qapi/parser: enable pylint checks
[qemu/armbru.git] / hw / pci-host / pnv_phb4.c
blob5c375a9f285dc74978aae8760451b94bb075ade3
1 /*
2 * QEMU PowerPC PowerNV (POWER9) PHB4 model
4 * Copyright (c) 2018-2020, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qapi/visitor.h"
12 #include "qapi/error.h"
13 #include "qemu-common.h"
14 #include "monitor/monitor.h"
15 #include "target/ppc/cpu.h"
16 #include "hw/pci-host/pnv_phb4_regs.h"
17 #include "hw/pci-host/pnv_phb4.h"
18 #include "hw/pci/pcie_host.h"
19 #include "hw/pci/pcie_port.h"
20 #include "hw/ppc/pnv.h"
21 #include "hw/ppc/pnv_xscom.h"
22 #include "hw/irq.h"
23 #include "hw/qdev-properties.h"
24 #include "qom/object.h"
25 #include "trace.h"
27 #define phb_error(phb, fmt, ...) \
28 qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n", \
29 (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__)
32 * QEMU version of the GETFIELD/SETFIELD macros
34 * These are common with the PnvXive model.
36 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word)
38 return (word & mask) >> ctz64(mask);
41 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word,
42 uint64_t value)
44 return (word & ~mask) | ((value << ctz64(mask)) & mask);
47 static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb)
49 PCIHostState *pci = PCI_HOST_BRIDGE(phb);
50 uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3];
51 uint8_t bus, devfn;
53 if (!(addr >> 63)) {
54 return NULL;
56 bus = (addr >> 52) & 0xff;
57 devfn = (addr >> 44) & 0xff;
59 /* We don't access the root complex this way */
60 if (bus == 0 && devfn == 0) {
61 return NULL;
63 return pci_find_device(pci->bus, bus, devfn);
67 * The CONFIG_DATA register expects little endian accesses, but as the
68 * region is big endian, we have to swap the value.
70 static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off,
71 unsigned size, uint64_t val)
73 uint32_t cfg_addr, limit;
74 PCIDevice *pdev;
76 pdev = pnv_phb4_find_cfg_dev(phb);
77 if (!pdev) {
78 return;
80 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
81 cfg_addr |= off;
82 limit = pci_config_size(pdev);
83 if (limit <= cfg_addr) {
85 * conventional pci device can be behind pcie-to-pci bridge.
86 * 256 <= addr < 4K has no effects.
88 return;
90 switch (size) {
91 case 1:
92 break;
93 case 2:
94 val = bswap16(val);
95 break;
96 case 4:
97 val = bswap32(val);
98 break;
99 default:
100 g_assert_not_reached();
102 pci_host_config_write_common(pdev, cfg_addr, limit, val, size);
105 static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off,
106 unsigned size)
108 uint32_t cfg_addr, limit;
109 PCIDevice *pdev;
110 uint64_t val;
112 pdev = pnv_phb4_find_cfg_dev(phb);
113 if (!pdev) {
114 return ~0ull;
116 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc;
117 cfg_addr |= off;
118 limit = pci_config_size(pdev);
119 if (limit <= cfg_addr) {
121 * conventional pci device can be behind pcie-to-pci bridge.
122 * 256 <= addr < 4K has no effects.
124 return ~0ull;
126 val = pci_host_config_read_common(pdev, cfg_addr, limit, size);
127 switch (size) {
128 case 1:
129 return val;
130 case 2:
131 return bswap16(val);
132 case 4:
133 return bswap32(val);
134 default:
135 g_assert_not_reached();
140 * Root complex register accesses are memory mapped.
142 static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off,
143 unsigned size, uint64_t val)
145 PCIHostState *pci = PCI_HOST_BRIDGE(phb);
146 PCIDevice *pdev;
148 if (size != 4) {
149 phb_error(phb, "rc_config_write invalid size %d\n", size);
150 return;
153 pdev = pci_find_device(pci->bus, 0, 0);
154 assert(pdev);
156 pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE,
157 bswap32(val), 4);
160 static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off,
161 unsigned size)
163 PCIHostState *pci = PCI_HOST_BRIDGE(phb);
164 PCIDevice *pdev;
165 uint64_t val;
167 if (size != 4) {
168 phb_error(phb, "rc_config_read invalid size %d\n", size);
169 return ~0ull;
172 pdev = pci_find_device(pci->bus, 0, 0);
173 assert(pdev);
175 val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4);
176 return bswap32(val);
179 static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index)
181 uint64_t base, start, size, mbe0, mbe1;
182 MemoryRegion *parent;
183 char name[64];
185 /* Unmap first */
186 if (memory_region_is_mapped(&phb->mr_mmio[index])) {
187 /* Should we destroy it in RCU friendly way... ? */
188 memory_region_del_subregion(phb->mr_mmio[index].container,
189 &phb->mr_mmio[index]);
192 /* Get table entry */
193 mbe0 = phb->ioda_MBT[(index << 1)];
194 mbe1 = phb->ioda_MBT[(index << 1) + 1];
196 if (!(mbe0 & IODA3_MBT0_ENABLE)) {
197 return;
200 /* Grab geometry from registers */
201 base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12;
202 size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12;
203 size |= 0xff00000000000000ull;
204 size = ~size + 1;
