2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/runstate.h"
37 #include "migration/vmstate.h"
40 static void cpu_ppc_tb_stop (CPUPPCState
*env
);
41 static void cpu_ppc_tb_start (CPUPPCState
*env
);
43 void ppc_set_irq(PowerPCCPU
*cpu
, int n_IRQ
, int level
)
45 CPUState
*cs
= CPU(cpu
);
46 CPUPPCState
*env
= &cpu
->env
;
47 unsigned int old_pending
;
50 /* We may already have the BQL if coming from the reset path */
51 if (!qemu_mutex_iothread_locked()) {
53 qemu_mutex_lock_iothread();
56 old_pending
= env
->pending_interrupts
;
59 env
->pending_interrupts
|= 1 << n_IRQ
;
60 cpu_interrupt(cs
, CPU_INTERRUPT_HARD
);
62 env
->pending_interrupts
&= ~(1 << n_IRQ
);
63 if (env
->pending_interrupts
== 0) {
64 cpu_reset_interrupt(cs
, CPU_INTERRUPT_HARD
);
68 if (old_pending
!= env
->pending_interrupts
) {
69 kvmppc_set_interrupt(cpu
, n_IRQ
, level
);
73 trace_ppc_irq_set_exit(env
, n_IRQ
, level
, env
->pending_interrupts
,
74 CPU(cpu
)->interrupt_request
);
77 qemu_mutex_unlock_iothread();
81 /* PowerPC 6xx / 7xx internal IRQ controller */
82 static void ppc6xx_set_irq(void *opaque
, int pin
, int level
)
84 PowerPCCPU
*cpu
= opaque
;
85 CPUPPCState
*env
= &cpu
->env
;
88 trace_ppc_irq_set(env
, pin
, level
);
90 cur_level
= (env
->irq_input_state
>> pin
) & 1;
91 /* Don't generate spurious events */
92 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
93 CPUState
*cs
= CPU(cpu
);
96 case PPC6xx_INPUT_TBEN
:
97 /* Level sensitive - active high */
98 trace_ppc_irq_set_state("time base", level
);
100 cpu_ppc_tb_start(env
);
102 cpu_ppc_tb_stop(env
);
105 case PPC6xx_INPUT_INT
:
106 /* Level sensitive - active high */
107 trace_ppc_irq_set_state("external IRQ", level
);
108 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
110 case PPC6xx_INPUT_SMI
:
111 /* Level sensitive - active high */
112 trace_ppc_irq_set_state("SMI IRQ", level
);
113 ppc_set_irq(cpu
, PPC_INTERRUPT_SMI
, level
);
115 case PPC6xx_INPUT_MCP
:
116 /* Negative edge sensitive */
117 /* XXX: TODO: actual reaction may depends on HID0 status
118 * 603/604/740/750: check HID0[EMCP]
120 if (cur_level
== 1 && level
== 0) {
121 trace_ppc_irq_set_state("machine check", 1);
122 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
125 case PPC6xx_INPUT_CKSTP_IN
:
126 /* Level sensitive - active low */
127 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
128 /* XXX: Note that the only way to restart the CPU is to reset it */
130 trace_ppc_irq_cpu("stop");
134 case PPC6xx_INPUT_HRESET
:
135 /* Level sensitive - active low */
137 trace_ppc_irq_reset("CPU");
138 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
141 case PPC6xx_INPUT_SRESET
:
142 trace_ppc_irq_set_state("RESET IRQ", level
);
143 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
146 g_assert_not_reached();
149 env
->irq_input_state
|= 1 << pin
;
151 env
->irq_input_state
&= ~(1 << pin
);
155 void ppc6xx_irq_init(PowerPCCPU
*cpu
)
157 CPUPPCState
*env
= &cpu
->env
;
159 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc6xx_set_irq
, cpu
,
163 #if defined(TARGET_PPC64)
164 /* PowerPC 970 internal IRQ controller */
165 static void ppc970_set_irq(void *opaque
, int pin
, int level
)
167 PowerPCCPU
*cpu
= opaque
;
168 CPUPPCState
*env
= &cpu
->env
;
171 trace_ppc_irq_set(env
, pin
, level
);
173 cur_level
= (env
->irq_input_state
>> pin
) & 1;
174 /* Don't generate spurious events */
175 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
176 CPUState
*cs
= CPU(cpu
);
179 case PPC970_INPUT_INT
:
180 /* Level sensitive - active high */
181 trace_ppc_irq_set_state("external IRQ", level
);
182 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
184 case PPC970_INPUT_THINT
:
185 /* Level sensitive - active high */
186 trace_ppc_irq_set_state("SMI IRQ", level
);
187 ppc_set_irq(cpu
, PPC_INTERRUPT_THERM
, level
);
189 case PPC970_INPUT_MCP
:
190 /* Negative edge sensitive */
191 /* XXX: TODO: actual reaction may depends on HID0 status
192 * 603/604/740/750: check HID0[EMCP]
194 if (cur_level
== 1 && level
== 0) {
195 trace_ppc_irq_set_state("machine check", 1);
196 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
199 case PPC970_INPUT_CKSTP
:
200 /* Level sensitive - active low */
201 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
203 trace_ppc_irq_cpu("stop");
