qapi/parser: enable pylint checks
[qemu/armbru.git] / hw / intc / arm_gicv3_cpuif.c
blob3fe5de8ad7d9be2c041bc0e9833b0865f113e5ad
1 /*
2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
11 /* This file contains the code for the system register interface
12 * portions of the GICv3.
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/log.h"
18 #include "qemu/main-loop.h"
19 #include "trace.h"
20 #include "gicv3_internal.h"
21 #include "hw/irq.h"
22 #include "cpu.h"
24 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
26 ARMCPU *arm_cpu = ARM_CPU(cpu);
27 CPUARMState *env = &arm_cpu->env;
29 env->gicv3state = (void *)s;
32 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
34 return env->gicv3state;
37 static bool gicv3_use_ns_bank(CPUARMState *env)
39 /* Return true if we should use the NonSecure bank for a banked GIC
40 * CPU interface register. Note that this differs from the
41 * access_secure_reg() function because GICv3 banked registers are
42 * banked even for AArch64, unlike the other CPU system registers.
44 return !arm_is_secure_below_el3(env);
47 /* The minimum BPR for the virtual interface is a configurable property */
48 static inline int icv_min_vbpr(GICv3CPUState *cs)
50 return 7 - cs->vprebits;
53 /* Simple accessor functions for LR fields */
54 static uint32_t ich_lr_vintid(uint64_t lr)
56 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
59 static uint32_t ich_lr_pintid(uint64_t lr)
61 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
64 static uint32_t ich_lr_prio(uint64_t lr)
66 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
69 static int ich_lr_state(uint64_t lr)
71 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
74 static bool icv_access(CPUARMState *env, int hcr_flags)
76 /* Return true if this ICC_ register access should really be
77 * directed to an ICV_ access. hcr_flags is a mask of
78 * HCR_EL2 bits to check: we treat this as an ICV_ access
79 * if we are in NS EL1 and at least one of the specified
80 * HCR_EL2 bits is set.
82 * ICV registers fall into four categories:
83 * * access if NS EL1 and HCR_EL2.FMO == 1:
84 * all ICV regs with '0' in their name
85 * * access if NS EL1 and HCR_EL2.IMO == 1:
86 * all ICV regs with '1' in their name
87 * * access if NS EL1 and either IMO or FMO == 1:
88 * CTLR, DIR, PMR, RPR
90 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
91 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
93 return flagmatch && arm_current_el(env) == 1
94 && !arm_is_secure_below_el3(env);
97 static int read_vbpr(GICv3CPUState *cs, int grp)
99 /* Read VBPR value out of the VMCR field (caller must handle
100 * VCBPR effects if required)
102 if (grp == GICV3_G0) {
103 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
104 ICH_VMCR_EL2_VBPR0_LENGTH);
105 } else {
106 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
107 ICH_VMCR_EL2_VBPR1_LENGTH);
111 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
113 /* Write new VBPR1 value, handling the "writing a value less than
114 * the minimum sets it to the minimum" semantics.
116 int min = icv_min_vbpr(cs);
118 if (grp != GICV3_G0) {
119 min++;
122 value = MAX(value, min);
124 if (grp == GICV3_G0) {
125 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
126 ICH_VMCR_EL2_VBPR0_LENGTH, value);
127 } else {
128 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
129 ICH_VMCR_EL2_VBPR1_LENGTH, value);
133 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
135 /* Return a mask word which clears the unimplemented priority bits
136 * from a priority value for a virtual interrupt. (Not to be confused
137 * with the group priority, whose mask depends on the value of VBPR
138 * for the interrupt group.)
140 return ~0U << (8 - cs->vpribits);
143 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
145 /* Calculate the current running priority based on the set bits
146 * in the ICH Active Priority Registers.
148 int i;
149 int aprmax = 1 << (cs->vprebits - 5);
151 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
153 for (i = 0; i < aprmax; i++) {
154 uint32_t apr = cs->ich_apr[GICV3_G0][i] |
155 cs->ich_apr[GICV3_G1NS][i];
157 if (!apr) {
158 continue;
160 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
162 /* No current active interrupts: return idle priority */
163 return 0xff;
166 static int hppvi_index(GICv3CPUState *cs)
168 /* Return the list register index of the highest priority pending
169 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
170 * pseudocode. If no pending virtual interrupts, return -1.
172 int idx = -1;
173 int i;
174 /* Note that a list register entry with a priority of 0xff will
175 * never be reported by this function; this is the architecturally
176 * correct behaviour.
178 int prio = 0xff;
180 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
181 /* Both groups disabled, definitely nothing to do */
182 return idx;
185 for (i = 0; i < cs->num_list_regs; i++) {
186 uint64_t lr = cs->ich_lr_el2[i];
187 int thisprio;
189 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
190 /* Not Pending */
191 continue;
194 /* Ignore interrupts if relevant group enable not set */
195 if (lr & ICH_LR_EL2_GROUP) {
196 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
197 continue;
199 } else {
200 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
201 continue;
205 thisprio = ich_lr_prio(lr);
207 if (thisprio < prio) {
208 prio = thisprio;
209 idx = i;
213 return idx;
216 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
218 /* Return a mask word which clears the subpriority bits from
219 * a priority value for a virtual interrupt in the specified group.
220 * This depends on the VBPR value.
221 * If using VBPR0 then:
222 * a BPR of 0 means the group priority bits are [7:1];
223 * a BPR of 1 means they are [7:2], and so on down to
224 * a BPR of 7 meaning no group priority bits at all.
225 * If using VBPR1 then:
226 * a BPR of 0 is impossible (the minimum value is 1)
227 * a BPR of 1 means the group priority bits are [7:1];
228 * a BPR of 2 means they are [7:2], and so on down to
229 * a BPR of 7 meaning the group priority is [7].
231 * Which BPR to use depends on the group of the interrupt and
232 * the current ICH_VMCR_EL2.VCBPR settings.
234 * This corresponds to the VGroupBits() pseudocode.
236 int bpr;
238 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
239 group = GICV3_G0;
242 bpr = read_vbpr(cs, group);
243 if (group == GICV3_G1NS) {
244 assert(bpr > 0);
245 bpr--;
248 return ~0U << (bpr + 1);
251 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
253 /* Return true if we can signal this virtual interrupt defined by
254 * the given list register value; see the pseudocode functions
255 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
256 * Compare also icc_hppi_can_preempt() which is the non-virtual
257 * equivalent of these checks.
259 int grp;
260 uint32_t mask, prio, rprio, vpmr;
262 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
263 /* Virtual interface disabled */
264 return false;
267 /* We don't need to check that this LR is in Pending state because
268 * that has already been done in hppvi_index().
271 prio = ich_lr_prio(lr);
272 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
273 ICH_VMCR_EL2_VPMR_LENGTH);
275 if (prio >= vpmr) {
276 /* Priority mask masks this interrupt */
277 return false;
280 rprio = ich_highest_active_virt_prio(cs);
281 if (rprio == 0xff) {
282 /* No running interrupt so we can preempt */
283 return true;
286 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
288 mask = icv_gprio_mask(cs, grp);
290 /* We only preempt a running interrupt if the pending interrupt's
291 * group priority is sufficient (the subpriorities are not considered).
293 if ((prio & mask) < (rprio & mask)) {
294 return true;
297 return false;
300 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
301 uint32_t *misr)
303 /* Return a set of bits indicating the EOI maintenance interrupt status
304 * for each list register. The EOI maintenance interrupt status is
305 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
306 * (see the GICv3 spec for the ICH_EISR_EL2 register).
307 * If misr is not NULL then we should also collect the information
308 * about the MISR.EOI, MISR.NP and MISR.U bits.
