ? 1 : 0,
540 gicv3_redist_affid(cs
), value
);
544 static void icv_igrpen_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
547 GICv3CPUState
*cs
= icc_cs_from_env(env
);
550 trace_gicv3_icv_igrpen_write(ri
->opc2
& 1 ? 1 : 0,
551 gicv3_redist_affid(cs
), value
);
553 enbit
= ri
->opc2
& 1 ? ICH_VMCR_EL2_VENG1_SHIFT
: ICH_VMCR_EL2_VENG0_SHIFT
;
555 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, enbit
, 1, value
);
556 gicv3_cpuif_virt_update(cs
);
559 static uint64_t icv_ctlr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
561 GICv3CPUState
*cs
= icc_cs_from_env(env
);
564 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
565 * should match the ones reported in ich_vtr_read().
567 value
= ICC_CTLR_EL1_A3V
| (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
568 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
570 if (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VEOIM
) {
571 value
|= ICC_CTLR_EL1_EOIMODE
;
574 if (cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VCBPR
) {
575 value
|= ICC_CTLR_EL1_CBPR
;
578 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs
), value
);
582 static void icv_ctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
585 GICv3CPUState
*cs
= icc_cs_from_env(env
);
587 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs
), value
);
589 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VCBPR_SHIFT
,
590 1, value
& ICC_CTLR_EL1_CBPR
? 1 : 0);
591 cs
->ich_vmcr_el2
= deposit64(cs
->ich_vmcr_el2
, ICH_VMCR_EL2_VEOIM_SHIFT
,
592 1, value
& ICC_CTLR_EL1_EOIMODE
? 1 : 0);
594 gicv3_cpuif_virt_update(cs
);
597 static uint64_t icv_rpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
599 GICv3CPUState
*cs
= icc_cs_from_env(env
);
600 int prio
= ich_highest_active_virt_prio(cs
);
602 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs
), prio
);
606 static uint64_t icv_hppir_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
608 GICv3CPUState
*cs
= icc_cs_from_env(env
);
609 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
610 int idx
= hppvi_index(cs
);
611 uint64_t value
= INTID_SPURIOUS
;
614 uint64_t lr
= cs
->ich_lr_el2
[idx
];
615 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
617 if (grp
== thisgrp
) {
618 value
= ich_lr_vintid(lr
);
622 trace_gicv3_icv_hppir_read(grp
, gicv3_redist_affid(cs
), value
);
626 static void icv_activate_irq(GICv3CPUState
*cs
, int idx
, int grp
)
628 /* Activate the interrupt in the specified list register
629 * by moving it from Pending to Active state, and update the
630 * Active Priority Registers.
632 uint32_t mask
= icv_gprio_mask(cs
, grp
);
633 int prio
= ich_lr_prio(cs
->ich_lr_el2
[idx
]) & mask
;
634 int aprbit
= prio
>> (8 - cs
->vprebits
);
635 int regno
= aprbit
/ 32;
636 int regbit
= aprbit
% 32;
638 cs
->ich_lr_el2
[idx
] &= ~ICH_LR_EL2_STATE_PENDING_BIT
;
639 cs
->ich_lr_el2
[idx
] |= ICH_LR_EL2_STATE_ACTIVE_BIT
;
640 cs
->ich_apr
[grp
][regno
] |= (1 << regbit
);
643 static uint64_t icv_iar_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
645 GICv3CPUState
*cs
= icc_cs_from_env(env
);
646 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
647 int idx
= hppvi_index(cs
);
648 uint64_t intid
= INTID_SPURIOUS
;
651 uint64_t lr
= cs
->ich_lr_el2
[idx
];
652 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
654 if (thisgrp
== grp
&& icv_hppi_can_preempt(cs
, lr
)) {
655 intid
= ich_lr_vintid(lr
);
656 if (intid
< INTID_SECURE
) {
657 icv_activate_irq(cs
, idx
, grp
);
659 /* Interrupt goes from Pending to Invalid */
660 cs
->ich_lr_el2
[idx
] &= ~ICH_LR_EL2_STATE_PENDING_BIT
;
661 /* We will now return the (bogus) ID from the list register,
662 * as per the pseudocode.
668 trace_gicv3_icv_iar_read(ri
->crm
== 8 ? 0 : 1,
669 gicv3_redist_affid(cs
), intid
);
671 gicv3_cpuif_virt_update(cs
);
676 static int icc_highest_active_prio(GICv3CPUState
*cs
)
678 /* Calculate the current running priority based on the set bits
679 * in the Active Priority Registers.
683 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[0]); i
++) {
684 uint32_t apr
= cs
->icc_apr
[GICV3_G0
][i
] |
685 cs
->icc_apr
[GICV3_G1
][i
] | cs
->icc_apr
[GICV3_G1NS
][i
];
690 return (i
* 32 + ctz32(apr
)) << (GIC_MIN_BPR
+ 1);
692 /* No current active interrupts: return idle priority */
696 static uint32_t icc_gprio_mask(GICv3CPUState
*cs
, int group
)
698 /* Return a mask word which clears the subpriority bits from
699 * a priority value for an interrupt in the specified group.
700 * This depends on the BPR value. For CBPR0 (S or NS):
701 * a BPR of 0 means the group priority bits are [7:1];
702 * a BPR of 1 means they are [7:2], and so on down to
703 * a BPR of 7 meaning no group priority bits at all.
705 * a BPR of 0 is impossible (the minimum value is 1)
706 * a BPR of 1 means the group priority bits are [7:1];
707 * a BPR of 2 means they are [7:2], and so on down to
708 * a BPR of 7 meaning the group priority is [7].
710 * Which BPR to use depends on the group of the interrupt and
711 * the current ICC_CTLR.CBPR settings.
713 * This corresponds to the GroupBits() pseudocode.
717 if ((group
== GICV3_G1
&& cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
) ||
718 (group
== GICV3_G1NS
&&
719 cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
723 bpr
= cs
->icc_bpr
[group
] & 7;
725 if (group
== GICV3_G1NS
) {
730 return ~0U << (bpr
+ 1);
733 static bool icc_no_enabled_hppi(GICv3CPUState
*cs
)
735 /* Return true if there is no pending interrupt, or the
736 * highest priority pending interrupt is in a group which has been
737 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
739 return cs
->hppi
.prio
== 0xff || (cs
->icc_igrpen
[cs
->hppi
.grp
] == 0);
742 static bool icc_hppi_can_preempt(GICv3CPUState
*cs
)
744 /* Return true if we have a pending interrupt of sufficient
745 * priority to preempt.
750 if (icc_no_enabled_hppi(cs
)) {
754 if (cs
->hppi
.prio
>= cs
->icc_pmr_el1
) {
755 /* Priority mask masks this interrupt */
759 rprio
= icc_highest_active_prio(cs
);
761 /* No currently running interrupt so we can preempt */
765 mask
= icc_gprio_mask(cs
, cs
->hppi
.grp
);
767 /* We only preempt a running interrupt if the pending interrupt's
768 * group priority is sufficient (the subpriorities are not considered).
770 if ((cs
->hppi
.prio
& mask
) < (rprio
& mask
)) {
777 void gicv3_cpuif_update(GICv3CPUState
*cs
)
779 /* Tell the CPU about its highest priority pending interrupt */
782 ARMCPU
*cpu
= ARM_CPU(cs
->cpu
);
783 CPUARMState
*env
= &cpu
->env
;
785 g_assert(qemu_mutex_iothread_locked());
787 trace_gicv3_cpuif_update(gicv3_redist_affid(cs
), cs
->hppi
.irq
,
788 cs
->hppi
.grp
, cs
->hppi
.prio
);
790 if (cs
->hppi
.grp
== GICV3_G1
&& !arm_feature(env
, ARM_FEATURE_EL3
)) {
791 /* If a Security-enabled GIC sends a G1S interrupt to a
792 * Security-disabled CPU, we must treat it as if it were G0.
794 cs
->hppi
.grp
= GICV3_G0
;
797 if (icc_hppi_can_preempt(cs
)) {
798 /* We have an interrupt: should we signal it as IRQ or FIQ?
799 * This is described in the GICv3 spec section 4.6.2.
