qapi/parser: enable pylint checks
[qemu/armbru.git] / hw / intc / arm_gicv3_redist.c
blob7072bfcbb1d30a55c38e82d6d874fb6b30cbbddc
1 /*
2 * ARM GICv3 emulation: Redistributor
4 * Copyright (c) 2015 Huawei.
5 * Copyright (c) 2016 Linaro Limited.
6 * Written by Shlomo Pongratz, Peter Maydell
8 * This code is licensed under the GPL, version 2 or (at your option)
9 * any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "trace.h"
15 #include "gicv3_internal.h"
17 static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
19 /* Return a 32-bit mask which should be applied for this set of 32
20 * interrupts; each bit is 1 if access is permitted by the
21 * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
22 * not affect config register accesses, unlike GICD_NSACR.)
24 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
25 /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
26 return cs->gicr_igroupr0;
28 return 0xFFFFFFFFU;
31 static int gicr_ns_access(GICv3CPUState *cs, int irq)
33 /* Return the 2 bit NSACR.NS_access field for this SGI */
34 assert(irq < 16);
35 return extract32(cs->gicr_nsacr, irq * 2, 2);
38 static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
39 uint32_t *reg, uint32_t val)
41 /* Helper routine to implement writing to a "set-bitmap" register */
42 val &= mask_group(cs, attrs);
43 *reg |= val;
44 gicv3_redist_update(cs);
47 static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
48 uint32_t *reg, uint32_t val)
50 /* Helper routine to implement writing to a "clear-bitmap" register */
51 val &= mask_group(cs, attrs);
52 *reg &= ~val;
53 gicv3_redist_update(cs);
56 static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
57 uint32_t reg)
59 reg &= mask_group(cs, attrs);
60 return reg;
63 static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
64 int irq)
66 /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
67 * honouring security state (these are RAZ/WI for Group 0 or Secure
68 * Group 1 interrupts).
70 uint32_t prio;
72 prio = cs->gicr_ipriorityr[irq];
74 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
75 if (!(cs->gicr_igroupr0 & (1U << irq))) {
76 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
77 return 0;
79 /* NS view of the interrupt priority */
80 prio = (prio << 1) & 0xff;
82 return prio;
85 static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
86 uint8_t value)
88 /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
89 * honouring security state (these are RAZ/WI for Group 0 or Secure
90 * Group 1 interrupts).
92 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
93 if (!(cs->gicr_igroupr0 & (1U << irq))) {
94 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
95 return;
97 /* NS view of the interrupt priority */
98 value = 0x80 | (value >> 1);
100 cs->gicr_ipriorityr[irq] = value;
103 static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
104 uint64_t *data, MemTxAttrs attrs)
106 switch (offset) {
107 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
108 *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
109 return MEMTX_OK;
110 default:
111 return MEMTX_ERROR;
115 static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
116 uint64_t value, MemTxAttrs attrs)
118 switch (offset) {
119 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
120 gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
121 gicv3_redist_update(cs);
122 return MEMTX_OK;
123 default:
124 return MEMTX_ERROR;
128 static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
129 uint64_t *data, MemTxAttrs attrs)
131 switch (offset) {
132 case GICR_CTLR:
133 *data = cs->gicr_ctlr;
134 return MEMTX_OK;
135 case GICR_IIDR:
136 *data = gicv3_iidr();
137 return MEMTX_OK;
138 case GICR_TYPER:
139 *data = extract64(cs->gicr_typer, 0, 32);
140 return MEMTX_OK;
141 case GICR_TYPER + 4:
142 *data = extract64(cs->gicr_typer, 32, 32);
143 return MEMTX_OK;
144 case GICR_STATUSR:
145 /* RAZ/WI for us (this is an optional register and our implementation
146 * does not track RO/WO/reserved violations to report them to the guest)
148 *data = 0;
149 return MEMTX_OK;
150 case GICR_WAKER:
151 *data = cs->gicr_waker;
152 return MEMTX_OK;
153 case GICR_PROPBASER:
154 *data = extract64(cs->gicr_propbaser, 0, 32);
155 return MEMTX_OK;
156 case GICR_PROPBASER + 4:
157 *data = extract64(cs->gicr_propbaser, 32, 32);
158 return MEMTX_OK;
159 case GICR_PENDBASER:
160 *data = extract64(cs->gicr_pendbaser, 0, 32);
161 return MEMTX_OK;
162 case GICR_PENDBASER + 4:
163 *data = extract64(cs->gicr_pendbaser, 32, 32);
164 return MEMTX_OK;
165 case GICR_IGROUPR0:
166 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
167 *data = 0;
168 return MEMTX_OK;
170 *data = cs->gicr_igroupr0;
171 return MEMTX_OK;
172 case GICR_ISENABLER0:
173 case GICR_ICENABLER0:
174 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
175 return MEMTX_OK;
176 case GICR_ISPENDR0:
177 case GICR_ICPENDR0:
179 /* The pending register reads as the logical OR of the pending
180 * latch and the input line level for level-triggered interrupts.
