qapi/parser: enable pylint checks
[qemu/armbru.git] / hw / intc / arm_gicv3_dist.c
blob4164500ea96c8ea2b0161a39135229bdadd2015e
1 /*
2 * ARM GICv3 emulation: Distributor
4 * Copyright (c) 2015 Huawei.
5 * Copyright (c) 2016 Linaro Limited.
6 * Written by Shlomo Pongratz, Peter Maydell
8 * This code is licensed under the GPL, version 2 or (at your option)
9 * any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "trace.h"
15 #include "gicv3_internal.h"
17 /* The GICD_NSACR registers contain a two bit field for each interrupt which
18 * allows the guest to give NonSecure code access to registers controlling
19 * Secure interrupts:
20 * 0b00: no access (NS accesses to bits for Secure interrupts will RAZ/WI)
21 * 0b01: NS r/w accesses permitted to ISPENDR, SETSPI_NSR, SGIR
22 * 0b10: as 0b01, and also r/w to ICPENDR, r/o to ISACTIVER/ICACTIVER,
23 * and w/o to CLRSPI_NSR
24 * 0b11: as 0b10, and also r/w to IROUTER and ITARGETSR
26 * Given a (multiple-of-32) interrupt number, these mask functions return
27 * a mask word where each bit is 1 if the NSACR settings permit access
28 * to the interrupt. The mask returned can then be ORed with the GICD_GROUP
29 * word for this set of interrupts to give an overall mask.
32 typedef uint32_t maskfn(GICv3State *s, int irq);
34 static uint32_t mask_nsacr_ge1(GICv3State *s, int irq)
36 /* Return a mask where each bit is set if the NSACR field is >= 1 */
37 uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
39 raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
40 raw_nsacr = (raw_nsacr >> 1) | raw_nsacr;
41 return half_unshuffle64(raw_nsacr);
44 static uint32_t mask_nsacr_ge2(GICv3State *s, int irq)
46 /* Return a mask where each bit is set if the NSACR field is >= 2 */
47 uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
49 raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
50 raw_nsacr = raw_nsacr >> 1;
51 return half_unshuffle64(raw_nsacr);
54 /* We don't need a mask_nsacr_ge3() because IROUTER<n> isn't a bitmap register,
55 * but it would be implemented using:
56 * raw_nsacr = (raw_nsacr >> 1) & raw_nsacr;
59 static uint32_t mask_group_and_nsacr(GICv3State *s, MemTxAttrs attrs,
60 maskfn *maskfn, int irq)
62 /* Return a 32-bit mask which should be applied for this set of 32
63 * interrupts; each bit is 1 if access is permitted by the
64 * combination of attrs.secure, GICD_GROUPR and GICD_NSACR.
66 uint32_t mask;
68 if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
69 /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI
70 * unless the NSACR bits permit access.
72 mask = *gic_bmp_ptr32(s->group, irq);
73 if (maskfn) {
74 mask |= maskfn(s, irq);
76 return mask;
78 return 0xFFFFFFFFU;
81 static int gicd_ns_access(GICv3State *s, int irq)
83 /* Return the 2 bit NS_access<x> field from GICD_NSACR<n> for the
84 * specified interrupt.
86 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
87 return 0;
89 return extract32(s->gicd_nsacr[irq / 16], (irq % 16) * 2, 2);
92 static void gicd_write_set_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
93 uint32_t *bmp,
94 maskfn *maskfn,
95 int offset, uint32_t val)
97 /* Helper routine to implement writing to a "set-bitmap" register
98 * (GICD_ISENABLER, GICD_ISPENDR, etc).
99 * Semantics implemented here:
100 * RAZ/WI for SGIs, PPIs, unimplemented IRQs
101 * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
102 * Writing 1 means "set bit in bitmap"; writing 0 is ignored.
103 * offset should be the offset in bytes of the register from the start
104 * of its group.
106 int irq = offset * 8;
108 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
109 return;
111 val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
112 *gic_bmp_ptr32(bmp, irq) |= val;
113 gicv3_update(s, irq, 32);
116 static void gicd_write_clear_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
117 uint32_t *bmp,
118 maskfn *maskfn,
119 int offset, uint32_t val)
121 /* Helper routine to implement writing to a "clear-bitmap" register
122 * (GICD_ICENABLER, GICD_ICPENDR, etc).