803 switch (cs
->hppi
.grp
) {
808 isfiq
= (!arm_is_secure(env
) ||
809 (arm_current_el(env
) == 3 && arm_el_is_aa64(env
, 3)));
812 isfiq
= arm_is_secure(env
);
815 g_assert_not_reached();
825 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs
), fiqlevel
, irqlevel
);
827 qemu_set_irq(cs
->parent_fiq
, fiqlevel
);
828 qemu_set_irq(cs
->parent_irq
, irqlevel
);
831 static uint64_t icc_pmr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
833 GICv3CPUState
*cs
= icc_cs_from_env(env
);
834 uint32_t value
= cs
->icc_pmr_el1
;
836 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
837 return icv_pmr_read(env
, ri
);
840 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
) &&
841 (env
->cp15
.scr_el3
& SCR_FIQ
)) {
842 /* NS access and Group 0 is inaccessible to NS: return the
843 * NS view of the current priority
845 if ((value
& 0x80) == 0) {
846 /* Secure priorities not visible to NS */
848 } else if (value
!= 0xff) {
849 value
= (value
<< 1) & 0xff;
853 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs
), value
);
858 static void icc_pmr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
861 GICv3CPUState
*cs
= icc_cs_from_env(env
);
863 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
864 return icv_pmr_write(env
, ri
, value
);
867 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs
), value
);
871 if (arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
) &&
872 (env
->cp15
.scr_el3
& SCR_FIQ
)) {
873 /* NS access and Group 0 is inaccessible to NS: return the
874 * NS view of the current priority
876 if (!(cs
->icc_pmr_el1
& 0x80)) {
877 /* Current PMR in the secure range, don't allow NS to change it */
880 value
= (value
>> 1) | 0x80;
882 cs
->icc_pmr_el1
= value
;
883 gicv3_cpuif_update(cs
);
886 static void icc_activate_irq(GICv3CPUState
*cs
, int irq
)
888 /* Move the interrupt from the Pending state to Active, and update
889 * the Active Priority Registers
891 uint32_t mask
= icc_gprio_mask(cs
, cs
->hppi
.grp
);
892 int prio
= cs
->hppi
.prio
& mask
;
893 int aprbit
= prio
>> 1;
894 int regno
= aprbit
/ 32;
895 int regbit
= aprbit
% 32;
897 cs
->icc_apr
[cs
->hppi
.grp
][regno
] |= (1 << regbit
);
899 if (irq
< GIC_INTERNAL
) {
900 cs
->gicr_iactiver0
= deposit32(cs
->gicr_iactiver0
, irq
, 1, 1);
901 cs
->gicr_ipendr0
= deposit32(cs
->gicr_ipendr0
, irq
, 1, 0);
902 gicv3_redist_update(cs
);
903 } else if (irq
< GICV3_LPI_INTID_START
) {
904 gicv3_gicd_active_set(cs
->gic
, irq
);
905 gicv3_gicd_pending_clear(cs
->gic
, irq
);
906 gicv3_update(cs
->gic
, irq
, 1);
908 gicv3_redist_lpi_pending(cs
, irq
, 0);
912 static uint64_t icc_hppir0_value(GICv3CPUState
*cs
, CPUARMState
*env
)
914 /* Return the highest priority pending interrupt register value
919 if (cs
->hppi
.prio
== 0xff) {
920 return INTID_SPURIOUS
;
923 /* Check whether we can return the interrupt or if we should return
924 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
925 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
928 irq_is_secure
= (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) &&
929 (cs
->hppi
.grp
!= GICV3_G1NS
));
931 if (cs
->hppi
.grp
!= GICV3_G0
&& !arm_is_el3_or_mon(env
)) {
932 return INTID_SPURIOUS
;
934 if (irq_is_secure
&& !arm_is_secure(env
)) {
935 /* Secure interrupts not visible to Nonsecure */
936 return INTID_SPURIOUS
;
939 if (cs
->hppi
.grp
!= GICV3_G0
) {
940 /* Indicate to EL3 that there's a Group 1 interrupt for the other
943 return irq_is_secure
? INTID_SECURE
: INTID_NONSECURE
;
949 static uint64_t icc_hppir1_value(GICv3CPUState
*cs
, CPUARMState
*env
)
951 /* Return the highest priority pending interrupt register value
956 if (cs
->hppi
.prio
== 0xff) {
957 return INTID_SPURIOUS
;
960 /* Check whether we can return the interrupt or if we should return
961 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
962 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
965 irq_is_secure
= (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) &&
966 (cs
->hppi
.grp
!= GICV3_G1NS
));
968 if (cs
->hppi
.grp
== GICV3_G0
) {
969 /* Group 0 interrupts not visible via HPPIR1 */
970 return INTID_SPURIOUS
;
973 if (!arm_is_secure(env
)) {
974 /* Secure interrupts not visible in Non-secure */
975 return INTID_SPURIOUS
;
977 } else if (!arm_is_el3_or_mon(env
) && arm_is_secure(env
)) {
978 /* Group 1 non-secure interrupts not visible in Secure EL1 */
979 return INTID_SPURIOUS
;
985 static uint64_t icc_iar0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
987 GICv3CPUState
*cs
= icc_cs_from_env(env
);
990 if (icv_access(env
, HCR_FMO
)) {
991 return icv_iar_read(env
, ri
);
994 if (!icc_hppi_can_preempt(cs
)) {
995 intid
= INTID_SPURIOUS
;
997 intid
= icc_hppir0_value(cs
, env
);
1000 if (!(intid
>= INTID_SECURE
&& intid
<= INTID_SPURIOUS
)) {
1001 icc_activate_irq(cs
, intid
);
1004 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs
), intid
);
1008 static uint64_t icc_iar1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1010 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1013 if (icv_access(env
, HCR_IMO
)) {
1014 return icv_iar_read(env
, ri
);
1017 if (!icc_hppi_can_preempt(cs
)) {
1018 intid
= INTID_SPURIOUS
;
1020 intid
= icc_hppir1_value(cs
, env
);
1023 if (!(intid
>= INTID_SECURE
&& intid
<= INTID_SPURIOUS
)) {
1024 icc_activate_irq(cs
, intid
);
1027 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs
), intid
);
1031 static void icc_drop_prio(GICv3CPUState
*cs
, int grp
)
1033 /* Drop the priority of the currently active interrupt in
1034 * the specified group.
1036 * Note that we can guarantee (because of the requirement to nest
1037 * ICC_IAR reads [which activate an interrupt and raise priority]
1038 * with ICC_EOIR writes [which drop the priority for the interrupt])
1039 * that the interrupt we're being called for is the highest priority
1040 * active interrupt, meaning that it has the lowest set bit in the
1043 * If the guest does not honour the ordering constraints then the
1044 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1045 * the values of the APR registers might become incorrect and the
1046 * running priority will be wrong, so interrupts that should preempt
1047 * might not do so, and interrupts that should not preempt might do so.
1051 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[grp
]); i
++) {
1052 uint64_t *papr
= &cs
->icc_apr
[grp
][i
];
1057 /* Clear the lowest set bit */
1062 /* running priority change means we need an update for this cpu i/f */
1063 gicv3_cpuif_update(cs
);
1066 static bool icc_eoi_split(CPUARMState
*env
, GICv3CPUState
*cs
)
1068 /* Return true if we should split priority drop and interrupt
1069 * deactivation, ie whether the relevant EOIMode bit is set.
1071 if (arm_is_el3_or_mon(env
)) {
1072 return cs
->icc_ctlr_el3
& ICC_CTLR_EL3_EOIMODE_EL3
;
1074 if (arm_is_secure_below_el3(env
)) {
1075 return cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_EOIMODE
;
1077 return cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
;
1081 static int icc_highest_active_group(GICv3CPUState
*cs
)
1083 /* Return the group with the highest priority active interrupt.
1084 * We can do this by just comparing the APRs to see which one
1085 * has the lowest set bit.
1086 * (If more than one group is active at the same priority then
1087 * we're in UNPREDICTABLE territory.)
1091 for (i
= 0; i
< ARRAY_SIZE(cs
->icc_apr
[0]); i
++) {
1092 int g0ctz
= ctz32(cs
->icc_apr
[GICV3_G0
][i
]);
1093 int g1ctz
= ctz32(cs
->icc_apr
[GICV3_G1
][i
]);
1094 int g1nsctz
= ctz32(cs
->icc_apr
[GICV3_G1NS
][i
]);
1096 if (g1nsctz
< g0ctz
&& g1nsctz
< g1ctz
) {
1099 if (g1ctz
< g0ctz
) {
1106 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1107 * ignores the spurious EOI attempt.
