2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/qapi-events-machine.h"
32 #include "qapi/qapi-events-qdev.h"
33 #include "qapi/visitor.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hostmem.h"
36 #include "sysemu/numa.h"
37 #include "sysemu/qtest.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
41 #include "hw/fw-path-provider.h"
44 #include "sysemu/device_tree.h"
45 #include "sysemu/cpus.h"
46 #include "sysemu/hw_accel.h"
48 #include "migration/misc.h"
49 #include "migration/qemu-file-types.h"
50 #include "migration/global_state.h"
51 #include "migration/register.h"
52 #include "migration/blocker.h"
53 #include "mmu-hash64.h"
54 #include "mmu-book3s-v3.h"
55 #include "cpu-models.h"
56 #include "hw/core/cpu.h"
58 #include "hw/ppc/ppc.h"
59 #include "hw/loader.h"
61 #include "hw/ppc/fdt.h"
62 #include "hw/ppc/spapr.h"
63 #include "hw/ppc/spapr_vio.h"
64 #include "hw/qdev-properties.h"
65 #include "hw/pci-host/spapr.h"
66 #include "hw/pci/msi.h"
68 #include "hw/pci/pci.h"
69 #include "hw/scsi/scsi.h"
70 #include "hw/virtio/virtio-scsi.h"
71 #include "hw/virtio/vhost-scsi-common.h"
73 #include "exec/ram_addr.h"
75 #include "qemu/config-file.h"
76 #include "qemu/error-report.h"
79 #include "hw/intc/intc.h"
81 #include "hw/ppc/spapr_cpu_core.h"
82 #include "hw/mem/memory-device.h"
83 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "hw/ppc/spapr_nvdimm.h"
85 #include "hw/ppc/spapr_numa.h"
86 #include "hw/ppc/pef.h"
88 #include "monitor/monitor.h"
92 /* SLOF memory layout:
94 * SLOF raw image loaded at 0, copies its romfs right below the flat
95 * device-tree, then position SLOF itself 31M below that
97 * So we set FW_OVERHEAD to 40MB which should account for all of that
100 * We load our kernel at 4M, leaving space for SLOF initial image
102 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */
103 #define FW_MAX_SIZE 0x400000
104 #define FW_FILE_NAME "slof.bin"
105 #define FW_FILE_NAME_VOF "vof.bin"
106 #define FW_OVERHEAD 0x2800000
107 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
109 #define MIN_RMA_SLOF (128 * MiB)
111 #define PHANDLE_INTC 0x00001111
113 /* These two functions implement the VCPU id numbering: one to compute them
114 * all and one to identify thread 0 of a VCORE. Any change to the first one
115 * is likely to have an impact on the second one, so let's keep them close.
117 static int spapr_vcpu_id(SpaprMachineState
*spapr
, int cpu_index
)
119 MachineState
*ms
= MACHINE(spapr
);
120 unsigned int smp_threads
= ms
->smp
.threads
;
124 (cpu_index
/ smp_threads
) * spapr
->vsmt
+ cpu_index
% smp_threads
;
126 static bool spapr_is_thread0_in_vcore(SpaprMachineState
*spapr
,
130 return spapr_get_vcpu_id(cpu
) % spapr
->vsmt
== 0;
133 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque
)
135 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
136 * and newer QEMUs don't even have them. In both cases, we don't want
137 * to send anything on the wire.
142 static const VMStateDescription pre_2_10_vmstate_dummy_icp
= {
143 .name
= "icp/server",
145 .minimum_version_id
= 1,
146 .needed
= pre_2_10_vmstate_dummy_icp_needed
,
147 .fields
= (VMStateField
[]) {
148 VMSTATE_UNUSED(4), /* uint32_t xirr */
149 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
150 VMSTATE_UNUSED(1), /* uint8_t mfrr */
151 VMSTATE_END_OF_LIST()
155 static void pre_2_10_vmstate_register_dummy_icp(int i
)
157 vmstate_register(NULL
, i
, &pre_2_10_vmstate_dummy_icp
,
158 (void *)(uintptr_t) i
);
161 static void pre_2_10_vmstate_unregister_dummy_icp(int i
)
163 vmstate_unregister(NULL
, &pre_2_10_vmstate_dummy_icp
,
164 (void *)(uintptr_t) i
);
167 int spapr_max_server_number(SpaprMachineState
*spapr
)
169 MachineState
*ms
= MACHINE(spapr
);
172 return DIV_ROUND_UP(ms
->smp
.max_cpus
* spapr
->vsmt
, ms
->smp
.threads
);
175 static int spapr_fixup_cpu_smt_dt(void *fdt
, int offset
, PowerPCCPU
*cpu
,
179 uint32_t servers_prop
[smt_threads
];
180 uint32_t gservers_prop
[smt_threads
* 2];
181 int index
= spapr_get_vcpu_id(cpu
);
183 if (cpu
->compat_pvr
) {
184 ret
= fdt_setprop_cell(fdt
, offset
, "cpu-version", cpu
->compat_pvr
);
190 /* Build interrupt servers and gservers properties */
191 for (i
= 0; i
< smt_threads
; i
++) {
192 servers_prop
[i
] = cpu_to_be32(index
+ i
);
193 /* Hack, direct the group queues back to cpu 0 */
194 gservers_prop
[i
*2] = cpu_to_be32(index
+ i
);
195 gservers_prop
[i
*2 + 1] = 0;
197 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-server#s",
198 servers_prop
, sizeof(servers_prop
));
202 ret
= fdt_setprop(fdt
, offset
, "ibm,ppc-interrupt-gserver#s",
203 gservers_prop
, sizeof(gservers_prop
));
208 static void spapr_dt_pa_features(SpaprMachineState
*spapr
,
210 void *fdt
, int offset
)
212 uint8_t pa_features_206
[] = { 6, 0,
213 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214 uint8_t pa_features_207
[] = { 24, 0,
215 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219 uint8_t pa_features_300
[] = { 66, 0,
220 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
224 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
226 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235 /* 42: PM, 44: PC RA, 46: SC vec'd */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237 /* 48: SIMD, 50: QP BFP, 52: String */
238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239 /* 54: DecFP, 56: DecI, 58: SHA */
240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241 /* 60: NM atomic, 62: RNG */
242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
244 uint8_t *pa_features
= NULL
;
247 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_06
, 0, cpu
->compat_pvr
)) {
248 pa_features
= pa_features_206
;
249 pa_size
= sizeof(pa_features_206
);
251 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_2_07
, 0, cpu
->compat_pvr
)) {
252 pa_features
= pa_features_207
;
253 pa_size
= sizeof(pa_features_207
);
255 if (ppc_check_compat(cpu
, CPU_POWERPC_LOGICAL_3_00
, 0, cpu
->compat_pvr
)) {
256 pa_features
= pa_features_300
;
257 pa_size
= sizeof(pa_features_300
);
263 if (ppc_hash64_has(cpu
, PPC_HASH64_CI_LARGEPAGE
)) {
265 * Note: we keep CI large pages off by default because a 64K capable
266 * guest provisioned with large pages might otherwise try to map a qemu
267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268 * even if that qemu runs on a 4k host.
269 * We dd this bit back here if we are confident this is not an issue
271 pa_features
[3] |= 0x20;
273 if ((spapr_get_cap(spapr
, SPAPR_CAP_HTM
) != 0) && pa_size
> 24) {
274 pa_features
[24] |= 0x80; /* Transactional memory support */
276 if (spapr
->cas_pre_isa3_guest
&& pa_size
> 40) {
277 /* Workaround for broken kernels that attempt (guest) radix
278 * mode when they can't handle it, if they see the radix bit set
279 * in pa-features. So hide it from them. */
280 pa_features
[40 + 2] &= ~0x80; /* Radix MMU */
283 _FDT((fdt_setprop(fdt
, offset
, "ibm,pa-features", pa_features
, pa_size
)));
286 static hwaddr
spapr_node0_size(MachineState
*machine
)
288 if (machine
->numa_state
->num_nodes
) {
290 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
291 if (machine
->numa_state
->nodes
[i
].node_mem
) {
292 return MIN(pow2floor(machine
->numa_state
->nodes
[i
].node_mem
),
297 return machine
->ram_size
;
300 static void add_str(GString
*s
, const gchar
*s1
)
302 g_string_append_len(s
, s1
, strlen(s1
) + 1);
305 static int spapr_dt_memory_node(SpaprMachineState
*spapr
, void *fdt
, int nodeid
,
306 hwaddr start
, hwaddr size
)
309 uint64_t mem_reg_property
[2];
312 mem_reg_property
[0] = cpu_to_be64(start
);
313 mem_reg_property
[1] = cpu_to_be64(size
);
315 sprintf(mem_name
, "memory@%" HWADDR_PRIx
, start
);
316 off
= fdt_add_subnode(fdt
, 0, mem_name
);
318 _FDT((fdt_setprop_string(fdt
, off
, "device_type", "memory")));
319 _FDT((fdt_setprop(fdt
, off
, "reg", mem_reg_property
,
320 sizeof(mem_reg_property
))));
321 spapr_numa_write_associativity_dt(spapr
, fdt
, off
, nodeid
);
325 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList
*list
, ram_addr_t addr
)
327 MemoryDeviceInfoList
*info
;
329 for (info
= list
; info
; info
= info
->next
) {
330 MemoryDeviceInfo
*value
= info
->value
;
332 if (value
&& value
->type
== MEMORY_DEVICE_INFO_KIND_DIMM
) {
333 PCDIMMDeviceInfo
*pcdimm_info
= value
->u
.dimm
.data
;
335 if (addr
>= pcdimm_info
->addr
&&
336 addr
< (pcdimm_info
->addr
+ pcdimm_info
->size
)) {
337 return pcdimm_info
->node
;
345 struct sPAPRDrconfCellV2
{
353 typedef struct DrconfCellQueue
{
354 struct sPAPRDrconfCellV2 cell
;
355 QSIMPLEQ_ENTRY(DrconfCellQueue
) entry
;
358 static DrconfCellQueue
*
359 spapr_get_drconf_cell(uint32_t seq_lmbs
, uint64_t base_addr
,
360 uint32_t drc_index
, uint32_t aa_index
,
363 DrconfCellQueue
*elem
;
365 elem
= g_malloc0(sizeof(*elem
));
366 elem
->cell
.seq_lmbs
= cpu_to_be32(seq_lmbs
);
367 elem
->cell
.base_addr
= cpu_to_be64(base_addr
);
368 elem
->cell
.drc_index
= cpu_to_be32(drc_index
);
369 elem
->cell
.aa_index
= cpu_to_be32(aa_index
);
370 elem
->cell
.flags
= cpu_to_be32(flags
);
375 static int spapr_dt_dynamic_memory_v2(SpaprMachineState
*spapr
, void *fdt
,
376 int offset
, MemoryDeviceInfoList
*dimms
)
378 MachineState
*machine
= MACHINE(spapr
);
379 uint8_t *int_buf
, *cur_index
;
381 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
382 uint64_t addr
, cur_addr
, size
;
383 uint32_t nr_boot_lmbs
= (machine
->device_memory
->base
/ lmb_size
);
384 uint64_t mem_end
= machine
->device_memory
->base
+
385 memory_region_size(&machine
->device_memory
->mr
);
386 uint32_t node
, buf_len
, nr_entries
= 0;
388 DrconfCellQueue
*elem
, *next
;
389 MemoryDeviceInfoList
*info
;
390 QSIMPLEQ_HEAD(, DrconfCellQueue
) drconf_queue
391 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue
);
393 /* Entry to cover RAM and the gap area */
394 elem
= spapr_get_drconf_cell(nr_boot_lmbs
, 0, 0, -1,
395 SPAPR_LMB_FLAGS_RESERVED
|
396 SPAPR_LMB_FLAGS_DRC_INVALID
);
397 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
400 cur_addr
= machine
->device_memory
->base
;
401 for (info
= dimms
; info
; info
= info
->next
) {
402 PCDIMMDeviceInfo
*di
= info
->value
->u
.dimm
.data
;
409 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
410 * area is marked hotpluggable in the next iteration for the bigger
411 * chunk including the NVDIMM occupied area.
413 if (info
->value
->type
== MEMORY_DEVICE_INFO_KIND_NVDIMM
)
416 /* Entry for hot-pluggable area */
417 if (cur_addr
< addr
) {
418 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
420 elem
= spapr_get_drconf_cell((addr
- cur_addr
) / lmb_size
,
421 cur_addr
, spapr_drc_index(drc
), -1, 0);
422 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
427 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, addr
/ lmb_size
);
429 elem
= spapr_get_drconf_cell(size
/ lmb_size
, addr
,
430 spapr_drc_index(drc
), node
,
431 (SPAPR_LMB_FLAGS_ASSIGNED
|
432 SPAPR_LMB_FLAGS_HOTREMOVABLE
));
433 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
435 cur_addr
= addr
+ size
;
438 /* Entry for remaining hotpluggable area */
439 if (cur_addr
< mem_end
) {
440 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, cur_addr
/ lmb_size
);
442 elem
= spapr_get_drconf_cell((mem_end
- cur_addr
) / lmb_size
,
443 cur_addr
, spapr_drc_index(drc
), -1, 0);
444 QSIMPLEQ_INSERT_TAIL(&drconf_queue
, elem
, entry
);
448 buf_len
= nr_entries
* sizeof(struct sPAPRDrconfCellV2
) + sizeof(uint32_t);
449 int_buf
= cur_index
= g_malloc0(buf_len
);
450 *(uint32_t *)int_buf
= cpu_to_be32(nr_entries
);
451 cur_index
+= sizeof(nr_entries
);
453 QSIMPLEQ_FOREACH_SAFE(elem
, &drconf_queue
, entry
, next
) {
454 memcpy(cur_index
, &elem
->cell
, sizeof(elem
->cell
));
455 cur_index
+= sizeof(elem
->cell
);
456 QSIMPLEQ_REMOVE(&drconf_queue
, elem
, DrconfCellQueue
, entry
);
460 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory-v2", int_buf
, buf_len
);
468 static int spapr_dt_dynamic_memory(SpaprMachineState
*spapr
, void *fdt
,
469 int offset
, MemoryDeviceInfoList
*dimms
)
471 MachineState
*machine
= MACHINE(spapr
);
473 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
474 uint32_t device_lmb_start
= machine
->device_memory
->base
/ lmb_size
;
475 uint32_t nr_lmbs
= (machine
->device_memory
->base
+
476 memory_region_size(&machine
->device_memory
->mr
)) /
478 uint32_t *int_buf
, *cur_index
, buf_len
;
481 * Allocate enough buffer size to fit in ibm,dynamic-memory
483 buf_len
= (nr_lmbs
* SPAPR_DR_LMB_LIST_ENTRY_SIZE
+ 1) * sizeof(uint32_t);
484 cur_index
= int_buf
= g_malloc0(buf_len
);
485 int_buf
[0] = cpu_to_be32(nr_lmbs
);
487 for (i
= 0; i
< nr_lmbs
; i
++) {
488 uint64_t addr
= i
* lmb_size
;
489 uint32_t *dynamic_memory
= cur_index
;
491 if (i
>= device_lmb_start
) {
494 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
, i
);
497 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
498 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
499 dynamic_memory
[2] = cpu_to_be32(spapr_drc_index(drc
));
500 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
501 dynamic_memory
[4] = cpu_to_be32(spapr_pc_dimm_node(dimms
, addr
));
502 if (memory_region_present(get_system_memory(), addr
)) {
503 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED
);
505 dynamic_memory
[5] = cpu_to_be32(0);
509 * LMB information for RMA, boot time RAM and gap b/n RAM and
510 * device memory region -- all these are marked as reserved
511 * and as having no valid DRC.