182 uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
183 *data = gicr_read_bitmap_reg(cs, attrs, val);
184 return MEMTX_OK;
186 case GICR_ISACTIVER0:
187 case GICR_ICACTIVER0:
188 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
189 return MEMTX_OK;
190 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
192 int i, irq = offset - GICR_IPRIORITYR;
193 uint32_t value = 0;
195 for (i = irq + 3; i >= irq; i--) {
196 value <<= 8;
197 value |= gicr_read_ipriorityr(cs, attrs, i);
199 *data = value;
200 return MEMTX_OK;
202 case GICR_ICFGR0:
203 case GICR_ICFGR1:
205 /* Our edge_trigger bitmap is one bit per irq; take the correct
206 * half of it, and spread it out into the odd bits.
208 uint32_t value;
210 value = cs->edge_trigger & mask_group(cs, attrs);
211 value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
212 value = half_shuffle32(value) << 1;
213 *data = value;
214 return MEMTX_OK;
216 case GICR_IGRPMODR0:
217 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
218 /* RAZ/WI if security disabled, or if
219 * security enabled and this is an NS access
221 *data = 0;
222 return MEMTX_OK;
224 *data = cs->gicr_igrpmodr0;
225 return MEMTX_OK;
226 case GICR_NSACR:
227 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
228 /* RAZ/WI if security disabled, or if
229 * security enabled and this is an NS access
231 *data = 0;
232 return MEMTX_OK;
234 *data = cs->gicr_nsacr;
235 return MEMTX_OK;
236 case GICR_IDREGS ... GICR_IDREGS + 0x2f:
237 *data = gicv3_idreg(offset - GICR_IDREGS);
238 return MEMTX_OK;
239 default:
240 return MEMTX_ERROR;
244 static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
245 uint64_t value, MemTxAttrs attrs)
247 switch (offset) {
248 case GICR_CTLR:
249 /* For our implementation, GICR_TYPER.DPGS is 0 and so all
250 * the DPG bits are RAZ/WI. We don't do anything asynchronously,
251 * so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we
252 * implement LPIs) so Enable_LPIs is programmable.
254 if (cs->gicr_typer & GICR_TYPER_PLPIS) {
255 if (value & GICR_CTLR_ENABLE_LPIS) {
256 cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS;
257 /* Check for any pending interr in pending table */
258 gicv3_redist_update_lpi(cs);
259 gicv3_redist_update(cs);
260 } else {
261 cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS;
264 return MEMTX_OK;
265 case GICR_STATUSR:
266 /* RAZ/WI for our implementation */
267 return MEMTX_OK;
268 case GICR_WAKER:
269 /* Only the ProcessorSleep bit is writeable. When the guest sets
270 * it it requests that we transition the channel between the
271 * redistributor and the cpu interface to quiescent, and that
272 * we set the ChildrenAsleep bit once the inteface has reached the
273 * quiescent state.
274 * Setting the ProcessorSleep to 0 reverses the quiescing, and
275 * ChildrenAsleep is cleared once the transition is complete.
276 * Since our interface is not asynchronous, we complete these
277 * transitions instantaneously, so we set ChildrenAsleep to the
278 * same value as ProcessorSleep here.
