qapi/parser: enable pylint checks
[qemu/armbru.git] / hw / net / can / can_sja1000.c
blob34eea684ced278738bdb26327100b285fa941bd0
1 /*
2 * CAN device - SJA1000 chip emulation for QEMU
4 * Copyright (c) 2013-2014 Jin Yang
5 * Copyright (c) 2014-2018 Pavel Pisa
7 * Initial development supported by Google GSoC 2013 from RTEMS project slot
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 * THE SOFTWARE.
28 #include "qemu/osdep.h"
29 #include "qemu/log.h"
30 #include "chardev/char.h"
31 #include "hw/irq.h"
32 #include "migration/vmstate.h"
33 #include "net/can_emu.h"
35 #include "can_sja1000.h"
37 #ifndef DEBUG_FILTER
38 #define DEBUG_FILTER 0
39 #endif /*DEBUG_FILTER*/
41 #ifndef DEBUG_CAN
42 #define DEBUG_CAN 0
43 #endif /*DEBUG_CAN*/
45 #define DPRINTF(fmt, ...) \
46 do { \
47 if (DEBUG_CAN) { \
48 qemu_log("[cansja]: " fmt , ## __VA_ARGS__); \
49 } \
50 } while (0)
52 static void can_sja_software_reset(CanSJA1000State *s)
54 s->mode &= ~0x31;
55 s->mode |= 0x01;
56 s->status_pel &= ~0x37;
57 s->status_pel |= 0x34;
59 s->rxbuf_start = 0x00;
60 s->rxmsg_cnt = 0x00;
61 s->rx_cnt = 0x00;
64 void can_sja_hardware_reset(CanSJA1000State *s)
66 /* Reset by hardware, p10 */
67 s->mode = 0x01;
68 s->status_pel = 0x3c;
69 s->interrupt_pel = 0x00;
70 s->clock = 0x00;
71 s->rxbuf_start = 0x00;
72 s->rxmsg_cnt = 0x00;
73 s->rx_cnt = 0x00;
75 s->control = 0x01;
76 s->status_bas = 0x0c;
77 s->interrupt_bas = 0x00;
79 qemu_irq_lower(s->irq);
82 static
83 void can_sja_single_filter(struct qemu_can_filter *filter,
84 const uint8_t *acr, const uint8_t *amr, int extended)
86 if (extended) {
87 filter->can_id = (uint32_t)acr[0] << 21;
88 filter->can_id |= (uint32_t)acr[1] << 13;
89 filter->can_id |= (uint32_t)acr[2] << 5;
90 filter->can_id |= (uint32_t)acr[3] >> 3;
91 if (acr[3] & 4) {
92 filter->can_id |= QEMU_CAN_RTR_FLAG;
95 filter->can_mask = (uint32_t)amr[0] << 21;
96 filter->can_mask |= (uint32_t)amr[1] << 13;
97 filter->can_mask |= (uint32_t)amr[2] << 5;
98 filter->can_mask |= (uint32_t)amr[3] >> 3;
99 filter->can_mask = ~filter->can_mask & QEMU_CAN_EFF_MASK;
100 if (!(amr[3] & 4)) {
101 filter->can_mask |= QEMU_CAN_RTR_FLAG;
103 } else {
104 filter->can_id = (uint32_t)acr[0] << 3;
105 filter->can_id |= (uint32_t)acr[1] >> 5;
106 if (acr[1] & 0x10) {
107 filter->can_id |= QEMU_CAN_RTR_FLAG;
110 filter->can_mask = (uint32_t)amr[0] << 3;
111 filter->can_mask |= (uint32_t)amr[1] << 5;
112 filter->can_mask = ~filter->can_mask & QEMU_CAN_SFF_MASK;
113 if (!(amr[1] & 0x10)) {
114 filter->can_mask |= QEMU_CAN_RTR_FLAG;
119 static
120 void can_sja_dual_filter(struct qemu_can_filter *filter,
121 const uint8_t *acr, const uint8_t *amr, int extended)
123 if (extended) {
124 filter->can_id = (uint32_t)acr[0] << 21;
125 filter->can_id |= (uint32_t)acr[1] << 13;
127 filter->can_mask = (uint32_t)amr[0] << 21;