1112 static void icc_deactivate_irq(GICv3CPUState
*cs
, int irq
)
1114 if (irq
< GIC_INTERNAL
) {
1115 cs
->gicr_iactiver0
= deposit32(cs
->gicr_iactiver0
, irq
, 1, 0);
1116 gicv3_redist_update(cs
);
1118 gicv3_gicd_active_clear(cs
->gic
, irq
);
1119 gicv3_update(cs
->gic
, irq
, 1);
1123 static bool icv_eoi_split(CPUARMState
*env
, GICv3CPUState
*cs
)
1125 /* Return true if we should split priority drop and interrupt
1126 * deactivation, ie whether the virtual EOIMode bit is set.
1128 return cs
->ich_vmcr_el2
& ICH_VMCR_EL2_VEOIM
;
1131 static int icv_find_active(GICv3CPUState
*cs
, int irq
)
1133 /* Given an interrupt number for an active interrupt, return the index
1134 * of the corresponding list register, or -1 if there is no match.
1135 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1139 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
1140 uint64_t lr
= cs
->ich_lr_el2
[i
];
1142 if ((lr
& ICH_LR_EL2_STATE_ACTIVE_BIT
) && ich_lr_vintid(lr
) == irq
) {
1150 static void icv_deactivate_irq(GICv3CPUState
*cs
, int idx
)
1152 /* Deactivate the interrupt in the specified list register index */
1153 uint64_t lr
= cs
->ich_lr_el2
[idx
];
1155 if (lr
& ICH_LR_EL2_HW
) {
1156 /* Deactivate the associated physical interrupt */
1157 int pirq
= ich_lr_pintid(lr
);
1159 if (pirq
< INTID_SECURE
) {
1160 icc_deactivate_irq(cs
, pirq
);
1164 /* Clear the 'active' part of the state, so ActivePending->Pending
1165 * and Active->Invalid.
1167 lr
&= ~ICH_LR_EL2_STATE_ACTIVE_BIT
;
1168 cs
->ich_lr_el2
[idx
] = lr
;
1171 static void icv_increment_eoicount(GICv3CPUState
*cs
)
1173 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1174 int eoicount
= extract64(cs
->ich_hcr_el2
, ICH_HCR_EL2_EOICOUNT_SHIFT
,
1175 ICH_HCR_EL2_EOICOUNT_LENGTH
);
1177 cs
->ich_hcr_el2
= deposit64(cs
->ich_hcr_el2
, ICH_HCR_EL2_EOICOUNT_SHIFT
,
1178 ICH_HCR_EL2_EOICOUNT_LENGTH
, eoicount
+ 1);
1181 static int icv_drop_prio(GICv3CPUState
*cs
)
1183 /* Drop the priority of the currently active virtual interrupt
1184 * (favouring group 0 if there is a set active bit at
1185 * the same priority for both group 0 and group 1).
1186 * Return the priority value for the bit we just cleared,
1187 * or 0xff if no bits were set in the AP registers at all.
1188 * Note that though the ich_apr[] are uint64_t only the low
1189 * 32 bits are actually relevant.
1192 int aprmax
= 1 << (cs
->vprebits
- 5);
1194 assert(aprmax
<= ARRAY_SIZE(cs
->ich_apr
[0]));
1196 for (i
= 0; i
< aprmax
; i
++) {
1197 uint64_t *papr0
= &cs
->ich_apr
[GICV3_G0
][i
];
1198 uint64_t *papr1
= &cs
->ich_apr
[GICV3_G1NS
][i
];
1199 int apr0count
, apr1count
;
1201 if (!*papr0
&& !*papr1
) {
1205 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1206 * because we need to return the bit number we cleared so
1207 * it can be compared against the list register's priority field.
1209 apr0count
= ctz32(*papr0
);
1210 apr1count
= ctz32(*papr1
);
1212 if (apr0count
<= apr1count
) {
1213 *papr0
&= *papr0
- 1;
1214 return (apr0count
+ i
* 32) << (icv_min_vbpr(cs
) + 1);
1216 *papr1
&= *papr1
- 1;
1217 return (apr1count
+ i
* 32) << (icv_min_vbpr(cs
) + 1);
1223 static void icv_dir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1226 /* Deactivate interrupt */
1227 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1229 int irq
= value
& 0xffffff;
1231 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs
), value
);
1233 if (irq
>= GICV3_MAXIRQ
) {
1234 /* Also catches special interrupt numbers and LPIs */
1238 if (!icv_eoi_split(env
, cs
)) {
1242 idx
= icv_find_active(cs
, irq
);
1245 /* No list register matching this, so increment the EOI count
1246 * (might trigger a maintenance interrupt)
1248 icv_increment_eoicount(cs
);
1250 icv_deactivate_irq(cs
, idx
);
1253 gicv3_cpuif_virt_update(cs
);
1256 static void icv_eoir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1259 /* End of Interrupt */
1260 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1261 int irq
= value
& 0xffffff;
1262 int grp
= ri
->crm
== 8 ? GICV3_G0
: GICV3_G1NS
;
1265 trace_gicv3_icv_eoir_write(ri
->crm
== 8 ? 0 : 1,
1266 gicv3_redist_affid(cs
), value
);
1268 if (irq
>= GICV3_MAXIRQ
) {
1269 /* Also catches special interrupt numbers and LPIs */
1273 /* We implement the IMPDEF choice of "drop priority before doing
1274 * error checks" (because that lets us avoid scanning the AP
1277 dropprio
= icv_drop_prio(cs
);
1278 if (dropprio
== 0xff) {
1279 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1280 * whether the list registers are checked in this
1281 * situation; we choose not to.
1286 idx
= icv_find_active(cs
, irq
);
1289 /* No valid list register corresponding to EOI ID */
1290 icv_increment_eoicount(cs
);
1292 uint64_t lr
= cs
->ich_lr_el2
[idx
];
1293 int thisgrp
= (lr
& ICH_LR_EL2_GROUP
) ? GICV3_G1NS
: GICV3_G0
;
1294 int lr_gprio
= ich_lr_prio(lr
) & icv_gprio_mask(cs
, grp
);
1296 if (thisgrp
== grp
&& lr_gprio
== dropprio
) {
1297 if (!icv_eoi_split(env
, cs
)) {
1298 /* Priority drop and deactivate not split: deactivate irq now */
1299 icv_deactivate_irq(cs
, idx
);
1304 gicv3_cpuif_virt_update(cs
);
1307 static void icc_eoir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1310 /* End of Interrupt */
1311 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1312 int irq
= value
& 0xffffff;
1314 bool is_eoir0
= ri
->crm
== 8;
1316 if (icv_access(env
, is_eoir0
? HCR_FMO
: HCR_IMO
)) {
1317 icv_eoir_write(env
, ri
, value
);
1321 trace_gicv3_icc_eoir_write(is_eoir0
? 0 : 1,
1322 gicv3_redist_affid(cs
), value
);
1324 if ((irq
>= cs
->gic
->num_irq
) &&
1325 !(cs
->gic
->lpi_enable
&& (irq
>= GICV3_LPI_INTID_START
))) {
1326 /* This handles two cases:
1327 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1328 * to the GICC_EOIR, the GIC ignores that write.