206 /* Calculate PCI side start address based on M32/M64 window type */
207 if (mbe0 & IODA3_MBT0_TYPE_M32) {
208 start = phb->regs[PHB_M32_START_ADDR >> 3];
209 if ((start + size) > 0x100000000ull) {
210 phb_error(phb, "M32 set beyond 4GB boundary !");
211 size = 0x100000000 - start;
213 } else {
214 start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]);
217 /* TODO: Figure out how to implemet/decode AOMASK */
219 /* Check if it matches an enabled MMIO region in the PEC stack */
220 if (memory_region_is_mapped(&phb->stack->mmbar0) &&
221 base >= phb->stack->mmio0_base &&
222 (base + size) <= (phb->stack->mmio0_base + phb->stack->mmio0_size)) {
223 parent = &phb->stack->mmbar0;
224 base -= phb->stack->mmio0_base;
225 } else if (memory_region_is_mapped(&phb->stack->mmbar1) &&
226 base >= phb->stack->mmio1_base &&
227 (base + size) <= (phb->stack->mmio1_base + phb->stack->mmio1_size)) {
228 parent = &phb->stack->mmbar1;
229 base -= phb->stack->mmio1_base;
230 } else {
231 phb_error(phb, "PHB MBAR %d out of parent bounds", index);
232 return;
235 /* Create alias (better name ?) */
236 snprintf(name, sizeof(name), "phb4-mbar%d", index);
237 memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name,
238 &phb->pci_mmio, start, size);
239 memory_region_add_subregion(parent, base, &phb->mr_mmio[index]);
242 static void pnv_phb4_check_all_mbt(PnvPHB4 *phb)
244 uint64_t i;
245 uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS :
246 PNV_PHB4_MIN_MMIO_WINDOWS;
248 for (i = 0; i < num_windows; i++) {
249 pnv_phb4_check_mbt(phb, i);
253 static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb,
254 unsigned *out_table, unsigned *out_idx)
256 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
257 unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg);
258 unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg);
259 unsigned int mask;
260 uint64_t *tptr = NULL;
262 switch (table) {
263 case IODA3_TBL_LIST:
264 tptr = phb->ioda_LIST;
265 mask = 7;
266 break;
267 case IODA3_TBL_MIST:
268 tptr = phb->ioda_MIST;
269 mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1);
270 mask -= 1;
271 break;
272 case IODA3_TBL_RCAM:
273 mask = phb->big_phb ? 127 : 63;
274 break;
275 case IODA3_TBL_MRT:
276 mask = phb->big_phb ? 15 : 7;
277 break;
278 case IODA3_TBL_PESTA:
279 case IODA3_TBL_PESTB:
280 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
281 mask -= 1;
282 break;
283 case IODA3_TBL_TVT:
284 tptr = phb->ioda_TVT;
285 mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1);
286 mask -= 1;
287 break;
288 case IODA3_TBL_TCR:
289 case IODA3_TBL_TDR:
290 mask = phb->big_phb ? 1023 : 511;
291 break;
292 case IODA3_TBL_MBT:
293 tptr = phb->ioda_MBT;
294 mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1);
295 mask -= 1;
296 break;
297 case IODA3_TBL_MDT:
298 tptr = phb->ioda_MDT;
299 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
300 mask -= 1;
301 break;
302 case IODA3_TBL_PEEV:
303 tptr = phb->ioda_PEEV;
304 mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1);
305 mask -= 1;
306 break;
307 default:
308 phb_error(phb, "invalid IODA table %d", table);
309 return NULL;
311 index &= mask;
312 if (out_idx) {
313 *out_idx = index;
315 if (out_table) {
316 *out_table = table;
318 if (tptr) {
319 tptr += index;
321 if (adreg & PHB_IODA_AD_AUTOINC) {
322 index = (index + 1) & mask;
323 adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index);
326 phb->regs[PHB_IODA_ADDR >> 3] = adreg;
327 return tptr;
330 static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb)
332 unsigned table, idx;
333 uint64_t *tptr;
335 tptr = pnv_phb4_ioda_access(phb, &table, &idx);
336 if (!tptr) {
337 /* Special PESTA case */
338 if (table == IODA3_TBL_PESTA) {
339 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63;
340 } else if (table == IODA3_TBL_PESTB) {
341 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62;
343 /* Return 0 on unsupported tables, not ff's */
344 return 0;
346 return *tptr;
349 static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val)
351 unsigned table, idx;
352 uint64_t *tptr;
354 tptr = pnv_phb4_ioda_access(phb, &table, &idx);
355 if (!tptr) {
356 /* Special PESTA case */
357 if (table == IODA3_TBL_PESTA) {
358 phb->ioda_PEST_AB[idx] &= ~1;
359 phb->ioda_PEST_AB[idx] |= (val >> 63) & 1;
360 } else if (table == IODA3_TBL_PESTB) {
361 phb->ioda_PEST_AB[idx] &= ~2;
362 phb->ioda_PEST_AB[idx] |= (val >> 62) & 2;
364 return;
367 /* Handle side effects */
368 switch (table) {
369 case IODA3_TBL_LIST:
370 break;
371 case IODA3_TBL_MIST: {
372 /* Special mask for MIST partial write */
373 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3];
374 uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg);
375 uint64_t v = *tptr;
376 if (mmask == 0) {
377 mmask = 0xf;
379 if (mmask & 8) {
380 v &= 0x0000ffffffffffffull;
381 v |= 0xcfff000000000000ull & val;
383 if (mmask & 4) {
384 v &= 0xffff0000ffffffffull;