206 trace_ppc_irq_cpu("restart");
211 case PPC970_INPUT_HRESET
:
212 /* Level sensitive - active low */
214 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
217 case PPC970_INPUT_SRESET
:
218 trace_ppc_irq_set_state("RESET IRQ", level
);
219 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
221 case PPC970_INPUT_TBEN
:
222 trace_ppc_irq_set_state("TBEN IRQ", level
);
226 g_assert_not_reached();
229 env
->irq_input_state
|= 1 << pin
;
231 env
->irq_input_state
&= ~(1 << pin
);
235 void ppc970_irq_init(PowerPCCPU
*cpu
)
237 CPUPPCState
*env
= &cpu
->env
;
239 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc970_set_irq
, cpu
,
243 /* POWER7 internal IRQ controller */
244 static void power7_set_irq(void *opaque
, int pin
, int level
)
246 PowerPCCPU
*cpu
= opaque
;
248 trace_ppc_irq_set(&cpu
->env
, pin
, level
);
251 case POWER7_INPUT_INT
:
252 /* Level sensitive - active high */
253 trace_ppc_irq_set_state("external IRQ", level
);
254 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
257 g_assert_not_reached();
261 void ppcPOWER7_irq_init(PowerPCCPU
*cpu
)
263 CPUPPCState
*env
= &cpu
->env
;
265 env
->irq_inputs
= (void **)qemu_allocate_irqs(&power7_set_irq
, cpu
,
269 /* POWER9 internal IRQ controller */
270 static void power9_set_irq(void *opaque
, int pin
, int level
)
272 PowerPCCPU
*cpu
= opaque
;
274 trace_ppc_irq_set(&cpu
->env
, pin
, level
);
277 case POWER9_INPUT_INT
:
278 /* Level sensitive - active high */
279 trace_ppc_irq_set_state("external IRQ", level
);
280 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
282 case POWER9_INPUT_HINT
:
283 /* Level sensitive - active high */
284 trace_ppc_irq_set_state("HV external IRQ", level
);
285 ppc_set_irq(cpu
, PPC_INTERRUPT_HVIRT
, level
);
288 g_assert_not_reached();
293 void ppcPOWER9_irq_init(PowerPCCPU
*cpu
)
295 CPUPPCState
*env
= &cpu
->env
;
297 env
->irq_inputs
= (void **)qemu_allocate_irqs(&power9_set_irq
, cpu
,
300 #endif /* defined(TARGET_PPC64) */
302 void ppc40x_core_reset(PowerPCCPU
*cpu
)
304 CPUPPCState
*env
= &cpu
->env
;
307 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC core\n");
308 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_RESET
);
309 dbsr
= env
->spr
[SPR_40x_DBSR
];
312 env
->spr
[SPR_40x_DBSR
] = dbsr
;
315 void ppc40x_chip_reset(PowerPCCPU
*cpu
)
317 CPUPPCState
*env
= &cpu
->env
;
320 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC chip\n");
321 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_RESET
);
322 /* XXX: TODO reset all internal peripherals */
323 dbsr
= env
->spr
[SPR_40x_DBSR
];
326 env
->spr
[SPR_40x_DBSR
] = dbsr
;
329 void ppc40x_system_reset(PowerPCCPU
*cpu
)
331 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC system\n");
332 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
335 void store_40x_dbcr0(CPUPPCState
*env
, uint32_t val
)
337 PowerPCCPU
*cpu
= env_archcpu(env
);
339 switch ((val
>> 28) & 0x3) {
345 ppc40x_core_reset(cpu
);
349 ppc40x_chip_reset(cpu
);
353 ppc40x_system_reset(cpu
);
358 /* PowerPC 40x internal IRQ controller */
359 static void ppc40x_set_irq(void *opaque
, int pin
, int level
)
361 PowerPCCPU
*cpu
= opaque
;
362 CPUPPCState
*env
= &cpu
->env
;
365 trace_ppc_irq_set(env
, pin
, level
);
367 cur_level
= (env
->irq_input_state
>> pin
) & 1;
368 /* Don't generate spurious events */
369 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
370 CPUState
*cs
= CPU(cpu
);
373 case PPC40x_INPUT_RESET_SYS
:
375 trace_ppc_irq_reset("system");
376 ppc40x_system_reset(cpu
);
379 case PPC40x_INPUT_RESET_CHIP
:
381 trace_ppc_irq_reset("chip");
382 ppc40x_chip_reset(cpu
);
385 case PPC40x_INPUT_RESET_CORE
:
386 /* XXX: TODO: update DBSR[MRR] */
388 trace_ppc_irq_reset("core");
389 ppc40x_core_reset(cpu
);
392 case PPC40x_INPUT_CINT
:
393 /* Level sensitive - active high */
394 trace_ppc_irq_set_state("critical IRQ", level
);
395 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
397 case PPC40x_INPUT_INT
:
398 /* Level sensitive - active high */
399 trace_ppc_irq_set_state("external IRQ", level
);
400 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
402 case PPC40x_INPUT_HALT
:
403 /* Level sensitive - active low */
405 trace_ppc_irq_cpu("stop");
408 trace_ppc_irq_cpu("restart");
413 case PPC40x_INPUT_DEBUG
:
414 /* Level sensitive - active high */