310 uint32_t value = 0;
311 int validcount = 0;
312 bool seenpending = false;
313 int i;
315 for (i = 0; i < cs->num_list_regs; i++) {
316 uint64_t lr = cs->ich_lr_el2[i];
318 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
319 == ICH_LR_EL2_EOI) {
320 value |= (1 << i);
322 if ((lr & ICH_LR_EL2_STATE_MASK)) {
323 validcount++;
325 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
326 seenpending = true;
330 if (misr) {
331 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
332 *misr |= ICH_MISR_EL2_U;
334 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
335 *misr |= ICH_MISR_EL2_NP;
337 if (value) {
338 *misr |= ICH_MISR_EL2_EOI;
341 return value;
344 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
346 /* Return a set of bits indicating the maintenance interrupt status
347 * (as seen in the ICH_MISR_EL2 register).
349 uint32_t value = 0;
351 /* Scan list registers and fill in the U, NP and EOI bits */
352 eoi_maintenance_interrupt_state(cs, &value);
354 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
355 value |= ICH_MISR_EL2_LRENP;
358 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
359 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
360 value |= ICH_MISR_EL2_VGRP0E;
363 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
364 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
365 value |= ICH_MISR_EL2_VGRP0D;
367 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
368 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
369 value |= ICH_MISR_EL2_VGRP1E;
372 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
373 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
374 value |= ICH_MISR_EL2_VGRP1D;
377 return value;
380 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
382 /* Tell the CPU about any pending virtual interrupts or
383 * maintenance interrupts, following a change to the state
384 * of the CPU interface relevant to virtual interrupts.
386 * CAUTION: this function will call qemu_set_irq() on the
387 * CPU maintenance IRQ line, which is typically wired up
388 * to the GIC as a per-CPU interrupt. This means that it
389 * will recursively call back into the GIC code via
390 * gicv3_redist_set_irq() and thus into the CPU interface code's
391 * gicv3_cpuif_update(). It is therefore important that this
392 * function is only called as the final action of a CPU interface
393 * register write implementation, after all the GIC state
394 * fields have been updated. gicv3_cpuif_update() also must
395 * not cause this function to be called, but that happens
396 * naturally as a result of there being no architectural
397 * linkage between the physical and virtual GIC logic.
399 int idx;
400 int irqlevel = 0;
401 int fiqlevel = 0;
402 int maintlevel = 0;
403 ARMCPU *cpu = ARM_CPU(cs->cpu);
405 idx = hppvi_index(cs);
406 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
407 if (idx >= 0) {
408 uint64_t lr = cs->ich_lr_el2[idx];
410 if (icv_hppi_can_preempt(cs, lr)) {
411 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
412 if (lr & ICH_LR_EL2_GROUP) {
413 irqlevel = 1;
414 } else {
415 fiqlevel = 1;
420 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) &&
421 maintenance_interrupt_state(cs) != 0) {
422 maintlevel = 1;
425 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
426 irqlevel, maintlevel);
428 qemu_set_irq(cs->parent_vfiq, fiqlevel);
429 qemu_set_irq(cs->parent_virq, irqlevel);
430 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
433 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
435 GICv3CPUState *cs = icc_cs_from_env(env);
436 int regno = ri->opc2 & 3;
437 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
438 uint64_t value = cs->ich_apr[grp][regno];
440 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
441 return value;
444 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
445 uint64_t value)
447 GICv3CPUState *cs = icc_cs_from_env(env);
448 int regno = ri->opc2 & 3;
449 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
451 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
453 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
455 gicv3_cpuif_virt_update(cs);
456 return;
459 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
461 GICv3CPUState *cs = icc_cs_from_env(env);
462 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
463 uint64_t bpr;
464 bool satinc = false;
466 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
467 /* reads return bpr0 + 1 saturated to 7, writes ignored */
468 grp = GICV3_G0;
469 satinc = true;
472 bpr = read_vbpr(cs, grp);
474 if (satinc) {
475 bpr++;
476 bpr = MIN(bpr, 7);
479 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
481 return bpr;
484 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
485 uint64_t value)
487 GICv3CPUState *cs = icc_cs_from_env(env);
488 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
490 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
491 gicv3_redist_affid(cs), value);
493 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
494 /* reads return bpr0 + 1 saturated to 7, writes ignored */
495 return;
498 write_vbpr(cs, grp, value);
500 gicv3_cpuif_virt_update(cs);
503 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
505 GICv3CPUState *cs = icc_cs_from_env(env);
506 uint64_t value;
508 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
509 ICH_VMCR_EL2_VPMR_LENGTH);
511 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
512 return value;
515 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
516 uint64_t value)
518 GICv3CPUState *cs = icc_cs_from_env(env);
520 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
522 value &= icv_fullprio_mask(cs);
524 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
525 ICH_VMCR_EL2_VPMR_LENGTH, value);
527 gicv3_cpuif_virt_update(cs);
530 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
532 GICv3CPUState *cs = icc_cs_from_env(env);
533 int enbit;
534 uint64_t value;
536 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
537 value = extract64(cs->ich_vmcr_el2, enbit, 1);
539 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
540 gicv3_redist_affid(cs), value);
541 return value;
544 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
545 uint64_t value)
547 GICv3CPUState *cs = icc_cs_from_env(env);
548 int enbit;
550 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
551 gicv3_redist_affid(cs), value);
553 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
555 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
556 gicv3_cpuif_virt_update(cs);
559 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
561 GICv3CPUState *cs = icc_cs_from_env(env);
562 uint64_t value;
564 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
565 * should match the ones reported in ich_vtr_read().
567 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
568 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
570 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
571 value |= ICC_CTLR_EL1_EOIMODE;
574 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
575 value |= ICC_CTLR_EL1_CBPR;
578 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
579 return value;
582 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
583 uint64_t value)
585 GICv3CPUState *cs = icc_cs_from_env(env);
587 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
589 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
590 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
591 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
592 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
594 gicv3_cpuif_virt_update(cs);
597 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
599 GICv3CPUState *cs = icc_cs_from_env(env);
600 int prio = ich_highest_active_virt_prio(cs);
602 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
603 return prio;
606 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
608 GICv3CPUState *cs = icc_cs_from_env(env);
609 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
610 int idx = hppvi_index(cs);
611 uint64_t value = INTID_SPURIOUS;
613 if (idx >= 0) {
614 uint64_t lr = cs->ich_lr_el2[idx];
615 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
617 if (grp == thisgrp) {
618 value = ich_lr_vintid(lr);
622 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
623 return value;
626 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
628 /* Activate the interrupt in the specified list register
629 * by moving it from Pending to Active state, and update the
630 * Active Priority Registers.
632 uint32_t mask = icv_gprio_mask(cs, grp);
633 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
634 int aprbit = prio >> (8 - cs->vprebits);
635 int regno = aprbit / 32;
636 int regbit = aprbit % 32;
638 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
639 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
640 cs->ich_apr[grp][regno] |= (1 << regbit);
643 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
645 GICv3CPUState *cs = icc_cs_from_env(env);
646 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
647 int idx = hppvi_index(cs);
648 uint64_t intid = INTID_SPURIOUS;
650 if (idx >= 0) {
651 uint64_t lr = cs->ich_lr_el2[idx];
652 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
654 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
655 intid = ich_lr_vintid(lr);
656 if (intid < INTID_SECURE) {
657 icv_activate_irq(cs, idx, grp);
658 } else {
659 /* Interrupt goes from Pending to Invalid */
660 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
661 /* We will now return the (bogus) ID from the list register,
662 * as per the pseudocode.
668 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
669 gicv3_redist_affid(cs), intid);
671 gicv3_cpuif_virt_update(cs);
673 return intid;
676 static int icc_highest_active_prio(GICv3CPUState *cs)
678 /* Calculate the current running priority based on the set bits
679 * in the Active Priority Registers.