128 filter->can_mask |= (uint32_t)amr[1] << 13;
129 filter->can_mask = ~filter->can_mask & QEMU_CAN_EFF_MASK & ~0x1fff;
130 } else {
131 filter->can_id = (uint32_t)acr[0] << 3;
132 filter->can_id |= (uint32_t)acr[1] >> 5;
133 if (acr[1] & 0x10) {
134 filter->can_id |= QEMU_CAN_RTR_FLAG;
137 filter->can_mask = (uint32_t)amr[0] << 3;
138 filter->can_mask |= (uint32_t)amr[1] >> 5;
139 filter->can_mask = ~filter->can_mask & QEMU_CAN_SFF_MASK;
140 if (!(amr[1] & 0x10)) {
141 filter->can_mask |= QEMU_CAN_RTR_FLAG;
146 /* Details in DS-p22, what we need to do here is to test the data. */
147 static
148 int can_sja_accept_filter(CanSJA1000State *s,
149 const qemu_can_frame *frame)
152 struct qemu_can_filter filter;
154 if (s->clock & 0x80) { /* PeliCAN Mode */
155 if (s->mode & (1 << 3)) { /* Single mode. */
156 if (frame->can_id & QEMU_CAN_EFF_FLAG) { /* EFF */
157 can_sja_single_filter(&filter,
158 s->code_mask + 0, s->code_mask + 4, 1);
160 if (!can_bus_filter_match(&filter, frame->can_id)) {
161 return 0;
163 } else { /* SFF */
164 can_sja_single_filter(&filter,
165 s->code_mask + 0, s->code_mask + 4, 0);
167 if (!can_bus_filter_match(&filter, frame->can_id)) {
168 return 0;
171 if (frame->can_id & QEMU_CAN_RTR_FLAG) { /* RTR */
172 return 1;
175 if (frame->can_dlc == 0) {
176 return 1;
179 if ((frame->data[0] & ~(s->code_mask[6])) !=
180 (s->code_mask[2] & ~(s->code_mask[6]))) {
181 return 0;
184 if (frame->can_dlc < 2) {
185 return 1;
188 if ((frame->data[1] & ~(s->code_mask[7])) ==
189 (s->code_mask[3] & ~(s->code_mask[7]))) {
190 return 1;
193 return 0;
195 } else { /* Dual mode */
196 if (frame->can_id & QEMU_CAN_EFF_FLAG) { /* EFF */
197 can_sja_dual_filter(&filter,
198 s->code_mask + 0, s->code_mask + 4, 1);
200 if (can_bus_filter_match(&filter, frame->can_id)) {
201 return 1;
204 can_sja_dual_filter(&filter,
205 s->code_mask + 2, s->code_mask + 6, 1);
207 if (can_bus_filter_match(&filter, frame->can_id)) {
208 return 1;
211 return 0;
212 } else {
213 can_sja_dual_filter(&filter,
214 s->code_mask + 0, s->code_mask + 4, 0);
216 if (can_bus_filter_match(&filter, frame->can_id)) {
217 uint8_t expect;
218 uint8_t mask;
219 expect = s->code_mask[1] << 4;
220 expect |= s->code_mask[3] & 0x0f;
222 mask = s->code_mask[5] << 4;
223 mask |= s->code_mask[7] & 0x0f;
224 mask = ~mask & 0xff;
226 if ((frame->data[0] & mask) ==
227 (expect & mask)) {
228 return 1;
232 can_sja_dual_filter(&filter,
233 s->code_mask + 2, s->code_mask + 6, 0);
235 if (can_bus_filter_match(&filter, frame->can_id)) {
236 return 1;
239 return 0;
244 return 1;
247 static void can_display_msg(const char *prefix, const qemu_can_frame *msg)
249 int i;
250 FILE *logfile = qemu_log_lock();
252 qemu_log("%s%03X [%01d] %s %s",
253 prefix,
254 msg->can_id & QEMU_CAN_EFF_MASK,
255 msg->can_dlc,