415 trace_ppc_irq_set_state("debug pin", level
);
416 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
419 g_assert_not_reached();
422 env
->irq_input_state
|= 1 << pin
;
424 env
->irq_input_state
&= ~(1 << pin
);
428 void ppc40x_irq_init(PowerPCCPU
*cpu
)
430 CPUPPCState
*env
= &cpu
->env
;
432 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc40x_set_irq
,
433 cpu
, PPC40x_INPUT_NB
);
436 /* PowerPC E500 internal IRQ controller */
437 static void ppce500_set_irq(void *opaque
, int pin
, int level
)
439 PowerPCCPU
*cpu
= opaque
;
440 CPUPPCState
*env
= &cpu
->env
;
443 trace_ppc_irq_set(env
, pin
, level
);
445 cur_level
= (env
->irq_input_state
>> pin
) & 1;
446 /* Don't generate spurious events */
447 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
449 case PPCE500_INPUT_MCK
:
451 trace_ppc_irq_reset("system");
452 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
455 case PPCE500_INPUT_RESET_CORE
:
457 trace_ppc_irq_reset("core");
458 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, level
);
461 case PPCE500_INPUT_CINT
:
462 /* Level sensitive - active high */
463 trace_ppc_irq_set_state("critical IRQ", level
);
464 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
466 case PPCE500_INPUT_INT
:
467 /* Level sensitive - active high */
468 trace_ppc_irq_set_state("core IRQ", level
);
469 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
471 case PPCE500_INPUT_DEBUG
:
472 /* Level sensitive - active high */
473 trace_ppc_irq_set_state("debug pin", level
);
474 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
477 g_assert_not_reached();
480 env
->irq_input_state
|= 1 << pin
;
482 env
->irq_input_state
&= ~(1 << pin
);
486 void ppce500_irq_init(PowerPCCPU
*cpu
)
488 CPUPPCState
*env
= &cpu
->env
;
490 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppce500_set_irq
,
491 cpu
, PPCE500_INPUT_NB
);
494 /* Enable or Disable the E500 EPR capability */
495 void ppce500_set_mpic_proxy(bool enabled
)
500 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
502 cpu
->env
.mpic_proxy
= enabled
;
504 kvmppc_set_mpic_proxy(cpu
, enabled
);
509 /*****************************************************************************/
510 /* PowerPC time base and decrementer emulation */
512 uint64_t cpu_ppc_get_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
, int64_t tb_offset
)
514 /* TB time in tb periods */
515 return muldiv64(vmclk
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
) + tb_offset
;
518 uint64_t cpu_ppc_load_tbl (CPUPPCState
*env
)
520 ppc_tb_t
*tb_env
= env
->tb_env
;
524 return env
->spr
[SPR_TBL
];
527 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
528 trace_ppc_tb_load(tb
);
533 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState
*env
)
535 ppc_tb_t
*tb_env
= env
->tb_env
;
538 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
539 trace_ppc_tb_load(tb
);
544 uint32_t cpu_ppc_load_tbu (CPUPPCState
*env
)
547 return env
->spr
[SPR_TBU
];
550 return _cpu_ppc_load_tbu(env
);
553 static inline void cpu_ppc_store_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
,
554 int64_t *tb_offsetp
, uint64_t value
)
556 *tb_offsetp
= value
-
557 muldiv64(vmclk
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
);
559 trace_ppc_tb_store(value
, *tb_offsetp
);
562 void cpu_ppc_store_tbl (CPUPPCState
*env
, uint32_t value
)
564 ppc_tb_t
*tb_env
= env
->tb_env
;
567 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
568 tb
&= 0xFFFFFFFF00000000ULL
;
569 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
570 &tb_env
->tb_offset
, tb
| (uint64_t)value
);
573 static inline void _cpu_ppc_store_tbu(CPUPPCState
*env
, uint32_t value
)
575 ppc_tb_t
*tb_env
= env
->tb_env
;
578 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
579 tb
&= 0x00000000FFFFFFFFULL
;
580 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
581 &tb_env
->tb_offset
, ((uint64_t)value
<< 32) | tb
);
584 void cpu_ppc_store_tbu (CPUPPCState
*env
, uint32_t value
)
586 _cpu_ppc_store_tbu(env
, value
);
589 uint64_t cpu_ppc_load_atbl (CPUPPCState
*env
)
591 ppc_tb_t
*tb_env
= env
->tb_env
;
594 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
595 trace_ppc_tb_load(tb
);
600 uint32_t cpu_ppc_load_atbu (CPUPPCState
*env
)
602 ppc_tb_t
*tb_env
= env
->tb_env
;