123 * Semantics implemented here:
124 * RAZ/WI for SGIs, PPIs, unimplemented IRQs
125 * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
126 * Writing 1 means "clear bit in bitmap"; writing 0 is ignored.
127 * offset should be the offset in bytes of the register from the start
128 * of its group.
130 int irq = offset * 8;
132 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
133 return;
135 val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
136 *gic_bmp_ptr32(bmp, irq) &= ~val;
137 gicv3_update(s, irq, 32);
140 static uint32_t gicd_read_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
141 uint32_t *bmp,
142 maskfn *maskfn,
143 int offset)
145 /* Helper routine to implement reading a "set/clear-bitmap" register
146 * (GICD_ICENABLER, GICD_ISENABLER, GICD_ICPENDR, etc).
147 * Semantics implemented here:
148 * RAZ/WI for SGIs, PPIs, unimplemented IRQs
149 * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
150 * offset should be the offset in bytes of the register from the start
151 * of its group.
153 int irq = offset * 8;
154 uint32_t val;
156 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
157 return 0;
159 val = *gic_bmp_ptr32(bmp, irq);
160 if (bmp == s->pending) {
161 /* The PENDING register is a special case -- for level triggered
162 * interrupts, the PENDING state is the logical OR of the state of
163 * the PENDING latch with the input line level.
165 uint32_t edge = *gic_bmp_ptr32(s->edge_trigger, irq);
166 uint32_t level = *gic_bmp_ptr32(s->level, irq);
167 val |= (~edge & level);
169 val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
170 return val;
173 static uint8_t gicd_read_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq)
175 /* Read the value of GICD_IPRIORITYR<n> for the specified interrupt,
176 * honouring security state (these are RAZ/WI for Group 0 or Secure
177 * Group 1 interrupts).
179 uint32_t prio;
181 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
182 return 0;
185 prio = s->gicd_ipriority[irq];
187 if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
188 if (!gicv3_gicd_group_test(s, irq)) {
189 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
190 return 0;
192 /* NS view of the interrupt priority */
193 prio = (prio << 1) & 0xff;
195 return prio;
198 static void gicd_write_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq,
199 uint8_t value)
201 /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
202 * honouring security state (these are RAZ/WI for Group 0 or Secure
203 * Group 1 interrupts).
205 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
206 return;
209 if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
210 if (!gicv3_gicd_group_test(s, irq)) {
211 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
212 return;
214 /* NS view of the interrupt priority */
215 value = 0x80 | (value >> 1);
217 s->gicd_ipriority[irq] = value;
220 static uint64_t gicd_read_irouter(GICv3State *s, MemTxAttrs attrs, int irq)
222 /* Read the value of GICD_IROUTER<n> for the specified interrupt,
223 * honouring security state.
225 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
226 return 0;
229 if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
230 /* RAZ/WI for NS accesses to secure interrupts */
231 if (!gicv3_gicd_group_test(s, irq)) {
232 if (gicd_ns_access(s, irq) != 3) {
233 return 0;
238 return s->gicd_irouter[irq];
241 static void gicd_write_irouter(GICv3State *s, MemTxAttrs attrs, int irq,
242 uint64_t val)
244 /* Write the value of GICD_IROUTER<n> for the specified interrupt,
245 * honouring security state.
247 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
248 return;
251 if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
252 /* RAZ/WI for NS accesses to secure interrupts */
253 if (!gicv3_gicd_group_test(s, irq)) {
254 if (gicd_ns_access(s, irq) != 3) {
255 return;
260 s->gicd_irouter[irq] = val;
261 gicv3_cache_target_cpustate(s, irq);
262 gicv3_update(s, irq, 1);
266 * gicd_readb
267 * gicd_readw
268 * gicd_readl
269 * gicd_readq
270 * gicd_writeb
271 * gicd_writew
272 * gicd_writel
273 * gicd_writeq
275 * Return %true if the operation succeeded, %false otherwise.
278 static bool gicd_readb(GICv3State *s, hwaddr offset,
279 uint64_t *data, MemTxAttrs attrs)
281 /* Most GICv3 distributor registers do not support byte accesses. */
282 switch (offset) {
283 case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
284 case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
285 case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
286 /* This GIC implementation always has affinity routing enabled,
287 * so these registers are all RAZ/WI.