280 value &= GICR_WAKER_ProcessorSleep;
281 if (value & GICR_WAKER_ProcessorSleep) {
282 value |= GICR_WAKER_ChildrenAsleep;
284 cs->gicr_waker = value;
285 return MEMTX_OK;
286 case GICR_PROPBASER:
287 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
288 return MEMTX_OK;
289 case GICR_PROPBASER + 4:
290 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
291 return MEMTX_OK;
292 case GICR_PENDBASER:
293 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
294 return MEMTX_OK;
295 case GICR_PENDBASER + 4:
296 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
297 return MEMTX_OK;
298 case GICR_IGROUPR0:
299 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
300 return MEMTX_OK;
302 cs->gicr_igroupr0 = value;
303 gicv3_redist_update(cs);
304 return MEMTX_OK;
305 case GICR_ISENABLER0:
306 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
307 return MEMTX_OK;
308 case GICR_ICENABLER0:
309 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
310 return MEMTX_OK;
311 case GICR_ISPENDR0:
312 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
313 return MEMTX_OK;
314 case GICR_ICPENDR0:
315 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
316 return MEMTX_OK;
317 case GICR_ISACTIVER0:
318 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
319 return MEMTX_OK;
320 case GICR_ICACTIVER0:
321 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
322 return MEMTX_OK;
323 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
325 int i, irq = offset - GICR_IPRIORITYR;
327 for (i = irq; i < irq + 4; i++, value >>= 8) {
328 gicr_write_ipriorityr(cs, attrs, i, value);
330 gicv3_redist_update(cs);
331 return MEMTX_OK;
333 case GICR_ICFGR0:
334 /* Register is all RAZ/WI or RAO/WI bits */
335 return MEMTX_OK;
336 case GICR_ICFGR1:
338 uint32_t mask;
340 /* Since our edge_trigger bitmap is one bit per irq, our input
341 * 32-bits will compress down into 16 bits which we need
342 * to write into the bitmap.
344 value = half_unshuffle32(value >> 1) << 16;
345 mask = mask_group(cs, attrs) & 0xffff0000U;
347 cs->edge_trigger &= ~mask;
348 cs->edge_trigger |= (value & mask);
350 gicv3_redist_update(cs);
351 return MEMTX_OK;
353 case GICR_IGRPMODR0:
354 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
355 /* RAZ/WI if security disabled, or if
356 * security enabled and this is an NS access
358 return MEMTX_OK;
360 cs->gicr_igrpmodr0 = value;
361 gicv3_redist_update(cs);
362 return MEMTX_OK;
363 case GICR_NSACR:
364 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
365 /* RAZ/WI if security disabled, or if
366 * security enabled and this is an NS access
368 return MEMTX_OK;
370 cs->gicr_nsacr = value;
371 /* no update required as this only affects access permission checks */
372 return MEMTX_OK;
373 case GICR_IIDR:
374 case GICR_TYPER:
375 case GICR_IDREGS ... GICR_IDREGS + 0x2f:
376 /* RO registers, ignore the write */
377 qemu_log_mask(LOG_GUEST_ERROR,
378 "%s: invalid guest write to RO register at offset "
379 TARGET_FMT_plx "\n", __func__, offset);
380 return MEMTX_OK;
381 default:
382 return MEMTX_ERROR;
386 static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
387 uint64_t *data, MemTxAttrs attrs)
389 switch (offset) {
390 case GICR_TYPER:
391 *data = cs->gicr_typer;
392 return MEMTX_OK;
393 case GICR_PROPBASER:
394 *data = cs->gicr_propbaser;
395 return MEMTX_OK;
396 case GICR_PENDBASER:
397 *data = cs->gicr_pendbaser;
398 return MEMTX_OK;
399 default:
400 return MEMTX_ERROR;
404 static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
405 uint64_t value, MemTxAttrs attrs)
407 switch (offset) {
408 case GICR_PROPBASER:
409 cs->gicr_propbaser = value;
410 return MEMTX_OK;
411 case GICR_PENDBASER:
412 cs->gicr_pendbaser = value;
413 return MEMTX_OK;
414 case GICR_TYPER:
415 /* RO register, ignore the write */
416 qemu_log_mask(LOG_GUEST_ERROR,
417 "%s: invalid guest write to RO register at offset "
418 TARGET_FMT_plx "\n", __func__, offset);
419 return MEMTX_OK;
420 default:
421 return MEMTX_ERROR;
425 MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
426 unsigned size, MemTxAttrs attrs)
428 GICv3State *s = opaque;
429 GICv3CPUState *cs;
430 MemTxResult r;
431 int cpuidx;
433 assert((offset & (size - 1)) == 0);
435 /* This region covers all the redistributor pages; there are
436 * (for GICv3) two 64K pages per CPU. At the moment they are
437 * all contiguous (ie in this one region), though we might later
438 * want to allow splitting of redistributor pages into several
439 * blocks so we can support more CPUs.