256 msg->can_id & QEMU_CAN_EFF_FLAG ? "EFF" : "SFF",
257 msg->can_id & QEMU_CAN_RTR_FLAG ? "RTR" : "DAT");
259 for (i = 0; i < msg->can_dlc; i++) {
260 qemu_log(" %02X", msg->data[i]);
262 qemu_log("\n");
263 qemu_log_flush();
264 qemu_log_unlock(logfile);
267 static void buff2frame_pel(const uint8_t *buff, qemu_can_frame *frame)
269 uint8_t i;
271 frame->flags = 0;
272 frame->can_id = 0;
273 if (buff[0] & 0x40) { /* RTR */
274 frame->can_id = QEMU_CAN_RTR_FLAG;
276 frame->can_dlc = buff[0] & 0x0f;
278 if (frame->can_dlc > 8) {
279 frame->can_dlc = 8;
282 if (buff[0] & 0x80) { /* Extended */
283 frame->can_id |= QEMU_CAN_EFF_FLAG;
284 frame->can_id |= buff[1] << 21; /* ID.28~ID.21 */
285 frame->can_id |= buff[2] << 13; /* ID.20~ID.13 */
286 frame->can_id |= buff[3] << 5;
287 frame->can_id |= buff[4] >> 3;
288 for (i = 0; i < frame->can_dlc; i++) {
289 frame->data[i] = buff[5 + i];
291 for (; i < 8; i++) {
292 frame->data[i] = 0;
294 } else {
295 frame->can_id |= buff[1] << 3;
296 frame->can_id |= buff[2] >> 5;
297 for (i = 0; i < frame->can_dlc; i++) {
298 frame->data[i] = buff[3 + i];
300 for (; i < 8; i++) {
301 frame->data[i] = 0;
307 static void buff2frame_bas(const uint8_t *buff, qemu_can_frame *frame)
309 uint8_t i;
311 frame->flags = 0;
312 frame->can_id = ((buff[0] << 3) & (0xff << 3)) + ((buff[1] >> 5) & 0x07);
313 if (buff[1] & 0x10) { /* RTR */
314 frame->can_id = QEMU_CAN_RTR_FLAG;
316 frame->can_dlc = buff[1] & 0x0f;
318 if (frame->can_dlc > 8) {
319 frame->can_dlc = 8;
322 for (i = 0; i < frame->can_dlc; i++) {
323 frame->data[i] = buff[2 + i];
325 for (; i < 8; i++) {
326 frame->data[i] = 0;
331 static int frame2buff_pel(const qemu_can_frame *frame, uint8_t *buff)
333 int i;
334 int dlen = frame->can_dlc;
336 if (frame->can_id & QEMU_CAN_ERR_FLAG) { /* error frame, NOT support now. */
337 return -1;
340 if (dlen > 8) {
341 return -1;
344 buff[0] = 0x0f & frame->can_dlc; /* DLC */
345 if (frame->can_id & QEMU_CAN_RTR_FLAG) { /* RTR */
346 buff[0] |= (1 << 6);
348 if (frame->can_id & QEMU_CAN_EFF_FLAG) { /* EFF */
349 buff[0] |= (1 << 7);
350 buff[1] = extract32(frame->can_id, 21, 8); /* ID.28~ID.21 */
351 buff[2] = extract32(frame->can_id, 13, 8); /* ID.20~ID.13 */
352 buff[3] = extract32(frame->can_id, 5, 8); /* ID.12~ID.05 */
353 buff[4] = extract32(frame->can_id, 0, 5) << 3; /* ID.04~ID.00,xxx */
354 for (i = 0; i < dlen; i++) {
355 buff[5 + i] = frame->data[i];
357 return dlen + 5;
358 } else { /* SFF */
359 buff[1] = extract32(frame->can_id, 3, 8); /* ID.10~ID.03 */
360 buff[2] = extract32(frame->can_id, 0, 3) << 5; /* ID.02~ID.00,xxxxx */
361 for (i = 0; i < dlen; i++) {
362 buff[3 + i] = frame->data[i];
365 return dlen + 3;
368 return -1;
371 static int frame2buff_bas(const qemu_can_frame *frame, uint8_t *buff)
373 int i;
374 int dlen = frame->can_dlc;