289 return true;
290 case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
291 *data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR);
292 return true;
293 default:
294 return false;
298 static bool gicd_writeb(GICv3State *s, hwaddr offset,
299 uint64_t value, MemTxAttrs attrs)
301 /* Most GICv3 distributor registers do not support byte accesses. */
302 switch (offset) {
303 case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
304 case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
305 case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
306 /* This GIC implementation always has affinity routing enabled,
307 * so these registers are all RAZ/WI.
309 return true;
310 case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
312 int irq = offset - GICD_IPRIORITYR;
314 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
315 return true;
317 gicd_write_ipriorityr(s, attrs, irq, value);
318 gicv3_update(s, irq, 1);
319 return true;
321 default:
322 return false;
326 static bool gicd_readw(GICv3State *s, hwaddr offset,
327 uint64_t *data, MemTxAttrs attrs)
329 /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
330 * support 16 bit accesses, and those registers are all part of the
331 * optional message-based SPI feature which this GIC does not currently
332 * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
333 * reserved.
335 return false;
338 static bool gicd_writew(GICv3State *s, hwaddr offset,
339 uint64_t value, MemTxAttrs attrs)
341 /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
342 * support 16 bit accesses, and those registers are all part of the
343 * optional message-based SPI feature which this GIC does not currently
344 * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
345 * reserved.
347 return false;
350 static bool gicd_readl(GICv3State *s, hwaddr offset,
351 uint64_t *data, MemTxAttrs attrs)
353 /* Almost all GICv3 distributor registers are 32-bit.
354 * Note that WO registers must return an UNKNOWN value on reads,
355 * not an abort.
358 switch (offset) {
359 case GICD_CTLR:
360 if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
361 /* The NS view of the GICD_CTLR sees only certain bits:
362 * + bit [31] (RWP) is an alias of the Secure bit [31]
363 * + bit [4] (ARE_NS) is an alias of Secure bit [5]
364 * + bit [1] (EnableGrp1A) is an alias of Secure bit [1] if
365 * NS affinity routing is enabled, otherwise RES0
366 * + bit [0] (EnableGrp1) is an alias of Secure bit [1] if
367 * NS affinity routing is not enabled, otherwise RES0
368 * Since for QEMU affinity routing is always enabled
369 * for both S and NS this means that bits [4] and [5] are
370 * both always 1, and we can simply make the NS view
371 * be bits 31, 4 and 1 of the S view.
373 *data = s->gicd_ctlr & (GICD_CTLR_ARE_S |
374 GICD_CTLR_EN_GRP1NS |
375 GICD_CTLR_RWP);
376 } else {
377 *data = s->gicd_ctlr;
379 return true;
380 case GICD_TYPER:
382 /* For this implementation:
383 * No1N == 1 (1-of-N SPI interrupts not supported)
384 * A3V == 1 (non-zero values of Affinity level 3 supported)
385 * IDbits == 0xf (we support 16-bit interrupt identifiers)
386 * DVIS == 0 (Direct virtual LPI injection not supported)
387 * LPIS == 1 (LPIs are supported if affinity routing is enabled)
388 * num_LPIs == 0b00000 (bits [15:11],Number of LPIs as indicated
389 * by GICD_TYPER.IDbits)
390 * MBIS == 0 (message-based SPIs not supported)
391 * SecurityExtn == 1 if security extns supported
392 * CPUNumber == 0 since for us ARE is always 1
393 * ITLinesNumber == (num external irqs / 32) - 1
395 int itlinesnumber = ((s->num_irq - GIC_INTERNAL) / 32) - 1;
397 * SecurityExtn must be RAZ if GICD_CTLR.DS == 1, and
398 * "security extensions not supported" always implies DS == 1,
399 * so we only need to check the DS bit.
401 bool sec_extn = !(s->gicd_ctlr & GICD_CTLR_DS);
403 *data = (1 << 25) | (1 << 24) | (sec_extn << 10) |
404 (s->lpi_enable << GICD_TYPER_LPIS_SHIFT) |
405 (0xf << 19) | itlinesnumber;
406 return true;
408 case GICD_IIDR:
409 /* We claim to be an ARM r0p0 with a zero ProductID.
410 * This is the same as an r0p0 GIC-500.