681 int i;
683 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
684 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
685 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
687 if (!apr) {
688 continue;
690 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
692 /* No current active interrupts: return idle priority */
693 return 0xff;
696 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
698 /* Return a mask word which clears the subpriority bits from
699 * a priority value for an interrupt in the specified group.
700 * This depends on the BPR value. For CBPR0 (S or NS):
701 * a BPR of 0 means the group priority bits are [7:1];
702 * a BPR of 1 means they are [7:2], and so on down to
703 * a BPR of 7 meaning no group priority bits at all.
704 * For CBPR1 NS:
705 * a BPR of 0 is impossible (the minimum value is 1)
706 * a BPR of 1 means the group priority bits are [7:1];
707 * a BPR of 2 means they are [7:2], and so on down to
708 * a BPR of 7 meaning the group priority is [7].
710 * Which BPR to use depends on the group of the interrupt and
711 * the current ICC_CTLR.CBPR settings.
713 * This corresponds to the GroupBits() pseudocode.
715 int bpr;
717 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
718 (group == GICV3_G1NS &&
719 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
720 group = GICV3_G0;
723 bpr = cs->icc_bpr[group] & 7;
725 if (group == GICV3_G1NS) {
726 assert(bpr > 0);
727 bpr--;
730 return ~0U << (bpr + 1);
733 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
735 /* Return true if there is no pending interrupt, or the
736 * highest priority pending interrupt is in a group which has been
737 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
739 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
742 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
744 /* Return true if we have a pending interrupt of sufficient
745 * priority to preempt.
747 int rprio;
748 uint32_t mask;
750 if (icc_no_enabled_hppi(cs)) {
751 return false;
754 if (cs->hppi.prio >= cs->icc_pmr_el1) {
755 /* Priority mask masks this interrupt */
756 return false;
759 rprio = icc_highest_active_prio(cs);
760 if (rprio == 0xff) {
761 /* No currently running interrupt so we can preempt */
762 return true;
765 mask = icc_gprio_mask(cs, cs->hppi.grp);
767 /* We only preempt a running interrupt if the pending interrupt's
768 * group priority is sufficient (the subpriorities are not considered).
770 if ((cs->hppi.prio & mask) < (rprio & mask)) {
771 return true;
774 return false;
777 void gicv3_cpuif_update(GICv3CPUState *cs)
779 /* Tell the CPU about its highest priority pending interrupt */
780 int irqlevel = 0;
781 int fiqlevel = 0;
782 ARMCPU *cpu = ARM_CPU(cs->cpu);
783 CPUARMState *env = &cpu->env;
785 g_assert(qemu_mutex_iothread_locked());
787 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
788 cs->hppi.grp, cs->hppi.prio);
790 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
791 /* If a Security-enabled GIC sends a G1S interrupt to a
792 * Security-disabled CPU, we must treat it as if it were G0.
794 cs->hppi.grp = GICV3_G0;
797 if (icc_hppi_can_preempt(cs)) {
798 /* We have an interrupt: should we signal it as IRQ or FIQ?
799 * This is described in the GICv3 spec section 4.6.2.
801 bool isfiq;
803 switch (cs->hppi.grp) {
804 case GICV3_G0:
805 isfiq = true;
806 break;
807 case GICV3_G1:
808 isfiq = (!arm_is_secure(env) ||
809 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
810 break;
811 case GICV3_G1NS:
812 isfiq = arm_is_secure(env);
813 break;
814 default:
815 g_assert_not_reached();
818 if (isfiq) {
819 fiqlevel = 1;
820 } else {
821 irqlevel = 1;
825 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
827 qemu_set_irq(cs->parent_fiq, fiqlevel);
828 qemu_set_irq(cs->parent_irq, irqlevel);
831 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
833 GICv3CPUState *cs = icc_cs_from_env(env);
834 uint32_t value = cs->icc_pmr_el1;
836 if (icv_access(env, HCR_FMO | HCR_IMO)) {
837 return icv_pmr_read(env, ri);
840 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
841 (env->cp15.scr_el3 & SCR_FIQ)) {
842 /* NS access and Group 0 is inaccessible to NS: return the
843 * NS view of the current priority
845 if ((value & 0x80) == 0) {
846 /* Secure priorities not visible to NS */
847 value = 0;
848 } else if (value != 0xff) {
849 value = (value << 1) & 0xff;
853 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
855 return value;
858 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
859 uint64_t value)
861 GICv3CPUState *cs = icc_cs_from_env(env);
863 if (icv_access(env, HCR_FMO | HCR_IMO)) {
864 return icv_pmr_write(env, ri, value);
867 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
869 value &= 0xff;
871 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
872 (env->cp15.scr_el3 & SCR_FIQ)) {
873 /* NS access and Group 0 is inaccessible to NS: return the
874 * NS view of the current priority
876 if (!(cs->icc_pmr_el1 & 0x80)) {
877 /* Current PMR in the secure range, don't allow NS to change it */
878 return;
880 value = (value >> 1) | 0x80;
882 cs->icc_pmr_el1 = value;
883 gicv3_cpuif_update(cs);
886 static void icc_activate_irq(GICv3CPUState *cs, int irq)
888 /* Move the interrupt from the Pending state to Active, and update
889 * the Active Priority Registers
891 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
892 int prio = cs->hppi.prio & mask;
893 int aprbit = prio >> 1;
894 int regno = aprbit / 32;
895 int regbit = aprbit % 32;
897 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
899 if (irq < GIC_INTERNAL) {
900 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
901 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
902 gicv3_redist_update(cs);
903 } else if (irq < GICV3_LPI_INTID_START) {
904 gicv3_gicd_active_set(cs->gic, irq);
905 gicv3_gicd_pending_clear(cs->gic, irq);
906 gicv3_update(cs->gic, irq, 1);
907 } else {
908 gicv3_redist_lpi_pending(cs, irq, 0);
912 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
914 /* Return the highest priority pending interrupt register value
915 * for group 0.
917 bool irq_is_secure;
919 if (cs->hppi.prio == 0xff) {
920 return INTID_SPURIOUS;
923 /* Check whether we can return the interrupt or if we should return
924 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
925 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
926 * is always zero.)
928 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
929 (cs->hppi.grp != GICV3_G1NS));
931 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
932 return INTID_SPURIOUS;
934 if (irq_is_secure && !arm_is_secure(env)) {
935 /* Secure interrupts not visible to Nonsecure */
936 return INTID_SPURIOUS;
939 if (cs->hppi.grp != GICV3_G0) {
940 /* Indicate to EL3 that there's a Group 1 interrupt for the other
941 * state pending.
943 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
946 return cs->hppi.irq;
949 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
951 /* Return the highest priority pending interrupt register value
952 * for group 1.
954 bool irq_is_secure;
956 if (cs->hppi.prio == 0xff) {
957 return INTID_SPURIOUS;
960 /* Check whether we can return the interrupt or if we should return
961 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
962 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
963 * is always zero.)