377 * EFF, no support for BasicMode
378 * No use for Error frames now,
379 * they could be used in future to update SJA1000 error state
381 if ((frame->can_id & QEMU_CAN_EFF_FLAG) ||
382 (frame->can_id & QEMU_CAN_ERR_FLAG)) {
383 return -1;
386 if (dlen > 8) {
387 return -1;
390 buff[0] = extract32(frame->can_id, 3, 8); /* ID.10~ID.03 */
391 buff[1] = extract32(frame->can_id, 0, 3) << 5; /* ID.02~ID.00,xxxxx */
392 if (frame->can_id & QEMU_CAN_RTR_FLAG) { /* RTR */
393 buff[1] |= (1 << 4);
395 buff[1] |= frame->can_dlc & 0x0f;
396 for (i = 0; i < dlen; i++) {
397 buff[2 + i] = frame->data[i];
400 return dlen + 2;
403 static void can_sja_update_pel_irq(CanSJA1000State *s)
405 if (s->interrupt_en & s->interrupt_pel) {
406 qemu_irq_raise(s->irq);
407 } else {
408 qemu_irq_lower(s->irq);
412 static void can_sja_update_bas_irq(CanSJA1000State *s)
414 if ((s->control >> 1) & s->interrupt_bas) {
415 qemu_irq_raise(s->irq);
416 } else {
417 qemu_irq_lower(s->irq);
421 void can_sja_mem_write(CanSJA1000State *s, hwaddr addr, uint64_t val,
422 unsigned size)
424 qemu_can_frame frame;
425 uint32_t tmp;
426 uint8_t tmp8, count;
429 DPRINTF("write 0x%02llx addr 0x%02x\n",
430 (unsigned long long)val, (unsigned int)addr);
432 if (addr > CAN_SJA_MEM_SIZE) {
433 return ;
436 if (s->clock & 0x80) { /* PeliCAN Mode */
437 switch (addr) {
438 case SJA_MOD: /* Mode register */
439 s->mode = 0x1f & val;
440 if ((s->mode & 0x01) && ((val & 0x01) == 0)) {
441 /* Go to operation mode from reset mode. */
442 if (s->mode & (1 << 3)) { /* Single mode. */
443 /* For EFF */
444 can_sja_single_filter(&s->filter[0],
445 s->code_mask + 0, s->code_mask + 4, 1);
447 /* For SFF */
448 can_sja_single_filter(&s->filter[1],
449 s->code_mask + 0, s->code_mask + 4, 0);
451 can_bus_client_set_filters(&s->bus_client, s->filter, 2);
452 } else { /* Dual mode */
453 /* For EFF */
454 can_sja_dual_filter(&s->filter[0],
455 s->code_mask + 0, s->code_mask + 4, 1);
457 can_sja_dual_filter(&s->filter[1],
458 s->code_mask + 2, s->code_mask + 6, 1);
460 /* For SFF */
461 can_sja_dual_filter(&s->filter[2],
462 s->code_mask + 0, s->code_mask + 4, 0);
464 can_sja_dual_filter(&s->filter[3],
465 s->code_mask + 2, s->code_mask + 6, 0);
467 can_bus_client_set_filters(&s->bus_client, s->filter, 4);
470 s->rxmsg_cnt = 0;
471 s->rx_cnt = 0;
473 break;
475 case SJA_CMR: /* Command register. */
476 if (0x01 & val) { /* Send transmission request. */
477 buff2frame_pel(s->tx_buff, &frame);
478 if (DEBUG_FILTER) {
479 can_display_msg("[cansja]: Tx request " , &frame);
483 * Clear transmission complete status,
484 * and Transmit Buffer Status.
485 * write to the backends.
487 s->status_pel &= ~(3 << 2);
489 can_bus_client_send(&s->bus_client, &frame, 1);
492 * Set transmission complete status
493 * and Transmit Buffer Status.