1329 * 2. If software writes the number of a non-existent interrupt
1330 * this must be a subcase of "value written does not match the last
1331 * valid interrupt value read from the Interrupt Acknowledge
1332 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1337 grp
= icc_highest_active_group(cs
);
1343 if (!(cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
)
1344 && arm_feature(env
, ARM_FEATURE_EL3
) && !arm_is_secure(env
)) {
1352 if (!arm_is_secure(env
)) {
1360 if (!arm_is_el3_or_mon(env
) && arm_is_secure(env
)) {
1365 qemu_log_mask(LOG_GUEST_ERROR
,
1366 "%s: IRQ %d isn't active\n", __func__
, irq
);
1370 icc_drop_prio(cs
, grp
);
1372 if (!icc_eoi_split(env
, cs
)) {
1373 /* Priority drop and deactivate not split: deactivate irq now */
1374 icc_deactivate_irq(cs
, irq
);
1378 static uint64_t icc_hppir0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1380 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1383 if (icv_access(env
, HCR_FMO
)) {
1384 return icv_hppir_read(env
, ri
);
1387 value
= icc_hppir0_value(cs
, env
);
1388 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs
), value
);
1392 static uint64_t icc_hppir1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1394 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1397 if (icv_access(env
, HCR_IMO
)) {
1398 return icv_hppir_read(env
, ri
);
1401 value
= icc_hppir1_value(cs
, env
);
1402 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs
), value
);
1406 static uint64_t icc_bpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1408 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1409 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1
;
1410 bool satinc
= false;
1413 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1414 return icv_bpr_read(env
, ri
);
1417 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1421 if (grp
== GICV3_G1
&& !arm_is_el3_or_mon(env
) &&
1422 (cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
)) {
1423 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1429 if (grp
== GICV3_G1NS
&& arm_current_el(env
) < 3 &&
1430 (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
1431 /* reads return bpr0 + 1 sat to 7, writes ignored */
1436 bpr
= cs
->icc_bpr
[grp
];
1442 trace_gicv3_icc_bpr_read(ri
->crm
== 8 ? 0 : 1, gicv3_redist_affid(cs
), bpr
);
1447 static void icc_bpr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1450 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1451 int grp
= (ri
->crm
== 8) ? GICV3_G0
: GICV3_G1
;
1454 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1455 icv_bpr_write(env
, ri
, value
);
1459 trace_gicv3_icc_bpr_write(ri
->crm
== 8 ? 0 : 1,
1460 gicv3_redist_affid(cs
), value
);
1462 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1466 if (grp
== GICV3_G1
&& !arm_is_el3_or_mon(env
) &&
1467 (cs
->icc_ctlr_el1
[GICV3_S
] & ICC_CTLR_EL1_CBPR
)) {
1468 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1474 if (grp
== GICV3_G1NS
&& arm_current_el(env
) < 3 &&
1475 (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
)) {
1476 /* reads return bpr0 + 1 sat to 7, writes ignored */
1480 minval
= (grp
== GICV3_G1NS
) ? GIC_MIN_BPR_NS
: GIC_MIN_BPR
;
1481 if (value
< minval
) {
1485 cs
->icc_bpr
[grp
] = value
& 7;
1486 gicv3_cpuif_update(cs
);
1489 static uint64_t icc_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1491 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1494 int regno
= ri
->opc2
& 3;
1495 int grp
= (ri
->crm
& 1) ? GICV3_G1
: GICV3_G0
;
1497 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1498 return icv_ap_read(env
, ri
);
1501 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1505 value
= cs
->icc_apr
[grp
][regno
];
1507 trace_gicv3_icc_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
1511 static void icc_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1514 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1516 int regno
= ri
->opc2
& 3;
1517 int grp
= (ri
->crm
& 1) ? GICV3_G1
: GICV3_G0
;
1519 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1520 icv_ap_write(env
, ri
, value
);
1524 trace_gicv3_icc_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
1526 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1530 /* It's not possible to claim that a Non-secure interrupt is active
1531 * at a priority outside the Non-secure range (128..255), since this
1532 * would otherwise allow malicious NS code to block delivery of S interrupts
1533 * by writing a bad value to these registers.
1535 if (grp
== GICV3_G1NS
&& regno
< 2 && arm_feature(env
, ARM_FEATURE_EL3
)) {
1539 cs
->icc_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
1540 gicv3_cpuif_update(cs
);
1543 static void icc_dir_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1546 /* Deactivate interrupt */
1547 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1548 int irq
= value
& 0xffffff;
1549 bool irq_is_secure
, single_sec_state
, irq_is_grp0
;
1550 bool route_fiq_to_el3
, route_irq_to_el3
, route_fiq_to_el2
, route_irq_to_el2
;
1552 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1553 icv_dir_write(env
, ri
, value
);
1557 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs
), value
);
1559 if (irq
>= cs
->gic
->num_irq
) {
1560 /* Also catches special interrupt numbers and LPIs */
1564 if (!icc_eoi_split(env
, cs
)) {
1568 int grp
= gicv3_irq_group(cs
->gic
, cs
, irq
);
1570 single_sec_state
= cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
;
1571 irq_is_secure
= !single_sec_state
&& (grp
!= GICV3_G1NS
);
1572 irq_is_grp0
= grp
== GICV3_G0
;
1574 /* Check whether we're allowed to deactivate this interrupt based
1575 * on its group and the current CPU state.
1576 * These checks are laid out to correspond to the spec's pseudocode.
1578 route_fiq_to_el3
= env
->cp15
.scr_el3
& SCR_FIQ
;
1579 route_irq_to_el3
= env
->cp15
.scr_el3
& SCR_IRQ
;
1580 /* No need to include !IsSecure in route_*_to_el2 as it's only
1581 * tested in cases where we know !IsSecure is true.
1583 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
1584 route_fiq_to_el2
= hcr_el2
& HCR_FMO
;
1585 route_irq_to_el2
= hcr_el2
& HCR_IMO
;
1587 switch (arm_current_el(env
)) {
1591 if (single_sec_state
&& irq_is_grp0
&& !route_fiq_to_el3
) {
1594 if (!irq_is_secure
&& !irq_is_grp0
&& !route_irq_to_el3
) {
1599 if (!arm_is_secure_below_el3(env
)) {
1600 if (single_sec_state
&& irq_is_grp0
&&
1601 !route_fiq_to_el3
&& !route_fiq_to_el2
) {
1604 if (!irq_is_secure
&& !irq_is_grp0
&&
1605 !route_irq_to_el3
&& !route_irq_to_el2
) {
1609 if (irq_is_grp0
&& !route_fiq_to_el3
) {
1613 (!irq_is_secure
|| !single_sec_state
) &&
1614 !route_irq_to_el3
) {
1620 g_assert_not_reached();
1623 icc_deactivate_irq(cs
, irq
);
1626 static uint64_t icc_rpr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1628 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1631 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1632 return icv_rpr_read(env
, ri
);
1635 prio
= icc_highest_active_prio(cs
);
1637 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1638 !arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_FIQ
)) {
1639 /* NS GIC access and Group 0 is inaccessible to NS */
1640 if ((prio
& 0x80) == 0) {
1641 /* NS mustn't see priorities in the Secure half of the range */
1643 } else if (prio
!= 0xff) {
1644 /* Non-idle priority: show the Non-secure view of it */
1645 prio
= (prio
<< 1) & 0xff;
1649 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs
), prio
);
1653 static void icc_generate_sgi(CPUARMState
*env
, GICv3CPUState
*cs
,
1654 uint64_t value
, int grp
, bool ns
)
1656 GICv3State
*s
= cs
->gic
;
1658 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1659 uint64_t aff
= extract64(value
, 48, 8) << 16 |
1660 extract64(value
, 32, 8) << 8 |
1661 extract64(value
, 16, 8);
1662 uint32_t targetlist
= extract64(value
, 0, 16);
1663 uint32_t irq
= extract64(value
, 24, 4);
1664 bool irm
= extract64(value
, 40, 1);
1667 if (grp
== GICV3_G1
&& s
->gicd_ctlr
& GICD_CTLR_DS
) {
1668 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1669 * interrupts as Group 0 interrupts and must send Secure Group 0
1670 * interrupts to the target CPUs.