965 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
966 (cs->hppi.grp != GICV3_G1NS));
968 if (cs->hppi.grp == GICV3_G0) {
969 /* Group 0 interrupts not visible via HPPIR1 */
970 return INTID_SPURIOUS;
972 if (irq_is_secure) {
973 if (!arm_is_secure(env)) {
974 /* Secure interrupts not visible in Non-secure */
975 return INTID_SPURIOUS;
977 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
978 /* Group 1 non-secure interrupts not visible in Secure EL1 */
979 return INTID_SPURIOUS;
982 return cs->hppi.irq;
985 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
987 GICv3CPUState *cs = icc_cs_from_env(env);
988 uint64_t intid;
990 if (icv_access(env, HCR_FMO)) {
991 return icv_iar_read(env, ri);
994 if (!icc_hppi_can_preempt(cs)) {
995 intid = INTID_SPURIOUS;
996 } else {
997 intid = icc_hppir0_value(cs, env);
1000 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
1001 icc_activate_irq(cs, intid);
1004 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
1005 return intid;
1008 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1010 GICv3CPUState *cs = icc_cs_from_env(env);
1011 uint64_t intid;
1013 if (icv_access(env, HCR_IMO)) {
1014 return icv_iar_read(env, ri);
1017 if (!icc_hppi_can_preempt(cs)) {
1018 intid = INTID_SPURIOUS;
1019 } else {
1020 intid = icc_hppir1_value(cs, env);
1023 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
1024 icc_activate_irq(cs, intid);
1027 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1028 return intid;
1031 static void icc_drop_prio(GICv3CPUState *cs, int grp)
1033 /* Drop the priority of the currently active interrupt in
1034 * the specified group.
1036 * Note that we can guarantee (because of the requirement to nest
1037 * ICC_IAR reads [which activate an interrupt and raise priority]
1038 * with ICC_EOIR writes [which drop the priority for the interrupt])
1039 * that the interrupt we're being called for is the highest priority
1040 * active interrupt, meaning that it has the lowest set bit in the
1041 * APR registers.
1043 * If the guest does not honour the ordering constraints then the
1044 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1045 * the values of the APR registers might become incorrect and the
1046 * running priority will be wrong, so interrupts that should preempt
1047 * might not do so, and interrupts that should not preempt might do so.
1049 int i;
1051 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1052 uint64_t *papr = &cs->icc_apr[grp][i];
1054 if (!*papr) {
1055 continue;
1057 /* Clear the lowest set bit */
1058 *papr &= *papr - 1;
1059 break;
1062 /* running priority change means we need an update for this cpu i/f */
1063 gicv3_cpuif_update(cs);
1066 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1068 /* Return true if we should split priority drop and interrupt
1069 * deactivation, ie whether the relevant EOIMode bit is set.
1071 if (arm_is_el3_or_mon(env)) {
1072 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1074 if (arm_is_secure_below_el3(env)) {
1075 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1076 } else {
1077 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1081 static int icc_highest_active_group(GICv3CPUState *cs)
1083 /* Return the group with the highest priority active interrupt.
1084 * We can do this by just comparing the APRs to see which one
1085 * has the lowest set bit.
1086 * (If more than one group is active at the same priority then
1087 * we're in UNPREDICTABLE territory.)
1089 int i;
1091 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1092 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1093 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1094 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1096 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1097 return GICV3_G1NS;
1099 if (g1ctz < g0ctz) {
1100 return GICV3_G1;
1102 if (g0ctz < 32) {
1103 return GICV3_G0;
1106 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1107 * ignores the spurious EOI attempt.
1109 return -1;
1112 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1114 if (irq < GIC_INTERNAL) {
1115 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1116 gicv3_redist_update(cs);
1117 } else {
1118 gicv3_gicd_active_clear(cs->gic, irq);
1119 gicv3_update(cs->gic, irq, 1);
1123 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1125 /* Return true if we should split priority drop and interrupt
1126 * deactivation, ie whether the virtual EOIMode bit is set.
1128 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1131 static int icv_find_active(GICv3CPUState *cs, int irq)
1133 /* Given an interrupt number for an active interrupt, return the index
1134 * of the corresponding list register, or -1 if there is no match.
1135 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1137 int i;
1139 for (i = 0; i < cs->num_list_regs; i++) {
1140 uint64_t lr = cs->ich_lr_el2[i];
1142 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1143 return i;
1147 return -1;
1150 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1152 /* Deactivate the interrupt in the specified list register index */
1153 uint64_t lr = cs->ich_lr_el2[idx];
1155 if (lr & ICH_LR_EL2_HW) {
1156 /* Deactivate the associated physical interrupt */
1157 int pirq = ich_lr_pintid(lr);
1159 if (pirq < INTID_SECURE) {
1160 icc_deactivate_irq(cs, pirq);
1164 /* Clear the 'active' part of the state, so ActivePending->Pending
1165 * and Active->Invalid.
1167 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1168 cs->ich_lr_el2[idx] = lr;
1171 static void icv_increment_eoicount(GICv3CPUState *cs)
1173 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1174 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1175 ICH_HCR_EL2_EOICOUNT_LENGTH);
1177 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1178 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1181 static int icv_drop_prio(GICv3CPUState *cs)
1183 /* Drop the priority of the currently active virtual interrupt
1184 * (favouring group 0 if there is a set active bit at
1185 * the same priority for both group 0 and group 1).
1186 * Return the priority value for the bit we just cleared,
1187 * or 0xff if no bits were set in the AP registers at all.
1188 * Note that though the ich_apr[] are uint64_t only the low
1189 * 32 bits are actually relevant.
1191 int i;
1192 int aprmax = 1 << (cs->vprebits - 5);
1194 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1196 for (i = 0; i < aprmax; i++) {
1197 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1198 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1199 int apr0count, apr1count;
1201 if (!*papr0 && !*papr1) {
1202 continue;
1205 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1206 * because we need to return the bit number we cleared so
1207 * it can be compared against the list register's priority field.
1209 apr0count = ctz32(*papr0);
1210 apr1count = ctz32(*papr1);
1212 if (apr0count <= apr1count) {
1213 *papr0 &= *papr0 - 1;
1214 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1215 } else {
1216 *papr1 &= *papr1 - 1;
1217 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1220 return 0xff;
1223 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1224 uint64_t value)
1226 /* Deactivate interrupt */
1227 GICv3CPUState *cs = icc_cs_from_env(env);
1228 int idx;
1229 int irq = value & 0xffffff;
1231 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1233 if (irq >= GICV3_MAXIRQ) {
1234 /* Also catches special interrupt numbers and LPIs */
1235 return;
1238 if (!icv_eoi_split(env, cs)) {
1239 return;
1242 idx = icv_find_active(cs, irq);
1244 if (idx < 0) {
1245 /* No list register matching this, so increment the EOI count
1246 * (might trigger a maintenance interrupt)
1248 icv_increment_eoicount(cs);
1249 } else {
1250 icv_deactivate_irq(cs, idx);
1253 gicv3_cpuif_virt_update(cs);
1256 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1257 uint64_t value)
1259 /* End of Interrupt */
1260 GICv3CPUState *cs = icc_cs_from_env(env);
1261 int irq = value & 0xffffff;
1262 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1263 int idx, dropprio;
1265 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1266 gicv3_redist_affid(cs), value);
1268 if (irq >= GICV3_MAXIRQ) {
1269 /* Also catches special interrupt numbers and LPIs */
1270 return;
1273 /* We implement the IMPDEF choice of "drop priority before doing
1274 * error checks" (because that lets us avoid scanning the AP
1275 * registers twice).
1277 dropprio = icv_drop_prio(cs);
1278 if (dropprio == 0xff) {
1279 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1280 * whether the list registers are checked in this
1281 * situation; we choose not to.
1283 return;
1286 idx = icv_find_active(cs, irq);
1288 if (idx < 0) {
1289 /* No valid list register corresponding to EOI ID */
1290 icv_increment_eoicount(cs);
1291 } else {
1292 uint64_t lr = cs->ich_lr_el2[idx];
1293 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1294 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1296 if (thisgrp == grp && lr_gprio == dropprio) {
1297 if (!icv_eoi_split(env, cs)) {
1298 /* Priority drop and deactivate not split: deactivate irq now */
1299 icv_deactivate_irq(cs, idx);
1304 gicv3_cpuif_virt_update(cs);
1307 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1308 uint64_t value)
1310 /* End of Interrupt */
1311 GICv3CPUState *cs = icc_cs_from_env(env);
1312 int irq = value & 0xffffff;
1313 int grp;
1314 bool is_eoir0 = ri->crm == 8;
1316 if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) {
1317 icv_eoir_write(env, ri, value);
1318 return;
1321 trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1,
1322 gicv3_redist_affid(cs), value);
1324 if ((irq >= cs->gic->num_irq) &&
1325 !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) {
1326 /* This handles two cases:
1327 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1328 * to the GICC_EOIR, the GIC ignores that write.