495 s->status_pel |= (3 << 2);
497 /* Clear transmit status. */
498 s->status_pel &= ~(1 << 5);
499 s->interrupt_pel |= 0x02;
500 can_sja_update_pel_irq(s);
502 if (0x04 & val) { /* Release Receive Buffer */
503 if (s->rxmsg_cnt <= 0) {
504 break;
507 tmp8 = s->rx_buff[s->rxbuf_start]; count = 0;
508 if (tmp8 & (1 << 7)) { /* EFF */
509 count += 2;
511 count += 3;
512 if (!(tmp8 & (1 << 6))) { /* DATA */
513 count += (tmp8 & 0x0f);
516 if (DEBUG_FILTER) {
517 qemu_log("[cansja]: message released from "
518 "Rx FIFO cnt=%d, count=%d\n", s->rx_cnt, count);
521 s->rxbuf_start += count;
522 s->rxbuf_start %= SJA_RCV_BUF_LEN;
524 s->rx_cnt -= count;
525 s->rxmsg_cnt--;
526 if (s->rxmsg_cnt == 0) {
527 s->status_pel &= ~(1 << 0);
528 s->interrupt_pel &= ~(1 << 0);
529 can_sja_update_pel_irq(s);
532 if (0x08 & val) { /* Clear data overrun */
533 s->status_pel &= ~(1 << 1);
534 s->interrupt_pel &= ~(1 << 3);
535 can_sja_update_pel_irq(s);
537 break;
538 case SJA_SR: /* Status register */
539 case SJA_IR: /* Interrupt register */
540 break; /* Do nothing */
541 case SJA_IER: /* Interrupt enable register */
542 s->interrupt_en = val;
543 break;
544 case 16: /* RX frame information addr16-28. */
545 s->status_pel |= (1 << 5); /* Set transmit status. */
546 /* fallthrough */
547 case 17 ... 28:
548 if (s->mode & 0x01) { /* Reset mode */
549 if (addr < 24) {
550 s->code_mask[addr - 16] = val;
552 } else { /* Operation mode */
553 s->tx_buff[addr - 16] = val; /* Store to TX buffer directly. */
555 break;
556 case SJA_CDR:
557 s->clock = val;
558 break;
560 } else { /* Basic Mode */
561 switch (addr) {
562 case SJA_BCAN_CTR: /* Control register, addr 0 */
563 if ((s->control & 0x01) && ((val & 0x01) == 0)) {
564 /* Go to operation mode from reset mode. */
565 s->filter[0].can_id = (s->code << 3) & (0xff << 3);
566 tmp = (~(s->mask << 3)) & (0xff << 3);
567 tmp |= QEMU_CAN_EFF_FLAG; /* Only Basic CAN Frame. */
568 s->filter[0].can_mask = tmp;
569 can_bus_client_set_filters(&s->bus_client, s->filter, 1);
571 s->rxmsg_cnt = 0;
572 s->rx_cnt = 0;
573 } else if (!(s->control & 0x01) && !(val & 0x01)) {
574 can_sja_software_reset(s);
577 s->control = 0x1f & val;
578 break;
579 case SJA_BCAN_CMR: /* Command register, addr 1 */
580 if (0x01 & val) { /* Send transmission request. */
581 buff2frame_bas(s->tx_buff, &frame);
582 if (DEBUG_FILTER) {
583 can_display_msg("[cansja]: Tx request " , &frame);
587 * Clear transmission complete status,
588 * and Transmit Buffer Status.
590 s->status_bas &= ~(3 << 2);
592 /* write to the backends. */
593 can_bus_client_send(&s->bus_client, &frame, 1);
596 * Set transmission complete status,
597 * and Transmit Buffer Status.