513 dynamic_memory
[0] = cpu_to_be32(addr
>> 32);
514 dynamic_memory
[1] = cpu_to_be32(addr
& 0xffffffff);
515 dynamic_memory
[2] = cpu_to_be32(0);
516 dynamic_memory
[3] = cpu_to_be32(0); /* reserved */
517 dynamic_memory
[4] = cpu_to_be32(-1);
518 dynamic_memory
[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED
|
519 SPAPR_LMB_FLAGS_DRC_INVALID
);
522 cur_index
+= SPAPR_DR_LMB_LIST_ENTRY_SIZE
;
524 ret
= fdt_setprop(fdt
, offset
, "ibm,dynamic-memory", int_buf
, buf_len
);
533 * Adds ibm,dynamic-reconfiguration-memory node.
534 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
535 * of this device tree node.
537 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState
*spapr
,
540 MachineState
*machine
= MACHINE(spapr
);
542 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
543 uint32_t prop_lmb_size
[] = {cpu_to_be32(lmb_size
>> 32),
544 cpu_to_be32(lmb_size
& 0xffffffff)};
545 MemoryDeviceInfoList
*dimms
= NULL
;
548 * Don't create the node if there is no device memory
550 if (machine
->ram_size
== machine
->maxram_size
) {
554 offset
= fdt_add_subnode(fdt
, 0, "ibm,dynamic-reconfiguration-memory");
556 ret
= fdt_setprop(fdt
, offset
, "ibm,lmb-size", prop_lmb_size
,
557 sizeof(prop_lmb_size
));
562 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-flags-mask", 0xff);
567 ret
= fdt_setprop_cell(fdt
, offset
, "ibm,memory-preservation-time", 0x0);
572 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
573 dimms
= qmp_memory_device_list();
574 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRMEM_V2
)) {
575 ret
= spapr_dt_dynamic_memory_v2(spapr
, fdt
, offset
, dimms
);
577 ret
= spapr_dt_dynamic_memory(spapr
, fdt
, offset
, dimms
);
579 qapi_free_MemoryDeviceInfoList(dimms
);
585 ret
= spapr_numa_write_assoc_lookup_arrays(spapr
, fdt
, offset
);
590 static int spapr_dt_memory(SpaprMachineState
*spapr
, void *fdt
)
592 MachineState
*machine
= MACHINE(spapr
);
593 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
594 hwaddr mem_start
, node_size
;
595 int i
, nb_nodes
= machine
->numa_state
->num_nodes
;
596 NodeInfo
*nodes
= machine
->numa_state
->nodes
;
598 for (i
= 0, mem_start
= 0; i
< nb_nodes
; ++i
) {
599 if (!nodes
[i
].node_mem
) {
602 if (mem_start
>= machine
->ram_size
) {
605 node_size
= nodes
[i
].node_mem
;
606 if (node_size
> machine
->ram_size
- mem_start
) {
607 node_size
= machine
->ram_size
- mem_start
;
611 /* spapr_machine_init() checks for rma_size <= node0_size
613 spapr_dt_memory_node(spapr
, fdt
, i
, 0, spapr
->rma_size
);
614 mem_start
+= spapr
->rma_size
;
615 node_size
-= spapr
->rma_size
;
617 for ( ; node_size
; ) {
618 hwaddr sizetmp
= pow2floor(node_size
);
620 /* mem_start != 0 here */
621 if (ctzl(mem_start
) < ctzl(sizetmp
)) {
622 sizetmp
= 1ULL << ctzl(mem_start
);
625 spapr_dt_memory_node(spapr
, fdt
, i
, mem_start
, sizetmp
);
626 node_size
-= sizetmp
;
627 mem_start
+= sizetmp
;
631 /* Generate ibm,dynamic-reconfiguration-memory node if required */
632 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_DRCONF_MEMORY
)) {
635 g_assert(smc
->dr_lmb_enabled
);
636 ret
= spapr_dt_dynamic_reconfiguration_memory(spapr
, fdt
);
645 static void spapr_dt_cpu(CPUState
*cs
, void *fdt
, int offset
,
646 SpaprMachineState
*spapr
)
648 MachineState
*ms
= MACHINE(spapr
);
649 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
650 CPUPPCState
*env
= &cpu
->env
;
651 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cs
);
652 int index
= spapr_get_vcpu_id(cpu
);
653 uint32_t segs
[] = {cpu_to_be32(28), cpu_to_be32(40),
654 0xffffffff, 0xffffffff};
655 uint32_t tbfreq
= kvm_enabled() ? kvmppc_get_tbfreq()
656 : SPAPR_TIMEBASE_FREQ
;
657 uint32_t cpufreq
= kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
658 uint32_t page_sizes_prop
[64];
659 size_t page_sizes_prop_size
;
660 unsigned int smp_threads
= ms
->smp
.threads
;
661 uint32_t vcpus_per_socket
= smp_threads
* ms
->smp
.cores
;
662 uint32_t pft_size_prop
[] = {0, cpu_to_be32(spapr
->htab_shift
)};
663 int compat_smt
= MIN(smp_threads
, ppc_compat_max_vthreads(cpu
));
666 uint32_t radix_AP_encodings
[PPC_PAGE_SIZES_MAX_SZ
];
669 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
, index
);
671 drc_index
= spapr_drc_index(drc
);
672 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,my-drc-index", drc_index
)));
675 _FDT((fdt_setprop_cell(fdt
, offset
, "reg", index
)));
676 _FDT((fdt_setprop_string(fdt
, offset
, "device_type", "cpu")));
678 _FDT((fdt_setprop_cell(fdt
, offset
, "cpu-version", env
->spr
[SPR_PVR
])));
679 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-block-size",
680 env
->dcache_line_size
)));
681 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-line-size",
682 env
->dcache_line_size
)));
683 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-block-size",
684 env
->icache_line_size
)));
685 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-line-size",
686 env
->icache_line_size
)));
688 if (pcc
->l1_dcache_size
) {
689 _FDT((fdt_setprop_cell(fdt
, offset
, "d-cache-size",
690 pcc
->l1_dcache_size
)));
692 warn_report("Unknown L1 dcache size for cpu");
694 if (pcc
->l1_icache_size
) {
695 _FDT((fdt_setprop_cell(fdt
, offset
, "i-cache-size",
696 pcc
->l1_icache_size
)));
698 warn_report("Unknown L1 icache size for cpu");
701 _FDT((fdt_setprop_cell(fdt
, offset
, "timebase-frequency", tbfreq
)));
702 _FDT((fdt_setprop_cell(fdt
, offset
, "clock-frequency", cpufreq
)));
703 _FDT((fdt_setprop_cell(fdt
, offset
, "slb-size", cpu
->hash64_opts
->slb_size
)));
704 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,slb-size", cpu
->hash64_opts
->slb_size
)));
705 _FDT((fdt_setprop_string(fdt
, offset
, "status", "okay")));
706 _FDT((fdt_setprop(fdt
, offset
, "64-bit", NULL
, 0)));
708 if (ppc_has_spr(cpu
, SPR_PURR
)) {
709 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,purr", 1)));
711 if (ppc_has_spr(cpu
, SPR_PURR
)) {
712 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,spurr", 1)));
715 if (ppc_hash64_has(cpu
, PPC_HASH64_1TSEG
)) {
716 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-segment-sizes",
717 segs
, sizeof(segs
))));
720 /* Advertise VSX (vector extensions) if available
721 * 1 == VMX / Altivec available
724 * Only CPUs for which we create core types in spapr_cpu_core.c
725 * are possible, and all of those have VMX */
726 if (spapr_get_cap(spapr
, SPAPR_CAP_VSX
) != 0) {
727 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 2)));
729 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,vmx", 1)));
732 /* Advertise DFP (Decimal Floating Point) if available
733 * 0 / no property == no DFP
734 * 1 == DFP available */
735 if (spapr_get_cap(spapr
, SPAPR_CAP_DFP
) != 0) {
736 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,dfp", 1)));
739 page_sizes_prop_size
= ppc_create_page_sizes_prop(cpu
, page_sizes_prop
,
740 sizeof(page_sizes_prop
));
741 if (page_sizes_prop_size
) {
742 _FDT((fdt_setprop(fdt
, offset
, "ibm,segment-page-sizes",
743 page_sizes_prop
, page_sizes_prop_size
)));
746 spapr_dt_pa_features(spapr
, cpu
, fdt
, offset
);
748 _FDT((fdt_setprop_cell(fdt
, offset
, "ibm,chip-id",
749 cs
->cpu_index
/ vcpus_per_socket
)));
751 _FDT((fdt_setprop(fdt
, offset
, "ibm,pft-size",
752 pft_size_prop
, sizeof(pft_size_prop
))));
754 if (ms
->numa_state
->num_nodes
> 1) {
755 _FDT(spapr_numa_fixup_cpu_dt(spapr
, fdt
, offset
, cpu
));
758 _FDT(spapr_fixup_cpu_smt_dt(fdt
, offset
, cpu
, compat_smt
));
760 if (pcc
->radix_page_info
) {
761 for (i
= 0; i
< pcc
->radix_page_info
->count
; i
++) {
762 radix_AP_encodings
[i
] =
763 cpu_to_be32(pcc
->radix_page_info
->entries
[i
]);
765 _FDT((fdt_setprop(fdt
, offset
, "ibm,processor-radix-AP-encodings",
767 pcc
->radix_page_info
->count
*
768 sizeof(radix_AP_encodings
[0]))));
772 * We set this property to let the guest know that it can use the large
773 * decrementer and its width in bits.
775 if (spapr_get_cap(spapr
, SPAPR_CAP_LARGE_DECREMENTER
) != SPAPR_CAP_OFF
)
776 _FDT((fdt_setprop_u32(fdt
, offset
, "ibm,dec-bits",
777 pcc
->lrg_decr_bits
)));
780 static void spapr_dt_cpus(void *fdt
, SpaprMachineState
*spapr
)
788 cpus_offset
= fdt_add_subnode(fdt
, 0, "cpus");
790 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#address-cells", 0x1)));
791 _FDT((fdt_setprop_cell(fdt
, cpus_offset
, "#size-cells", 0x0)));
794 * We walk the CPUs in reverse order to ensure that CPU DT nodes
795 * created by fdt_add_subnode() end up in the right order in FDT
796 * for the guest kernel the enumerate the CPUs correctly.
798 * The CPU list cannot be traversed in reverse order, so we need
804 rev
= g_renew(CPUState
*, rev
, n_cpus
+ 1);
808 for (i
= n_cpus
- 1; i
>= 0; i
--) {
809 CPUState
*cs
= rev
[i
];
810 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
811 int index
= spapr_get_vcpu_id(cpu
);
812 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
813 g_autofree
char *nodename
= NULL
;
816 if (!spapr_is_thread0_in_vcore(spapr
, cpu
)) {
820 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, index
);
821 offset
= fdt_add_subnode(fdt
, cpus_offset
, nodename
);
823 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
829 static int spapr_dt_rng(void *fdt
)
834 node
= qemu_fdt_add_subnode(fdt
, "/ibm,platform-facilities");
838 ret
= fdt_setprop_string(fdt
, node
, "device_type",
839 "ibm,platform-facilities");
840 ret
|= fdt_setprop_cell(fdt
, node
, "#address-cells", 0x1);
841 ret
|= fdt_setprop_cell(fdt
, node
, "#size-cells", 0x0);
843 node
= fdt_add_subnode(fdt
, node
, "ibm,random-v1");
847 ret
|= fdt_setprop_string(fdt
, node
, "compatible", "ibm,random");
852 static void spapr_dt_rtas(SpaprMachineState
*spapr
, void *fdt
)
854 MachineState
*ms
= MACHINE(spapr
);
856 GString
*hypertas
= g_string_sized_new(256);
857 GString
*qemu_hypertas
= g_string_sized_new(256);
858 uint64_t max_device_addr
= MACHINE(spapr
)->device_memory
->base
+
859 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
860 uint32_t lrdr_capacity
[] = {
861 cpu_to_be32(max_device_addr
>> 32),
862 cpu_to_be32(max_device_addr
& 0xffffffff),
863 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
>> 32),
864 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE
& 0xffffffff),
865 cpu_to_be32(ms
->smp
.max_cpus
/ ms
->smp
.threads
),
868 _FDT(rtas
= fdt_add_subnode(fdt
, 0, "rtas"));
871 add_str(hypertas
, "hcall-pft");
872 add_str(hypertas
, "hcall-term");
873 add_str(hypertas
, "hcall-dabr");
874 add_str(hypertas
, "hcall-interrupt");
875 add_str(hypertas
, "hcall-tce");
876 add_str(hypertas
, "hcall-vio");
877 add_str(hypertas
, "hcall-splpar");
878 add_str(hypertas
, "hcall-join");
879 add_str(hypertas
, "hcall-bulk");
880 add_str(hypertas
, "hcall-set-mode");
881 add_str(hypertas
, "hcall-sprg0");
882 add_str(hypertas
, "hcall-copy");
883 add_str(hypertas
, "hcall-debug");
884 add_str(hypertas
, "hcall-vphn");
885 if (spapr_get_cap(spapr
, SPAPR_CAP_RPT_INVALIDATE
) == SPAPR_CAP_ON
) {
886 add_str(hypertas
, "hcall-rpt-invalidate");
889 add_str(qemu_hypertas
, "hcall-memop1");
891 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
892 add_str(hypertas
, "hcall-multi-tce");
895 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
896 add_str(hypertas
, "hcall-hpt-resize");
899 _FDT(fdt_setprop(fdt
, rtas
, "ibm,hypertas-functions",
900 hypertas
->str
, hypertas
->len
));
901 g_string_free(hypertas
, TRUE
);
902 _FDT(fdt_setprop(fdt
, rtas
, "qemu,hypertas-functions",
903 qemu_hypertas
->str
, qemu_hypertas
->len
));
904 g_string_free(qemu_hypertas
, TRUE
);
906 spapr_numa_write_rtas_dt(spapr
, fdt
, rtas
);
909 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
910 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
912 * The system reset requirements are driven by existing Linux and PowerVM
913 * implementation which (contrary to PAPR) saves r3 in the error log
914 * structure like machine check, so Linux expects to find the saved r3
915 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
916 * does not look at the error value).