1329 * 2. If software writes the number of a non-existent interrupt
1330 * this must be a subcase of "value written does not match the last
1331 * valid interrupt value read from the Interrupt Acknowledge
1332 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1334 return;
1337 grp = icc_highest_active_group(cs);
1338 switch (grp) {
1339 case GICV3_G0:
1340 if (!is_eoir0) {
1341 return;
1343 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS)
1344 && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
1345 return;
1347 break;
1348 case GICV3_G1:
1349 if (is_eoir0) {
1350 return;
1352 if (!arm_is_secure(env)) {
1353 return;
1355 break;
1356 case GICV3_G1NS:
1357 if (is_eoir0) {
1358 return;
1360 if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1361 return;
1363 break;
1364 default:
1365 qemu_log_mask(LOG_GUEST_ERROR,
1366 "%s: IRQ %d isn't active\n", __func__, irq);
1367 return;
1370 icc_drop_prio(cs, grp);
1372 if (!icc_eoi_split(env, cs)) {
1373 /* Priority drop and deactivate not split: deactivate irq now */
1374 icc_deactivate_irq(cs, irq);
1378 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1380 GICv3CPUState *cs = icc_cs_from_env(env);
1381 uint64_t value;
1383 if (icv_access(env, HCR_FMO)) {
1384 return icv_hppir_read(env, ri);
1387 value = icc_hppir0_value(cs, env);
1388 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1389 return value;
1392 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1394 GICv3CPUState *cs = icc_cs_from_env(env);
1395 uint64_t value;
1397 if (icv_access(env, HCR_IMO)) {
1398 return icv_hppir_read(env, ri);
1401 value = icc_hppir1_value(cs, env);
1402 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1403 return value;
1406 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1408 GICv3CPUState *cs = icc_cs_from_env(env);
1409 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1410 bool satinc = false;
1411 uint64_t bpr;
1413 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1414 return icv_bpr_read(env, ri);
1417 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1418 grp = GICV3_G1NS;
1421 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1422 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1423 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1424 * modify BPR0
1426 grp = GICV3_G0;
1429 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1430 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1431 /* reads return bpr0 + 1 sat to 7, writes ignored */
1432 grp = GICV3_G0;
1433 satinc = true;
1436 bpr = cs->icc_bpr[grp];
1437 if (satinc) {
1438 bpr++;
1439 bpr = MIN(bpr, 7);
1442 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1444 return bpr;
1447 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1448 uint64_t value)
1450 GICv3CPUState *cs = icc_cs_from_env(env);
1451 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1452 uint64_t minval;
1454 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1455 icv_bpr_write(env, ri, value);
1456 return;
1459 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1460 gicv3_redist_affid(cs), value);
1462 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1463 grp = GICV3_G1NS;
1466 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1467 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1468 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1469 * modify BPR0
1471 grp = GICV3_G0;
1474 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1475 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1476 /* reads return bpr0 + 1 sat to 7, writes ignored */
1477 return;
1480 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
1481 if (value < minval) {
1482 value = minval;
1485 cs->icc_bpr[grp] = value & 7;
1486 gicv3_cpuif_update(cs);
1489 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1491 GICv3CPUState *cs = icc_cs_from_env(env);
1492 uint64_t value;
1494 int regno = ri->opc2 & 3;
1495 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1497 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1498 return icv_ap_read(env, ri);
1501 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1502 grp = GICV3_G1NS;
1505 value = cs->icc_apr[grp][regno];
1507 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1508 return value;
1511 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1512 uint64_t value)
1514 GICv3CPUState *cs = icc_cs_from_env(env);
1516 int regno = ri->opc2 & 3;
1517 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1519 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1520 icv_ap_write(env, ri, value);
1521 return;
1524 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1526 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1527 grp = GICV3_G1NS;
1530 /* It's not possible to claim that a Non-secure interrupt is active
1531 * at a priority outside the Non-secure range (128..255), since this
1532 * would otherwise allow malicious NS code to block delivery of S interrupts
1533 * by writing a bad value to these registers.
1535 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1536 return;
1539 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1540 gicv3_cpuif_update(cs);
1543 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1544 uint64_t value)
1546 /* Deactivate interrupt */
1547 GICv3CPUState *cs = icc_cs_from_env(env);
1548 int irq = value & 0xffffff;
1549 bool irq_is_secure, single_sec_state, irq_is_grp0;
1550 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1552 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1553 icv_dir_write(env, ri, value);
1554 return;
1557 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1559 if (irq >= cs->gic->num_irq) {
1560 /* Also catches special interrupt numbers and LPIs */
1561 return;
1564 if (!icc_eoi_split(env, cs)) {
1565 return;
1568 int grp = gicv3_irq_group(cs->gic, cs, irq);
1570 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1571 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1572 irq_is_grp0 = grp == GICV3_G0;
1574 /* Check whether we're allowed to deactivate this interrupt based
1575 * on its group and the current CPU state.
1576 * These checks are laid out to correspond to the spec's pseudocode.
1578 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1579 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1580 /* No need to include !IsSecure in route_*_to_el2 as it's only
1581 * tested in cases where we know !IsSecure is true.
1583 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1584 route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1585 route_irq_to_el2 = hcr_el2 & HCR_IMO;
1587 switch (arm_current_el(env)) {
1588 case 3:
1589 break;
1590 case 2:
1591 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1592 break;
1594 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1595 break;
1597 return;
1598 case 1:
1599 if (!arm_is_secure_below_el3(env)) {
1600 if (single_sec_state && irq_is_grp0 &&
1601 !route_fiq_to_el3 && !route_fiq_to_el2) {
1602 break;
1604 if (!irq_is_secure && !irq_is_grp0 &&
1605 !route_irq_to_el3 && !route_irq_to_el2) {
1606 break;
1608 } else {
1609 if (irq_is_grp0 && !route_fiq_to_el3) {
1610 break;
1612 if (!irq_is_grp0 &&
1613 (!irq_is_secure || !single_sec_state) &&
1614 !route_irq_to_el3) {
1615 break;
1618 return;
1619 default:
1620 g_assert_not_reached();
1623 icc_deactivate_irq(cs, irq);
1626 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1628 GICv3CPUState *cs = icc_cs_from_env(env);
1629 int prio;
1631 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1632 return icv_rpr_read(env, ri);
1635 prio = icc_highest_active_prio(cs);
1637 if (arm_feature(env, ARM_FEATURE_EL3) &&
1638 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1639 /* NS GIC access and Group 0 is inaccessible to NS */
1640 if ((prio & 0x80) == 0) {
1641 /* NS mustn't see priorities in the Secure half of the range */
1642 prio = 0;
1643 } else if (prio != 0xff) {
1644 /* Non-idle priority: show the Non-secure view of it */
1645 prio = (prio << 1) & 0xff;
1649 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1650 return prio;
1653 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1654 uint64_t value, int grp, bool ns)
1656 GICv3State *s = cs->gic;
1658 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1659 uint64_t aff = extract64(value, 48, 8) << 16 |
1660 extract64(value, 32, 8) << 8 |
1661 extract64(value, 16, 8);
1662 uint32_t targetlist = extract64(value, 0, 16);
1663 uint32_t irq = extract64(value, 24, 4);
1664 bool irm = extract64(value, 40, 1);
1665 int i;
1667 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1668 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1669 * interrupts as Group 0 interrupts and must send Secure Group 0
1670 * interrupts to the target CPUs.