1675 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs
), irq
, irm
,
1678 for (i
= 0; i
< s
->num_cpu
; i
++) {
1679 GICv3CPUState
*ocs
= &s
->cpu
[i
];
1682 /* IRM == 1 : route to all CPUs except self */
1687 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1688 * where the corresponding bit is set in targetlist
1692 if (ocs
->gicr_typer
>> 40 != aff
) {
1695 aff0
= extract64(ocs
->gicr_typer
, 32, 8);
1696 if (aff0
> 15 || extract32(targetlist
, aff0
, 1) == 0) {
1701 /* The redistributor will check against its own GICR_NSACR as needed */
1702 gicv3_redist_send_sgi(ocs
, grp
, irq
, ns
);
1706 static void icc_sgi0r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1709 /* Generate Secure Group 0 SGI. */
1710 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1711 bool ns
= !arm_is_secure(env
);
1713 icc_generate_sgi(env
, cs
, value
, GICV3_G0
, ns
);
1716 static void icc_sgi1r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1719 /* Generate Group 1 SGI for the current Security state */
1720 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1722 bool ns
= !arm_is_secure(env
);
1724 grp
= ns
? GICV3_G1NS
: GICV3_G1
;
1725 icc_generate_sgi(env
, cs
, value
, grp
, ns
);
1728 static void icc_asgi1r_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1731 /* Generate Group 1 SGI for the Security state that is not
1734 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1736 bool ns
= !arm_is_secure(env
);
1738 grp
= ns
? GICV3_G1
: GICV3_G1NS
;
1739 icc_generate_sgi(env
, cs
, value
, grp
, ns
);
1742 static uint64_t icc_igrpen_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1744 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1745 int grp
= ri
->opc2
& 1 ? GICV3_G1
: GICV3_G0
;
1748 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1749 return icv_igrpen_read(env
, ri
);
1752 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1756 value
= cs
->icc_igrpen
[grp
];
1757 trace_gicv3_icc_igrpen_read(ri
->opc2
& 1 ? 1 : 0,
1758 gicv3_redist_affid(cs
), value
);
1762 static void icc_igrpen_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1765 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1766 int grp
= ri
->opc2
& 1 ? GICV3_G1
: GICV3_G0
;
1768 if (icv_access(env
, grp
== GICV3_G0
? HCR_FMO
: HCR_IMO
)) {
1769 icv_igrpen_write(env
, ri
, value
);
1773 trace_gicv3_icc_igrpen_write(ri
->opc2
& 1 ? 1 : 0,
1774 gicv3_redist_affid(cs
), value
);
1776 if (grp
== GICV3_G1
&& gicv3_use_ns_bank(env
)) {
1780 cs
->icc_igrpen
[grp
] = value
& ICC_IGRPEN_ENABLE
;
1781 gicv3_cpuif_update(cs
);
1784 static uint64_t icc_igrpen1_el3_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1786 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1789 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1790 value
= cs
->icc_igrpen
[GICV3_G1NS
] | (cs
->icc_igrpen
[GICV3_G1
] << 1);
1791 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs
), value
);
1795 static void icc_igrpen1_el3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1798 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1800 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs
), value
);
1802 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1803 cs
->icc_igrpen
[GICV3_G1NS
] = extract32(value
, 0, 1);
1804 cs
->icc_igrpen
[GICV3_G1
] = extract32(value
, 1, 1);
1805 gicv3_cpuif_update(cs
);
1808 static uint64_t icc_ctlr_el1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1810 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1811 int bank
= gicv3_use_ns_bank(env
) ? GICV3_NS
: GICV3_S
;
1814 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1815 return icv_ctlr_read(env
, ri
);
1818 value
= cs
->icc_ctlr_el1
[bank
];
1819 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs
), value
);
1823 static void icc_ctlr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1826 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1827 int bank
= gicv3_use_ns_bank(env
) ? GICV3_NS
: GICV3_S
;
1830 if (icv_access(env
, HCR_FMO
| HCR_IMO
)) {
1831 icv_ctlr_write(env
, ri
, value
);
1835 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs
), value
);
1837 /* Only CBPR and EOIMODE can be RW;
1838 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1839 * the asseciated priority-based routing of them);
1840 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1842 if (arm_feature(env
, ARM_FEATURE_EL3
) &&
1843 ((cs
->gic
->gicd_ctlr
& GICD_CTLR_DS
) == 0)) {
1844 mask
= ICC_CTLR_EL1_EOIMODE
;
1846 mask
= ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
;
1849 cs
->icc_ctlr_el1
[bank
] &= ~mask
;
1850 cs
->icc_ctlr_el1
[bank
] |= (value
& mask
);
1851 gicv3_cpuif_update(cs
);
1855 static uint64_t icc_ctlr_el3_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1857 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1860 value
= cs
->icc_ctlr_el3
;
1861 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
) {
1862 value
|= ICC_CTLR_EL3_EOIMODE_EL1NS
;
1864 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
) {
1865 value
|= ICC_CTLR_EL3_CBPR_EL1NS
;
1867 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_EOIMODE
) {
1868 value
|= ICC_CTLR_EL3_EOIMODE_EL1S
;
1870 if (cs
->icc_ctlr_el1
[GICV3_NS
] & ICC_CTLR_EL1_CBPR
) {
1871 value
|= ICC_CTLR_EL3_CBPR_EL1S
;
1874 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs
), value
);
1878 static void icc_ctlr_el3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1881 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1884 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs
), value
);
1886 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1887 cs
->icc_ctlr_el1
[GICV3_NS
] &= ~(ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
);
1888 if (value
& ICC_CTLR_EL3_EOIMODE_EL1NS
) {
1889 cs
->icc_ctlr_el1
[GICV3_NS
] |= ICC_CTLR_EL1_EOIMODE
;
1891 if (value
& ICC_CTLR_EL3_CBPR_EL1NS
) {
1892 cs
->icc_ctlr_el1
[GICV3_NS
] |= ICC_CTLR_EL1_CBPR
;
1895 cs
->icc_ctlr_el1
[GICV3_S
] &= ~(ICC_CTLR_EL1_CBPR
| ICC_CTLR_EL1_EOIMODE
);
1896 if (value
& ICC_CTLR_EL3_EOIMODE_EL1S
) {
1897 cs
->icc_ctlr_el1
[GICV3_S
] |= ICC_CTLR_EL1_EOIMODE
;
1899 if (value
& ICC_CTLR_EL3_CBPR_EL1S
) {
1900 cs
->icc_ctlr_el1
[GICV3_S
] |= ICC_CTLR_EL1_CBPR
;
1903 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1904 mask
= ICC_CTLR_EL3_EOIMODE_EL3
;
1906 cs
->icc_ctlr_el3
&= ~mask
;
1907 cs
->icc_ctlr_el3
|= (value
& mask
);
1908 gicv3_cpuif_update(cs
);
1911 static CPAccessResult
gicv3_irqfiq_access(CPUARMState
*env
,
1912 const ARMCPRegInfo
*ri
, bool isread
)
1914 CPAccessResult r
= CP_ACCESS_OK
;
1915 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1916 int el
= arm_current_el(env
);
1918 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TC
) &&
1919 el
== 1 && !arm_is_secure_below_el3(env
)) {
1920 /* Takes priority over a possible EL3 trap */
1921 return CP_ACCESS_TRAP_EL2
;
1924 if ((env
->cp15
.scr_el3
& (SCR_FIQ
| SCR_IRQ
)) == (SCR_FIQ
| SCR_IRQ
)) {
1927 /* Note that arm_hcr_el2_eff takes secure state into account. */
1928 if ((arm_hcr_el2_eff(env
) & (HCR_IMO
| HCR_FMO
)) == 0) {
1929 r
= CP_ACCESS_TRAP_EL3
;
1933 r
= CP_ACCESS_TRAP_EL3
;
1936 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
1937 r
= CP_ACCESS_TRAP_EL3
;
1941 g_assert_not_reached();
1945 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
1951 static CPAccessResult
gicv3_dir_access(CPUARMState
*env
,
1952 const ARMCPRegInfo
*ri
, bool isread
)
1954 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1956 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TDIR
) &&
1957 arm_current_el(env
) == 1 && !arm_is_secure_below_el3(env
)) {
1958 /* Takes priority over a possible EL3 trap */
1959 return CP_ACCESS_TRAP_EL2
;
1962 return gicv3_irqfiq_access(env
, ri
, isread
);
1965 static CPAccessResult
gicv3_sgi_access(CPUARMState
*env
,
1966 const ARMCPRegInfo
*ri
, bool isread
)
1968 if (arm_current_el(env
) == 1 &&
1969 (arm_hcr_el2_eff(env
) & (HCR_IMO
| HCR_FMO
)) != 0) {
1970 /* Takes priority over a possible EL3 trap */
1971 return CP_ACCESS_TRAP_EL2
;
1974 return gicv3_irqfiq_access(env
, ri
, isread
);
1977 static CPAccessResult
gicv3_fiq_access(CPUARMState
*env
,
1978 const ARMCPRegInfo
*ri
, bool isread
)
1980 CPAccessResult r
= CP_ACCESS_OK
;
1981 GICv3CPUState
*cs
= icc_cs_from_env(env
);
1982 int el
= arm_current_el(env
);
1984 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TALL0
) &&
1985 el
== 1 && !arm_is_secure_below_el3(env
)) {
1986 /* Takes priority over a possible EL3 trap */
1987 return CP_ACCESS_TRAP_EL2
;
1990 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
1993 if ((arm_hcr_el2_eff(env
) & HCR_FMO
) == 0) {
1994 r
= CP_ACCESS_TRAP_EL3
;
1998 r
= CP_ACCESS_TRAP_EL3
;
2001 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
2002 r
= CP_ACCESS_TRAP_EL3
;
2006 g_assert_not_reached();
2010 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
2016 static CPAccessResult
gicv3_irq_access(CPUARMState
*env
,
2017 const ARMCPRegInfo
*ri
, bool isread
)
2019 CPAccessResult r
= CP_ACCESS_OK
;
2020 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2021 int el
= arm_current_el(env
);
2023 if ((cs
->ich_hcr_el2
& ICH_HCR_EL2_TALL1
) &&
2024 el
== 1 && !arm_is_secure_below_el3(env
)) {
2025 /* Takes priority over a possible EL3 trap */
2026 return CP_ACCESS_TRAP_EL2
;
2029 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
2032 if ((arm_hcr_el2_eff(env
) & HCR_IMO
) == 0) {
2033 r
= CP_ACCESS_TRAP_EL3
;
2037 r
= CP_ACCESS_TRAP_EL3
;
2040 if (!is_a64(env
) && !arm_is_el3_or_mon(env