918 * System reset interrupts are not subject to interlock like machine
919 * check, so this memory area could be corrupted if the sreset is
920 * interrupted by a machine check (or vice versa) if it was shared. To
921 * prevent this, system reset uses per-CPU areas for the sreset save
922 * area. A system reset that interrupts a system reset handler could
923 * still overwrite this area, but Linux doesn't try to recover in that
926 * The extra 8 bytes is required because Linux's FWNMI error log check
929 * RTAS_MIN_SIZE is required for the RTAS blob itself.
931 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-size", RTAS_MIN_SIZE
+
933 ms
->smp
.max_cpus
* sizeof(uint64_t) * 2 +
935 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-error-log-max",
936 RTAS_ERROR_LOG_MAX
));
937 _FDT(fdt_setprop_cell(fdt
, rtas
, "rtas-event-scan-rate",
938 RTAS_EVENT_SCAN_RATE
));
940 g_assert(msi_nonbroken
);
941 _FDT(fdt_setprop(fdt
, rtas
, "ibm,change-msix-capable", NULL
, 0));
944 * According to PAPR, rtas ibm,os-term does not guarantee a return
945 * back to the guest cpu.
947 * While an additional ibm,extended-os-term property indicates
948 * that rtas call return will always occur. Set this property.
950 _FDT(fdt_setprop(fdt
, rtas
, "ibm,extended-os-term", NULL
, 0));
952 _FDT(fdt_setprop(fdt
, rtas
, "ibm,lrdr-capacity",
953 lrdr_capacity
, sizeof(lrdr_capacity
)));
955 spapr_dt_rtas_tokens(fdt
, rtas
);
959 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
960 * and the XIVE features that the guest may request and thus the valid
961 * values for bytes 23..26 of option vector 5:
963 static void spapr_dt_ov5_platform_support(SpaprMachineState
*spapr
, void *fdt
,
966 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
969 23, 0x00, /* XICS / XIVE mode */
970 24, 0x00, /* Hash/Radix, filled in below. */
971 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
972 26, 0x40, /* Radix options: GTSE == yes. */
975 if (spapr
->irq
->xics
&& spapr
->irq
->xive
) {
976 val
[1] = SPAPR_OV5_XIVE_BOTH
;
977 } else if (spapr
->irq
->xive
) {
978 val
[1] = SPAPR_OV5_XIVE_EXPLOIT
;
980 assert(spapr
->irq
->xics
);
981 val
[1] = SPAPR_OV5_XIVE_LEGACY
;
984 if (!ppc_check_compat(first_ppc_cpu
, CPU_POWERPC_LOGICAL_3_00
, 0,
985 first_ppc_cpu
->compat_pvr
)) {
987 * If we're in a pre POWER9 compat mode then the guest should
988 * do hash and use the legacy interrupt mode
990 val
[1] = SPAPR_OV5_XIVE_LEGACY
; /* XICS */
991 val
[3] = 0x00; /* Hash */
992 spapr_check_mmu_mode(false);
993 } else if (kvm_enabled()) {
994 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
995 val
[3] = 0x80; /* OV5_MMU_BOTH */
996 } else if (kvmppc_has_cap_mmu_radix()) {
997 val
[3] = 0x40; /* OV5_MMU_RADIX_300 */
999 val
[3] = 0x00; /* Hash */
1002 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1005 _FDT(fdt_setprop(fdt
, chosen
, "ibm,arch-vec-5-platform-support",
1009 static void spapr_dt_chosen(SpaprMachineState
*spapr
, void *fdt
, bool reset
)
1011 MachineState
*machine
= MACHINE(spapr
);
1012 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1015 _FDT(chosen
= fdt_add_subnode(fdt
, 0, "chosen"));
1018 const char *boot_device
= spapr
->boot_device
;
1019 char *stdout_path
= spapr_vio_stdout_path(spapr
->vio_bus
);
1021 char *bootlist
= get_boot_devices_list(&cb
);
1023 if (machine
->kernel_cmdline
&& machine
->kernel_cmdline
[0]) {
1024 _FDT(fdt_setprop_string(fdt
, chosen
, "bootargs",
1025 machine
->kernel_cmdline
));
1028 if (spapr
->initrd_size
) {
1029 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-start",
1030 spapr
->initrd_base
));
1031 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,initrd-end",
1032 spapr
->initrd_base
+ spapr
->initrd_size
));
1035 if (spapr
->kernel_size
) {
1036 uint64_t kprop
[2] = { cpu_to_be64(spapr
->kernel_addr
),
1037 cpu_to_be64(spapr
->kernel_size
) };
1039 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel",
1040 &kprop
, sizeof(kprop
)));
1041 if (spapr
->kernel_le
) {
1042 _FDT(fdt_setprop(fdt
, chosen
, "qemu,boot-kernel-le", NULL
, 0));
1046 _FDT((fdt_setprop_cell(fdt
, chosen
, "qemu,boot-menu", boot_menu
)));
1048 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-width", graphic_width
));
1049 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-height", graphic_height
));
1050 _FDT(fdt_setprop_cell(fdt
, chosen
, "qemu,graphic-depth", graphic_depth
));
1052 if (cb
&& bootlist
) {
1055 for (i
= 0; i
< cb
; i
++) {
1056 if (bootlist
[i
] == '\n') {
1060 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-list", bootlist
));
1063 if (boot_device
&& strlen(boot_device
)) {
1064 _FDT(fdt_setprop_string(fdt
, chosen
, "qemu,boot-device", boot_device
));
1067 if (!spapr
->has_graphics
&& stdout_path
) {
1069 * "linux,stdout-path" and "stdout" properties are
1070 * deprecated by linux kernel. New platforms should only
1071 * use the "stdout-path" property. Set the new property
1072 * and continue using older property to remain compatible
1073 * with the existing firmware.
1075 _FDT(fdt_setprop_string(fdt
, chosen
, "linux,stdout-path", stdout_path
));
1076 _FDT(fdt_setprop_string(fdt
, chosen
, "stdout-path", stdout_path
));
1080 * We can deal with BAR reallocation just fine, advertise it
1083 if (smc
->linux_pci_probe
) {
1084 _FDT(fdt_setprop_cell(fdt
, chosen
, "linux,pci-probe-only", 0));
1087 spapr_dt_ov5_platform_support(spapr
, fdt
, chosen
);
1089 g_free(stdout_path
);
1093 _FDT(spapr_dt_ovec(fdt
, chosen
, spapr
->ov5_cas
, "ibm,architecture-vec-5"));
1096 static void spapr_dt_hypervisor(SpaprMachineState
*spapr
, void *fdt
)
1098 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1099 * KVM to work under pHyp with some guest co-operation */
1101 uint8_t hypercall
[16];
1103 _FDT(hypervisor
= fdt_add_subnode(fdt
, 0, "hypervisor"));
1104 /* indicate KVM hypercall interface */
1105 _FDT(fdt_setprop_string(fdt
, hypervisor
, "compatible", "linux,kvm"));
1106 if (kvmppc_has_cap_fixup_hcalls()) {
1108 * Older KVM versions with older guest kernels were broken
1109 * with the magic page, don't allow the guest to map it.
1111 if (!kvmppc_get_hypercall(first_cpu
->env_ptr
, hypercall
,
1112 sizeof(hypercall
))) {
1113 _FDT(fdt_setprop(fdt
, hypervisor
, "hcall-instructions",
1114 hypercall
, sizeof(hypercall
)));
1119 void *spapr_build_fdt(SpaprMachineState
*spapr
, bool reset
, size_t space
)
1121 MachineState
*machine
= MACHINE(spapr
);
1122 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
1123 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
1124 uint32_t root_drc_type_mask
= 0;
1130 fdt
= g_malloc0(space
);
1131 _FDT((fdt_create_empty_tree(fdt
, space
)));
1134 _FDT(fdt_setprop_string(fdt
, 0, "device_type", "chrp"));
1135 _FDT(fdt_setprop_string(fdt
, 0, "model", "IBM pSeries (emulated by qemu)"));
1136 _FDT(fdt_setprop_string(fdt
, 0, "compatible", "qemu,pseries"));
1138 /* Guest UUID & Name*/
1139 buf
= qemu_uuid_unparse_strdup(&qemu_uuid
);
1140 _FDT(fdt_setprop_string(fdt
, 0, "vm,uuid", buf
));
1141 if (qemu_uuid_set
) {
1142 _FDT(fdt_setprop_string(fdt
, 0, "system-id", buf
));
1146 if (qemu_get_vm_name()) {
1147 _FDT(fdt_setprop_string(fdt
, 0, "ibm,partition-name",
1148 qemu_get_vm_name()));
1151 /* Host Model & Serial Number */
1152 if (spapr
->host_model
) {
1153 _FDT(fdt_setprop_string(fdt
, 0, "host-model", spapr
->host_model
));
1154 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_model(&buf
)) {
1155 _FDT(fdt_setprop_string(fdt
, 0, "host-model", buf
));
1159 if (spapr
->host_serial
) {
1160 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", spapr
->host_serial
));
1161 } else if (smc
->broken_host_serial_model
&& kvmppc_get_host_serial(&buf
)) {
1162 _FDT(fdt_setprop_string(fdt
, 0, "host-serial", buf
));
1166 _FDT(fdt_setprop_cell(fdt
, 0, "#address-cells", 2));
1167 _FDT(fdt_setprop_cell(fdt
, 0, "#size-cells", 2));
1169 /* /interrupt controller */
1170 spapr_irq_dt(spapr
, spapr_max_server_number(spapr
), fdt
, PHANDLE_INTC
);
1172 ret
= spapr_dt_memory(spapr
, fdt
);
1174 error_report("couldn't setup memory nodes in fdt");
1179 spapr_dt_vdevice(spapr
->vio_bus
, fdt
);
1181 if (object_resolve_path_type("", TYPE_SPAPR_RNG
, NULL
)) {
1182 ret
= spapr_dt_rng(fdt
);
1184 error_report("could not set up rng device in the fdt");
1189 QLIST_FOREACH(phb
, &spapr
->phbs
, list
) {
1190 ret
= spapr_dt_phb(spapr
, phb
, PHANDLE_INTC
, fdt
, NULL
);
1192 error_report("couldn't setup PCI devices in fdt");
1197 spapr_dt_cpus(fdt
, spapr
);
1199 /* ibm,drc-indexes and friends */
1200 if (smc
->dr_lmb_enabled
) {
1201 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_LMB
;
1203 if (smc
->dr_phb_enabled
) {
1204 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_PHB
;
1206 if (mc
->nvdimm_supported
) {
1207 root_drc_type_mask
|= SPAPR_DR_CONNECTOR_TYPE_PMEM
;
1209 if (root_drc_type_mask
) {
1210 _FDT(spapr_dt_drc(fdt
, 0, NULL
, root_drc_type_mask
));
1213 if (mc
->has_hotpluggable_cpus
) {
1214 int offset
= fdt_path_offset(fdt
, "/cpus");
1215 ret
= spapr_dt_drc(fdt
, offset
, NULL
, SPAPR_DR_CONNECTOR_TYPE_CPU
);
1217 error_report("Couldn't set up CPU DR device tree properties");
1222 /* /event-sources */
1223 spapr_dt_events(spapr
, fdt
);
1226 spapr_dt_rtas(spapr
, fdt
);
1229 spapr_dt_chosen(spapr
, fdt
, reset
);
1232 if (kvm_enabled()) {
1233 spapr_dt_hypervisor(spapr
, fdt
);
1236 /* Build memory reserve map */
1238 if (spapr
->kernel_size
) {
1239 _FDT((fdt_add_mem_rsv(fdt
, spapr
->kernel_addr
,
1240 spapr
->kernel_size
)));
1242 if (spapr
->initrd_size
) {
1243 _FDT((fdt_add_mem_rsv(fdt
, spapr
->initrd_base
,
1244 spapr
->initrd_size
)));
1248 /* NVDIMM devices */
1249 if (mc
->nvdimm_supported
) {
1250 spapr_dt_persistent_memory(spapr
, fdt
);
1256 static uint64_t translate_kernel_address(void *opaque
, uint64_t addr
)
1258 SpaprMachineState
*spapr
= opaque
;
1260 return (addr
& 0x0fffffff) + spapr
->kernel_addr
;
1263 static void emulate_spapr_hypercall(PPCVirtualHypervisor
*vhyp
,
1266 CPUPPCState
*env
= &cpu
->env
;
1268 /* The TCG path should also be holding the BQL at this point */
1269 g_assert(qemu_mutex_iothread_locked());
1272 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1273 env
->gpr
[3] = H_PRIVILEGE
;
1275 env
->gpr
[3] = spapr_hypercall(cpu
, env
->gpr
[3], &env
->gpr
[4]);
1279 struct LPCRSyncState
{
1284 static void do_lpcr_sync(CPUState
*cs
, run_on_cpu_data arg
)
1286 struct LPCRSyncState
*s
= arg
.host_ptr
;
1287 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1288 CPUPPCState
*env
= &cpu
->env
;
1291 cpu_synchronize_state(cs
);
1292 lpcr
= env
->spr
[SPR_LPCR
];
1295 ppc_store_lpcr(cpu
, lpcr
);
1298 void spapr_set_all_lpcrs(target_ulong value
, target_ulong mask
)
1301 struct LPCRSyncState s
= {
1306 run_on_cpu(cs
, do_lpcr_sync
, RUN_ON_CPU_HOST_PTR(&s
));
1310 static void spapr_get_pate(PPCVirtualHypervisor
*vhyp
, ppc_v3_pate_t
*entry
)
1312 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1314 /* Copy PATE1:GR into PATE0:HR */
1315 entry
->dw0
= spapr
->patb_entry
& PATE0_HR
;
1316 entry
->dw1
= spapr
->patb_entry
;
1319 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1320 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1321 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1322 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1323 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1326 * Get the fd to access the kernel htab, re-opening it if necessary
1328 static int get_htab_fd(SpaprMachineState
*spapr
)
1330 Error
*local_err
= NULL
;
1332 if (spapr
->htab_fd
>= 0) {
1333 return spapr
->htab_fd
;
1336 spapr
->htab_fd
= kvmppc_get_htab_fd(false, 0, &local_err
);
1337 if (spapr
->htab_fd
< 0) {
1338 error_report_err(local_err
);
1341 return spapr
->htab_fd
;
1344 void close_htab_fd(SpaprMachineState
*spapr
)
1346 if (spapr
->htab_fd
>= 0) {
1347 close(spapr
->htab_fd
);
1349 spapr
->htab_fd
= -1;
1352 static hwaddr
spapr_hpt_mask(PPCVirtualHypervisor
*vhyp
)
1354 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1356 return HTAB_SIZE(spapr
) / HASH_PTEG_SIZE_64
- 1;
1359 static target_ulong
spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor
*vhyp
)
1361 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1363 assert(kvm_enabled());