1672 grp = GICV3_G0;
1675 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1676 aff, targetlist);
1678 for (i = 0; i < s->num_cpu; i++) {
1679 GICv3CPUState *ocs = &s->cpu[i];
1681 if (irm) {
1682 /* IRM == 1 : route to all CPUs except self */
1683 if (cs == ocs) {
1684 continue;
1686 } else {
1687 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1688 * where the corresponding bit is set in targetlist
1690 int aff0;
1692 if (ocs->gicr_typer >> 40 != aff) {
1693 continue;
1695 aff0 = extract64(ocs->gicr_typer, 32, 8);
1696 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1697 continue;
1701 /* The redistributor will check against its own GICR_NSACR as needed */
1702 gicv3_redist_send_sgi(ocs, grp, irq, ns);
1706 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1707 uint64_t value)
1709 /* Generate Secure Group 0 SGI. */
1710 GICv3CPUState *cs = icc_cs_from_env(env);
1711 bool ns = !arm_is_secure(env);
1713 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1716 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1717 uint64_t value)
1719 /* Generate Group 1 SGI for the current Security state */
1720 GICv3CPUState *cs = icc_cs_from_env(env);
1721 int grp;
1722 bool ns = !arm_is_secure(env);
1724 grp = ns ? GICV3_G1NS : GICV3_G1;
1725 icc_generate_sgi(env, cs, value, grp, ns);
1728 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1729 uint64_t value)
1731 /* Generate Group 1 SGI for the Security state that is not
1732 * the current state
1734 GICv3CPUState *cs = icc_cs_from_env(env);
1735 int grp;
1736 bool ns = !arm_is_secure(env);
1738 grp = ns ? GICV3_G1 : GICV3_G1NS;
1739 icc_generate_sgi(env, cs, value, grp, ns);
1742 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1744 GICv3CPUState *cs = icc_cs_from_env(env);
1745 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1746 uint64_t value;
1748 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1749 return icv_igrpen_read(env, ri);
1752 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1753 grp = GICV3_G1NS;
1756 value = cs->icc_igrpen[grp];
1757 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1758 gicv3_redist_affid(cs), value);
1759 return value;
1762 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1763 uint64_t value)
1765 GICv3CPUState *cs = icc_cs_from_env(env);
1766 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1768 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1769 icv_igrpen_write(env, ri, value);
1770 return;
1773 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1774 gicv3_redist_affid(cs), value);
1776 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1777 grp = GICV3_G1NS;
1780 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1781 gicv3_cpuif_update(cs);
1784 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1786 GICv3CPUState *cs = icc_cs_from_env(env);
1787 uint64_t value;
1789 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1790 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1791 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1792 return value;
1795 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1796 uint64_t value)
1798 GICv3CPUState *cs = icc_cs_from_env(env);
1800 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1802 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1803 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1804 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1805 gicv3_cpuif_update(cs);
1808 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1810 GICv3CPUState *cs = icc_cs_from_env(env);
1811 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1812 uint64_t value;
1814 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1815 return icv_ctlr_read(env, ri);
1818 value = cs->icc_ctlr_el1[bank];
1819 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1820 return value;
1823 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1824 uint64_t value)
1826 GICv3CPUState *cs = icc_cs_from_env(env);
1827 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1828 uint64_t mask;
1830 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1831 icv_ctlr_write(env, ri, value);
1832 return;
1835 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1837 /* Only CBPR and EOIMODE can be RW;
1838 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1839 * the asseciated priority-based routing of them);
1840 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1842 if (arm_feature(env, ARM_FEATURE_EL3) &&
1843 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1844 mask = ICC_CTLR_EL1_EOIMODE;
1845 } else {
1846 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1849 cs->icc_ctlr_el1[bank] &= ~mask;
1850 cs->icc_ctlr_el1[bank] |= (value & mask);
1851 gicv3_cpuif_update(cs);
1855 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1857 GICv3CPUState *cs = icc_cs_from_env(env);
1858 uint64_t value;
1860 value = cs->icc_ctlr_el3;
1861 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1862 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1864 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1865 value |= ICC_CTLR_EL3_CBPR_EL1NS;
1867 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1868 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1870 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1871 value |= ICC_CTLR_EL3_CBPR_EL1S;
1874 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1875 return value;
1878 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1879 uint64_t value)
1881 GICv3CPUState *cs = icc_cs_from_env(env);
1882 uint64_t mask;
1884 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1886 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1887 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1888 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1889 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1891 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1892 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1895 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1896 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1897 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1899 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1900 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1903 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1904 mask = ICC_CTLR_EL3_EOIMODE_EL3;
1906 cs->icc_ctlr_el3 &= ~mask;
1907 cs->icc_ctlr_el3 |= (value & mask);
1908 gicv3_cpuif_update(cs);
1911 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1912 const ARMCPRegInfo *ri, bool isread)
1914 CPAccessResult r = CP_ACCESS_OK;
1915 GICv3CPUState *cs = icc_cs_from_env(env);
1916 int el = arm_current_el(env);
1918 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1919 el == 1 && !arm_is_secure_below_el3(env)) {
1920 /* Takes priority over a possible EL3 trap */
1921 return CP_ACCESS_TRAP_EL2;
1924 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1925 switch (el) {
1926 case 1:
1927 /* Note that arm_hcr_el2_eff takes secure state into account. */
1928 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
1929 r = CP_ACCESS_TRAP_EL3;
1931 break;
1932 case 2:
1933 r = CP_ACCESS_TRAP_EL3;
1934 break;
1935 case 3:
1936 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1937 r = CP_ACCESS_TRAP_EL3;
1939 break;
1940 default:
1941 g_assert_not_reached();
1945 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1946 r = CP_ACCESS_TRAP;
1948 return r;
1951 static CPAccessResult gicv3_dir_access(CPUARMState *env,
1952 const ARMCPRegInfo *ri, bool isread)
1954 GICv3CPUState *cs = icc_cs_from_env(env);
1956 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1957 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1958 /* Takes priority over a possible EL3 trap */
1959 return CP_ACCESS_TRAP_EL2;
1962 return gicv3_irqfiq_access(env, ri, isread);
1965 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1966 const ARMCPRegInfo *ri, bool isread)
1968 if (arm_current_el(env) == 1 &&
1969 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
1970 /* Takes priority over a possible EL3 trap */
1971 return CP_ACCESS_TRAP_EL2;
1974 return gicv3_irqfiq_access(env, ri, isread);
1977 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1978 const ARMCPRegInfo *ri, bool isread)
1980 CPAccessResult r = CP_ACCESS_OK;
1981 GICv3CPUState *cs = icc_cs_from_env(env);
1982 int el = arm_current_el(env);
1984 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1985 el == 1 && !arm_is_secure_below_el3(env)) {
1986 /* Takes priority over a possible EL3 trap */
1987 return CP_ACCESS_TRAP_EL2;
1990 if (env->cp15.scr_el3 & SCR_FIQ) {
1991 switch (el) {
1992 case 1:
1993 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
1994 r = CP_ACCESS_TRAP_EL3;
1996 break;
1997 case 2:
1998 r = CP_ACCESS_TRAP_EL3;
1999 break;
2000 case 3:
2001 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2002 r = CP_ACCESS_TRAP_EL3;
2004 break;
2005 default:
2006 g_assert_not_reached();
2010 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2011 r = CP_ACCESS_TRAP;
2013 return r;
2016 static CPAccessResult gicv3_irq_access(CPUARMState *env,
2017 const ARMCPRegInfo *ri, bool isread)
2019 CPAccessResult r = CP_ACCESS_OK;
2020 GICv3CPUState *cs = icc_cs_from_env(env);
2021 int el = arm_current_el(env);
2023 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
2024 el == 1 && !arm_is_secure_below_el3(env)) {
2025 /* Takes priority over a possible EL3 trap */
2026 return CP_ACCESS_TRAP_EL2;
2029 if (env->cp15.scr_el3 & SCR_IRQ) {
2030 switch (el) {
2031 case 1:
2032 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2033 r = CP_ACCESS_TRAP_EL3;
2035 break;
2036 case 2:
2037 r = CP_ACCESS_TRAP_EL3;
2038 break;
2039 case 3:
2040 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2041 r = CP_ACCESS_TRAP_EL3;
2043 break;
2044 default:
2045 g_assert_not_reached();
2049 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2050 r = CP_ACCESS_TRAP;
2052 return r;
2055 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2057 GICv3CPUState *cs = icc_cs_from_env(env);
2059 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2060 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2061 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2062 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2063 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2064 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2065 cs->icc_pmr_el1 = 0;
2066 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2067 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
2068 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
2069 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2070 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2071 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2072 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2073 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2075 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2076 cs->ich_hcr_el2 = 0;
2077 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2078 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2079 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2080 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2083 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2084 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2085 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2086 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2087 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2088 .readfn = icc_pmr_read,