605 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
606 trace_ppc_tb_load(tb
);
611 void cpu_ppc_store_atbl (CPUPPCState
*env
, uint32_t value
)
613 ppc_tb_t
*tb_env
= env
->tb_env
;
616 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
617 tb
&= 0xFFFFFFFF00000000ULL
;
618 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
619 &tb_env
->atb_offset
, tb
| (uint64_t)value
);
622 void cpu_ppc_store_atbu (CPUPPCState
*env
, uint32_t value
)
624 ppc_tb_t
*tb_env
= env
->tb_env
;
627 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
628 tb
&= 0x00000000FFFFFFFFULL
;
629 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
630 &tb_env
->atb_offset
, ((uint64_t)value
<< 32) | tb
);
633 uint64_t cpu_ppc_load_vtb(CPUPPCState
*env
)
635 ppc_tb_t
*tb_env
= env
->tb_env
;
637 return cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
641 void cpu_ppc_store_vtb(CPUPPCState
*env
, uint64_t value
)
643 ppc_tb_t
*tb_env
= env
->tb_env
;
645 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
646 &tb_env
->vtb_offset
, value
);
649 void cpu_ppc_store_tbu40(CPUPPCState
*env
, uint64_t value
)
651 ppc_tb_t
*tb_env
= env
->tb_env
;
654 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
657 tb
|= (value
& ~0xFFFFFFUL
);
658 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
659 &tb_env
->tb_offset
, tb
);
662 static void cpu_ppc_tb_stop (CPUPPCState
*env
)
664 ppc_tb_t
*tb_env
= env
->tb_env
;
665 uint64_t tb
, atb
, vmclk
;
667 /* If the time base is already frozen, do nothing */
668 if (tb_env
->tb_freq
!= 0) {
669 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
670 /* Get the time base */
671 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
672 /* Get the alternate time base */
673 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
674 /* Store the time base value (ie compute the current offset) */
675 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
676 /* Store the alternate time base value (compute the current offset) */
677 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
678 /* Set the time base frequency to zero */
680 /* Now, the time bases are frozen to tb_offset / atb_offset value */
684 static void cpu_ppc_tb_start (CPUPPCState
*env
)
686 ppc_tb_t
*tb_env
= env
->tb_env
;
687 uint64_t tb
, atb
, vmclk
;
689 /* If the time base is not frozen, do nothing */
690 if (tb_env
->tb_freq
== 0) {
691 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
692 /* Get the time base from tb_offset */
693 tb
= tb_env
->tb_offset
;
694 /* Get the alternate time base from atb_offset */
695 atb
= tb_env
->atb_offset
;
696 /* Restore the tb frequency from the decrementer frequency */
697 tb_env
->tb_freq
= tb_env
->decr_freq
;
698 /* Store the time base value */
699 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
700 /* Store the alternate time base value */
701 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
705 bool ppc_decr_clear_on_delivery(CPUPPCState
*env
)
707 ppc_tb_t
*tb_env
= env
->tb_env
;
708 int flags
= PPC_DECR_UNDERFLOW_TRIGGERED
| PPC_DECR_UNDERFLOW_LEVEL
;
709 return ((tb_env
->flags
& flags
) == PPC_DECR_UNDERFLOW_TRIGGERED
);
712 static inline int64_t _cpu_ppc_load_decr(CPUPPCState
*env
, uint64_t next
)
714 ppc_tb_t
*tb_env
= env
->tb_env
;
717 diff
= next
- qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
719 decr
= muldiv64(diff
, tb_env
->decr_freq
, NANOSECONDS_PER_SECOND
);
720 } else if (tb_env
->flags
& PPC_TIMER_BOOKE
) {
723 decr
= -muldiv64(-diff
, tb_env
->decr_freq
, NANOSECONDS_PER_SECOND
);
725 trace_ppc_decr_load(decr
);
730 target_ulong
cpu_ppc_load_decr(CPUPPCState
*env
)
732 ppc_tb_t
*tb_env
= env
->tb_env
;
736 return env
->spr
[SPR_DECR
];
739 decr
= _cpu_ppc_load_decr(env
, tb_env
->decr_next
);
742 * If large decrementer is enabled then the decrementer is signed extened
743 * to 64 bits, otherwise it is a 32 bit value.
745 if (env
->spr
[SPR_LPCR
] & LPCR_LD
) {
748 return (uint32_t) decr
;
751 target_ulong
cpu_ppc_load_hdecr(CPUPPCState
*env
)
753 PowerPCCPU
*cpu
= env_archcpu(env
);
754 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
755 ppc_tb_t
*tb_env
= env
->tb_env
;
758 hdecr
= _cpu_ppc_load_decr(env
, tb_env
->hdecr_next
);
761 * If we have a large decrementer (POWER9 or later) then hdecr is sign
762 * extended to 64 bits, otherwise it is 32 bits.