1369 return (target_ulong
)(uintptr_t)spapr
->htab
| (spapr
->htab_shift
- 18);
1372 static const ppc_hash_pte64_t
*spapr_map_hptes(PPCVirtualHypervisor
*vhyp
,
1375 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1376 hwaddr pte_offset
= ptex
* HASH_PTE_SIZE_64
;
1380 * HTAB is controlled by KVM. Fetch into temporary buffer
1382 ppc_hash_pte64_t
*hptes
= g_malloc(n
* HASH_PTE_SIZE_64
);
1383 kvmppc_read_hptes(hptes
, ptex
, n
);
1388 * HTAB is controlled by QEMU. Just point to the internally
1391 return (const ppc_hash_pte64_t
*)(spapr
->htab
+ pte_offset
);
1394 static void spapr_unmap_hptes(PPCVirtualHypervisor
*vhyp
,
1395 const ppc_hash_pte64_t
*hptes
,
1398 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1401 g_free((void *)hptes
);
1404 /* Nothing to do for qemu managed HPT */
1407 void spapr_store_hpte(PowerPCCPU
*cpu
, hwaddr ptex
,
1408 uint64_t pte0
, uint64_t pte1
)
1410 SpaprMachineState
*spapr
= SPAPR_MACHINE(cpu
->vhyp
);
1411 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
;
1414 kvmppc_write_hpte(ptex
, pte0
, pte1
);
1416 if (pte0
& HPTE64_V_VALID
) {
1417 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1419 * When setting valid, we write PTE1 first. This ensures
1420 * proper synchronization with the reading code in
1421 * ppc_hash64_pteg_search()
1424 stq_p(spapr
->htab
+ offset
, pte0
);
1426 stq_p(spapr
->htab
+ offset
, pte0
);
1428 * When clearing it we set PTE0 first. This ensures proper
1429 * synchronization with the reading code in
1430 * ppc_hash64_pteg_search()
1433 stq_p(spapr
->htab
+ offset
+ HASH_PTE_SIZE_64
/ 2, pte1
);
1438 static void spapr_hpte_set_c(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1441 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 15;
1442 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1445 /* There should always be a hash table when this is called */
1446 error_report("spapr_hpte_set_c called with no hash table !");
1450 /* The HW performs a non-atomic byte update */
1451 stb_p(spapr
->htab
+ offset
, (pte1
& 0xff) | 0x80);
1454 static void spapr_hpte_set_r(PPCVirtualHypervisor
*vhyp
, hwaddr ptex
,
1457 hwaddr offset
= ptex
* HASH_PTE_SIZE_64
+ 14;
1458 SpaprMachineState
*spapr
= SPAPR_MACHINE(vhyp
);
1461 /* There should always be a hash table when this is called */
1462 error_report("spapr_hpte_set_r called with no hash table !");
1466 /* The HW performs a non-atomic byte update */
1467 stb_p(spapr
->htab
+ offset
, ((pte1
>> 8) & 0xff) | 0x01);
1470 int spapr_hpt_shift_for_ramsize(uint64_t ramsize
)
1474 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1475 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1476 * that's much more than is needed for Linux guests */
1477 shift
= ctz64(pow2ceil(ramsize
)) - 7;
1478 shift
= MAX(shift
, 18); /* Minimum architected size */
1479 shift
= MIN(shift
, 46); /* Maximum architected size */
1483 void spapr_free_hpt(SpaprMachineState
*spapr
)
1485 g_free(spapr
->htab
);
1487 spapr
->htab_shift
= 0;
1488 close_htab_fd(spapr
);
1491 int spapr_reallocate_hpt(SpaprMachineState
*spapr
, int shift
, Error
**errp
)
1496 /* Clean up any HPT info from a previous boot */
1497 spapr_free_hpt(spapr
);
1499 rc
= kvmppc_reset_htab(shift
);
1501 if (rc
== -EOPNOTSUPP
) {
1502 error_setg(errp
, "HPT not supported in nested guests");
1507 /* kernel-side HPT needed, but couldn't allocate one */
1508 error_setg_errno(errp
, errno
, "Failed to allocate KVM HPT of order %d",
1510 error_append_hint(errp
, "Try smaller maxmem?\n");
1512 } else if (rc
> 0) {
1513 /* kernel-side HPT allocated */
1516 "Requested order %d HPT, but kernel allocated order %ld",
1518 error_append_hint(errp
, "Try smaller maxmem?\n");
1522 spapr
->htab_shift
= shift
;
1525 /* kernel-side HPT not needed, allocate in userspace instead */
1526 size_t size
= 1ULL << shift
;
1529 spapr
->htab
= qemu_memalign(size
, size
);
1530 memset(spapr
->htab
, 0, size
);
1531 spapr
->htab_shift
= shift
;
1533 for (i
= 0; i
< size
/ HASH_PTE_SIZE_64
; i
++) {
1534 DIRTY_HPTE(HPTE(spapr
->htab
, i
));
1537 /* We're setting up a hash table, so that means we're not radix */
1538 spapr
->patb_entry
= 0;
1539 spapr_set_all_lpcrs(0, LPCR_HR
| LPCR_UPRT
);
1543 void spapr_setup_hpt(SpaprMachineState
*spapr
)
1547 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
1548 hpt_shift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1550 uint64_t current_ram_size
;
1552 current_ram_size
= MACHINE(spapr
)->ram_size
+ get_plugged_memory_size();
1553 hpt_shift
= spapr_hpt_shift_for_ramsize(current_ram_size
);
1555 spapr_reallocate_hpt(spapr
, hpt_shift
, &error_fatal
);
1557 if (kvm_enabled()) {
1558 hwaddr vrma_limit
= kvmppc_vrma_limit(spapr
->htab_shift
);
1560 /* Check our RMA fits in the possible VRMA */
1561 if (vrma_limit
< spapr
->rma_size
) {
1562 error_report("Unable to create %" HWADDR_PRIu
1563 "MiB RMA (VRMA only allows %" HWADDR_PRIu
"MiB",
1564 spapr
->rma_size
/ MiB
, vrma_limit
/ MiB
);
1570 void spapr_check_mmu_mode(bool guest_radix
)
1573 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1574 error_report("Guest requested unavailable MMU mode (radix).");
1578 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1579 && !kvmppc_has_cap_mmu_hash_v3()) {
1580 error_report("Guest requested unavailable MMU mode (hash).");
1586 static void spapr_machine_reset(MachineState
*machine
)
1588 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
1589 PowerPCCPU
*first_ppc_cpu
;
1594 pef_kvm_reset(machine
->cgs
, &error_fatal
);
1595 spapr_caps_apply(spapr
);
1597 first_ppc_cpu
= POWERPC_CPU(first_cpu
);
1598 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1599 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
1600 spapr
->max_compat_pvr
)) {
1602 * If using KVM with radix mode available, VCPUs can be started
1603 * without a HPT because KVM will start them in radix mode.
1604 * Set the GR bit in PATE so that we know there is no HPT.
1606 spapr
->patb_entry
= PATE1_GR
;
1607 spapr_set_all_lpcrs(LPCR_HR
| LPCR_UPRT
, LPCR_HR
| LPCR_UPRT
);
1609 spapr_setup_hpt(spapr
);
1612 qemu_devices_reset();
1614 spapr_ovec_cleanup(spapr
->ov5_cas
);
1615 spapr
->ov5_cas
= spapr_ovec_new();
1617 ppc_set_compat_all(spapr
->max_compat_pvr
, &error_fatal
);
1620 * This is fixing some of the default configuration of the XIVE
1621 * devices. To be called after the reset of the machine devices.
1623 spapr_irq_reset(spapr
, &error_fatal
);
1626 * There is no CAS under qtest. Simulate one to please the code that
1627 * depends on spapr->ov5_cas. This is especially needed to test device
1628 * unplug, so we do that before resetting the DRCs.
1630 if (qtest_enabled()) {
1631 spapr_ovec_cleanup(spapr
->ov5_cas
);
1632 spapr
->ov5_cas
= spapr_ovec_clone(spapr
->ov5
);
1635 /* DRC reset may cause a device to be unplugged. This will cause troubles
1636 * if this device is used by another device (eg, a running vhost backend
1637 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1638 * situations, we reset DRCs after all devices have been reset.
1640 spapr_drc_reset_all(spapr
);
1642 spapr_clear_pending_events(spapr
);
1645 * We place the device tree just below either the top of the RMA,
1646 * or just below 2GB, whichever is lower, so that it can be
1647 * processed with 32-bit real mode code if necessary
1649 fdt_addr
= MIN(spapr
->rma_size
, FDT_MAX_ADDR
) - FDT_MAX_SIZE
;
1651 fdt
= spapr_build_fdt(spapr
, true, FDT_MAX_SIZE
);
1653 spapr_vof_reset(spapr
, fdt
, &error_fatal
);
1655 * Do not pack the FDT as the client may change properties.
1656 * VOF client does not expect the FDT so we do not load it to the VM.
1660 /* Should only fail if we've built a corrupted tree */
1663 spapr_cpu_set_entry_state(first_ppc_cpu
, SPAPR_ENTRY_POINT
,
1665 cpu_physical_memory_write(fdt_addr
, fdt
, fdt_totalsize(fdt
));
1667 qemu_fdt_dumpdtb(fdt
, fdt_totalsize(fdt
));
1669 g_free(spapr
->fdt_blob
);
1670 spapr
->fdt_size
= fdt_totalsize(fdt
);
1671 spapr
->fdt_initial_size
= spapr
->fdt_size
;
1672 spapr
->fdt_blob
= fdt
;
1674 /* Set up the entry state */
1675 first_ppc_cpu
->env
.gpr
[5] = 0;
1677 spapr
->fwnmi_system_reset_addr
= -1;
1678 spapr
->fwnmi_machine_check_addr
= -1;
1679 spapr
->fwnmi_machine_check_interlock
= -1;
1681 /* Signal all vCPUs waiting on this condition */
1682 qemu_cond_broadcast(&spapr
->fwnmi_machine_check_interlock_cond
);
1684 migrate_del_blocker(spapr
->fwnmi_migration_blocker
);
1687 static void spapr_create_nvram(SpaprMachineState
*spapr
)
1689 DeviceState
*dev
= qdev_new("spapr-nvram");
1690 DriveInfo
*dinfo
= drive_get(IF_PFLASH
, 0, 0);
1693 qdev_prop_set_drive_err(dev
, "drive", blk_by_legacy_dinfo(dinfo
),
1697 qdev_realize_and_unref(dev
, &spapr
->vio_bus
->bus
, &error_fatal
);
1699 spapr
->nvram
= (struct SpaprNvram
*)dev
;
1702 static void spapr_rtc_create(SpaprMachineState
*spapr
)
1704 object_initialize_child_with_props(OBJECT(spapr
), "rtc", &spapr
->rtc
,
1705 sizeof(spapr
->rtc
), TYPE_SPAPR_RTC
,
1706 &error_fatal
, NULL
);
1707 qdev_realize(DEVICE(&spapr
->rtc
), NULL
, &error_fatal
);
1708 object_property_add_alias(OBJECT(spapr
), "rtc-time", OBJECT(&spapr
->rtc
),
1712 /* Returns whether we want to use VGA or not */
1713 static bool spapr_vga_init(PCIBus
*pci_bus
, Error
**errp
)
1715 switch (vga_interface_type
) {
1723 return pci_vga_init(pci_bus
) != NULL
;
1726 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1731 static int spapr_pre_load(void *opaque
)
1735 rc
= spapr_caps_pre_load(opaque
);
1743 static int spapr_post_load(void *opaque
, int version_id
)
1745 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1748 err
= spapr_caps_post_migration(spapr
);
1754 * In earlier versions, there was no separate qdev for the PAPR
1755 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1756 * So when migrating from those versions, poke the incoming offset
1757 * value into the RTC device
1759 if (version_id
< 3) {
1760 err
= spapr_rtc_import_offset(&spapr
->rtc
, spapr
->rtc_offset
);
1766 if (kvm_enabled() && spapr
->patb_entry
) {
1767 PowerPCCPU
*cpu
= POWERPC_CPU(first_cpu
);
1768 bool radix
= !!(spapr
->patb_entry
& PATE1_GR
);
1769 bool gtse
= !!(cpu
->env
.spr
[SPR_LPCR
] & LPCR_GTSE
);
1772 * Update LPCR:HR and UPRT as they may not be set properly in
1775 spapr_set_all_lpcrs(radix
? (LPCR_HR
| LPCR_UPRT
) : 0,
1776 LPCR_HR
| LPCR_UPRT
);
1778 err
= kvmppc_configure_v3_mmu(cpu
, radix
, gtse
, spapr
->patb_entry
);
1780 error_report("Process table config unsupported by the host");
1785 err
= spapr_irq_post_load(spapr
, version_id
);
1793 static int spapr_pre_save(void *opaque
)
1797 rc
= spapr_caps_pre_save(opaque
);
1805 static bool version_before_3(void *opaque
, int version_id
)
1807 return version_id
< 3;
1810 static bool spapr_pending_events_needed(void *opaque
)
1812 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1813 return !QTAILQ_EMPTY(&spapr
->pending_events
);
1816 static const VMStateDescription vmstate_spapr_event_entry
= {
1817 .name
= "spapr_event_log_entry",
1819 .minimum_version_id
= 1,
1820 .fields
= (VMStateField
[]) {
1821 VMSTATE_UINT32(summary
, SpaprEventLogEntry
),
1822 VMSTATE_UINT32(extended_length
, SpaprEventLogEntry
),
1823 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log
, SpaprEventLogEntry
, 0,
1824 NULL
, extended_length
),
1825 VMSTATE_END_OF_LIST()
1829 static const VMStateDescription vmstate_spapr_pending_events
= {
1830 .name
= "spapr_pending_events",
1832 .minimum_version_id
= 1,
1833 .needed
= spapr_pending_events_needed
,
1834 .fields
= (VMStateField
[]) {
1835 VMSTATE_QTAILQ_V(pending_events
, SpaprMachineState
, 1,
1836 vmstate_spapr_event_entry
, SpaprEventLogEntry
, next
),
1837 VMSTATE_END_OF_LIST()
1841 static bool spapr_ov5_cas_needed(void *opaque
)
1843 SpaprMachineState
*spapr
= opaque
;
1844 SpaprOptionVector
*ov5_mask
= spapr_ovec_new();
1847 /* Prior to the introduction of SpaprOptionVector, we had two option
1848 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1849 * Both of these options encode machine topology into the device-tree
1850 * in such a way that the now-booted OS should still be able to interact
1851 * appropriately with QEMU regardless of what options were actually
1852 * negotiatied on the source side.