385 v |= 0x0000cfff00000000ull & val;
387 if (mmask & 2) {
388 v &= 0xffffffff0000ffffull;
389 v |= 0x00000000cfff0000ull & val;
391 if (mmask & 1) {
392 v &= 0xffffffffffff0000ull;
393 v |= 0x000000000000cfffull & val;
395 *tptr = v;
396 break;
398 case IODA3_TBL_MBT:
399 *tptr = val;
401 /* Copy accross the valid bit to the other half */
402 phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull;
403 phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val;
405 /* Update mappings */
406 pnv_phb4_check_mbt(phb, idx >> 1);
407 break;
408 default:
409 *tptr = val;
413 static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val)
415 PnvPhb4DMASpace *ds;
417 /* Always invalidate all for now ... */
418 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
419 ds->pe_num = PHB_INVALID_PE;
423 static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds)
425 uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
427 if (cfg & PHB_PHB4C_32BIT_MSI_EN) {
428 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
429 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
430 0xffff0000, &ds->msi32_mr);
432 } else {
433 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) {
434 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
435 &ds->msi32_mr);
439 if (cfg & PHB_PHB4C_64BIT_MSI_EN) {
440 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
441 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr),
442 (1ull << 60), &ds->msi64_mr);
444 } else {
445 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) {
446 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr),
447 &ds->msi64_mr);
452 static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb)
454 PnvPhb4DMASpace *ds;
456 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
457 pnv_phb4_update_msi_regions(ds);
461 static void pnv_phb4_update_xsrc(PnvPHB4 *phb)
463 int shift, flags, i, lsi_base;
464 XiveSource *xsrc = &phb->xsrc;
466 /* The XIVE source characteristics can be set at run time */
467 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) {
468 shift = XIVE_ESB_64K;
469 } else {
470 shift = XIVE_ESB_4K;
472 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) {
473 flags = XIVE_SRC_STORE_EOI;
474 } else {
475 flags = 0;
478 phb->xsrc.esb_shift = shift;
479 phb->xsrc.esb_flags = flags;
481 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
482 lsi_base <<= 3;
484 /* TODO: handle reset values of PHB_LSI_SRC_ID */
485 if (!lsi_base) {
486 return;
489 /* TODO: need a xive_source_irq_reset_lsi() */
490 bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs);
492 for (i = 0; i < xsrc->nr_irqs; i++) {
493 bool msi = (i < lsi_base || i >= (lsi_base + 8));
494 if (!msi) {
495 xive_source_irq_set_lsi(xsrc, i);
500 static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val,
501 unsigned size)
503 PnvPHB4 *phb = PNV_PHB4(opaque);
504 bool changed;
506 /* Special case outbound configuration data */
507 if ((off & 0xfffc) == PHB_CONFIG_DATA) {
508 pnv_phb4_config_write(phb, off & 0x3, size, val);
509 return;
512 /* Special case RC configuration space */
513 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
514 pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val);
515 return;
518 /* Other registers are 64-bit only */
519 if (size != 8 || off & 0x7) {
520 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
521 off, size);
522 return;
525 /* Handle masking */
526 switch (off) {
527 case PHB_LSI_SOURCE_ID:
528 val &= PHB_LSI_SRC_ID;
529 break;
530 case PHB_M64_UPPER_BITS:
531 val &= 0xff00000000000000ull;
532 break;
533 /* TCE Kill */
534 case PHB_TCE_KILL:
535 /* Clear top 3 bits which HW does to indicate successful queuing */
536 val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE);
537 break;
538 case PHB_Q_DMA_R:
540 * This is enough logic to make SW happy but we aren't
541 * actually quiescing the DMAs
543 if (val & PHB_Q_DMA_R_AUTORESET) {
544 val = 0;
545 } else {
546 val &= PHB_Q_DMA_R_QUIESCE_DMA;
548 break;
549 /* LEM stuff */
550 case PHB_LEM_FIR_AND_MASK:
551 phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val;
552 return;
553 case PHB_LEM_FIR_OR_MASK:
554 phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val;
555 return;
556 case PHB_LEM_ERROR_AND_MASK:
557 phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val;
558 return;
559 case PHB_LEM_ERROR_OR_MASK:
560 phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val;
561 return;
562 case PHB_LEM_WOF:
563 val = 0;
564 break;
565 /* TODO: More regs ..., maybe create a table with masks... */
567 /* Read only registers */
568 case PHB_CPU_LOADSTORE_STATUS:
569 case PHB_ETU_ERR_SUMMARY:
570 case PHB_PHB4_GEN_CAP:
571 case PHB_PHB4_TCE_CAP:
572 case PHB_PHB4_IRQ_CAP:
573 case PHB_PHB4_EEH_CAP:
574 return;
577 /* Record whether it changed */
578 changed = phb->regs[off >> 3] != val;
580 /* Store in register cache first */
581 phb->regs[off >> 3] = val;