)) {
2041 r
= CP_ACCESS_TRAP_EL3
;
2045 g_assert_not_reached();
2049 if (r
== CP_ACCESS_TRAP_EL3
&& !arm_el_is_aa64(env
, 3)) {
2055 static void icc_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2057 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2059 cs
->icc_ctlr_el1
[GICV3_S
] = ICC_CTLR_EL1_A3V
|
2060 (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
2061 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
2062 cs
->icc_ctlr_el1
[GICV3_NS
] = ICC_CTLR_EL1_A3V
|
2063 (1 << ICC_CTLR_EL1_IDBITS_SHIFT
) |
2064 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT
);
2065 cs
->icc_pmr_el1
= 0;
2066 cs
->icc_bpr
[GICV3_G0
] = GIC_MIN_BPR
;
2067 cs
->icc_bpr
[GICV3_G1
] = GIC_MIN_BPR
;
2068 cs
->icc_bpr
[GICV3_G1NS
] = GIC_MIN_BPR_NS
;
2069 memset(cs
->icc_apr
, 0, sizeof(cs
->icc_apr
));
2070 memset(cs
->icc_igrpen
, 0, sizeof(cs
->icc_igrpen
));
2071 cs
->icc_ctlr_el3
= ICC_CTLR_EL3_NDS
| ICC_CTLR_EL3_A3V
|
2072 (1 << ICC_CTLR_EL3_IDBITS_SHIFT
) |
2073 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT
);
2075 memset(cs
->ich_apr
, 0, sizeof(cs
->ich_apr
));
2076 cs
->ich_hcr_el2
= 0;
2077 memset(cs
->ich_lr_el2
, 0, sizeof(cs
->ich_lr_el2
));
2078 cs
->ich_vmcr_el2
= ICH_VMCR_EL2_VFIQEN
|
2079 ((icv_min_vbpr(cs
) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT
) |
2080 (icv_min_vbpr(cs
) << ICH_VMCR_EL2_VBPR0_SHIFT
);
2083 static const ARMCPRegInfo gicv3_cpuif_reginfo
[] = {
2084 { .name
= "ICC_PMR_EL1", .state
= ARM_CP_STATE_BOTH
,
2085 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 6, .opc2
= 0,
2086 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2087 .access
= PL1_RW
, .accessfn
= gicv3_irqfiq_access
,
2088 .readfn
= icc_pmr_read
,
2089 .writefn
= icc_pmr_write
,
2090 /* We hang the whole cpu interface reset routine off here
2091 * rather than parcelling it out into one little function
2094 .resetfn
= icc_reset
,
2096 { .name
= "ICC_IAR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2097 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 0,
2098 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2099 .access
= PL1_R
, .accessfn
= gicv3_fiq_access
,
2100 .readfn
= icc_iar0_read
,
2102 { .name
= "ICC_EOIR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2103 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 1,
2104 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2105 .access
= PL1_W
, .accessfn
= gicv3_fiq_access
,
2106 .writefn
= icc_eoir_write
,
2108 { .name
= "ICC_HPPIR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2109 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 2,
2110 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2111 .access
= PL1_R
, .accessfn
= gicv3_fiq_access
,
2112 .readfn
= icc_hppir0_read
,
2114 { .name
= "ICC_BPR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2115 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 3,
2116 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2117 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2118 .readfn
= icc_bpr_read
,
2119 .writefn
= icc_bpr_write
,
2121 { .name
= "ICC_AP0R0_EL1", .state
= ARM_CP_STATE_BOTH
,
2122 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 4,
2123 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2124 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2125 .readfn
= icc_ap_read
,
2126 .writefn
= icc_ap_write
,
2128 { .name
= "ICC_AP0R1_EL1", .state
= ARM_CP_STATE_BOTH
,
2129 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 5,
2130 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2131 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2132 .readfn
= icc_ap_read
,
2133 .writefn
= icc_ap_write
,
2135 { .name
= "ICC_AP0R2_EL1", .state
= ARM_CP_STATE_BOTH
,
2136 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 6,
2137 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2138 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2139 .readfn
= icc_ap_read
,
2140 .writefn
= icc_ap_write
,
2142 { .name
= "ICC_AP0R3_EL1", .state
= ARM_CP_STATE_BOTH
,
2143 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 8, .opc2
= 7,
2144 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2145 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2146 .readfn
= icc_ap_read
,
2147 .writefn
= icc_ap_write
,
2149 /* All the ICC_AP1R*_EL1 registers are banked */
2150 { .name
= "ICC_AP1R0_EL1", .state
= ARM_CP_STATE_BOTH
,
2151 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 0,
2152 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2153 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2154 .readfn
= icc_ap_read
,
2155 .writefn
= icc_ap_write
,
2157 { .name
= "ICC_AP1R1_EL1", .state
= ARM_CP_STATE_BOTH
,
2158 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 1,
2159 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2160 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2161 .readfn
= icc_ap_read
,
2162 .writefn
= icc_ap_write
,
2164 { .name
= "ICC_AP1R2_EL1", .state
= ARM_CP_STATE_BOTH
,
2165 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 2,
2166 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2167 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2168 .readfn
= icc_ap_read
,
2169 .writefn
= icc_ap_write
,
2171 { .name
= "ICC_AP1R3_EL1", .state
= ARM_CP_STATE_BOTH
,
2172 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 9, .opc2
= 3,
2173 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2174 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2175 .readfn
= icc_ap_read
,
2176 .writefn
= icc_ap_write
,
2178 { .name
= "ICC_DIR_EL1", .state
= ARM_CP_STATE_BOTH
,
2179 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 1,
2180 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2181 .access
= PL1_W
, .accessfn
= gicv3_dir_access
,
2182 .writefn
= icc_dir_write
,
2184 { .name
= "ICC_RPR_EL1", .state
= ARM_CP_STATE_BOTH
,
2185 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 3,
2186 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2187 .access
= PL1_R
, .accessfn
= gicv3_irqfiq_access
,
2188 .readfn
= icc_rpr_read
,
2190 { .name
= "ICC_SGI1R_EL1", .state
= ARM_CP_STATE_AA64
,
2191 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 5,
2192 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2193 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2194 .writefn
= icc_sgi1r_write
,
2196 { .name
= "ICC_SGI1R",
2197 .cp
= 15, .opc1
= 0, .crm
= 12,
2198 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2199 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2200 .writefn
= icc_sgi1r_write
,
2202 { .name
= "ICC_ASGI1R_EL1", .state
= ARM_CP_STATE_AA64
,
2203 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 6,
2204 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2205 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2206 .writefn
= icc_asgi1r_write
,
2208 { .name
= "ICC_ASGI1R",
2209 .cp
= 15, .opc1
= 1, .crm
= 12,
2210 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2211 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2212 .writefn
= icc_asgi1r_write
,
2214 { .name
= "ICC_SGI0R_EL1", .state
= ARM_CP_STATE_AA64
,
2215 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 11, .opc2
= 7,
2216 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2217 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2218 .writefn
= icc_sgi0r_write
,
2220 { .name
= "ICC_SGI0R",
2221 .cp
= 15, .opc1
= 2, .crm
= 12,
2222 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_NO_RAW
,
2223 .access
= PL1_W
, .accessfn
= gicv3_sgi_access
,
2224 .writefn
= icc_sgi0r_write
,
2226 { .name
= "ICC_IAR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2227 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 0,
2228 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2229 .access
= PL1_R
, .accessfn
= gicv3_irq_access
,
2230 .readfn
= icc_iar1_read
,
2232 { .name
= "ICC_EOIR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2233 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 1,
2234 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2235 .access
= PL1_W
, .accessfn
= gicv3_irq_access
,
2236 .writefn
= icc_eoir_write
,
2238 { .name
= "ICC_HPPIR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2239 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 2,
2240 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2241 .access
= PL1_R
, .accessfn
= gicv3_irq_access
,
2242 .readfn
= icc_hppir1_read
,
2244 /* This register is banked */
2245 { .name
= "ICC_BPR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2246 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 3,
2247 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2248 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2249 .readfn
= icc_bpr_read
,
2250 .writefn
= icc_bpr_write
,
2252 /* This register is banked */
2253 { .name
= "ICC_CTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
2254 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 4,
2255 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2256 .access
= PL1_RW
, .accessfn
= gicv3_irqfiq_access
,
2257 .readfn
= icc_ctlr_el1_read
,
2258 .writefn
= icc_ctlr_el1_write
,
2260 { .name
= "ICC_SRE_EL1", .state
= ARM_CP_STATE_BOTH
,
2261 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 5,
2262 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2264 /* We don't support IRQ/FIQ bypass and system registers are
2265 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2266 * This register is banked but since it's constant we don't
2267 * need to do anything special.