1854 * As such, we can avoid migrating the CAS-negotiated options if these
1855 * are the only options available on the current machine/platform.
1856 * Since these are the only options available for pseries-2.7 and
1857 * earlier, this allows us to maintain old->new/new->old migration
1860 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1861 * via default pseries-2.8 machines and explicit command-line parameters.
1862 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1863 * of the actual CAS-negotiated values to continue working properly. For
1864 * example, availability of memory unplug depends on knowing whether
1865 * OV5_HP_EVT was negotiated via CAS.
1867 * Thus, for any cases where the set of available CAS-negotiatable
1868 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1869 * include the CAS-negotiated options in the migration stream, unless
1870 * if they affect boot time behaviour only.
1872 spapr_ovec_set(ov5_mask
, OV5_FORM1_AFFINITY
);
1873 spapr_ovec_set(ov5_mask
, OV5_DRCONF_MEMORY
);
1874 spapr_ovec_set(ov5_mask
, OV5_DRMEM_V2
);
1876 /* We need extra information if we have any bits outside the mask
1878 cas_needed
= !spapr_ovec_subset(spapr
->ov5
, ov5_mask
);
1880 spapr_ovec_cleanup(ov5_mask
);
1885 static const VMStateDescription vmstate_spapr_ov5_cas
= {
1886 .name
= "spapr_option_vector_ov5_cas",
1888 .minimum_version_id
= 1,
1889 .needed
= spapr_ov5_cas_needed
,
1890 .fields
= (VMStateField
[]) {
1891 VMSTATE_STRUCT_POINTER_V(ov5_cas
, SpaprMachineState
, 1,
1892 vmstate_spapr_ovec
, SpaprOptionVector
),
1893 VMSTATE_END_OF_LIST()
1897 static bool spapr_patb_entry_needed(void *opaque
)
1899 SpaprMachineState
*spapr
= opaque
;
1901 return !!spapr
->patb_entry
;
1904 static const VMStateDescription vmstate_spapr_patb_entry
= {
1905 .name
= "spapr_patb_entry",
1907 .minimum_version_id
= 1,
1908 .needed
= spapr_patb_entry_needed
,
1909 .fields
= (VMStateField
[]) {
1910 VMSTATE_UINT64(patb_entry
, SpaprMachineState
),
1911 VMSTATE_END_OF_LIST()
1915 static bool spapr_irq_map_needed(void *opaque
)
1917 SpaprMachineState
*spapr
= opaque
;
1919 return spapr
->irq_map
&& !bitmap_empty(spapr
->irq_map
, spapr
->irq_map_nr
);
1922 static const VMStateDescription vmstate_spapr_irq_map
= {
1923 .name
= "spapr_irq_map",
1925 .minimum_version_id
= 1,
1926 .needed
= spapr_irq_map_needed
,
1927 .fields
= (VMStateField
[]) {
1928 VMSTATE_BITMAP(irq_map
, SpaprMachineState
, 0, irq_map_nr
),
1929 VMSTATE_END_OF_LIST()
1933 static bool spapr_dtb_needed(void *opaque
)
1935 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(opaque
);
1937 return smc
->update_dt_enabled
;
1940 static int spapr_dtb_pre_load(void *opaque
)
1942 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1944 g_free(spapr
->fdt_blob
);
1945 spapr
->fdt_blob
= NULL
;
1946 spapr
->fdt_size
= 0;
1951 static const VMStateDescription vmstate_spapr_dtb
= {
1952 .name
= "spapr_dtb",
1954 .minimum_version_id
= 1,
1955 .needed
= spapr_dtb_needed
,
1956 .pre_load
= spapr_dtb_pre_load
,
1957 .fields
= (VMStateField
[]) {
1958 VMSTATE_UINT32(fdt_initial_size
, SpaprMachineState
),
1959 VMSTATE_UINT32(fdt_size
, SpaprMachineState
),
1960 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob
, SpaprMachineState
, 0, NULL
,
1962 VMSTATE_END_OF_LIST()
1966 static bool spapr_fwnmi_needed(void *opaque
)
1968 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1970 return spapr
->fwnmi_machine_check_addr
!= -1;
1973 static int spapr_fwnmi_pre_save(void *opaque
)
1975 SpaprMachineState
*spapr
= (SpaprMachineState
*)opaque
;
1978 * Check if machine check handling is in progress and print a
1981 if (spapr
->fwnmi_machine_check_interlock
!= -1) {
1982 warn_report("A machine check is being handled during migration. The"
1983 "handler may run and log hardware error on the destination");
1989 static const VMStateDescription vmstate_spapr_fwnmi
= {
1990 .name
= "spapr_fwnmi",
1992 .minimum_version_id
= 1,
1993 .needed
= spapr_fwnmi_needed
,
1994 .pre_save
= spapr_fwnmi_pre_save
,
1995 .fields
= (VMStateField
[]) {
1996 VMSTATE_UINT64(fwnmi_system_reset_addr
, SpaprMachineState
),
1997 VMSTATE_UINT64(fwnmi_machine_check_addr
, SpaprMachineState
),
1998 VMSTATE_INT32(fwnmi_machine_check_interlock
, SpaprMachineState
),
1999 VMSTATE_END_OF_LIST()
2003 static const VMStateDescription vmstate_spapr
= {
2006 .minimum_version_id
= 1,
2007 .pre_load
= spapr_pre_load
,
2008 .post_load
= spapr_post_load
,
2009 .pre_save
= spapr_pre_save
,
2010 .fields
= (VMStateField
[]) {
2011 /* used to be @next_irq */
2012 VMSTATE_UNUSED_BUFFER(version_before_3
, 0, 4),
2015 VMSTATE_UINT64_TEST(rtc_offset
, SpaprMachineState
, version_before_3
),
2017 VMSTATE_PPC_TIMEBASE_V(tb
, SpaprMachineState
, 2),
2018 VMSTATE_END_OF_LIST()
2020 .subsections
= (const VMStateDescription
*[]) {
2021 &vmstate_spapr_ov5_cas
,
2022 &vmstate_spapr_patb_entry
,
2023 &vmstate_spapr_pending_events
,
2024 &vmstate_spapr_cap_htm
,
2025 &vmstate_spapr_cap_vsx
,
2026 &vmstate_spapr_cap_dfp
,
2027 &vmstate_spapr_cap_cfpc
,
2028 &vmstate_spapr_cap_sbbc
,
2029 &vmstate_spapr_cap_ibs
,
2030 &vmstate_spapr_cap_hpt_maxpagesize
,
2031 &vmstate_spapr_irq_map
,
2032 &vmstate_spapr_cap_nested_kvm_hv
,
2034 &vmstate_spapr_cap_large_decr
,
2035 &vmstate_spapr_cap_ccf_assist
,
2036 &vmstate_spapr_cap_fwnmi
,
2037 &vmstate_spapr_fwnmi
,
2038 &vmstate_spapr_cap_rpt_invalidate
,
2043 static int htab_save_setup(QEMUFile
*f
, void *opaque
)
2045 SpaprMachineState
*spapr
= opaque
;
2047 /* "Iteration" header */
2048 if (!spapr
->htab_shift
) {
2049 qemu_put_be32(f
, -1);
2051 qemu_put_be32(f
, spapr
->htab_shift
);
2055 spapr
->htab_save_index
= 0;
2056 spapr
->htab_first_pass
= true;
2058 if (spapr
->htab_shift
) {
2059 assert(kvm_enabled());
2067 static void htab_save_chunk(QEMUFile
*f
, SpaprMachineState
*spapr
,
2068 int chunkstart
, int n_valid
, int n_invalid
)
2070 qemu_put_be32(f
, chunkstart
);
2071 qemu_put_be16(f
, n_valid
);
2072 qemu_put_be16(f
, n_invalid
);
2073 qemu_put_buffer(f
, HPTE(spapr
->htab
, chunkstart
),
2074 HASH_PTE_SIZE_64
* n_valid
);
2077 static void htab_save_end_marker(QEMUFile
*f
)
2079 qemu_put_be32(f
, 0);
2080 qemu_put_be16(f
, 0);
2081 qemu_put_be16(f
, 0);
2084 static void htab_save_first_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2087 bool has_timeout
= max_ns
!= -1;
2088 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2089 int index
= spapr
->htab_save_index
;
2090 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2092 assert(spapr
->htab_first_pass
);
2097 /* Consume invalid HPTEs */
2098 while ((index
< htabslots
)
2099 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2100 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2104 /* Consume valid HPTEs */
2106 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2107 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2108 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2112 if (index
> chunkstart
) {
2113 int n_valid
= index
- chunkstart
;
2115 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, 0);
2118 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2122 } while ((index
< htabslots
) && !qemu_file_rate_limit(f
));
2124 if (index
>= htabslots
) {
2125 assert(index
== htabslots
);
2127 spapr
->htab_first_pass
= false;
2129 spapr
->htab_save_index
= index
;
2132 static int htab_save_later_pass(QEMUFile
*f
, SpaprMachineState
*spapr
,
2135 bool final
= max_ns
< 0;
2136 int htabslots
= HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
;
2137 int examined
= 0, sent
= 0;
2138 int index
= spapr
->htab_save_index
;
2139 int64_t starttime
= qemu_clock_get_ns(QEMU_CLOCK_REALTIME
);
2141 assert(!spapr
->htab_first_pass
);
2144 int chunkstart
, invalidstart
;
2146 /* Consume non-dirty HPTEs */
2147 while ((index
< htabslots
)
2148 && !HPTE_DIRTY(HPTE(spapr
->htab
, index
))) {
2154 /* Consume valid dirty HPTEs */
2155 while ((index
< htabslots
) && (index
- chunkstart
< USHRT_MAX
)
2156 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2157 && HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2158 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2163 invalidstart
= index
;
2164 /* Consume invalid dirty HPTEs */
2165 while ((index
< htabslots
) && (index
- invalidstart
< USHRT_MAX
)
2166 && HPTE_DIRTY(HPTE(spapr
->htab
, index
))
2167 && !HPTE_VALID(HPTE(spapr
->htab
, index
))) {
2168 CLEAN_HPTE(HPTE(spapr
->htab
, index
));
2173 if (index
> chunkstart
) {
2174 int n_valid
= invalidstart
- chunkstart
;
2175 int n_invalid
= index
- invalidstart
;
2177 htab_save_chunk(f
, spapr
, chunkstart
, n_valid
, n_invalid
);
2178 sent
+= index
- chunkstart
;
2180 if (!final
&& (qemu_clock_get_ns(QEMU_CLOCK_REALTIME
) - starttime
) > max_ns
) {
2185 if (examined
>= htabslots
) {
2189 if (index
>= htabslots
) {
2190 assert(index
== htabslots
);
2193 } while ((examined
< htabslots
) && (!qemu_file_rate_limit(f
) || final
));
2195 if (index
>= htabslots
) {
2196 assert(index
== htabslots
);
2200 spapr
->htab_save_index
= index
;
2202 return (examined
>= htabslots
) && (sent
== 0) ? 1 : 0;
2205 #define MAX_ITERATION_NS 5000000 /* 5 ms */
2206 #define MAX_KVM_BUF_SIZE 2048
2208 static int htab_save_iterate(QEMUFile
*f
, void *opaque
)
2210 SpaprMachineState
*spapr
= opaque
;
2214 /* Iteration header */
2215 if (!spapr
->htab_shift
) {
2216 qemu_put_be32(f
, -1);
2219 qemu_put_be32(f
, 0);
2223 assert(kvm_enabled());
2225 fd
= get_htab_fd(spapr
);
2230 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, MAX_ITERATION_NS
);
2234 } else if (spapr
->htab_first_pass
) {
2235 htab_save_first_pass(f
, spapr
, MAX_ITERATION_NS
);
2237 rc
= htab_save_later_pass(f
, spapr
, MAX_ITERATION_NS
);
2240 htab_save_end_marker(f
);
2245 static int htab_save_complete(QEMUFile
*f
, void *opaque
)
2247 SpaprMachineState
*spapr
= opaque
;
2250 /* Iteration header */
2251 if (!spapr
->htab_shift
) {
2252 qemu_put_be32(f
, -1);
2255 qemu_put_be32(f
, 0);
2261 assert(kvm_enabled());
2263 fd
= get_htab_fd(spapr
);
2268 rc
= kvmppc_save_htab(f
, fd
, MAX_KVM_BUF_SIZE
, -1);
2273 if (spapr
->htab_first_pass
) {
2274 htab_save_first_pass(f
, spapr
, -1);
2276 htab_save_later_pass(f
, spapr
, -1);
2280 htab_save_end_marker(f
);
2285 static int htab_load(QEMUFile
*f
, void *opaque
, int version_id
)
2287 SpaprMachineState
*spapr
= opaque
;
2288 uint32_t section_hdr
;
2290 Error
*local_err
= NULL
;
2292 if (version_id
< 1 || version_id
> 1) {
2293 error_report("htab_load() bad version");
2297 section_hdr
= qemu_get_be32(f
);
2299 if (section_hdr
== -1) {
2300 spapr_free_hpt(spapr
);
2307 /* First section gives the htab size */
2308 ret
= spapr_reallocate_hpt(spapr
, section_hdr
, &local_err
);
2310 error_report_err(local_err
);
2317 assert(kvm_enabled());
2319 fd
= kvmppc_get_htab_fd(true, 0, &local_err
);
2321 error_report_err(local_err
);
2328 uint16_t n_valid
, n_invalid
;
2330 index
= qemu_get_be32(f
);
2331 n_valid