764 if (pcc
->lrg_decr_bits
> 32) {
767 return (uint32_t) hdecr
;
770 uint64_t cpu_ppc_load_purr (CPUPPCState
*env
)
772 ppc_tb_t
*tb_env
= env
->tb_env
;
774 return cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
775 tb_env
->purr_offset
);
778 /* When decrementer expires,
779 * all we need to do is generate or queue a CPU exception
781 static inline void cpu_ppc_decr_excp(PowerPCCPU
*cpu
)
784 trace_ppc_decr_excp("raise");
785 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 1);
788 static inline void cpu_ppc_decr_lower(PowerPCCPU
*cpu
)
790 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 0);
793 static inline void cpu_ppc_hdecr_excp(PowerPCCPU
*cpu
)
795 CPUPPCState
*env
= &cpu
->env
;
798 trace_ppc_decr_excp("raise HV");
800 /* The architecture specifies that we don't deliver HDEC
801 * interrupts in a PM state. Not only they don't cause a
802 * wakeup but they also get effectively discarded.
804 if (!env
->resume_as_sreset
) {
805 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 1);
809 static inline void cpu_ppc_hdecr_lower(PowerPCCPU
*cpu
)
811 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 0);
814 static void __cpu_ppc_store_decr(PowerPCCPU
*cpu
, uint64_t *nextp
,
816 void (*raise_excp
)(void *),
817 void (*lower_excp
)(PowerPCCPU
*),
818 target_ulong decr
, target_ulong value
,
821 CPUPPCState
*env
= &cpu
->env
;
822 ppc_tb_t
*tb_env
= env
->tb_env
;
824 int64_t signed_value
;
827 /* Truncate value to decr_width and sign extend for simplicity */
828 signed_value
= sextract64(value
, 0, nr_bits
);
829 signed_decr
= sextract64(decr
, 0, nr_bits
);
831 trace_ppc_decr_store(nr_bits
, decr
, value
);
834 /* KVM handles decrementer exceptions, we don't need our own timer */
839 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
842 * If we get a really small DEC value, we can assume that by the time we
843 * handled it we should inject an interrupt already.
845 * On MSB level based DEC implementations the MSB always means the interrupt
846 * is pending, so raise it on those.
848 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
849 * an edge interrupt, so raise it here too.
851 if ((signed_value
< 3) ||
852 ((tb_env
->flags
& PPC_DECR_UNDERFLOW_LEVEL
) && signed_value
< 0) ||
853 ((tb_env
->flags
& PPC_DECR_UNDERFLOW_TRIGGERED
) && signed_value
< 0
854 && signed_decr
>= 0)) {
859 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
860 if (signed_value
>= 0 && (tb_env
->flags
& PPC_DECR_UNDERFLOW_LEVEL
)) {
864 /* Calculate the next timer event */
865 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
866 next
= now
+ muldiv64(value
, NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
870 timer_mod(timer
, next
);
873 static inline void _cpu_ppc_store_decr(PowerPCCPU
*cpu
, target_ulong decr
,
874 target_ulong value
, int nr_bits
)
876 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
878 __cpu_ppc_store_decr(cpu
, &tb_env
->decr_next
, tb_env
->decr_timer
,
879 tb_env
->decr_timer
->cb
, &cpu_ppc_decr_lower
, decr
,
883 void cpu_ppc_store_decr(CPUPPCState
*env
, target_ulong value
)
885 PowerPCCPU
*cpu
= env_archcpu(env
);
886 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
889 if (env
->spr
[SPR_LPCR
] & LPCR_LD
) {
890 nr_bits
= pcc
->lrg_decr_bits
;
893 _cpu_ppc_store_decr(cpu
, cpu_ppc_load_decr(env
), value
, nr_bits
);
896 static void cpu_ppc_decr_cb(void *opaque
)
898 PowerPCCPU
*cpu
= opaque
;
900 cpu_ppc_decr_excp(cpu
);
903 static inline void _cpu_ppc_store_hdecr(PowerPCCPU
*cpu
, target_ulong hdecr
,
904 target_ulong value
, int nr_bits
)
906 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
908 if (tb_env
->hdecr_timer
!= NULL
) {
909 __cpu_ppc_store_decr(cpu
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
910 tb_env
->hdecr_timer
->cb
, &cpu_ppc_hdecr_lower
,
911 hdecr
, value
, nr_bits
);
915 void cpu_ppc_store_hdecr(CPUPPCState
*env
, target_ulong value
)
917 PowerPCCPU
*cpu
= env_archcpu(env
);
918 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
920 _cpu_ppc_store_hdecr(cpu
, cpu_ppc_load_hdecr(env
), value
,
924 static void cpu_ppc_hdecr_cb(void *opaque
)
926 PowerPCCPU
*cpu
= opaque
;
928 cpu_ppc_hdecr_excp(cpu
);
931 void cpu_ppc_store_purr(CPUPPCState
*env
, uint64_t value
)
933 ppc_tb_t
*tb_env
= env
->tb_env
;
935 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
936 &tb_env
->purr_offset
, value
);
939 static void cpu_ppc_set_tb_clk (void *opaque
, uint32_t freq
)
941 CPUPPCState
*env
= opaque
;
942 PowerPCCPU
*cpu
= env_archcpu(env
);
943 ppc_tb_t
*tb_env
= env
->tb_env
;
945 tb_env
->tb_freq
= freq
;
946 tb_env
->decr_freq
= freq
;
947 /* There is a bug in Linux 2.4 kernels:
948 * if a decrementer exception is pending when it enables msr_ee at startup,
949 * it's not ready to handle it...