412 *data = gicv3_iidr();
413 return true;
414 case GICD_STATUSR:
415 /* RAZ/WI for us (this is an optional register and our implementation
416 * does not track RO/WO/reserved violations to report them to the guest)
418 *data = 0;
419 return true;
420 case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
422 int irq;
424 if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
425 *data = 0;
426 return true;
428 /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
429 irq = (offset - GICD_IGROUPR) * 8;
430 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
431 *data = 0;
432 return true;
434 *data = *gic_bmp_ptr32(s->group, irq);
435 return true;
437 case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
438 *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
439 offset - GICD_ISENABLER);
440 return true;
441 case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
442 *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
443 offset - GICD_ICENABLER);
444 return true;
445 case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
446 *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
447 offset - GICD_ISPENDR);
448 return true;
449 case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
450 *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
451 offset - GICD_ICPENDR);
452 return true;
453 case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
454 *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
455 offset - GICD_ISACTIVER);
456 return true;
457 case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
458 *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
459 offset - GICD_ICACTIVER);
460 return true;
461 case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
463 int i, irq = offset - GICD_IPRIORITYR;
464 uint32_t value = 0;
466 for (i = irq + 3; i >= irq; i--) {
467 value <<= 8;
468 value |= gicd_read_ipriorityr(s, attrs, i);
470 *data = value;
471 return true;
473 case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
474 /* RAZ/WI since affinity routing is always enabled */
475 *data = 0;
476 return true;
477 case GICD_ICFGR ... GICD_ICFGR + 0xff:
479 /* Here only the even bits are used; odd bits are RES0 */
480 int irq = (offset - GICD_ICFGR) * 4;
481 uint32_t value = 0;
483 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
484 *data = 0;
485 return true;
488 /* Since our edge_trigger bitmap is one bit per irq, we only need
489 * half of the 32-bit word, which we can then spread out
490 * into the odd bits.
492 value = *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f);
493 value &= mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
494 value = extract32(value, (irq & 0x1f) ? 16 : 0, 16);
495 value = half_shuffle32(value) << 1;
496 *data = value;
497 return true;
499 case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
501 int irq;
503 if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
504 /* RAZ/WI if security disabled, or if
505 * security enabled and this is an NS access
507 *data = 0;
508 return true;
510 /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
511 irq = (offset - GICD_IGRPMODR) * 8;
512 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
513 *data = 0;
514 return true;
516 *data = *gic_bmp_ptr32(s->grpmod, irq);
517 return true;
519 case GICD_NSACR ... GICD_NSACR + 0xff:
521 /* Two bits per interrupt */
522 int irq = (offset - GICD_NSACR) * 4;
524 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
525 *data = 0;
526 return true;
529 if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
530 /* RAZ/WI if security disabled, or if
531 * security enabled and this is an NS access
533 *data = 0;
534 return true;
537 *data = s->gicd_nsacr[irq / 16];
538 return true;
540 case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
541 case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
542 /* RAZ/WI since affinity routing is always enabled */
543 *data = 0;
544 return true;
545 case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
547 uint64_t r;
548 int irq = (offset - GICD_IROUTER) / 8;
550 r = gicd_read_irouter(s, attrs, irq);
551 if (offset & 7) {
552 *data = r >> 32;
553 } else {
554 *data = (uint32_t)r;
556 return true;
558 case GICD_IDREGS ... GICD_IDREGS + 0x2f:
559 /* ID registers */
560 *data = gicv3_idreg(offset - GICD_IDREGS);
561 return true;
562 case GICD_SGIR:
563 /* WO registers, return unknown value */
564 qemu_log_mask(LOG_GUEST_ERROR,
565 "%s: invalid guest read from WO register at offset "
566 TARGET_FMT_plx "\n", __func__, offset);
567 *data = 0;
568 return true;
569 default:
570 return false;
574 static bool gicd_writel(GICv3State *s, hwaddr offset,
575 uint64_t value, MemTxAttrs attrs)
577 /* Almost all GICv3 distributor registers are 32-bit. Note that
578 * RO registers must ignore writes, not abort.
581 switch (offset) {
582 case GICD_CTLR:
584 uint32_t mask;
585 /* GICv3 5.3.20 */
586 if (s->gicd_ctlr & GICD_CTLR_DS) {
587 /* With only one security state, E1NWF is RAZ/WI, DS is RAO/WI,
588 * ARE is RAO/WI (affinity routing always on), and only
589 * bits 0 and 1 (group enables) are writable.
591 mask = GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1NS;
592 } else {
593 if (attrs.secure) {
594 /* for secure access:
595 * ARE_NS and ARE_S are RAO/WI (affinity routing always on)
596 * E1NWF is RAZ/WI (we don't support enable-1-of-n-wakeup)
598 * We can only modify bits[2:0] (the group enables).