583 /* Handle side effects */
584 switch (off) {
585 case PHB_PHB4_CONFIG:
586 if (changed) {
587 pnv_phb4_update_all_msi_regions(phb);
589 break;
590 case PHB_M32_START_ADDR:
591 case PHB_M64_UPPER_BITS:
592 if (changed) {
593 pnv_phb4_check_all_mbt(phb);
595 break;
597 /* IODA table accesses */
598 case PHB_IODA_DATA0:
599 pnv_phb4_ioda_write(phb, val);
600 break;
602 /* RTC invalidation */
603 case PHB_RTC_INVALIDATE:
604 pnv_phb4_rtc_invalidate(phb, val);
605 break;
607 /* PHB Control (Affects XIVE source) */
608 case PHB_CTRLR:
609 case PHB_LSI_SOURCE_ID:
610 pnv_phb4_update_xsrc(phb);
611 break;
613 /* Silent simple writes */
614 case PHB_ASN_CMPM:
615 case PHB_CONFIG_ADDRESS:
616 case PHB_IODA_ADDR:
617 case PHB_TCE_KILL:
618 case PHB_TCE_SPEC_CTL:
619 case PHB_PEST_BAR:
620 case PHB_PELTV_BAR:
621 case PHB_RTT_BAR:
622 case PHB_LEM_FIR_ACCUM:
623 case PHB_LEM_ERROR_MASK:
624 case PHB_LEM_ACTION0:
625 case PHB_LEM_ACTION1:
626 case PHB_TCE_TAG_ENABLE:
627 case PHB_INT_NOTIFY_ADDR:
628 case PHB_INT_NOTIFY_INDEX:
629 case PHB_DMARD_SYNC:
630 break;
632 /* Noise on anything else */
633 default:
634 qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n",
635 off, val);
639 static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size)
641 PnvPHB4 *phb = PNV_PHB4(opaque);
642 uint64_t val;
644 if ((off & 0xfffc) == PHB_CONFIG_DATA) {
645 return pnv_phb4_config_read(phb, off & 0x3, size);
648 /* Special case RC configuration space */
649 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) {
650 return pnv_phb4_rc_config_read(phb, off & 0x7ff, size);
653 /* Other registers are 64-bit only */
654 if (size != 8 || off & 0x7) {
655 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d",
656 off, size);
657 return ~0ull;
660 /* Default read from cache */
661 val = phb->regs[off >> 3];
663 switch (off) {
664 case PHB_VERSION:
665 return phb->version;
667 /* Read-only */
668 case PHB_PHB4_GEN_CAP:
669 return 0xe4b8000000000000ull;
670 case PHB_PHB4_TCE_CAP:
671 return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull;
672 case PHB_PHB4_IRQ_CAP:
673 return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull;
674 case PHB_PHB4_EEH_CAP:
675 return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull;
677 /* IODA table accesses */
678 case PHB_IODA_DATA0:
679 return pnv_phb4_ioda_read(phb);
681 /* Link training always appears trained */
682 case PHB_PCIE_DLP_TRAIN_CTL:
683 /* TODO: Do something sensible with speed ? */
684 return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT;
686 /* DMA read sync: make it look like it's complete */
687 case PHB_DMARD_SYNC:
688 return PHB_DMARD_SYNC_COMPLETE;
690 /* Silent simple reads */
691 case PHB_LSI_SOURCE_ID:
692 case PHB_CPU_LOADSTORE_STATUS:
693 case PHB_ASN_CMPM:
694 case PHB_PHB4_CONFIG:
695 case PHB_M32_START_ADDR:
696 case PHB_CONFIG_ADDRESS:
697 case PHB_IODA_ADDR:
698 case PHB_RTC_INVALIDATE:
699 case PHB_TCE_KILL:
700 case PHB_TCE_SPEC_CTL:
701 case PHB_PEST_BAR:
702 case PHB_PELTV_BAR:
703 case PHB_RTT_BAR:
704 case PHB_M64_UPPER_BITS:
705 case PHB_CTRLR:
706 case PHB_LEM_FIR_ACCUM:
707 case PHB_LEM_ERROR_MASK:
708 case PHB_LEM_ACTION0:
709 case PHB_LEM_ACTION1:
710 case PHB_TCE_TAG_ENABLE:
711 case PHB_INT_NOTIFY_ADDR:
712 case PHB_INT_NOTIFY_INDEX:
713 case PHB_Q_DMA_R:
714 case PHB_ETU_ERR_SUMMARY:
715 break;
717 /* Noise on anything else */
718 default:
719 qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n",
720 off, val);
722 return val;
725 static const MemoryRegionOps pnv_phb4_reg_ops = {
726 .read = pnv_phb4_reg_read,
727 .write = pnv_phb4_reg_write,
728 .valid.min_access_size = 1,
729 .valid.max_access_size = 8,
730 .impl.min_access_size = 1,
731 .impl.max_access_size = 8,
732 .endianness = DEVICE_BIG_ENDIAN,
735 static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size)
737 PnvPHB4 *phb = PNV_PHB4(opaque);
738 uint32_t reg = addr >> 3;
739 uint64_t val;
740 hwaddr offset;
742 switch (reg) {
743 case PHB_SCOM_HV_IND_ADDR:
744 return phb->scom_hv_ind_addr_reg;
746 case PHB_SCOM_HV_IND_DATA:
747 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
748 phb_error(phb, "Invalid indirect address");
749 return ~0ull;
751 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
752 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
753 val = pnv_phb4_reg_read(phb, offset, size);
754 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
755 offset += size;
756 offset &= 0x3fff;
757 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
758 phb->scom_hv_ind_addr_reg,
759 offset);
761 return val;
762 case PHB_SCOM_ETU_LEM_FIR:
763 case PHB_SCOM_ETU_LEM_FIR_AND:
764 case PHB_SCOM_ETU_LEM_FIR_OR:
765 case PHB_SCOM_ETU_LEM_FIR_MSK:
766 case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
767 case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
768 case PHB_SCOM_ETU_LEM_ACT0:
769 case PHB_SCOM_ETU_LEM_ACT1:
770 case PHB_SCOM_ETU_LEM_WOF:
771 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
772 return pnv_phb4_reg_read(phb, offset, size);
773 case PHB_SCOM_ETU_PMON_CONFIG:
774 case PHB_SCOM_ETU_PMON_CTR0:
775 case PHB_SCOM_ETU_PMON_CTR1:
776 case PHB_SCOM_ETU_PMON_CTR2:
777 case PHB_SCOM_ETU_PMON_CTR3:
778 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
779 return pnv_phb4_reg_read(phb, offset, size);
781 default:
782 qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr);
783 return ~0ull;
787 static void pnv_phb4_xscom_write(void *opaque, hwaddr addr,
788 uint64_t val, unsigned size)
790 PnvPHB4 *phb = PNV_PHB4(opaque);
791 uint32_t reg = addr >> 3;
792 hwaddr offset;
794 switch (reg) {
795 case PHB_SCOM_HV_IND_ADDR:
796 phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff;
797 break;
798 case PHB_SCOM_HV_IND_DATA:
799 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) {
800 phb_error(phb, "Invalid indirect address");
801 break;
803 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8;
804 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg);
805 pnv_phb4_reg_write(phb, offset, val, size);
806 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) {
807 offset += size;
808 offset &= 0x3fff;
809 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR,
810 phb->scom_hv_ind_addr_reg,
811 offset);
813 break;
814 case PHB_SCOM_ETU_LEM_FIR:
815 case PHB_SCOM_ETU_LEM_FIR_AND:
816 case PHB_SCOM_ETU_LEM_FIR_OR:
817 case PHB_SCOM_ETU_LEM_FIR_MSK:
818 case PHB_SCOM_ETU_LEM_ERR_MSK_AND:
819 case PHB_SCOM_ETU_LEM_ERR_MSK_OR:
820 case PHB_SCOM_ETU_LEM_ACT0:
821 case PHB_SCOM_ETU_LEM_ACT1:
822 case PHB_SCOM_ETU_LEM_WOF:
823 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM;
824 pnv_phb4_reg_write(phb, offset, val, size);
825 break;
826 case PHB_SCOM_ETU_PMON_CONFIG:
827 case PHB_SCOM_ETU_PMON_CTR0:
828 case PHB_SCOM_ETU_PMON_CTR1:
829 case PHB_SCOM_ETU_PMON_CTR2:
830 case PHB_SCOM_ETU_PMON_CTR3:
831 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG;
832 pnv_phb4_reg_write(phb, offset, val, size);
833 break;
834 default:
835 qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx
836 "=%"PRIx64"\n", addr, val);
840 const MemoryRegionOps pnv_phb4_xscom_ops = {
841 .read = pnv_phb4_xscom_read,
842 .write = pnv_phb4_xscom_write,
843 .valid.min_access_size = 8,
844 .valid.max_access_size = 8,
845 .impl.min_access_size = 8,
846 .impl.max_access_size = 8,
847 .endianness = DEVICE_BIG_ENDIAN,
850 static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num)
852 /* Check that out properly ... */
853 return irq_num & 3;
856 static void pnv_phb4_set_irq(void *opaque, int irq_num, int level)
858 PnvPHB4 *phb = PNV_PHB4(opaque);
859 uint32_t lsi_base;
861 /* LSI only ... */
862 if (irq_num > 3) {
863 phb_error(phb, "IRQ %x is not an LSI", irq_num);
865 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]);
866 lsi_base <<= 3;
867 qemu_set_irq(phb->qirqs[lsi_base + irq_num], level);
870 static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds)
872 uint64_t rtt, addr;
873 uint16_t rte;
874 int bus_num;
875 int num_PEs;
877 /* Already resolved ? */
878 if (ds->pe_num != PHB_INVALID_PE) {
879 return true;
882 /* We need to lookup the RTT */
883 rtt = ds->phb->regs[PHB_RTT_BAR >> 3];
884 if (!(rtt & PHB_RTT_BAR_ENABLE)) {
885 phb_error(ds->phb, "DMA with RTT BAR disabled !");
886 /* Set error bits ? fence ? ... */
887 return false;
890 /* Read RTE */
891 bus_num = pci_bus_num(ds->bus);
892 addr = rtt & PHB_RTT_BASE_ADDRESS_MASK;
893 addr += 2 * PCI_BUILD_BDF(bus_num, ds->devfn);
894 if (dma_memory_read(&address_space_memory, addr, &rte, sizeof(rte))) {
895 phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr);
896 /* Set error bits ? fence ? ... */
897 return false;
899 rte = be16_to_cpu(rte);
901 /* Fail upon reading of invalid PE# */
902 num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1);
903 if (rte >= num_PEs) {
904 phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte);
905 rte &= num_PEs - 1;
907 ds->pe_num = rte;
908 return true;
911 static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr,
912 bool is_write, uint64_t tve,
913 IOMMUTLBEntry *tlb)
915 uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve);
916 int32_t lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve);
917 uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve);
918 uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve);
920 /* Invalid levels */
921 if (lev > 4) {
922 phb_error(ds->phb, "Invalid #levels in TVE %d", lev);
923 return;
926 /* Invalid entry */
927 if (tts == 0) {
928 phb_error(ds->phb, "Access to invalid TVE");
929 return;
932 /* IO Page Size of 0 means untranslated, else use TCEs */
933 if (tps == 0) {
934 /* TODO: Handle boundaries */
936 /* Use 4k pages like q35 ... for now */
937 tlb->iova = addr & 0xfffffffffffff000ull;
938 tlb->translated_addr = addr & 0x0003fffffffff000ull;