951 _cpu_ppc_store_decr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF, 32);
952 _cpu_ppc_store_hdecr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF, 32);
953 cpu_ppc_store_purr(env
, 0x0000000000000000ULL
);
956 static void timebase_save(PPCTimebase
*tb
)
958 uint64_t ticks
= cpu_get_host_ticks();
959 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
961 if (!first_ppc_cpu
->env
.tb_env
) {
962 error_report("No timebase object");
966 /* not used anymore, we keep it for compatibility */
967 tb
->time_of_the_day_ns
= qemu_clock_get_ns(QEMU_CLOCK_HOST
);
969 * tb_offset is only expected to be changed by QEMU so
970 * there is no need to update it from KVM here
972 tb
->guest_timebase
= ticks
+ first_ppc_cpu
->env
.tb_env
->tb_offset
;
974 tb
->runstate_paused
=
975 runstate_check(RUN_STATE_PAUSED
) || runstate_check(RUN_STATE_SAVE_VM
);
978 static void timebase_load(PPCTimebase
*tb
)
981 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
982 int64_t tb_off_adj
, tb_off
;
985 if (!first_ppc_cpu
->env
.tb_env
) {
986 error_report("No timebase object");
990 freq
= first_ppc_cpu
->env
.tb_env
->tb_freq
;
992 tb_off_adj
= tb
->guest_timebase
- cpu_get_host_ticks();
994 tb_off
= first_ppc_cpu
->env
.tb_env
->tb_offset
;
995 trace_ppc_tb_adjust(tb_off
, tb_off_adj
, tb_off_adj
- tb_off
,
996 (tb_off_adj
- tb_off
) / freq
);
998 /* Set new offset to all CPUs */
1000 PowerPCCPU
*pcpu
= POWERPC_CPU(cpu
);
1001 pcpu
->env
.tb_env
->tb_offset
= tb_off_adj
;
1002 kvmppc_set_reg_tb_offset(pcpu
, pcpu
->env
.tb_env
->tb_offset
);
1006 void cpu_ppc_clock_vm_state_change(void *opaque
, bool running
,
1009 PPCTimebase
*tb
= opaque
;
1019 * When migrating a running guest, read the clock just
1020 * before migration, so that the guest clock counts
1021 * during the events between:
1027 * This reduces clock difference on migration from 5s
1028 * to 0.1s (when max_downtime == 5s), because sending the
1029 * final pages of memory (which happens between vm_stop()
1030 * and pre_save()) takes max_downtime.
1032 static int timebase_pre_save(void *opaque
)
1034 PPCTimebase
*tb
= opaque
;
1036 /* guest_timebase won't be overridden in case of paused guest or savevm */
1037 if (!tb
->runstate_paused
) {
1044 const VMStateDescription vmstate_ppc_timebase
= {
1047 .minimum_version_id
= 1,
1048 .minimum_version_id_old
= 1,
1049 .pre_save
= timebase_pre_save
,
1050 .fields
= (VMStateField
[]) {
1051 VMSTATE_UINT64(guest_timebase
, PPCTimebase
),
1052 VMSTATE_INT64(time_of_the_day_ns
, PPCTimebase
),
1053 VMSTATE_END_OF_LIST()
1057 /* Set up (once) timebase frequency (in Hz) */
1058 clk_setup_cb
cpu_ppc_tb_init (CPUPPCState
*env
, uint32_t freq
)
1060 PowerPCCPU
*cpu
= env_archcpu(env
);
1063 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
1064 env
->tb_env
= tb_env
;
1065 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1066 if (is_book3s_arch2x(env
)) {
1067 /* All Book3S 64bit CPUs implement level based DEC logic */
1068 tb_env
->flags
|= PPC_DECR_UNDERFLOW_LEVEL
;
1070 /* Create new timer */
1071 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_decr_cb
, cpu
);
1072 if (env
->has_hv_mode
) {
1073 tb_env
->hdecr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_hdecr_cb
,
1076 tb_env
->hdecr_timer
= NULL
;
1078 cpu_ppc_set_tb_clk(env
, freq
);
1080 return &cpu_ppc_set_tb_clk
;
1083 /* Specific helpers for POWER & PowerPC 601 RTC */
1084 void cpu_ppc601_store_rtcu (CPUPPCState
*env
, uint32_t value
)
1086 _cpu_ppc_store_tbu(env
, value
);
1089 uint32_t cpu_ppc601_load_rtcu (CPUPPCState
*env
)
1091 return _cpu_ppc_load_tbu(env
);
1094 void cpu_ppc601_store_rtcl (CPUPPCState
*env
, uint32_t value
)
1096 cpu_ppc_store_tbl(env
, value
& 0x3FFFFF80);
1099 uint32_t cpu_ppc601_load_rtcl (CPUPPCState
*env
)
1101 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
1104 /*****************************************************************************/
1105 /* PowerPC 40x timers */
1107 /* PIT, FIT & WDT */