599 s->status_bas |= (3 << 2);
601 /* Clear transmit status. */
602 s->status_bas &= ~(1 << 5);
603 s->interrupt_bas |= 0x02;
604 can_sja_update_bas_irq(s);
606 if (0x04 & val) { /* Release Receive Buffer */
607 if (s->rxmsg_cnt <= 0) {
608 break;
611 tmp8 = s->rx_buff[(s->rxbuf_start + 1) % SJA_RCV_BUF_LEN];
612 count = 2 + (tmp8 & 0x0f);
614 if (DEBUG_FILTER) {
615 qemu_log("[cansja]: message released from "
616 "Rx FIFO cnt=%d, count=%d\n", s->rx_cnt, count);
619 s->rxbuf_start += count;
620 s->rxbuf_start %= SJA_RCV_BUF_LEN;
621 s->rx_cnt -= count;
622 s->rxmsg_cnt--;
624 if (s->rxmsg_cnt == 0) {
625 s->status_bas &= ~(1 << 0);
626 s->interrupt_bas &= ~(1 << 0);
627 can_sja_update_bas_irq(s);
630 if (0x08 & val) { /* Clear data overrun */
631 s->status_bas &= ~(1 << 1);
632 s->interrupt_bas &= ~(1 << 3);
633 can_sja_update_bas_irq(s);
635 break;
636 case 4:
637 s->code = val;
638 break;
639 case 5:
640 s->mask = val;
641 break;
642 case 10:
643 s->status_bas |= (1 << 5); /* Set transmit status. */
644 /* fallthrough */
645 case 11 ... 19:
646 if ((s->control & 0x01) == 0) { /* Operation mode */
647 s->tx_buff[addr - 10] = val; /* Store to TX buffer directly. */
649 break;
650 case SJA_CDR:
651 s->clock = val;
652 break;
657 uint64_t can_sja_mem_read(CanSJA1000State *s, hwaddr addr, unsigned size)
659 uint64_t temp = 0;
661 DPRINTF("read addr 0x%02x ...\n", (unsigned int)addr);
663 if (addr > CAN_SJA_MEM_SIZE) {
664 return 0;
667 if (s->clock & 0x80) { /* PeliCAN Mode */
668 switch (addr) {
669 case SJA_MOD: /* Mode register, addr 0 */
670 temp = s->mode;
671 break;
672 case SJA_CMR: /* Command register, addr 1 */
673 temp = 0x00; /* Command register, cannot be read. */
674 break;
675 case SJA_SR: /* Status register, addr 2 */
676 temp = s->status_pel;
677 break;
678 case SJA_IR: /* Interrupt register, addr 3 */
679 temp = s->interrupt_pel;
680 s->interrupt_pel = 0;
681 if (s->rxmsg_cnt) {
682 s->interrupt_pel |= (1 << 0); /* Receive interrupt. */
684 can_sja_update_pel_irq(s);
685 break;
686 case SJA_IER: /* Interrupt enable register, addr 4 */
687 temp = s->interrupt_en;
688 break;
689 case 5: /* Reserved */
690 case 6: /* Bus timing 0, hardware related, not support now. */
691 case 7: /* Bus timing 1, hardware related, not support now. */
692 case 8: /*
693 * Output control register, hardware related,
694 * not supported for now.
696 case 9: /* Test. */
697 case 10 ... 15: /* Reserved */
698 temp = 0x00;
699 break;
701 case 16 ... 28:
702 if (s->mode & 0x01) { /* Reset mode */
703 if (addr < 24) {
704 temp = s->code_mask[addr - 16];
705 } else {
706 temp = 0x00;
708 } else { /* Operation mode */
709 temp = s->rx_buff[(s->rxbuf_start + addr - 16) %
710 SJA_RCV_BUF_LEN];
712 break;
713 case SJA_CDR:
714 temp = s->clock;
715 break;
716 default:
717 temp = 0xff;
719 } else { /* Basic Mode */
720 switch (addr) {
721 case SJA_BCAN_CTR: /* Control register, addr 0 */
722 temp = s->control;
723 break;
724 case SJA_BCAN_SR: /* Status register, addr 2 */
725 temp = s->status_bas;
726 break;
727 case SJA_BCAN_IR: /* Interrupt register, addr 3 */