441 cpuidx = offset / 0x20000;
442 offset %= 0x20000;
443 assert(cpuidx < s->num_cpu);
445 cs = &s->cpu[cpuidx];
447 switch (size) {
448 case 1:
449 r = gicr_readb(cs, offset, data, attrs);
450 break;
451 case 4:
452 r = gicr_readl(cs, offset, data, attrs);
453 break;
454 case 8:
455 r = gicr_readll(cs, offset, data, attrs);
456 break;
457 default:
458 r = MEMTX_ERROR;
459 break;
462 if (r == MEMTX_ERROR) {
463 qemu_log_mask(LOG_GUEST_ERROR,
464 "%s: invalid guest read at offset " TARGET_FMT_plx
465 " size %u\n", __func__, offset, size);
466 trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
467 size, attrs.secure);
468 /* The spec requires that reserved registers are RAZ/WI;
469 * so use MEMTX_ERROR returns from leaf functions as a way to
470 * trigger the guest-error logging but don't return it to
471 * the caller, or we'll cause a spurious guest data abort.
473 r = MEMTX_OK;
474 *data = 0;
475 } else {
476 trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
477 size, attrs.secure);
479 return r;
482 MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
483 unsigned size, MemTxAttrs attrs)
485 GICv3State *s = opaque;
486 GICv3CPUState *cs;
487 MemTxResult r;
488 int cpuidx;
490 assert((offset & (size - 1)) == 0);
492 /* This region covers all the redistributor pages; there are
493 * (for GICv3) two 64K pages per CPU. At the moment they are
494 * all contiguous (ie in this one region), though we might later
495 * want to allow splitting of redistributor pages into several
496 * blocks so we can support more CPUs.
498 cpuidx = offset / 0x20000;
499 offset %= 0x20000;
500 assert(cpuidx < s->num_cpu);
502 cs = &s->cpu[cpuidx];
504 switch (size) {
505 case 1:
506 r = gicr_writeb(cs, offset, data, attrs);
507 break;
508 case 4:
509 r = gicr_writel(cs, offset, data, attrs);
510 break;
511 case 8:
512 r = gicr_writell(cs, offset, data, attrs);
513 break;
514 default:
515 r = MEMTX_ERROR;
516 break;
519 if (r == MEMTX_ERROR) {
520 qemu_log_mask(LOG_GUEST_ERROR,
521 "%s: invalid guest write at offset " TARGET_FMT_plx
522 " size %u\n", __func__, offset, size);
523 trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
524 size, attrs.secure);
525 /* The spec requires that reserved registers are RAZ/WI;
526 * so use MEMTX_ERROR returns from leaf functions as a way to
527 * trigger the guest-error logging but don't return it to
528 * the caller, or we'll cause a spurious guest data abort.
530 r = MEMTX_OK;
531 } else {
532 trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
533 size, attrs.secure);
535 return r;
538 static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq)
540 AddressSpace *as = &cs->gic->dma_as;
541 uint64_t lpict_baddr;
542 uint8_t lpite;
543 uint8_t prio;
545 lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
547 address_space_read(as, lpict_baddr + ((irq - GICV3_LPI_INTID_START) *
548 sizeof(lpite)), MEMTXATTRS_UNSPECIFIED, &lpite,
549 sizeof(lpite));
551 if (!(lpite & LPI_CTE_ENABLED)) {
552 return;
555 if (cs->gic->gicd_ctlr & GICD_CTLR_DS) {
556 prio = lpite & LPI_PRIORITY_MASK;
557 } else {
558 prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80;
561 if ((prio < cs->hpplpi.prio) ||
562 ((prio == cs->hpplpi.prio) && (irq <= cs->hpplpi.irq))) {
563 cs->hpplpi.irq = irq;
564 cs->hpplpi.prio = prio;
565 /* LPIs are always non-secure Grp1 interrupts */
566 cs->hpplpi.grp = GICV3_G1NS;
570 void gicv3_redist_update_lpi(GICv3CPUState *cs)
573 * This function scans the LPI pending table and for each pending
574 * LPI, reads the corresponding entry from LPI configuration table
575 * to extract the priority info and determine if the current LPI
576 * priority is lower than the last computed high priority lpi interrupt.