939 tlb->addr_mask = 0xfffull;
940 tlb->perm = IOMMU_RW;
941 } else {
942 uint32_t tce_shift, tbl_shift, sh;
943 uint64_t base, taddr, tce, tce_mask;
945 /* Address bits per bottom level TCE entry */
946 tce_shift = tps + 11;
948 /* Address bits per table level */
949 tbl_shift = tts + 8;
951 /* Top level table base address */
952 base = tta << 12;
954 /* Total shift to first level */
955 sh = tbl_shift * lev + tce_shift;
957 /* TODO: Limit to support IO page sizes */
959 /* TODO: Multi-level untested */
960 while ((lev--) >= 0) {
961 /* Grab the TCE address */
962 taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3);
963 if (dma_memory_read(&address_space_memory, taddr, &tce,
964 sizeof(tce))) {
965 phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr);
966 return;
968 tce = be64_to_cpu(tce);
970 /* Check permission for indirect TCE */
971 if ((lev >= 0) && !(tce & 3)) {
972 phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr);
973 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
974 is_write ? 'W' : 'R', tve);
975 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
976 tta, lev, tts, tps);
977 return;
979 sh -= tbl_shift;
980 base = tce & ~0xfffull;
983 /* We exit the loop with TCE being the final TCE */
984 tce_mask = ~((1ull << tce_shift) - 1);
985 tlb->iova = addr & tce_mask;
986 tlb->translated_addr = tce & tce_mask;
987 tlb->addr_mask = ~tce_mask;
988 tlb->perm = tce & 3;
989 if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) {
990 phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr);
991 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr,
992 is_write ? 'W' : 'R', tve);
993 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d",
994 tta, lev, tts, tps);
999 static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu,
1000 hwaddr addr,
1001 IOMMUAccessFlags flag,
1002 int iommu_idx)
1004 PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr);
1005 int tve_sel;
1006 uint64_t tve, cfg;
1007 IOMMUTLBEntry ret = {
1008 .target_as = &address_space_memory,
1009 .iova = addr,
1010 .translated_addr = 0,
1011 .addr_mask = ~(hwaddr)0,
1012 .perm = IOMMU_NONE,
1015 /* Resolve PE# */
1016 if (!pnv_phb4_resolve_pe(ds)) {
1017 phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1018 ds->bus, pci_bus_num(ds->bus), ds->devfn);
1019 return ret;
1022 /* Check top bits */
1023 switch (addr >> 60) {
1024 case 00:
1025 /* DMA or 32-bit MSI ? */
1026 cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3];
1027 if ((cfg & PHB_PHB4C_32BIT_MSI_EN) &&
1028 ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) {
1029 phb_error(ds->phb, "xlate on 32-bit MSI region");
1030 return ret;
1032 /* Choose TVE XXX Use PHB4 Control Register */
1033 tve_sel = (addr >> 59) & 1;
1034 tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel];
1035 pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret);
1036 break;
1037 case 01:
1038 phb_error(ds->phb, "xlate on 64-bit MSI region");
1039 break;
1040 default:
1041 phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr);
1043 return ret;
1046 #define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region"
1047 DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION,
1048 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION)
1050 static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass,
1051 void *data)
1053 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
1055 imrc->translate = pnv_phb4_translate_iommu;
1058 static const TypeInfo pnv_phb4_iommu_memory_region_info = {
1059 .parent = TYPE_IOMMU_MEMORY_REGION,
1060 .name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1061 .class_init = pnv_phb4_iommu_memory_region_class_init,
1065 * MSI/MSIX memory region implementation.
1066 * The handler handles both MSI and MSIX.
1068 static void pnv_phb4_msi_write(void *opaque, hwaddr addr,
1069 uint64_t data, unsigned size)
1071 PnvPhb4DMASpace *ds = opaque;
1072 PnvPHB4 *phb = ds->phb;
1074 uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f);
1076 /* Resolve PE# */
1077 if (!pnv_phb4_resolve_pe(ds)) {
1078 phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x",
1079 ds->bus, pci_bus_num(ds->bus), ds->devfn);
1080 return;
1083 /* TODO: Check it doesn't collide with LSIs */
1084 if (src >= phb->xsrc.nr_irqs) {
1085 phb_error(phb, "MSI %d out of bounds", src);
1086 return;
1089 /* TODO: check PE/MSI assignement */
1091 qemu_irq_pulse(phb->qirqs[src]);
1094 /* There is no .read as the read result is undefined by PCI spec */
1095 static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size)
1097 PnvPhb4DMASpace *ds = opaque;
1099 phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr);
1100 return -1;
1103 static const MemoryRegionOps pnv_phb4_msi_ops = {
1104 .read = pnv_phb4_msi_read,
1105 .write = pnv_phb4_msi_write,
1106 .endianness = DEVICE_LITTLE_ENDIAN
1109 static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn)