1108 typedef struct ppc40x_timer_t ppc40x_timer_t
;
1109 struct ppc40x_timer_t
{
1110 uint64_t pit_reload
; /* PIT auto-reload value */
1111 uint64_t fit_next
; /* Tick for next FIT interrupt */
1112 QEMUTimer
*fit_timer
;
1113 uint64_t wdt_next
; /* Tick for next WDT interrupt */
1114 QEMUTimer
*wdt_timer
;
1116 /* 405 have the PIT, 440 have a DECR. */
1117 unsigned int decr_excp
;
1120 /* Fixed interval timer */
1121 static void cpu_4xx_fit_cb (void *opaque
)
1126 ppc40x_timer_t
*ppc40x_timer
;
1130 cpu
= env_archcpu(env
);
1131 tb_env
= env
->tb_env
;
1132 ppc40x_timer
= tb_env
->opaque
;
1133 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1134 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
1148 /* Cannot occur, but makes gcc happy */
1151 next
= now
+ muldiv64(next
, NANOSECONDS_PER_SECOND
, tb_env
->tb_freq
);
1154 timer_mod(ppc40x_timer
->fit_timer
, next
);
1155 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
1156 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1) {
1157 ppc_set_irq(cpu
, PPC_INTERRUPT_FIT
, 1);
1159 trace_ppc4xx_fit((int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
1160 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1163 /* Programmable interval timer */
1164 static void start_stop_pit (CPUPPCState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
1166 ppc40x_timer_t
*ppc40x_timer
;
1169 ppc40x_timer
= tb_env
->opaque
;
1170 if (ppc40x_timer
->pit_reload
<= 1 ||
1171 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
1172 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
1174 trace_ppc4xx_pit_stop();
1175 timer_del(tb_env
->decr_timer
);
1177 trace_ppc4xx_pit_start(ppc40x_timer
->pit_reload
);
1178 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1179 next
= now
+ muldiv64(ppc40x_timer
->pit_reload
,
1180 NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
1182 next
+= tb_env
->decr_next
- now
;
1185 timer_mod(tb_env
->decr_timer
, next
);
1186 tb_env
->decr_next
= next
;
1190 static void cpu_4xx_pit_cb (void *opaque
)
1195 ppc40x_timer_t
*ppc40x_timer
;
1198 cpu
= env_archcpu(env
);
1199 tb_env
= env
->tb_env
;
1200 ppc40x_timer
= tb_env
->opaque
;
1201 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
1202 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) {
1203 ppc_set_irq(cpu
, ppc40x_timer
->decr_excp
, 1);
1205 start_stop_pit(env
, tb_env
, 1);
1206 trace_ppc4xx_pit((int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
1207 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
1208 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
1209 ppc40x_timer
->pit_reload
);
1212 /* Watchdog timer */
1213 static void cpu_4xx_wdt_cb (void *opaque
)
1218 ppc40x_timer_t
*ppc40x_timer
;
1222 cpu
= env_archcpu(env
);
1223 tb_env
= env
->tb_env
;
1224 ppc40x_timer
= tb_env
->opaque
;
1225 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1226 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
1240 /* Cannot occur, but makes gcc happy */
1243 next
= now
+ muldiv64(next
, NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
1246 trace_ppc4xx_wdt(env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1247 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
1250 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1251 ppc40x_timer
->wdt_next
= next
;
1252 env
->spr
[SPR_40x_TSR
] |= 1U << 31;
1255 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1256 ppc40x_timer
->wdt_next
= next
;
1257 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
1258 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1) {
1259 ppc_set_irq(cpu
, PPC_INTERRUPT_WDT
, 1);
1263 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
1264 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
1265 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
1269 case 0x1: /* Core reset */
1270 ppc40x_core_reset(cpu
);
1272 case 0x2: /* Chip reset */
1273 ppc40x_chip_reset(cpu
);
1275 case 0x3: /* System reset */
1276 ppc40x_system_reset(cpu
);