600 mask = GICD_CTLR_DS | GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1_ALL;
601 } else {
602 /* For non secure access ARE_NS is RAO/WI and EnableGrp1
603 * is RES0. The only writable bit is [1] (EnableGrp1A), which
604 * is an alias of the Secure bit [1].
606 mask = GICD_CTLR_EN_GRP1NS;
609 s->gicd_ctlr = (s->gicd_ctlr & ~mask) | (value & mask);
610 if (value & mask & GICD_CTLR_DS) {
611 /* We just set DS, so the ARE_NS and EnG1S bits are now RES0.
612 * Note that this is a one-way transition because if DS is set
613 * then it's not writeable, so it can only go back to 0 with a
614 * hardware reset.
616 s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS);
618 gicv3_full_update(s);
619 return true;
621 case GICD_STATUSR:
622 /* RAZ/WI for our implementation */
623 return true;
624 case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
626 int irq;
628 if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
629 return true;
631 /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
632 irq = (offset - GICD_IGROUPR) * 8;
633 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
634 return true;
636 *gic_bmp_ptr32(s->group, irq) = value;
637 gicv3_update(s, irq, 32);
638 return true;
640 case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
641 gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL,
642 offset - GICD_ISENABLER, value);
643 return true;
644 case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
645 gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL,
646 offset - GICD_ICENABLER, value);
647 return true;
648 case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
649 gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
650 offset - GICD_ISPENDR, value);
651 return true;
652 case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
653 gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
654 offset - GICD_ICPENDR, value);
655 return true;
656 case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
657 gicd_write_set_bitmap_reg(s, attrs, s->active, NULL,
658 offset - GICD_ISACTIVER, value);
659 return true;
660 case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
661 gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL,
662 offset - GICD_ICACTIVER, value);
663 return true;
664 case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
666 int i, irq = offset - GICD_IPRIORITYR;
668 if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) {
669 return true;
672 for (i = irq; i < irq + 4; i++, value >>= 8) {
673 gicd_write_ipriorityr(s, attrs, i, value);
675 gicv3_update(s, irq, 4);
676 return true;
678 case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
679 /* RAZ/WI since affinity routing is always enabled */
680 return true;
681 case GICD_ICFGR ... GICD_ICFGR + 0xff:
683 /* Here only the odd bits are used; even bits are RES0 */
684 int irq = (offset - GICD_ICFGR) * 4;
685 uint32_t mask, oldval;
687 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
688 return true;
691 /* Since our edge_trigger bitmap is one bit per irq, our input
692 * 32-bits will compress down into 16 bits which we need
693 * to write into the bitmap.
695 value = half_unshuffle32(value >> 1);
696 mask = mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
697 if (irq & 0x1f) {
698 value <<= 16;
699 mask &= 0xffff0000U;
700 } else {
701 mask &= 0xffff;
703 oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f));
704 value = (oldval & ~mask) | (value & mask);
705 *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value;
706 return true;
708 case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
710 int irq;
712 if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
713 /* RAZ/WI if security disabled, or if
714 * security enabled and this is an NS access
716 return true;
718 /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
719 irq = (offset - GICD_IGRPMODR) * 8;
720 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
721 return true;
723 *gic_bmp_ptr32(s->grpmod, irq) = value;
724 gicv3_update(s, irq, 32);
725 return true;
727 case GICD_NSACR ... GICD_NSACR + 0xff:
729 /* Two bits per interrupt */
730 int irq = (offset - GICD_NSACR) * 4;
732 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
733 return true;
736 if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
737 /* RAZ/WI if security disabled, or if
738 * security enabled and this is an NS access
740 return true;
743 s->gicd_nsacr[irq / 16] = value;