2271 { .name
= "ICC_IGRPEN0_EL1", .state
= ARM_CP_STATE_BOTH
,
2272 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 6,
2273 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2274 .access
= PL1_RW
, .accessfn
= gicv3_fiq_access
,
2275 .readfn
= icc_igrpen_read
,
2276 .writefn
= icc_igrpen_write
,
2278 /* This register is banked */
2279 { .name
= "ICC_IGRPEN1_EL1", .state
= ARM_CP_STATE_BOTH
,
2280 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 12, .opc2
= 7,
2281 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2282 .access
= PL1_RW
, .accessfn
= gicv3_irq_access
,
2283 .readfn
= icc_igrpen_read
,
2284 .writefn
= icc_igrpen_write
,
2286 { .name
= "ICC_SRE_EL2", .state
= ARM_CP_STATE_BOTH
,
2287 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 5,
2288 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2290 /* We don't support IRQ/FIQ bypass and system registers are
2291 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2295 { .name
= "ICC_CTLR_EL3", .state
= ARM_CP_STATE_BOTH
,
2296 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 4,
2297 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2299 .readfn
= icc_ctlr_el3_read
,
2300 .writefn
= icc_ctlr_el3_write
,
2302 { .name
= "ICC_SRE_EL3", .state
= ARM_CP_STATE_BOTH
,
2303 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 5,
2304 .type
= ARM_CP_NO_RAW
| ARM_CP_CONST
,
2306 /* We don't support IRQ/FIQ bypass and system registers are
2307 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2311 { .name
= "ICC_IGRPEN1_EL3", .state
= ARM_CP_STATE_BOTH
,
2312 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 12, .opc2
= 7,
2313 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2315 .readfn
= icc_igrpen1_el3_read
,
2316 .writefn
= icc_igrpen1_el3_write
,
2321 static uint64_t ich_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2323 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2324 int regno
= ri
->opc2
& 3;
2325 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
2328 value
= cs
->ich_apr
[grp
][regno
];
2329 trace_gicv3_ich_ap_read(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
2333 static void ich_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2336 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2337 int regno
= ri
->opc2
& 3;
2338 int grp
= (ri
->crm
& 1) ? GICV3_G1NS
: GICV3_G0
;
2340 trace_gicv3_ich_ap_write(ri
->crm
& 1, regno
, gicv3_redist_affid(cs
), value
);
2342 cs
->ich_apr
[grp
][regno
] = value
& 0xFFFFFFFFU
;
2343 gicv3_cpuif_virt_update(cs
);
2346 static uint64_t ich_hcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2348 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2349 uint64_t value
= cs
->ich_hcr_el2
;
2351 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs
), value
);
2355 static void ich_hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2358 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2360 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs
), value
);
2362 value
&= ICH_HCR_EL2_EN
| ICH_HCR_EL2_UIE
| ICH_HCR_EL2_LRENPIE
|
2363 ICH_HCR_EL2_NPIE
| ICH_HCR_EL2_VGRP0EIE
| ICH_HCR_EL2_VGRP0DIE
|
2364 ICH_HCR_EL2_VGRP1EIE
| ICH_HCR_EL2_VGRP1DIE
| ICH_HCR_EL2_TC
|
2365 ICH_HCR_EL2_TALL0
| ICH_HCR_EL2_TALL1
| ICH_HCR_EL2_TSEI
|
2366 ICH_HCR_EL2_TDIR
| ICH_HCR_EL2_EOICOUNT_MASK
;
2368 cs
->ich_hcr_el2
= value
;
2369 gicv3_cpuif_virt_update(cs
);
2372 static uint64_t ich_vmcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2374 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2375 uint64_t value
= cs
->ich_vmcr_el2
;
2377 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs
), value
);
2381 static void ich_vmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2384 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2386 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs
), value
);
2388 value
&= ICH_VMCR_EL2_VENG0
| ICH_VMCR_EL2_VENG1
| ICH_VMCR_EL2_VCBPR
|
2389 ICH_VMCR_EL2_VEOIM
| ICH_VMCR_EL2_VBPR1_MASK
|
2390 ICH_VMCR_EL2_VBPR0_MASK
| ICH_VMCR_EL2_VPMR_MASK
;
2391 value
|= ICH_VMCR_EL2_VFIQEN
;
2393 cs
->ich_vmcr_el2
= value
;
2394 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2395 * by reading and writing back the fields.