2089 .writefn = icc_pmr_write,
2090 /* We hang the whole cpu interface reset routine off here
2091 * rather than parcelling it out into one little function
2092 * per register
2094 .resetfn = icc_reset,
2096 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2097 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2098 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2099 .access = PL1_R, .accessfn = gicv3_fiq_access,
2100 .readfn = icc_iar0_read,
2102 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2103 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2104 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2105 .access = PL1_W, .accessfn = gicv3_fiq_access,
2106 .writefn = icc_eoir_write,
2108 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2109 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2110 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2111 .access = PL1_R, .accessfn = gicv3_fiq_access,
2112 .readfn = icc_hppir0_read,
2114 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2115 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2116 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2117 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2118 .readfn = icc_bpr_read,
2119 .writefn = icc_bpr_write,
2121 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2122 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2123 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2124 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2125 .readfn = icc_ap_read,
2126 .writefn = icc_ap_write,
2128 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2129 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2130 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2131 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2132 .readfn = icc_ap_read,
2133 .writefn = icc_ap_write,
2135 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2136 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2137 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2138 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2139 .readfn = icc_ap_read,
2140 .writefn = icc_ap_write,
2142 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2143 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2144 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2145 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2146 .readfn = icc_ap_read,
2147 .writefn = icc_ap_write,
2149 /* All the ICC_AP1R*_EL1 registers are banked */
2150 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2151 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2152 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2153 .access = PL1_RW, .accessfn = gicv3_irq_access,
2154 .readfn = icc_ap_read,
2155 .writefn = icc_ap_write,
2157 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2158 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2159 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2160 .access = PL1_RW, .accessfn = gicv3_irq_access,
2161 .readfn = icc_ap_read,
2162 .writefn = icc_ap_write,
2164 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2165 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2166 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2167 .access = PL1_RW, .accessfn = gicv3_irq_access,
2168 .readfn = icc_ap_read,
2169 .writefn = icc_ap_write,
2171 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2172 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2173 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2174 .access = PL1_RW, .accessfn = gicv3_irq_access,
2175 .readfn = icc_ap_read,
2176 .writefn = icc_ap_write,
2178 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2179 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2180 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2181 .access = PL1_W, .accessfn = gicv3_dir_access,
2182 .writefn = icc_dir_write,
2184 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2185 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2186 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2187 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2188 .readfn = icc_rpr_read,
2190 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2191 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2192 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2193 .access = PL1_W, .accessfn = gicv3_sgi_access,
2194 .writefn = icc_sgi1r_write,
2196 { .name = "ICC_SGI1R",
2197 .cp = 15, .opc1 = 0, .crm = 12,
2198 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2199 .access = PL1_W, .accessfn = gicv3_sgi_access,
2200 .writefn = icc_sgi1r_write,
2202 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2203 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2204 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2205 .access = PL1_W, .accessfn = gicv3_sgi_access,
2206 .writefn = icc_asgi1r_write,
2208 { .name = "ICC_ASGI1R",
2209 .cp = 15, .opc1 = 1, .crm = 12,
2210 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2211 .access = PL1_W, .accessfn = gicv3_sgi_access,
2212 .writefn = icc_asgi1r_write,
2214 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2215 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2216 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2217 .access = PL1_W, .accessfn = gicv3_sgi_access,
2218 .writefn = icc_sgi0r_write,
2220 { .name = "ICC_SGI0R",
2221 .cp = 15, .opc1 = 2, .crm = 12,
2222 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2223 .access = PL1_W, .accessfn = gicv3_sgi_access,
2224 .writefn = icc_sgi0r_write,
2226 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2227 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2228 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2229 .access = PL1_R, .accessfn = gicv3_irq_access,
2230 .readfn = icc_iar1_read,
2232 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2233 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2234 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2235 .access = PL1_W, .accessfn = gicv3_irq_access,
2236 .writefn = icc_eoir_write,
2238 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2239 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2240 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2241 .access = PL1_R, .accessfn = gicv3_irq_access,
2242 .readfn = icc_hppir1_read,
2244 /* This register is banked */
2245 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2246 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2247 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2248 .access = PL1_RW, .accessfn = gicv3_irq_access,
2249 .readfn = icc_bpr_read,
2250 .writefn = icc_bpr_write,
2252 /* This register is banked */
2253 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2254 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2255 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2256 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2257 .readfn = icc_ctlr_el1_read,
2258 .writefn = icc_ctlr_el1_write,
2260 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2261 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2262 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2263 .access = PL1_RW,
2264 /* We don't support IRQ/FIQ bypass and system registers are
2265 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2266 * This register is banked but since it's constant we don't
2267 * need to do anything special.
2269 .resetvalue = 0x7,
2271 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2272 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2273 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2274 .access = PL1_RW, .accessfn = gicv3_fiq_access,
2275 .readfn = icc_igrpen_read,
2276 .writefn = icc_igrpen_write,
2278 /* This register is banked */
2279 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2280 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2281 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2282 .access = PL1_RW, .accessfn = gicv3_irq_access,
2283 .readfn = icc_igrpen_read,
2284 .writefn = icc_igrpen_write,
2286 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2287 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2288 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2289 .access = PL2_RW,
2290 /* We don't support IRQ/FIQ bypass and system registers are
2291 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2293 .resetvalue = 0xf,
2295 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2296 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2297 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2298 .access = PL3_RW,
2299 .readfn = icc_ctlr_el3_read,
2300 .writefn = icc_ctlr_el3_write,
2302 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2303 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2304 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2305 .access = PL3_RW,
2306 /* We don't support IRQ/FIQ bypass and system registers are
2307 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2309 .resetvalue = 0xf,
2311 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2312 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2313 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2314 .access = PL3_RW,
2315 .readfn = icc_igrpen1_el3_read,
2316 .writefn = icc_igrpen1_el3_write,
2318 REGINFO_SENTINEL
2321 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2323 GICv3CPUState *cs = icc_cs_from_env(env);
2324 int regno = ri->opc2 & 3;
2325 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2326 uint64_t value;
2328 value = cs->ich_apr[grp][regno];
2329 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2330 return value;
2333 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2334 uint64_t value)
2336 GICv3CPUState *cs = icc_cs_from_env(env);
2337 int regno = ri->opc2 & 3;
2338 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2340 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2342 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2343 gicv3_cpuif_virt_update(cs);
2346 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2348 GICv3CPUState *cs = icc_cs_from_env(env);
2349 uint64_t value = cs->ich_hcr_el2;
2351 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2352 return value;
2355 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2356 uint64_t value)
2358 GICv3CPUState *cs = icc_cs_from_env(env);
2360 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2362 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2363 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2364 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2365 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2366 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2368 cs->ich_hcr_el2 = value;
2369 gicv3_cpuif_virt_update(cs);
2372 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2374 GICv3CPUState *cs = icc_cs_from_env(env);
2375 uint64_t value = cs->ich_vmcr_el2;
2377 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2378 return value;
2381 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2382 uint64_t value)
2384 GICv3CPUState *cs = icc_cs_from_env(env);
2386 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2388 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2389 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2390 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2391 value |= ICH_VMCR_EL2_VFIQEN;
2393 cs->ich_vmcr_el2 = value;
2394 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2395 * by reading and writing back the fields.