744 /* No update required as this only affects access permission checks */
745 return true;
747 case GICD_SGIR:
748 /* RES0 if affinity routing is enabled */
749 return true;
750 case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
751 case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
752 /* RAZ/WI since affinity routing is always enabled */
753 return true;
754 case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
756 uint64_t r;
757 int irq = (offset - GICD_IROUTER) / 8;
759 if (irq < GIC_INTERNAL || irq >= s->num_irq) {
760 return true;
763 /* Write half of the 64-bit register */
764 r = gicd_read_irouter(s, attrs, irq);
765 r = deposit64(r, (offset & 7) ? 32 : 0, 32, value);
766 gicd_write_irouter(s, attrs, irq, r);
767 return true;
769 case GICD_IDREGS ... GICD_IDREGS + 0x2f:
770 case GICD_TYPER:
771 case GICD_IIDR:
772 /* RO registers, ignore the write */
773 qemu_log_mask(LOG_GUEST_ERROR,
774 "%s: invalid guest write to RO register at offset "
775 TARGET_FMT_plx "\n", __func__, offset);
776 return true;
777 default:
778 return false;
782 static bool gicd_writeq(GICv3State *s, hwaddr offset,
783 uint64_t value, MemTxAttrs attrs)
785 /* Our only 64-bit registers are GICD_IROUTER<n> */
786 int irq;
788 switch (offset) {
789 case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
790 irq = (offset - GICD_IROUTER) / 8;
791 gicd_write_irouter(s, attrs, irq, value);
792 return true;
793 default:
794 return false;
798 static bool gicd_readq(GICv3State *s, hwaddr offset,
799 uint64_t *data, MemTxAttrs attrs)
801 /* Our only 64-bit registers are GICD_IROUTER<n> */
802 int irq;
804 switch (offset) {
805 case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
806 irq = (offset - GICD_IROUTER) / 8;
807 *data = gicd_read_irouter(s, attrs, irq);
808 return true;
809 default:
810 return false;
814 MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data,
815 unsigned size, MemTxAttrs attrs)
817 GICv3State *s = (GICv3State *)opaque;
818 bool r;
820 switch (size) {
821 case 1:
822 r = gicd_readb(s, offset, data, attrs);
823 break;
824 case 2:
825 r = gicd_readw(s, offset, data, attrs);
826 break;
827 case 4:
828 r = gicd_readl(s, offset, data, attrs);
829 break;
830 case 8:
831 r = gicd_readq(s, offset, data, attrs);
832 break;
833 default:
834 r = false;
835 break;
838 if (!r) {
839 qemu_log_mask(LOG_GUEST_ERROR,
840 "%s: invalid guest read at offset " TARGET_FMT_plx
841 "size %u\n", __func__, offset, size);
842 trace_gicv3_dist_badread(offset, size, attrs.secure);
843 /* The spec requires that reserved registers are RAZ/WI;
844 * so use MEMTX_ERROR returns from leaf functions as a way to
845 * trigger the guest-error logging but don't return it to
846 * the caller, or we'll cause a spurious guest data abort.
848 *data = 0;
849 } else {
850 trace_gicv3_dist_read(offset, *data, size, attrs.secure);
852 return MEMTX_OK;
855 MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data,
856 unsigned size, MemTxAttrs attrs)
858 GICv3State *s = (GICv3State *)opaque;
859 bool r;
861 switch (size) {
862 case 1:
863 r = gicd_writeb(s, offset, data, attrs);
864 break;
865 case 2:
866 r = gicd_writew(s, offset, data, attrs);
867 break;
868 case 4:
869 r = gicd_writel(s, offset, data, attrs);
870 break;
871 case 8:
872 r = gicd_writeq(s, offset, data, attrs);
873 break;
874 default:
875 r = false;
876 break;
879 if (!r) {
880 qemu_log_mask(LOG_GUEST_ERROR,
881 "%s: invalid guest write at offset " TARGET_FMT_plx
882 "size %u\n", __func__, offset, size);
883 trace_gicv3_dist_badwrite(offset, data, size, attrs.secure);
884 /* The spec requires that reserved registers are RAZ/WI;
885 * so use MEMTX_ERROR returns from leaf functions as a way to
886 * trigger the guest-error logging but don't return it to
887 * the caller, or we'll cause a spurious guest data abort.
889 } else {
890 trace_gicv3_dist_write(offset, data, size, attrs.secure);
892 return MEMTX_OK;
895 void gicv3_dist_set_irq(GICv3State *s, int irq, int level)
897 /* Update distributor state for a change in an external SPI input line */
898 if (level == gicv3_gicd_level_test(s, irq)) {
899 return;
902 trace_gicv3_dist_set_irq(irq, level);
904 gicv3_gicd_level_replace(s, irq, level);
906 if (level) {
907 /* 0->1 edges latch the pending bit for edge-triggered interrupts */
908 if (gicv3_gicd_edge_trigger_test(s, irq)) {
909 gicv3_gicd_pending_set(s, irq);
913 gicv3_update(s, irq, 1);