= qemu_get_be16(f
);
2332 n_invalid
= qemu_get_be16(f
);
2334 if ((index
== 0) && (n_valid
== 0) && (n_invalid
== 0)) {
2339 if ((index
+ n_valid
+ n_invalid
) >
2340 (HTAB_SIZE(spapr
) / HASH_PTE_SIZE_64
)) {
2341 /* Bad index in stream */
2343 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2344 index
, n_valid
, n_invalid
, spapr
->htab_shift
);
2350 qemu_get_buffer(f
, HPTE(spapr
->htab
, index
),
2351 HASH_PTE_SIZE_64
* n_valid
);
2354 memset(HPTE(spapr
->htab
, index
+ n_valid
), 0,
2355 HASH_PTE_SIZE_64
* n_invalid
);
2362 rc
= kvmppc_load_htab_chunk(f
, fd
, index
, n_valid
, n_invalid
,
2365 error_report_err(local_err
);
2379 static void htab_save_cleanup(void *opaque
)
2381 SpaprMachineState
*spapr
= opaque
;
2383 close_htab_fd(spapr
);
2386 static SaveVMHandlers savevm_htab_handlers
= {
2387 .save_setup
= htab_save_setup
,
2388 .save_live_iterate
= htab_save_iterate
,
2389 .save_live_complete_precopy
= htab_save_complete
,
2390 .save_cleanup
= htab_save_cleanup
,
2391 .load_state
= htab_load
,
2394 static void spapr_boot_set(void *opaque
, const char *boot_device
,
2397 SpaprMachineState
*spapr
= SPAPR_MACHINE(opaque
);
2399 g_free(spapr
->boot_device
);
2400 spapr
->boot_device
= g_strdup(boot_device
);
2403 static void spapr_create_lmb_dr_connectors(SpaprMachineState
*spapr
)
2405 MachineState
*machine
= MACHINE(spapr
);
2406 uint64_t lmb_size
= SPAPR_MEMORY_BLOCK_SIZE
;
2407 uint32_t nr_lmbs
= (machine
->maxram_size
- machine
->ram_size
)/lmb_size
;
2410 for (i
= 0; i
< nr_lmbs
; i
++) {
2413 addr
= i
* lmb_size
+ machine
->device_memory
->base
;
2414 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_LMB
,
2420 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2421 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2422 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2424 static void spapr_validate_node_memory(MachineState
*machine
, Error
**errp
)
2428 if (machine
->ram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2429 error_setg(errp
, "Memory size 0x" RAM_ADDR_FMT
2430 " is not aligned to %" PRIu64
" MiB",
2432 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2436 if (machine
->maxram_size
% SPAPR_MEMORY_BLOCK_SIZE
) {
2437 error_setg(errp
, "Maximum memory size 0x" RAM_ADDR_FMT
2438 " is not aligned to %" PRIu64
" MiB",
2440 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2444 for (i
= 0; i
< machine
->numa_state
->num_nodes
; i
++) {
2445 if (machine
->numa_state
->nodes
[i
].node_mem
% SPAPR_MEMORY_BLOCK_SIZE
) {
2447 "Node %d memory size 0x%" PRIx64
2448 " is not aligned to %" PRIu64
" MiB",
2449 i
, machine
->numa_state
->nodes
[i
].node_mem
,
2450 SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
2456 /* find cpu slot in machine->possible_cpus by core_id */
2457 static CPUArchId
*spapr_find_cpu_slot(MachineState
*ms
, uint32_t id
, int *idx
)
2459 int index
= id
/ ms
->smp
.threads
;
2461 if (index
>= ms
->possible_cpus
->len
) {
2467 return &ms
->possible_cpus
->cpus
[index
];
2470 static void spapr_set_vsmt_mode(SpaprMachineState
*spapr
, Error
**errp
)
2472 MachineState
*ms
= MACHINE(spapr
);
2473 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2474 Error
*local_err
= NULL
;
2475 bool vsmt_user
= !!spapr
->vsmt
;
2476 int kvm_smt
= kvmppc_smt_threads();
2478 unsigned int smp_threads
= ms
->smp
.threads
;
2480 if (!kvm_enabled() && (smp_threads
> 1)) {
2481 error_setg(errp
, "TCG cannot support more than 1 thread/core "
2482 "on a pseries machine");
2485 if (!is_power_of_2(smp_threads
)) {
2486 error_setg(errp
, "Cannot support %d threads/core on a pseries "
2487 "machine because it must be a power of 2", smp_threads
);
2491 /* Detemine the VSMT mode to use: */
2493 if (spapr
->vsmt
< smp_threads
) {
2494 error_setg(errp
, "Cannot support VSMT mode %d"
2495 " because it must be >= threads/core (%d)",
2496 spapr
->vsmt
, smp_threads
);
2499 /* In this case, spapr->vsmt has been set by the command line */
2500 } else if (!smc
->smp_threads_vsmt
) {
2502 * Default VSMT value is tricky, because we need it to be as
2503 * consistent as possible (for migration), but this requires
2504 * changing it for at least some existing cases. We pick 8 as
2505 * the value that we'd get with KVM on POWER8, the
2506 * overwhelmingly common case in production systems.
2508 spapr
->vsmt
= MAX(8, smp_threads
);
2510 spapr
->vsmt
= smp_threads
;
2513 /* KVM: If necessary, set the SMT mode: */
2514 if (kvm_enabled() && (spapr
->vsmt
!= kvm_smt
)) {
2515 ret
= kvmppc_set_smt_threads(spapr
->vsmt
);
2517 /* Looks like KVM isn't able to change VSMT mode */
2518 error_setg(&local_err
,
2519 "Failed to set KVM's VSMT mode to %d (errno %d)",
2521 /* We can live with that if the default one is big enough
2522 * for the number of threads, and a submultiple of the one
2523 * we want. In this case we'll waste some vcpu ids, but
2524 * behaviour will be correct */
2525 if ((kvm_smt
>= smp_threads
) && ((spapr
->vsmt
% kvm_smt
) == 0)) {
2526 warn_report_err(local_err
);
2529 error_append_hint(&local_err
,
2530 "On PPC, a VM with %d threads/core"
2531 " on a host with %d threads/core"
2532 " requires the use of VSMT mode %d.\n",
2533 smp_threads
, kvm_smt
, spapr
->vsmt
);
2535 kvmppc_error_append_smt_possible_hint(&local_err
);
2536 error_propagate(errp
, local_err
);
2540 /* else TCG: nothing to do currently */
2543 static void spapr_init_cpus(SpaprMachineState
*spapr
)
2545 MachineState
*machine
= MACHINE(spapr
);
2546 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2547 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2548 const char *type
= spapr_get_cpu_core_type(machine
->cpu_type
);
2549 const CPUArchIdList
*possible_cpus
;
2550 unsigned int smp_cpus
= machine
->smp
.cpus
;
2551 unsigned int smp_threads
= machine
->smp
.threads
;
2552 unsigned int max_cpus
= machine
->smp
.max_cpus
;
2553 int boot_cores_nr
= smp_cpus
/ smp_threads
;
2556 possible_cpus
= mc
->possible_cpu_arch_ids(machine
);
2557 if (mc
->has_hotpluggable_cpus
) {
2558 if (smp_cpus
% smp_threads
) {
2559 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2560 smp_cpus
, smp_threads
);
2563 if (max_cpus
% smp_threads
) {
2564 error_report("max_cpus (%u) must be multiple of threads (%u)",
2565 max_cpus
, smp_threads
);
2569 if (max_cpus
!= smp_cpus
) {
2570 error_report("This machine version does not support CPU hotplug");
2573 boot_cores_nr
= possible_cpus
->len
;
2576 if (smc
->pre_2_10_has_unused_icps
) {
2579 for (i
= 0; i
< spapr_max_server_number(spapr
); i
++) {
2580 /* Dummy entries get deregistered when real ICPState objects
2581 * are registered during CPU core hotplug.
2583 pre_2_10_vmstate_register_dummy_icp(i
);
2587 for (i
= 0; i
< possible_cpus
->len
; i
++) {
2588 int core_id
= i
* smp_threads
;
2590 if (mc
->has_hotpluggable_cpus
) {
2591 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_CPU
,
2592 spapr_vcpu_id(spapr
, core_id
));
2595 if (i
< boot_cores_nr
) {
2596 Object
*core
= object_new(type
);
2597 int nr_threads
= smp_threads
;
2599 /* Handle the partially filled core for older machine types */
2600 if ((i
+ 1) * smp_threads
>= smp_cpus
) {
2601 nr_threads
= smp_cpus
- i
* smp_threads
;
2604 object_property_set_int(core
, "nr-threads", nr_threads
,
2606 object_property_set_int(core
, CPU_CORE_PROP_CORE_ID
, core_id
,
2608 qdev_realize(DEVICE(core
), NULL
, &error_fatal
);
2615 static PCIHostState
*spapr_create_default_phb(void)
2619 dev
= qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE
);
2620 qdev_prop_set_uint32(dev
, "index", 0);
2621 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
2623 return PCI_HOST_BRIDGE(dev
);
2626 static hwaddr
spapr_rma_size(SpaprMachineState
*spapr
, Error
**errp
)
2628 MachineState
*machine
= MACHINE(spapr
);
2629 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
2630 hwaddr rma_size
= machine
->ram_size
;
2631 hwaddr node0_size
= spapr_node0_size(machine
);
2633 /* RMA has to fit in the first NUMA node */
2634 rma_size
= MIN(rma_size
, node0_size
);
2637 * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2640 rma_size
= MIN(rma_size
, 1 * TiB
);
2643 * Clamp the RMA size based on machine type. This is for
2644 * migration compatibility with older qemu versions, which limited
2645 * the RMA size for complicated and mostly bad reasons.
2647 if (smc
->rma_limit
) {
2648 rma_size
= MIN(rma_size
, smc
->rma_limit
);
2651 if (rma_size
< MIN_RMA_SLOF
) {
2653 "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2654 "ldMiB guest RMA (Real Mode Area memory)",
2655 MIN_RMA_SLOF
/ MiB
);
2662 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState
*spapr
)
2664 MachineState
*machine
= MACHINE(spapr
);
2667 for (i
= 0; i
< machine
->ram_slots
; i
++) {
2668 spapr_dr_connector_new(OBJECT(spapr
), TYPE_SPAPR_DRC_PMEM
, i
);
2672 /* pSeries LPAR / sPAPR hardware init */
2673 static void spapr_machine_init(MachineState
*machine
)
2675 SpaprMachineState
*spapr
= SPAPR_MACHINE(machine
);
2676 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(machine
);
2677 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
2678 const char *bios_default
= spapr
->vof
? FW_FILE_NAME_VOF
: FW_FILE_NAME
;
2679 const char *bios_name
= machine
->firmware
?: bios_default
;
2680 const char *kernel_filename
= machine
->kernel_filename
;
2681 const char *initrd_filename
= machine
->initrd_filename
;
2684 MemoryRegion
*sysmem
= get_system_memory();
2685 long load_limit
, fw_size
;
2687 Error
*resize_hpt_err
= NULL
;
2690 * if Secure VM (PEF) support is configured, then initialize it
2692 pef_kvm_init(machine
->cgs
, &error_fatal
);
2694 msi_nonbroken
= true;
2696 QLIST_INIT(&spapr
->phbs
);
2697 QTAILQ_INIT(&spapr
->pending_dimm_unplugs
);
2699 /* Determine capabilities to run with */
2700 spapr_caps_init(spapr
);
2702 kvmppc_check_papr_resize_hpt(&resize_hpt_err
);
2703 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DEFAULT
) {
2705 * If the user explicitly requested a mode we should either
2706 * supply it, or fail completely (which we do below). But if
2707 * it's not set explicitly, we reset our mode to something
2710 if (resize_hpt_err
) {
2711 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
2712 error_free(resize_hpt_err
);
2713 resize_hpt_err
= NULL
;
2715 spapr
->resize_hpt
= smc
->resize_hpt_default
;
2719 assert(spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DEFAULT
);
2721 if ((spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) && resize_hpt_err
) {
2723 * User requested HPT resize, but this host can't supply it. Bail out
2725 error_report_err(resize_hpt_err
);
2728 error_free(resize_hpt_err
);
2730 spapr
->rma_size
= spapr_rma_size(spapr
, &error_fatal
);
2732 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2733 load_limit
= MIN(spapr
->rma_size
, FDT_MAX_ADDR
) - FW_OVERHEAD
;
2736 * VSMT must be set in order to be able to compute VCPU ids, ie to
2737 * call spapr_max_server_number() or spapr_vcpu_id().