577 * If yes, replace current LPI as the new high priority lpi interrupt.
579 AddressSpace *as = &cs->gic->dma_as;
580 uint64_t lpipt_baddr;
581 uint32_t pendt_size = 0;
582 uint8_t pend;
583 int i, bit;
584 uint64_t idbits;
586 idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
587 GICD_TYPER_IDBITS);
589 if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || !cs->gicr_propbaser ||
590 !cs->gicr_pendbaser) {
591 return;
594 cs->hpplpi.prio = 0xff;
596 lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
598 /* Determine the highest priority pending interrupt among LPIs */
599 pendt_size = (1ULL << (idbits + 1));
601 for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
602 address_space_read(as, lpipt_baddr + i, MEMTXATTRS_UNSPECIFIED, &pend,
603 sizeof(pend));
605 while (pend) {
606 bit = ctz32(pend);
607 gicv3_redist_check_lpi_priority(cs, i * 8 + bit);
608 pend &= ~(1 << bit);
613 void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level)
616 * This function updates the pending bit in lpi pending table for
617 * the irq being activated or deactivated.
619 AddressSpace *as = &cs->gic->dma_as;
620 uint64_t lpipt_baddr;
621 bool ispend = false;
622 uint8_t pend;
625 * get the bit value corresponding to this irq in the
626 * lpi pending table
628 lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
630 address_space_read(as, lpipt_baddr + ((irq / 8) * sizeof(pend)),
631 MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend));
633 ispend = extract32(pend, irq % 8, 1);
635 /* no change in the value of pending bit, return */
636 if (ispend == level) {
637 return;
639 pend = deposit32(pend, irq % 8, 1, level ? 1 : 0);
641 address_space_write(as, lpipt_baddr + ((irq / 8) * sizeof(pend)),
642 MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend));
645 * check if this LPI is better than the current hpplpi, if yes
646 * just set hpplpi.prio and .irq without doing a full rescan
648 if (level) {
649 gicv3_redist_check_lpi_priority(cs, irq);
650 } else {
651 if (irq == cs->hpplpi.irq) {
652 gicv3_redist_update_lpi(cs);
657 void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level)
659 uint64_t idbits;
661 idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
662 GICD_TYPER_IDBITS);
664 if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || !cs->gicr_propbaser ||
665 !cs->gicr_pendbaser || (irq > (1ULL << (idbits + 1)) - 1) ||
666 irq < GICV3_LPI_INTID_START) {
667 return;
670 /* set/clear the pending bit for this irq */
671 gicv3_redist_lpi_pending(cs, irq, level);
673 gicv3_redist_update(cs);
676 void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
678 /* Update redistributor state for a change in an external PPI input line */
679 if (level == extract32(cs->level, irq, 1)) {
680 return;
683 trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
685 cs->level = deposit32(cs->level, irq, 1, level);
687 if (level) {
688 /* 0->1 edges latch the pending bit for edge-triggered interrupts */
689 if (extract32(cs->edge_trigger, irq, 1)) {
690 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
694 gicv3_redist_update(cs);
697 void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
699 /* Update redistributor state for a generated SGI */
700 int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
702 /* If we are asked for a Secure Group 1 SGI and it's actually
703 * configured as Secure Group 0 this is OK (subject to the usual
704 * NSACR checks).
706 if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
707 grp = GICV3_G0;
710 if (grp != irqgrp) {
711 return;
714 if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
715 /* If security is enabled we must test the NSACR bits */
716 int nsaccess = gicr_ns_access(cs, irq);
718 if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
719 (irqgrp == GICV3_G1 && nsaccess < 2)) {
720 return;
724 /* OK, we can accept the SGI */
725 trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
726 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
727 gicv3_redist_update(cs);