1282 void store_40x_pit (CPUPPCState
*env
, target_ulong val
)
1285 ppc40x_timer_t
*ppc40x_timer
;
1287 tb_env
= env
->tb_env
;
1288 ppc40x_timer
= tb_env
->opaque
;
1289 trace_ppc40x_store_pit(val
);
1290 ppc40x_timer
->pit_reload
= val
;
1291 start_stop_pit(env
, tb_env
, 0);
1294 target_ulong
load_40x_pit (CPUPPCState
*env
)
1296 return cpu_ppc_load_decr(env
);
1299 static void ppc_40x_set_tb_clk (void *opaque
, uint32_t freq
)
1301 CPUPPCState
*env
= opaque
;
1302 ppc_tb_t
*tb_env
= env
->tb_env
;
1304 trace_ppc40x_set_tb_clk(freq
);
1305 tb_env
->tb_freq
= freq
;
1306 tb_env
->decr_freq
= freq
;
1307 /* XXX: we should also update all timers */
1310 clk_setup_cb
ppc_40x_timers_init (CPUPPCState
*env
, uint32_t freq
,
1311 unsigned int decr_excp
)
1314 ppc40x_timer_t
*ppc40x_timer
;
1316 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
1317 env
->tb_env
= tb_env
;
1318 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1319 ppc40x_timer
= g_malloc0(sizeof(ppc40x_timer_t
));
1320 tb_env
->tb_freq
= freq
;
1321 tb_env
->decr_freq
= freq
;
1322 tb_env
->opaque
= ppc40x_timer
;
1323 trace_ppc40x_timers_init(freq
);
1324 if (ppc40x_timer
!= NULL
) {
1325 /* We use decr timer for PIT */
1326 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_pit_cb
, env
);
1327 ppc40x_timer
->fit_timer
=
1328 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_fit_cb
, env
);
1329 ppc40x_timer
->wdt_timer
=
1330 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_wdt_cb
, env
);
1331 ppc40x_timer
->decr_excp
= decr_excp
;
1334 return &ppc_40x_set_tb_clk
;
1337 /*****************************************************************************/
1338 /* Embedded PowerPC Device Control Registers */
1339 typedef struct ppc_dcrn_t ppc_dcrn_t
;
1341 dcr_read_cb dcr_read
;
1342 dcr_write_cb dcr_write
;
1346 /* XXX: on 460, DCR addresses are 32 bits wide,
1347 * using DCRIPR to get the 22 upper bits of the DCR address
1349 #define DCRN_NB 1024
1351 ppc_dcrn_t dcrn
[DCRN_NB
];
1352 int (*read_error
)(int dcrn
);
1353 int (*write_error
)(int dcrn
);
1356 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1360 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1362 dcr
= &dcr_env
->dcrn
[dcrn
];
1363 if (dcr
->dcr_read
== NULL
)
1365 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
1370 if (dcr_env
->read_error
!= NULL
)
1371 return (*dcr_env
->read_error
)(dcrn
);
1376 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1380 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1382 dcr
= &dcr_env
->dcrn
[dcrn
];
1383 if (dcr
->dcr_write
== NULL
)
1385 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
1390 if (dcr_env
->write_error
!= NULL
)
1391 return (*dcr_env
->write_error
)(dcrn
);
1396 int ppc_dcr_register (CPUPPCState
*env
, int dcrn
, void *opaque
,
1397 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
1402 dcr_env
= env
->dcr_env
;
1403 if (dcr_env
== NULL
)
1405 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1407 dcr
= &dcr_env
->dcrn
[dcrn
];
1408 if (dcr
->opaque
!= NULL
||
1409 dcr
->dcr_read
!= NULL
||
1410 dcr
->dcr_write
!= NULL
)
1412 dcr
->opaque
= opaque
;
1413 dcr
->dcr_read
= dcr_read
;
1414 dcr
->dcr_write
= dcr_write
;
1419 int ppc_dcr_init (CPUPPCState
*env
, int (*read_error
)(int dcrn
),
1420 int (*write_error
)(int dcrn
))
1424 dcr_env
= g_malloc0(sizeof(ppc_dcr_t
));
1425 dcr_env
->read_error
= read_error
;
1426 dcr_env
->write_error
= write_error
;
1427 env
->dcr_env
= dcr_env
;
1432 /*****************************************************************************/
1434 int ppc_cpu_pir(PowerPCCPU
*cpu
)
1436 CPUPPCState
*env
= &cpu
->env
;
1437 return env
->spr_cb
[SPR_PIR
].default_value
;
1440 PowerPCCPU
*ppc_get_vcpu_by_pir(int pir
)
1445 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1447 if (ppc_cpu_pir(cpu
) == pir
) {
1455 void ppc_irq_reset(PowerPCCPU
*cpu
)
1457 CPUPPCState
*env
= &cpu
->env
;
1459 env
->irq_input_state
= 0;
1460 kvmppc_set_interrupt(cpu
, PPC_INTERRUPT_EXT
, 0);