2739 spapr_set_vsmt_mode(spapr
, &error_fatal
);
2741 /* Set up Interrupt Controller before we create the VCPUs */
2742 spapr_irq_init(spapr
, &error_fatal
);
2744 /* Set up containers for ibm,client-architecture-support negotiated options
2746 spapr
->ov5
= spapr_ovec_new();
2747 spapr
->ov5_cas
= spapr_ovec_new();
2749 if (smc
->dr_lmb_enabled
) {
2750 spapr_ovec_set(spapr
->ov5
, OV5_DRCONF_MEMORY
);
2751 spapr_validate_node_memory(machine
, &error_fatal
);
2754 spapr_ovec_set(spapr
->ov5
, OV5_FORM1_AFFINITY
);
2756 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2757 if (!smc
->pre_6_2_numa_affinity
) {
2758 spapr_ovec_set(spapr
->ov5
, OV5_FORM2_AFFINITY
);
2761 /* advertise support for dedicated HP event source to guests */
2762 if (spapr
->use_hotplug_event_source
) {
2763 spapr_ovec_set(spapr
->ov5
, OV5_HP_EVT
);
2766 /* advertise support for HPT resizing */
2767 if (spapr
->resize_hpt
!= SPAPR_RESIZE_HPT_DISABLED
) {
2768 spapr_ovec_set(spapr
->ov5
, OV5_HPT_RESIZE
);
2771 /* advertise support for ibm,dyamic-memory-v2 */
2772 spapr_ovec_set(spapr
->ov5
, OV5_DRMEM_V2
);
2774 /* advertise XIVE on POWER9 machines */
2775 if (spapr
->irq
->xive
) {
2776 spapr_ovec_set(spapr
->ov5
, OV5_XIVE_EXPLOIT
);
2780 spapr_init_cpus(spapr
);
2782 spapr
->gpu_numa_id
= spapr_numa_initial_nvgpu_numa_id(machine
);
2784 /* Init numa_assoc_array */
2785 spapr_numa_associativity_init(spapr
, machine
);
2787 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2788 ppc_type_check_compat(machine
->cpu_type
, CPU_POWERPC_LOGICAL_3_00
, 0,
2789 spapr
->max_compat_pvr
)) {
2790 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_300
);
2791 /* KVM and TCG always allow GTSE with radix... */
2792 spapr_ovec_set(spapr
->ov5
, OV5_MMU_RADIX_GTSE
);
2794 /* ... but not with hash (currently). */
2796 if (kvm_enabled()) {
2797 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2798 kvmppc_enable_logical_ci_hcalls();
2799 kvmppc_enable_set_mode_hcall();
2801 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2802 kvmppc_enable_clear_ref_mod_hcalls();
2804 /* Enable H_PAGE_INIT */
2805 kvmppc_enable_h_page_init();
2809 memory_region_add_subregion(sysmem
, 0, machine
->ram
);
2811 /* always allocate the device memory information */
2812 machine
->device_memory
= g_malloc0(sizeof(*machine
->device_memory
));
2814 /* initialize hotplug memory address space */
2815 if (machine
->ram_size
< machine
->maxram_size
) {
2816 ram_addr_t device_mem_size
= machine
->maxram_size
- machine
->ram_size
;
2818 * Limit the number of hotpluggable memory slots to half the number
2819 * slots that KVM supports, leaving the other half for PCI and other
2820 * devices. However ensure that number of slots doesn't drop below 32.
2822 int max_memslots
= kvm_enabled() ? kvm_get_max_memslots() / 2 :
2823 SPAPR_MAX_RAM_SLOTS
;
2825 if (max_memslots
< SPAPR_MAX_RAM_SLOTS
) {
2826 max_memslots
= SPAPR_MAX_RAM_SLOTS
;
2828 if (machine
->ram_slots
> max_memslots
) {
2829 error_report("Specified number of memory slots %"
2830 PRIu64
" exceeds max supported %d",
2831 machine
->ram_slots
, max_memslots
);
2835 machine
->device_memory
->base
= ROUND_UP(machine
->ram_size
,
2836 SPAPR_DEVICE_MEM_ALIGN
);
2837 memory_region_init(&machine
->device_memory
->mr
, OBJECT(spapr
),
2838 "device-memory", device_mem_size
);
2839 memory_region_add_subregion(sysmem
, machine
->device_memory
->base
,
2840 &machine
->device_memory
->mr
);
2843 if (smc
->dr_lmb_enabled
) {
2844 spapr_create_lmb_dr_connectors(spapr
);
2847 if (spapr_get_cap(spapr
, SPAPR_CAP_FWNMI
) == SPAPR_CAP_ON
) {
2848 /* Create the error string for live migration blocker */
2849 error_setg(&spapr
->fwnmi_migration_blocker
,
2850 "A machine check is being handled during migration. The handler"
2851 "may run and log hardware error on the destination");
2854 if (mc
->nvdimm_supported
) {
2855 spapr_create_nvdimm_dr_connectors(spapr
);
2858 /* Set up RTAS event infrastructure */
2859 spapr_events_init(spapr
);
2861 /* Set up the RTC RTAS interfaces */
2862 spapr_rtc_create(spapr
);
2864 /* Set up VIO bus */
2865 spapr
->vio_bus
= spapr_vio_bus_init();
2867 for (i
= 0; serial_hd(i
); i
++) {
2868 spapr_vty_create(spapr
->vio_bus
, serial_hd(i
));
2871 /* We always have at least the nvram device on VIO */
2872 spapr_create_nvram(spapr
);
2875 * Setup hotplug / dynamic-reconfiguration connectors. top-level
2876 * connectors (described in root DT node's "ibm,drc-types" property)
2877 * are pre-initialized here. additional child connectors (such as
2878 * connectors for a PHBs PCI slots) are added as needed during their
2879 * parent's realization.
2881 if (smc
->dr_phb_enabled
) {
2882 for (i
= 0; i
< SPAPR_MAX_PHBS
; i
++) {
2883 spapr_dr_connector_new(OBJECT(machine
), TYPE_SPAPR_DRC_PHB
, i
);
2888 spapr_pci_rtas_init();
2890 phb
= spapr_create_default_phb();
2892 for (i
= 0; i
< nb_nics
; i
++) {
2893 NICInfo
*nd
= &nd_table
[i
];
2896 nd
->model
= g_strdup("spapr-vlan");
2899 if (g_str_equal(nd
->model
, "spapr-vlan") ||
2900 g_str_equal(nd
->model
, "ibmveth")) {
2901 spapr_vlan_create(spapr
->vio_bus
, nd
);
2903 pci_nic_init_nofail(&nd_table
[i
], phb
->bus
, nd
->model
, NULL
);
2907 for (i
= 0; i
<= drive_get_max_bus(IF_SCSI
); i
++) {
2908 spapr_vscsi_create(spapr
->vio_bus
);
2912 if (spapr_vga_init(phb
->bus
, &error_fatal
)) {
2913 spapr
->has_graphics
= true;
2914 machine
->usb
|= defaults_enabled() && !machine
->usb_disabled
;
2918 if (smc
->use_ohci_by_default
) {
2919 pci_create_simple(phb
->bus
, -1, "pci-ohci");
2921 pci_create_simple(phb
->bus
, -1, "nec-usb-xhci");
2924 if (spapr
->has_graphics
) {
2925 USBBus
*usb_bus
= usb_bus_find(-1);
2927 usb_create_simple(usb_bus
, "usb-kbd");
2928 usb_create_simple(usb_bus
, "usb-mouse");
2932 if (kernel_filename
) {
2933 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2934 translate_kernel_address
, spapr
,
2935 NULL
, NULL
, NULL
, NULL
, 1,
2936 PPC_ELF_MACHINE
, 0, 0);
2937 if (spapr
->kernel_size
== ELF_LOAD_WRONG_ENDIAN
) {
2938 spapr
->kernel_size
= load_elf(kernel_filename
, NULL
,
2939 translate_kernel_address
, spapr
,
2940 NULL
, NULL
, NULL
, NULL
, 0,
2941 PPC_ELF_MACHINE
, 0, 0);
2942 spapr
->kernel_le
= spapr
->kernel_size
> 0;
2944 if (spapr
->kernel_size
< 0) {
2945 error_report("error loading %s: %s", kernel_filename
,
2946 load_elf_strerror(spapr
->kernel_size
));
2951 if (initrd_filename
) {
2952 /* Try to locate the initrd in the gap between the kernel
2953 * and the firmware. Add a bit of space just in case
2955 spapr
->initrd_base
= (spapr
->kernel_addr
+ spapr
->kernel_size
2956 + 0x1ffff) & ~0xffff;
2957 spapr
->initrd_size
= load_image_targphys(initrd_filename
,
2960 - spapr
->initrd_base
);
2961 if (spapr
->initrd_size
< 0) {
2962 error_report("could not load initial ram disk '%s'",
2969 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, bios_name
);
2971 error_report("Could not find LPAR firmware '%s'", bios_name
);
2974 fw_size
= load_image_targphys(filename
, 0, FW_MAX_SIZE
);
2976 error_report("Could not load LPAR firmware '%s'", filename
);
2981 /* FIXME: Should register things through the MachineState's qdev
2982 * interface, this is a legacy from the sPAPREnvironment structure
2983 * which predated MachineState but had a similar function */
2984 vmstate_register(NULL
, 0, &vmstate_spapr
, spapr
);
2985 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY
, 1,
2986 &savevm_htab_handlers
, spapr
);
2988 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine
));
2990 qemu_register_boot_set(spapr_boot_set
, spapr
);
2993 * Nothing needs to be done to resume a suspended guest because
2994 * suspending does not change the machine state, so no need for
2995 * a ->wakeup method.
2997 qemu_register_wakeup_support();
2999 if (kvm_enabled()) {
3000 /* to stop and start vmclock */
3001 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change
,
3004 kvmppc_spapr_enable_inkernel_multitce();
3007 qemu_cond_init(&spapr
->fwnmi_machine_check_interlock_cond
);
3009 spapr
->vof
->fw_size
= fw_size
; /* for claim() on itself */
3010 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT
, spapr_h_vof_client
);
3014 #define DEFAULT_KVM_TYPE "auto"
3015 static int spapr_kvm_type(MachineState
*machine
, const char *vm_type
)
3018 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3019 * accomodate the 'HV' and 'PV' formats that exists in the
3020 * wild. The 'auto' mode is being introduced already as
3021 * lower-case, thus we don't need to bother checking for
3024 if (!vm_type
|| !strcmp(vm_type
, DEFAULT_KVM_TYPE
)) {
3028 if (!g_ascii_strcasecmp(vm_type
, "hv")) {
3032 if (!g_ascii_strcasecmp(vm_type
, "pr")) {
3036 error_report("Unknown kvm-type specified '%s'", vm_type
);
3041 * Implementation of an interface to adjust firmware path
3042 * for the bootindex property handling.