2397 write_vbpr(cs
, GICV3_G0
, read_vbpr(cs
, GICV3_G0
));
2398 write_vbpr(cs
, GICV3_G1
, read_vbpr(cs
, GICV3_G1
));
2400 gicv3_cpuif_virt_update(cs
);
2403 static uint64_t ich_lr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2405 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2406 int regno
= ri
->opc2
| ((ri
->crm
& 1) << 3);
2409 /* This read function handles all of:
2410 * 64-bit reads of the whole LR
2411 * 32-bit reads of the low half of the LR
2412 * 32-bit reads of the high half of the LR
2414 if (ri
->state
== ARM_CP_STATE_AA32
) {
2415 if (ri
->crm
>= 14) {
2416 value
= extract64(cs
->ich_lr_el2
[regno
], 32, 32);
2417 trace_gicv3_ich_lrc_read(regno
, gicv3_redist_affid(cs
), value
);
2419 value
= extract64(cs
->ich_lr_el2
[regno
], 0, 32);
2420 trace_gicv3_ich_lr32_read(regno
, gicv3_redist_affid(cs
), value
);
2423 value
= cs
->ich_lr_el2
[regno
];
2424 trace_gicv3_ich_lr_read(regno
, gicv3_redist_affid(cs
), value
);
2430 static void ich_lr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2433 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2434 int regno
= ri
->opc2
| ((ri
->crm
& 1) << 3);
2436 /* This write function handles all of:
2437 * 64-bit writes to the whole LR
2438 * 32-bit writes to the low half of the LR
2439 * 32-bit writes to the high half of the LR
2441 if (ri
->state
== ARM_CP_STATE_AA32
) {
2442 if (ri
->crm
>= 14) {
2443 trace_gicv3_ich_lrc_write(regno
, gicv3_redist_affid(cs
), value
);
2444 value
= deposit64(cs
->ich_lr_el2
[regno
], 32, 32, value
);
2446 trace_gicv3_ich_lr32_write(regno
, gicv3_redist_affid(cs
), value
);
2447 value
= deposit64(cs
->ich_lr_el2
[regno
], 0, 32, value
);
2450 trace_gicv3_ich_lr_write(regno
, gicv3_redist_affid(cs
), value
);
2453 /* Enforce RES0 bits in priority field */
2454 if (cs
->vpribits
< 8) {
2455 value
= deposit64(value
, ICH_LR_EL2_PRIORITY_SHIFT
,
2456 8 - cs
->vpribits
, 0);
2459 cs
->ich_lr_el2
[regno
] = value
;
2460 gicv3_cpuif_virt_update(cs
);
2463 static uint64_t ich_vtr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2465 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2468 value
= ((cs
->num_list_regs
- 1) << ICH_VTR_EL2_LISTREGS_SHIFT
)
2469 | ICH_VTR_EL2_TDS
| ICH_VTR_EL2_NV4
| ICH_VTR_EL2_A3V
2470 | (1 << ICH_VTR_EL2_IDBITS_SHIFT
)
2471 | ((cs
->vprebits
- 1) << ICH_VTR_EL2_PREBITS_SHIFT
)
2472 | ((cs
->vpribits
- 1) << ICH_VTR_EL2_PRIBITS_SHIFT
);
2474 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs
), value
);
2478 static uint64_t ich_misr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2480 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2481 uint64_t value
= maintenance_interrupt_state(cs
);
2483 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs
), value
);
2487 static uint64_t ich_eisr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2489 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2490 uint64_t value
= eoi_maintenance_interrupt_state(cs
, NULL
);
2492 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs
), value
);
2496 static uint64_t ich_elrsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2498 GICv3CPUState
*cs
= icc_cs_from_env(env
);
2502 for (i
= 0; i
< cs
->num_list_regs
; i
++) {
2503 uint64_t lr
= cs
->ich_lr_el2
[i
];
2505 if ((lr
& ICH_LR_EL2_STATE_MASK
) == 0 &&
2506 ((lr
& ICH_LR_EL2_HW
) != 0 || (lr
& ICH_LR_EL2_EOI
) == 0)) {
2511 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs
), value
);
2515 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo
[] = {
2516 { .name
= "ICH_AP0R0_EL2", .state
= ARM_CP_STATE_BOTH
,
2517 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 0,
2518 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2520 .readfn
= ich_ap_read
,
2521 .writefn
= ich_ap_write
,
2523 { .name
= "ICH_AP1R0_EL2", .state
= ARM_CP_STATE_BOTH
,
2524 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 0,
2525 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2527 .readfn
= ich_ap_read
,
2528 .writefn
= ich_ap_write
,
2530 { .name
= "ICH_HCR_EL2", .state
= ARM_CP_STATE_BOTH
,
2531 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 0,
2532 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2534 .readfn
= ich_hcr_read
,
2535 .writefn
= ich_hcr_write
,
2537 { .name
= "ICH_VTR_EL2", .state
= ARM_CP_STATE_BOTH
,
2538 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 1,
2539 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2541 .readfn
= ich_vtr_read
,
2543 { .name
= "ICH_MISR_EL2", .state
= ARM_CP_STATE_BOTH
,
2544 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 2,
2545 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2547 .readfn
= ich_misr_read
,
2549 { .name
= "ICH_EISR_EL2", .state
= ARM_CP_STATE_BOTH
,
2550 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 3,
2551 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2553 .readfn
= ich_eisr_read
,
2555 { .name
= "ICH_ELRSR_EL2", .state
= ARM_CP_STATE_BOTH
,
2556 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 5,
2557 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2559 .readfn
= ich_elrsr_read
,
2561 { .name
= "ICH_VMCR_EL2", .state
= ARM_CP_STATE_BOTH
,
2562 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 11, .opc2
= 7,
2563 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2565 .readfn
= ich_vmcr_read
,
2566 .writefn
= ich_vmcr_write
,
2571 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo
[] = {
2572 { .name
= "ICH_AP0R1_EL2", .state
= ARM_CP_STATE_BOTH
,
2573 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 1,
2574 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2576 .readfn
= ich_ap_read
,
2577 .writefn
= ich_ap_write
,
2579 { .name
= "ICH_AP1R1_EL2", .state
= ARM_CP_STATE_BOTH
,
2580 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 1,
2581 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2583 .readfn
= ich_ap_read
,
2584 .writefn
= ich_ap_write
,
2589 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo
[] = {
2590 { .name
= "ICH_AP0R2_EL2", .state
= ARM_CP_STATE_BOTH
,
2591 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 2,
2592 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2594 .readfn
= ich_ap_read
,
2595 .writefn
= ich_ap_write
,
2597 { .name
= "ICH_AP0R3_EL2", .state
= ARM_CP_STATE_BOTH
,
2598 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 8, .opc2
= 3,
2599 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2601 .readfn
= ich_ap_read
,
2602 .writefn
= ich_ap_write
,
2604 { .name
= "ICH_AP1R2_EL2", .state
= ARM_CP_STATE_BOTH
,
2605 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 2,
2606 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2608 .readfn
= ich_ap_read
,
2609 .writefn
= ich_ap_write
,
2611 { .name
= "ICH_AP1R3_EL2", .state
= ARM_CP_STATE_BOTH
,
2612 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 9, .opc2
= 3,
2613 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2615 .readfn
= ich_ap_read
,
2616 .writefn
= ich_ap_write
,
2621 static void gicv3_cpuif_el_change_hook(ARMCPU
*cpu
, void *opaque
)
2623 GICv3CPUState
*cs
= opaque
;
2625 gicv3_cpuif_update(cs
);
2628 void gicv3_init_cpuif(GICv3State
*s
)
2630 /* Called from the GICv3 realize function; register our system
2631 * registers with the CPU
2635 for (i
= 0; i
< s
->num_cpu
; i
++) {
2636 ARMCPU
*cpu
= ARM_CPU(qemu_get_cpu(i
));
2637 GICv3CPUState
*cs
= &s
->cpu
[i
];
2639 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2640 * in define_arm_cp_regs_with_opaque(), because when we're called back
2641 * it might be with code translated by CPU 0 but run by CPU 1, in
2642 * which case we'd get the wrong value.
2643 * So instead we define the regs with no ri->opaque info, and
2644 * get back to the GICv3CPUState from the CPUARMState.
2646 define_arm_cp_regs(cpu
, gicv3_cpuif_reginfo
);
2647 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
)
2648 && cpu
->gic_num_lrs
) {
2651 cs
->num_list_regs
= cpu
->gic_num_lrs
;
2652 cs
->vpribits
= cpu
->gic_vpribits
;
2653 cs
->vprebits
= cpu
->gic_vprebits
;
2655 /* Check against architectural constraints: getting these
2656 * wrong would be a bug in the CPU code defining these,
2657 * and the implementation relies on them holding.
2659 g_assert(cs
->vprebits
<= cs
->vpribits
);
2660 g_assert(cs
->vprebits
>= 5 && cs
->vprebits
<= 7);
2661 g_assert(cs
->vpribits
>= 5 && cs
->vpribits
<= 8);
2663 define_arm_cp_regs(cpu
, gicv3_cpuif_hcr_reginfo
);
2665 for (j
= 0; j
< cs
->num_list_regs
; j
++) {
2666 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2667 * are split into two cp15 regs, LR (the low part, with the
2668 * same encoding as the AArch64 LR) and LRC (the high part).
2670 ARMCPRegInfo lr_regset
[] = {
2671 { .name
= "ICH_LRn_EL2", .state
= ARM_CP_STATE_BOTH
,
2672 .opc0
= 3, .opc1
= 4, .crn
= 12,
2673 .crm
= 12 + (j
>> 3), .opc2
= j
& 7,
2674 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2676 .readfn
= ich_lr_read
,
2677 .writefn
= ich_lr_write
,
2679 { .name
= "ICH_LRCn_EL2", .state
= ARM_CP_STATE_AA32
,
2680 .cp
= 15, .opc1
= 4, .crn
= 12,
2681 .crm
= 14 + (j
>> 3), .opc2
= j
& 7,
2682 .type
= ARM_CP_IO
| ARM_CP_NO_RAW
,
2684 .readfn
= ich_lr_read
,
2685 .writefn
= ich_lr_write
,
2689 define_arm_cp_regs(cpu
, lr_regset
);
2691 if (cs
->vprebits
>= 6) {
2692 define_arm_cp_regs(cpu
, gicv3_cpuif_ich_apxr1_reginfo
);
2694 if (cs
->vprebits
== 7) {
2695 define_arm_cp_regs(cpu
, gicv3_cpuif_ich_apxr23_reginfo
);
2698 arm_register_el_change_hook(cpu
, gicv3_cpuif_el_change_hook
, cs
);