728 temp = s->interrupt_bas;
729 s->interrupt_bas = 0;
730 if (s->rxmsg_cnt) {
731 s->interrupt_bas |= (1 << 0); /* Receive interrupt. */
733 can_sja_update_bas_irq(s);
734 break;
735 case 4:
736 temp = s->code;
737 break;
738 case 5:
739 temp = s->mask;
740 break;
741 case 20 ... 29:
742 temp = s->rx_buff[(s->rxbuf_start + addr - 20) % SJA_RCV_BUF_LEN];
743 break;
744 case 31:
745 temp = s->clock;
746 break;
747 default:
748 temp = 0xff;
749 break;
752 DPRINTF("read addr 0x%02x, %d bytes, content 0x%02lx\n",
753 (int)addr, size, (long unsigned int)temp);
755 return temp;
758 bool can_sja_can_receive(CanBusClientState *client)
760 CanSJA1000State *s = container_of(client, CanSJA1000State, bus_client);
762 if (s->clock & 0x80) { /* PeliCAN Mode */
763 if (s->mode & 0x01) { /* reset mode. */
764 return false;
766 } else { /* BasicCAN mode */
767 if (s->control & 0x01) {
768 return false;
772 return true; /* always return true, when operation mode */
775 ssize_t can_sja_receive(CanBusClientState *client, const qemu_can_frame *frames,
776 size_t frames_cnt)
778 CanSJA1000State *s = container_of(client, CanSJA1000State, bus_client);
779 static uint8_t rcv[SJA_MSG_MAX_LEN];
780 int i;
781 int ret = -1;
782 const qemu_can_frame *frame = frames;
784 if (frames_cnt <= 0) {
785 return 0;
787 if (frame->flags & QEMU_CAN_FRMF_TYPE_FD) {
788 if (DEBUG_FILTER) {
789 can_display_msg("[cansja]: ignor fd frame ", frame);
791 return 1;
794 if (DEBUG_FILTER) {
795 can_display_msg("[cansja]: receive ", frame);
798 if (s->clock & 0x80) { /* PeliCAN Mode */
800 /* the CAN controller is receiving a message */
801 s->status_pel |= (1 << 4);
803 if (can_sja_accept_filter(s, frame) == 0) {
804 s->status_pel &= ~(1 << 4);
805 if (DEBUG_FILTER) {
806 qemu_log("[cansja]: filter rejects message\n");
808 return ret;
811 ret = frame2buff_pel(frame, rcv);
812 if (ret < 0) {
813 s->status_pel &= ~(1 << 4);
814 if (DEBUG_FILTER) {
815 qemu_log("[cansja]: message store failed\n");
817 return ret; /* maybe not support now. */
820 if (s->rx_cnt + ret > SJA_RCV_BUF_LEN) { /* Data overrun. */
821 s->status_pel |= (1 << 1); /* Overrun status */
822 s->interrupt_pel |= (1 << 3);
823 s->status_pel &= ~(1 << 4);
824 if (DEBUG_FILTER) {
825 qemu_log("[cansja]: receive FIFO overrun\n");
827 can_sja_update_pel_irq(s);
828 return ret;
830 s->rx_cnt += ret;
831 s->rxmsg_cnt++;
832 if (DEBUG_FILTER) {
833 qemu_log("[cansja]: message stored in receive FIFO\n");
836 for (i = 0; i < ret; i++) {
837 s->rx_buff[(s->rx_ptr++) % SJA_RCV_BUF_LEN] = rcv[i];
839 s->rx_ptr %= SJA_RCV_BUF_LEN; /* update the pointer. */
841 s->status_pel |= 0x01; /* Set the Receive Buffer Status. DS-p23 */
842 s->interrupt_pel |= 0x01;
843 s->status_pel &= ~(1 << 4);
844 s->status_pel |= (1 << 0);
845 can_sja_update_pel_irq(s);
846 } else { /* BasicCAN mode */
848 /* the CAN controller is receiving a message */
849 s->status_bas |= (1 << 4);
851 ret = frame2buff_bas(frame, rcv);
852 if (ret < 0) {
853 s->status_bas &= ~(1 << 4);
854 if (DEBUG_FILTER) {
855 qemu_log("[cansja]: message store failed\n");
857 return ret; /* maybe not support now. */