2397 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
2398 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2400 gicv3_cpuif_virt_update(cs);
2403 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2405 GICv3CPUState *cs = icc_cs_from_env(env);
2406 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2407 uint64_t value;
2409 /* This read function handles all of:
2410 * 64-bit reads of the whole LR
2411 * 32-bit reads of the low half of the LR
2412 * 32-bit reads of the high half of the LR
2414 if (ri->state == ARM_CP_STATE_AA32) {
2415 if (ri->crm >= 14) {
2416 value = extract64(cs->ich_lr_el2[regno], 32, 32);
2417 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2418 } else {
2419 value = extract64(cs->ich_lr_el2[regno], 0, 32);
2420 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2422 } else {
2423 value = cs->ich_lr_el2[regno];
2424 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2427 return value;
2430 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2431 uint64_t value)
2433 GICv3CPUState *cs = icc_cs_from_env(env);
2434 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2436 /* This write function handles all of:
2437 * 64-bit writes to the whole LR
2438 * 32-bit writes to the low half of the LR
2439 * 32-bit writes to the high half of the LR
2441 if (ri->state == ARM_CP_STATE_AA32) {
2442 if (ri->crm >= 14) {
2443 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2444 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2445 } else {
2446 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2447 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2449 } else {
2450 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2453 /* Enforce RES0 bits in priority field */
2454 if (cs->vpribits < 8) {
2455 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2456 8 - cs->vpribits, 0);
2459 cs->ich_lr_el2[regno] = value;
2460 gicv3_cpuif_virt_update(cs);
2463 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2465 GICv3CPUState *cs = icc_cs_from_env(env);
2466 uint64_t value;
2468 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2469 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2470 | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2471 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2472 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2474 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2475 return value;
2478 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2480 GICv3CPUState *cs = icc_cs_from_env(env);
2481 uint64_t value = maintenance_interrupt_state(cs);
2483 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2484 return value;
2487 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2489 GICv3CPUState *cs = icc_cs_from_env(env);
2490 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2492 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2493 return value;
2496 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2498 GICv3CPUState *cs = icc_cs_from_env(env);
2499 uint64_t value = 0;
2500 int i;
2502 for (i = 0; i < cs->num_list_regs; i++) {
2503 uint64_t lr = cs->ich_lr_el2[i];
2505 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2506 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2507 value |= (1 << i);
2511 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2512 return value;
2515 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2516 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2517 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2518 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2519 .access = PL2_RW,
2520 .readfn = ich_ap_read,
2521 .writefn = ich_ap_write,
2523 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2524 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2525 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2526 .access = PL2_RW,
2527 .readfn = ich_ap_read,
2528 .writefn = ich_ap_write,
2530 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2531 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2532 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2533 .access = PL2_RW,
2534 .readfn = ich_hcr_read,
2535 .writefn = ich_hcr_write,
2537 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2538 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2539 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2540 .access = PL2_R,
2541 .readfn = ich_vtr_read,
2543 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2544 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2545 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2546 .access = PL2_R,
2547 .readfn = ich_misr_read,
2549 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2550 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2551 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2552 .access = PL2_R,
2553 .readfn = ich_eisr_read,
2555 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2556 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2557 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2558 .access = PL2_R,
2559 .readfn = ich_elrsr_read,
2561 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2562 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2563 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2564 .access = PL2_RW,
2565 .readfn = ich_vmcr_read,
2566 .writefn = ich_vmcr_write,
2568 REGINFO_SENTINEL
2571 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2572 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2573 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2574 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2575 .access = PL2_RW,
2576 .readfn = ich_ap_read,
2577 .writefn = ich_ap_write,
2579 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2580 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2581 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2582 .access = PL2_RW,
2583 .readfn = ich_ap_read,
2584 .writefn = ich_ap_write,
2586 REGINFO_SENTINEL
2589 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2590 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2591 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2592 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2593 .access = PL2_RW,
2594 .readfn = ich_ap_read,
2595 .writefn = ich_ap_write,
2597 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2598 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2599 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2600 .access = PL2_RW,
2601 .readfn = ich_ap_read,
2602 .writefn = ich_ap_write,
2604 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2605 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2606 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2607 .access = PL2_RW,
2608 .readfn = ich_ap_read,
2609 .writefn = ich_ap_write,
2611 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2612 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2613 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2614 .access = PL2_RW,
2615 .readfn = ich_ap_read,
2616 .writefn = ich_ap_write,
2618 REGINFO_SENTINEL
2621 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2623 GICv3CPUState *cs = opaque;
2625 gicv3_cpuif_update(cs);
2628 void gicv3_init_cpuif(GICv3State *s)
2630 /* Called from the GICv3 realize function; register our system
2631 * registers with the CPU
2633 int i;
2635 for (i = 0; i < s->num_cpu; i++) {
2636 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2637 GICv3CPUState *cs = &s->cpu[i];
2639 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2640 * in define_arm_cp_regs_with_opaque(), because when we're called back
2641 * it might be with code translated by CPU 0 but run by CPU 1, in
2642 * which case we'd get the wrong value.
2643 * So instead we define the regs with no ri->opaque info, and
2644 * get back to the GICv3CPUState from the CPUARMState.
2646 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2647 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2648 && cpu->gic_num_lrs) {
2649 int j;
2651 cs->num_list_regs = cpu->gic_num_lrs;
2652 cs->vpribits = cpu->gic_vpribits;
2653 cs->vprebits = cpu->gic_vprebits;
2655 /* Check against architectural constraints: getting these
2656 * wrong would be a bug in the CPU code defining these,
2657 * and the implementation relies on them holding.
2659 g_assert(cs->vprebits <= cs->vpribits);
2660 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2661 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2663 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2665 for (j = 0; j < cs->num_list_regs; j++) {
2666 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2667 * are split into two cp15 regs, LR (the low part, with the
2668 * same encoding as the AArch64 LR) and LRC (the high part).
2670 ARMCPRegInfo lr_regset[] = {
2671 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2672 .opc0 = 3, .opc1 = 4, .crn = 12,
2673 .crm = 12 + (j >> 3), .opc2 = j & 7,
2674 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2675 .access = PL2_RW,
2676 .readfn = ich_lr_read,
2677 .writefn = ich_lr_write,
2679 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2680 .cp = 15, .opc1 = 4, .crn = 12,
2681 .crm = 14 + (j >> 3), .opc2 = j & 7,
2682 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2683 .access = PL2_RW,
2684 .readfn = ich_lr_read,
2685 .writefn = ich_lr_write,
2687 REGINFO_SENTINEL
2689 define_arm_cp_regs(cpu, lr_regset);
2691 if (cs->vprebits >= 6) {
2692 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2694 if (cs->vprebits == 7) {
2695 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2698 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);