1111 PnvPhb4DMASpace *ds;
1113 QLIST_FOREACH(ds, &phb->dma_spaces, list) {
1114 if (ds->bus == bus && ds->devfn == devfn) {
1115 break;
1118 return ds;
1121 static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn)
1123 PnvPHB4 *phb = opaque;
1124 PnvPhb4DMASpace *ds;
1125 char name[32];
1127 ds = pnv_phb4_dma_find(phb, bus, devfn);
1129 if (ds == NULL) {
1130 ds = g_malloc0(sizeof(PnvPhb4DMASpace));
1131 ds->bus = bus;
1132 ds->devfn = devfn;
1133 ds->pe_num = PHB_INVALID_PE;
1134 ds->phb = phb;
1135 snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id,
1136 phb->phb_id);
1137 memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr),
1138 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION,
1139 OBJECT(phb), name, UINT64_MAX);
1140 address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr),
1141 name);
1142 memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1143 ds, "msi32", 0x10000);
1144 memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops,
1145 ds, "msi64", 0x100000);
1146 pnv_phb4_update_msi_regions(ds);
1148 QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list);
1150 return &ds->dma_as;
1153 static void pnv_phb4_instance_init(Object *obj)
1155 PnvPHB4 *phb = PNV_PHB4(obj);
1157 QLIST_INIT(&phb->dma_spaces);
1159 /* XIVE interrupt source object */
1160 object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE);
1162 /* Root Port */
1163 object_initialize_child(obj, "root", &phb->root, TYPE_PNV_PHB4_ROOT_PORT);
1165 qdev_prop_set_int32(DEVICE(&phb->root), "addr", PCI_DEVFN(0, 0));
1166 qdev_prop_set_bit(DEVICE(&phb->root), "multifunction", false);
1169 static void pnv_phb4_realize(DeviceState *dev, Error **errp)
1171 PnvPHB4 *phb = PNV_PHB4(dev);
1172 PCIHostState *pci = PCI_HOST_BRIDGE(dev);
1173 XiveSource *xsrc = &phb->xsrc;
1174 int nr_irqs;
1175 char name[32];
1177 assert(phb->stack);
1179 /* Set the "big_phb" flag */
1180 phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3;
1182 /* Controller Registers */
1183 snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id,
1184 phb->phb_id);
1185 memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb,
1186 name, 0x2000);
1189 * PHB4 doesn't support IO space. However, qemu gets very upset if
1190 * we don't have an IO region to anchor IO BARs onto so we just
1191 * initialize one which we never hook up to anything
1194 snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id,
1195 phb->phb_id);
1196 memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000);
1198 snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id,
1199 phb->phb_id);
1200 memory_region_init(&phb->pci_mmio, OBJECT(phb), name,
1201 PCI_MMIO_TOTAL_SIZE);
1203 pci->bus = pci_register_root_bus(dev, "root-bus",
1204 pnv_phb4_set_irq, pnv_phb4_map_irq, phb,
1205 &phb->pci_mmio, &phb->pci_io,
1206 0, 4, TYPE_PNV_PHB4_ROOT_BUS);
1207 pci_setup_iommu(pci->bus, pnv_phb4_dma_iommu, phb);
1209 /* Add a single Root port */
1210 qdev_prop_set_uint8(DEVICE(&phb->root), "chassis", phb->chip_id);
1211 qdev_prop_set_uint16(DEVICE(&phb->root), "slot", phb->phb_id);
1212 qdev_realize(DEVICE(&phb->root), BUS(pci->bus), &error_fatal);
1214 /* Setup XIVE Source */
1215 if (phb->big_phb) {
1216 nr_irqs = PNV_PHB4_MAX_INTs;
1217 } else {
1218 nr_irqs = PNV_PHB4_MAX_INTs >> 1;
1220 object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal);
1221 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal);
1222 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
1223 return;
1226 pnv_phb4_update_xsrc(phb);
1228 phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
1231 static void pnv_phb4_reset(DeviceState *dev)
1233 PnvPHB4 *phb = PNV_PHB4(dev);
1234 PCIDevice *root_dev = PCI_DEVICE(&phb->root);
1237 * Configure PCI device id at reset using a property.
1239 pci_config_set_vendor_id(root_dev->config, PCI_VENDOR_ID_IBM);
1240 pci_config_set_device_id(root_dev->config, phb->device_id);
1243 static const char *pnv_phb4_root_bus_path(PCIHostState *host_bridge,
1244 PCIBus *rootbus)
1246 PnvPHB4 *phb = PNV_PHB4(host_bridge);
1248 snprintf(phb->bus_path, sizeof(phb->bus_path), "00%02x:%02x",
1249 phb->chip_id, phb->phb_id);
1250 return phb->bus_path;
1253 static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno)
1255 PnvPHB4 *phb = PNV_PHB4(xf);
1256 uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3];
1257 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1258 uint64_t data = XIVE_TRIGGER_PQ | offset | srcno;
1259 MemTxResult result;
1261 trace_pnv_phb4_xive_notify(notif_port, data);
1263 address_space_stq_be(&address_space_memory, notif_port, data,
1264 MEMTXATTRS_UNSPECIFIED, &result);
1265 if (result != MEMTX_OK) {
1266 phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port);
1267 return;
1271 static Property pnv_phb4_properties[] = {
1272 DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0),
1273 DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0),