860 if (s->rx_cnt + ret > SJA_RCV_BUF_LEN) { /* Data overrun. */
861 s->status_bas |= (1 << 1); /* Overrun status */
862 s->status_bas &= ~(1 << 4);
863 s->interrupt_bas |= (1 << 3);
864 can_sja_update_bas_irq(s);
865 if (DEBUG_FILTER) {
866 qemu_log("[cansja]: receive FIFO overrun\n");
868 return ret;
870 s->rx_cnt += ret;
871 s->rxmsg_cnt++;
873 if (DEBUG_FILTER) {
874 qemu_log("[cansja]: message stored\n");
877 for (i = 0; i < ret; i++) {
878 s->rx_buff[(s->rx_ptr++) % SJA_RCV_BUF_LEN] = rcv[i];
880 s->rx_ptr %= SJA_RCV_BUF_LEN; /* update the pointer. */
882 s->status_bas |= 0x01; /* Set the Receive Buffer Status. DS-p15 */
883 s->status_bas &= ~(1 << 4);
884 s->interrupt_bas |= (1 << 0);
885 can_sja_update_bas_irq(s);
887 return 1;
890 static CanBusClientInfo can_sja_bus_client_info = {
891 .can_receive = can_sja_can_receive,
892 .receive = can_sja_receive,
896 int can_sja_connect_to_bus(CanSJA1000State *s, CanBusState *bus)
898 s->bus_client.info = &can_sja_bus_client_info;
900 if (!bus) {
901 return -EINVAL;
904 if (can_bus_insert_client(bus, &s->bus_client) < 0) {
905 return -1;
908 return 0;
911 void can_sja_disconnect(CanSJA1000State *s)
913 can_bus_remove_client(&s->bus_client);
916 int can_sja_init(CanSJA1000State *s, qemu_irq irq)
918 s->irq = irq;
920 qemu_irq_lower(s->irq);
922 can_sja_hardware_reset(s);
924 return 0;
927 const VMStateDescription vmstate_qemu_can_filter = {
928 .name = "qemu_can_filter",
929 .version_id = 1,
930 .minimum_version_id = 1,
931 .minimum_version_id_old = 1,
932 .fields = (VMStateField[]) {
933 VMSTATE_UINT32(can_id, qemu_can_filter),
934 VMSTATE_UINT32(can_mask, qemu_can_filter),
935 VMSTATE_END_OF_LIST()
939 static int can_sja_post_load(void *opaque, int version_id)
941 CanSJA1000State *s = opaque;
942 if (s->clock & 0x80) { /* PeliCAN Mode */
943 can_sja_update_pel_irq(s);
944 } else {
945 can_sja_update_bas_irq(s);
947 return 0;
950 /* VMState is needed for live migration of QEMU images */
951 const VMStateDescription vmstate_can_sja = {
952 .name = "can_sja",
953 .version_id = 1,
954 .minimum_version_id = 1,
955 .minimum_version_id_old = 1,
956 .post_load = can_sja_post_load,
957 .fields = (VMStateField[]) {
958 VMSTATE_UINT8(mode, CanSJA1000State),
960 VMSTATE_UINT8(status_pel, CanSJA1000State),
961 VMSTATE_UINT8(interrupt_pel, CanSJA1000State),
962 VMSTATE_UINT8(interrupt_en, CanSJA1000State),
963 VMSTATE_UINT8(rxmsg_cnt, CanSJA1000State),
964 VMSTATE_UINT8(rxbuf_start, CanSJA1000State),
965 VMSTATE_UINT8(clock, CanSJA1000State),
967 VMSTATE_BUFFER(code_mask, CanSJA1000State),
968 VMSTATE_BUFFER(tx_buff, CanSJA1000State),
970 VMSTATE_BUFFER(rx_buff, CanSJA1000State),
972 VMSTATE_UINT32(rx_ptr, CanSJA1000State),
973 VMSTATE_UINT32(rx_cnt, CanSJA1000State),
975 VMSTATE_UINT8(control, CanSJA1000State),
977 VMSTATE_UINT8(status_bas, CanSJA1000State),
978 VMSTATE_UINT8(interrupt_bas, CanSJA1000State),
979 VMSTATE_UINT8(code, CanSJA1000State),
980 VMSTATE_UINT8(mask, CanSJA1000State),
982 VMSTATE_STRUCT_ARRAY(filter, CanSJA1000State, 4, 0,
983 vmstate_qemu_can_filter, qemu_can_filter),
986 VMSTATE_END_OF_LIST()