1274 DEFINE_PROP_UINT64("version", PnvPHB4, version, 0),
1275 DEFINE_PROP_UINT16("device-id", PnvPHB4, device_id, 0),
1276 DEFINE_PROP_LINK("stack", PnvPHB4, stack, TYPE_PNV_PHB4_PEC_STACK,
1277 PnvPhb4PecStack *),
1278 DEFINE_PROP_END_OF_LIST(),
1281 static void pnv_phb4_class_init(ObjectClass *klass, void *data)
1283 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1284 DeviceClass *dc = DEVICE_CLASS(klass);
1285 XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);
1287 hc->root_bus_path = pnv_phb4_root_bus_path;
1288 dc->realize = pnv_phb4_realize;
1289 device_class_set_props(dc, pnv_phb4_properties);
1290 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1291 dc->user_creatable = false;
1292 dc->reset = pnv_phb4_reset;
1294 xfc->notify = pnv_phb4_xive_notify;
1297 static const TypeInfo pnv_phb4_type_info = {
1298 .name = TYPE_PNV_PHB4,
1299 .parent = TYPE_PCIE_HOST_BRIDGE,
1300 .instance_init = pnv_phb4_instance_init,
1301 .instance_size = sizeof(PnvPHB4),
1302 .class_init = pnv_phb4_class_init,
1303 .interfaces = (InterfaceInfo[]) {
1304 { TYPE_XIVE_NOTIFIER },
1305 { },
1309 static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data)
1311 BusClass *k = BUS_CLASS(klass);
1314 * PHB4 has only a single root complex. Enforce the limit on the
1315 * parent bus
1317 k->max_dev = 1;
1320 static const TypeInfo pnv_phb4_root_bus_info = {
1321 .name = TYPE_PNV_PHB4_ROOT_BUS,
1322 .parent = TYPE_PCIE_BUS,
1323 .class_init = pnv_phb4_root_bus_class_init,
1324 .interfaces = (InterfaceInfo[]) {
1325 { INTERFACE_PCIE_DEVICE },
1330 static void pnv_phb4_root_port_reset(DeviceState *dev)
1332 PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
1333 PCIDevice *d = PCI_DEVICE(dev);
1334 uint8_t *conf = d->config;
1336 rpc->parent_reset(dev);
1338 pci_byte_test_and_set_mask(conf + PCI_IO_BASE,
1339 PCI_IO_RANGE_MASK & 0xff);
1340 pci_byte_test_and_clear_mask(conf + PCI_IO_LIMIT,
1341 PCI_IO_RANGE_MASK & 0xff);
1342 pci_set_word(conf + PCI_MEMORY_BASE, 0);
1343 pci_set_word(conf + PCI_MEMORY_LIMIT, 0xfff0);
1344 pci_set_word(conf + PCI_PREF_MEMORY_BASE, 0x1);
1345 pci_set_word(conf + PCI_PREF_MEMORY_LIMIT, 0xfff1);
1346 pci_set_long(conf + PCI_PREF_BASE_UPPER32, 0x1); /* Hack */
1347 pci_set_long(conf + PCI_PREF_LIMIT_UPPER32, 0xffffffff);
1350 static void pnv_phb4_root_port_realize(DeviceState *dev, Error **errp)
1352 PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev);
1353 Error *local_err = NULL;
1355 rpc->parent_realize(dev, &local_err);
1356 if (local_err) {
1357 error_propagate(errp, local_err);
1358 return;
1362 static void pnv_phb4_root_port_class_init(ObjectClass *klass, void *data)
1364 DeviceClass *dc = DEVICE_CLASS(klass);
1365 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1366 PCIERootPortClass *rpc = PCIE_ROOT_PORT_CLASS(klass);
1368 dc->desc = "IBM PHB4 PCIE Root Port";
1369 dc->user_creatable = false;
1371 device_class_set_parent_realize(dc, pnv_phb4_root_port_realize,
1372 &rpc->parent_realize);
1373 device_class_set_parent_reset(dc, pnv_phb4_root_port_reset,
1374 &rpc->parent_reset);
1376 k->vendor_id = PCI_VENDOR_ID_IBM;
1377 k->device_id = PNV_PHB4_DEVICE_ID;
1378 k->revision = 0;
1380 rpc->exp_offset = 0x48;
1381 rpc->aer_offset = 0x100;
1383 dc->reset = &pnv_phb4_root_port_reset;
1386 static const TypeInfo pnv_phb4_root_port_info = {
1387 .name = TYPE_PNV_PHB4_ROOT_PORT,
1388 .parent = TYPE_PCIE_ROOT_PORT,
1389 .instance_size = sizeof(PnvPHB4RootPort),
1390 .class_init = pnv_phb4_root_port_class_init,
1393 static void pnv_phb4_register_types(void)
1395 type_register_static(&pnv_phb4_root_bus_info);
1396 type_register_static(&pnv_phb4_root_port_info);
1397 type_register_static(&pnv_phb4_type_info);
1398 type_register_static(&pnv_phb4_iommu_memory_region_info);
1401 type_init(pnv_phb4_register_types);
1403 void pnv_phb4_update_regions(PnvPhb4PecStack *stack)
1405 PnvPHB4 *phb = &stack->phb;
1407 /* Unmap first always */
1408 if (memory_region_is_mapped(&phb->mr_regs)) {
1409 memory_region_del_subregion(&stack->phbbar, &phb->mr_regs);
1411 if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) {
1412 memory_region_del_subregion(&stack->intbar, &phb->xsrc.esb_mmio);
1415 /* Map registers if enabled */
1416 if (memory_region_is_mapped(&stack->phbbar)) {
1417 memory_region_add_subregion(&stack->phbbar, 0, &phb->mr_regs);
1420 /* Map ESB if enabled */
1421 if (memory_region_is_mapped(&stack->intbar)) {
1422 memory_region_add_subregion(&stack->intbar, 0, &phb->xsrc.esb_mmio);
1425 /* Check/update m32 */
1426 pnv_phb4_check_all_mbt(phb);
1429 void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon)
1431 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3];
1433 monitor_printf(mon, "PHB4[%x:%x] Source %08x .. %08x\n",
1434 phb->chip_id, phb->phb_id,
1435 offset, offset + phb->xsrc.nr_irqs - 1);
1436 xive_source_pic_print_info(&phb->xsrc, 0, mon);