3044 static char *spapr_get_fw_dev_path(FWPathProvider
*p
, BusState
*bus
,
3047 #define CAST(type, obj, name) \
3048 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3049 SCSIDevice
*d
= CAST(SCSIDevice
, dev
, TYPE_SCSI_DEVICE
);
3050 SpaprPhbState
*phb
= CAST(SpaprPhbState
, dev
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
3051 VHostSCSICommon
*vsc
= CAST(VHostSCSICommon
, dev
, TYPE_VHOST_SCSI_COMMON
);
3052 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
3055 void *spapr
= CAST(void, bus
->parent
, "spapr-vscsi");
3056 VirtIOSCSI
*virtio
= CAST(VirtIOSCSI
, bus
->parent
, TYPE_VIRTIO_SCSI
);
3057 USBDevice
*usb
= CAST(USBDevice
, bus
->parent
, TYPE_USB_DEVICE
);
3061 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3062 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3063 * 0x8000 | (target << 8) | (bus << 5) | lun
3064 * (see the "Logical unit addressing format" table in SAM5)
3066 unsigned id
= 0x8000 | (d
->id
<< 8) | (d
->channel
<< 5) | d
->lun
;
3067 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3068 (uint64_t)id
<< 48);
3069 } else if (virtio
) {
3071 * We use SRP luns of the form 01000000 | (target << 8) | lun
3072 * in the top 32 bits of the 64-bit LUN
3073 * Note: the quote above is from SLOF and it is wrong,
3074 * the actual binding is:
3075 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3077 unsigned id
= 0x1000000 | (d
->id
<< 16) | d
->lun
;
3078 if (d
->lun
>= 256) {
3079 /* Use the LUN "flat space addressing method" */
3082 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3083 (uint64_t)id
<< 32);
3086 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3087 * in the top 32 bits of the 64-bit LUN
3089 unsigned usb_port
= atoi(usb
->port
->path
);
3090 unsigned id
= 0x1000000 | (usb_port
<< 16) | d
->lun
;
3091 return g_strdup_printf("%s@%"PRIX64
, qdev_fw_name(dev
),
3092 (uint64_t)id
<< 32);
3097 * SLOF probes the USB devices, and if it recognizes that the device is a
3098 * storage device, it changes its name to "storage" instead of "usb-host",
3099 * and additionally adds a child node for the SCSI LUN, so the correct
3100 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3102 if (strcmp("usb-host", qdev_fw_name(dev
)) == 0) {
3103 USBDevice
*usbdev
= CAST(USBDevice
, dev
, TYPE_USB_DEVICE
);
3104 if (usb_device_is_scsi_storage(usbdev
)) {
3105 return g_strdup_printf("storage@%s/disk", usbdev
->port
->path
);
3110 /* Replace "pci" with "pci@800000020000000" */
3111 return g_strdup_printf("pci@%"PRIX64
, phb
->buid
);
3115 /* Same logic as virtio above */
3116 unsigned id
= 0x1000000 | (vsc
->target
<< 16) | vsc
->lun
;
3117 return g_strdup_printf("disk@%"PRIX64
, (uint64_t)id
<< 32);
3120 if (g_str_equal("pci-bridge", qdev_fw_name(dev
))) {
3121 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3122 PCIDevice
*pcidev
= CAST(PCIDevice
, dev
, TYPE_PCI_DEVICE
);
3123 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev
->devfn
));
3127 return spapr_pci_fw_dev_name(pcidev
);
3133 static char *spapr_get_kvm_type(Object
*obj
, Error
**errp
)
3135 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3137 return g_strdup(spapr
->kvm_type
);
3140 static void spapr_set_kvm_type(Object
*obj
, const char *value
, Error
**errp
)
3142 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3144 g_free(spapr
->kvm_type
);
3145 spapr
->kvm_type
= g_strdup(value
);
3148 static bool spapr_get_modern_hotplug_events(Object
*obj
, Error
**errp
)
3150 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3152 return spapr
->use_hotplug_event_source
;
3155 static void spapr_set_modern_hotplug_events(Object
*obj
, bool value
,
3158 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3160 spapr
->use_hotplug_event_source
= value
;
3163 static bool spapr_get_msix_emulation(Object
*obj
, Error
**errp
)
3168 static char *spapr_get_resize_hpt(Object
*obj
, Error
**errp
)
3170 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3172 switch (spapr
->resize_hpt
) {
3173 case SPAPR_RESIZE_HPT_DEFAULT
:
3174 return g_strdup("default");
3175 case SPAPR_RESIZE_HPT_DISABLED
:
3176 return g_strdup("disabled");
3177 case SPAPR_RESIZE_HPT_ENABLED
:
3178 return g_strdup("enabled");
3179 case SPAPR_RESIZE_HPT_REQUIRED
:
3180 return g_strdup("required");
3182 g_assert_not_reached();
3185 static void spapr_set_resize_hpt(Object
*obj
, const char *value
, Error
**errp
)
3187 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3189 if (strcmp(value
, "default") == 0) {
3190 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DEFAULT
;
3191 } else if (strcmp(value
, "disabled") == 0) {
3192 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_DISABLED
;
3193 } else if (strcmp(value
, "enabled") == 0) {
3194 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_ENABLED
;
3195 } else if (strcmp(value
, "required") == 0) {
3196 spapr
->resize_hpt
= SPAPR_RESIZE_HPT_REQUIRED
;
3198 error_setg(errp
, "Bad value for \"resize-hpt\" property");
3202 static bool spapr_get_vof(Object
*obj
, Error
**errp
)
3204 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3206 return spapr
->vof
!= NULL
;
3209 static void spapr_set_vof(Object
*obj
, bool value
, Error
**errp
)
3211 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3214 vof_cleanup(spapr
->vof
);
3221 spapr
->vof
= g_malloc0(sizeof(*spapr
->vof
));
3224 static char *spapr_get_ic_mode(Object
*obj
, Error
**errp
)
3226 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3228 if (spapr
->irq
== &spapr_irq_xics_legacy
) {
3229 return g_strdup("legacy");
3230 } else if (spapr
->irq
== &spapr_irq_xics
) {
3231 return g_strdup("xics");
3232 } else if (spapr
->irq
== &spapr_irq_xive
) {
3233 return g_strdup("xive");
3234 } else if (spapr
->irq
== &spapr_irq_dual
) {
3235 return g_strdup("dual");
3237 g_assert_not_reached();
3240 static void spapr_set_ic_mode(Object
*obj
, const char *value
, Error
**errp
)
3242 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3244 if (SPAPR_MACHINE_GET_CLASS(spapr
)->legacy_irq_allocation
) {
3245 error_setg(errp
, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3249 /* The legacy IRQ backend can not be set */
3250 if (strcmp(value
, "xics") == 0) {
3251 spapr
->irq
= &spapr_irq_xics
;
3252 } else if (strcmp(value
, "xive") == 0) {
3253 spapr
->irq
= &spapr_irq_xive
;
3254 } else if (strcmp(value
, "dual") == 0) {
3255 spapr
->irq
= &spapr_irq_dual
;
3257 error_setg(errp
, "Bad value for \"ic-mode\" property");
3261 static char *spapr_get_host_model(Object
*obj
, Error
**errp
)
3263 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3265 return g_strdup(spapr
->host_model
);
3268 static void spapr_set_host_model(Object
*obj
, const char *value
, Error
**errp
)
3270 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3272 g_free(spapr
->host_model
);
3273 spapr
->host_model
= g_strdup(value
);
3276 static char *spapr_get_host_serial(Object
*obj
, Error
**errp
)
3278 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3280 return g_strdup(spapr
->host_serial
);
3283 static void spapr_set_host_serial(Object
*obj
, const char *value
, Error
**errp
)
3285 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3287 g_free(spapr
->host_serial
);
3288 spapr
->host_serial
= g_strdup(value
);
3291 static void spapr_instance_init(Object
*obj
)
3293 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3294 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
3295 MachineState
*ms
= MACHINE(spapr
);
3296 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
3299 * NVDIMM support went live in 5.1 without considering that, in
3300 * other archs, the user needs to enable NVDIMM support with the
3301 * 'nvdimm' machine option and the default behavior is NVDIMM
3302 * support disabled. It is too late to roll back to the standard
3303 * behavior without breaking 5.1 guests.
3305 if (mc
->nvdimm_supported
) {
3306 ms
->nvdimms_state
->is_enabled
= true;
3309 spapr
->htab_fd
= -1;
3310 spapr
->use_hotplug_event_source
= true;
3311 spapr
->kvm_type
= g_strdup(DEFAULT_KVM_TYPE
);
3312 object_property_add_str(obj
, "kvm-type",
3313 spapr_get_kvm_type
, spapr_set_kvm_type
);
3314 object_property_set_description(obj
, "kvm-type",
3315 "Specifies the KVM virtualization mode (auto,"
3316 " hv, pr). Defaults to 'auto'. This mode will use"
3317 " any available KVM module loaded in the host,"
3318 " where kvm_hv takes precedence if both kvm_hv and"
3319 " kvm_pr are loaded.");
3320 object_property_add_bool(obj
, "modern-hotplug-events",
3321 spapr_get_modern_hotplug_events
,
3322 spapr_set_modern_hotplug_events
);
3323 object_property_set_description(obj
, "modern-hotplug-events",
3324 "Use dedicated hotplug event mechanism in"
3325 " place of standard EPOW events when possible"
3326 " (required for memory hot-unplug support)");
3327 ppc_compat_add_property(obj
, "max-cpu-compat", &spapr
->max_compat_pvr
,
3328 "Maximum permitted CPU compatibility mode");
3330 object_property_add_str(obj
, "resize-hpt",
3331 spapr_get_resize_hpt
, spapr_set_resize_hpt
);
3332 object_property_set_description(obj
, "resize-hpt",
3333 "Resizing of the Hash Page Table (enabled, disabled, required)");
3334 object_property_add_uint32_ptr(obj
, "vsmt",
3335 &spapr
->vsmt
, OBJ_PROP_FLAG_READWRITE
);
3336 object_property_set_description(obj
, "vsmt",
3337 "Virtual SMT: KVM behaves as if this were"
3338 " the host's SMT mode");
3340 object_property_add_bool(obj
, "vfio-no-msix-emulation",
3341 spapr_get_msix_emulation
, NULL
);
3343 object_property_add_uint64_ptr(obj
, "kernel-addr",
3344 &spapr
->kernel_addr
, OBJ_PROP_FLAG_READWRITE
);
3345 object_property_set_description(obj
, "kernel-addr",
3346 stringify(KERNEL_LOAD_ADDR
)
3347 " for -kernel is the default");
3348 spapr
->kernel_addr
= KERNEL_LOAD_ADDR
;
3350 object_property_add_bool(obj
, "x-vof", spapr_get_vof
, spapr_set_vof
);
3351 object_property_set_description(obj
, "x-vof",
3352 "Enable Virtual Open Firmware (experimental)");
3354 /* The machine class defines the default interrupt controller mode */
3355 spapr
->irq
= smc
->irq
;
3356 object_property_add_str(obj
, "ic-mode", spapr_get_ic_mode
,
3358 object_property_set_description(obj
, "ic-mode",
3359 "Specifies the interrupt controller mode (xics, xive, dual)");
3361 object_property_add_str(obj
, "host-model",
3362 spapr_get_host_model
, spapr_set_host_model
);
3363 object_property_set_description(obj
, "host-model",
3364 "Host model to advertise in guest device tree");
3365 object_property_add_str(obj
, "host-serial",
3366 spapr_get_host_serial
, spapr_set_host_serial
);
3367 object_property_set_description(obj
, "host-serial",
3368 "Host serial number to advertise in guest device tree");
3371 static void spapr_machine_finalizefn(Object
*obj
)
3373 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
3375 g_free(spapr
->kvm_type
);
3378 void spapr_do_system_reset_on_cpu(CPUState
*cs
, run_on_cpu_data arg
)
3380 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
3381 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3382 CPUPPCState
*env
= &cpu
->env
;
3384 cpu_synchronize_state(cs
);
3385 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3386 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3387 uint64_t rtas_addr
, addr
;
3389 /* get rtas addr from fdt */
3390 rtas_addr
= spapr_get_rtas_addr();
3392 qemu_system_guest_panicked(NULL
);
3396 addr
= rtas_addr
+ RTAS_ERROR_LOG_MAX
+ cs
->cpu_index
* sizeof(uint64_t)*2;
3397 stq_be_phys(&address_space_memory
, addr
, env
->gpr
[3]);
3398 stq_be_phys(&address_space_memory
, addr
+ sizeof(uint64_t), 0);
3401 ppc_cpu_do_system_reset(cs
);
3402 if (spapr
->fwnmi_system_reset_addr
!= -1) {
3403 env
->nip
= spapr
->fwnmi_system_reset_addr
;
3407 static void spapr_nmi(NMIState
*n
, int cpu_index
, Error
**errp
)
3412 async_run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
3416 int spapr_lmb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3417 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3422 addr
= spapr_drc_index(drc
) * SPAPR_MEMORY_BLOCK_SIZE
;
3423 node
= object_property_get_uint(OBJECT(drc
->dev
), PC_DIMM_NODE_PROP
,
3425 *fdt_start_offset
= spapr_dt_memory_node(spapr
, fdt
, node
, addr
,
3426 SPAPR_MEMORY_BLOCK_SIZE
);
3430 static void spapr_add_lmbs(DeviceState
*dev
, uint64_t addr_start
, uint64_t size
,
3431 bool dedicated_hp_event_source
)
3434 uint32_t nr_lmbs
= size
/SPAPR_MEMORY_BLOCK_SIZE
;
3436 uint64_t addr
= addr_start
;
3437 bool hotplugged
= spapr_drc_hotplugged(dev
);
3439 for (i
= 0; i
< nr_lmbs
; i
++) {
3440 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3441 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3445 * memory_device_get_free_addr() provided a range of free addresses
3446 * that doesn't overlap with any existing mapping at pre-plug. The
3447 * corresponding LMB DRCs are thus assumed to be all attachable.
3449 spapr_drc_attach(drc
, dev
);
3451 spapr_drc_reset(drc
);
3453 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3455 /* send hotplug notification to the
3456 * guest only in case of hotplugged memory
3459 if (dedicated_hp_event_source
) {
3460 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3461 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3463 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3465 spapr_drc_index(drc
));
3467 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3473 static void spapr_memory_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3475 SpaprMachineState
*ms
= SPAPR_MACHINE(hotplug_dev
);
3476 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3477 uint64_t size
, addr
;
3479 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3481 size
= memory_device_get_region_size(MEMORY_DEVICE(dev
), &error_abort
);
3483 pc_dimm_plug(dimm
, MACHINE(ms
));
3486 addr
= object_property_get_uint(OBJECT(dimm
),
3487 PC_DIMM_ADDR_PROP
, &error_abort
);
3488 spapr_add_lmbs(dev
, addr
, size
,
3489 spapr_ovec_test(ms
->ov5_cas
, OV5_HP_EVT
));
3491 slot
= object_property_get_int(OBJECT(dimm
),
3492 PC_DIMM_SLOT_PROP
, &error_abort
);
3493 /* We should have valid slot number at this point */
3494 g_assert(slot
>= 0);
3495 spapr_add_nvdimm(dev
, slot
);
3499 static void spapr_memory_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3502 const SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(hotplug_dev
);
3503 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3504 bool is_nvdimm
= object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
);
3505 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3506 Error
*local_err
= NULL
;
3511 if (!smc
->dr_lmb_enabled
) {
3512 error_setg(errp
, "Memory hotplug not supported for this machine");
3516 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &local_err
);
3518 error_propagate(errp
, local_err
);
3523 if (!spapr_nvdimm_validate(hotplug_dev
, NVDIMM(dev
), size
, errp
)) {
3526 } else if (size
% SPAPR_MEMORY_BLOCK_SIZE
) {
3527 error_setg(errp
, "Hotplugged memory size must be a multiple of "
3528 "%" PRIu64
" MB", SPAPR_MEMORY_BLOCK_SIZE
/ MiB
);
3532 memdev
= object_property_get_link(OBJECT(dimm
), PC_DIMM_MEMDEV_PROP
,
3534 pagesize
= host_memory_backend_pagesize(MEMORY_BACKEND(memdev
));
3535 if (!spapr_check_pagesize(spapr
, pagesize
, errp
)) {
3539 pc_dimm_pre_plug(dimm
, MACHINE(hotplug_dev
), NULL
, errp
);
3542 struct SpaprDimmState
{
3545 QTAILQ_ENTRY(SpaprDimmState
) next
;
3548 static SpaprDimmState
*spapr_pending_dimm_unplugs_find(SpaprMachineState
*s
,
3551 SpaprDimmState
*dimm_state
= NULL
;
3553 QTAILQ_FOREACH(dimm_state
, &s
->pending_dimm_unplugs
, next
) {
3554 if (dimm_state
->dimm
== dimm
) {
3561 static SpaprDimmState
*spapr_pending_dimm_unplugs_add(SpaprMachineState
*spapr
,
3565 SpaprDimmState
*ds
= NULL
;
3568 * If this request is for a DIMM whose removal had failed earlier
3569 * (due to guest's refusal to remove the LMBs), we would have this
3570 * dimm already in the pending_dimm_unplugs list. In that
3571 * case don't add again.
3573 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3575 ds
= g_malloc0(sizeof(SpaprDimmState
));
3576 ds
->nr_lmbs
= nr_lmbs
;
3578 QTAILQ_INSERT_HEAD(&spapr
->pending_dimm_unplugs
, ds
, next
);
3583 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState
*spapr
,
3584 SpaprDimmState
*dimm_state
)
3586 QTAILQ_REMOVE(&spapr
->pending_dimm_unplugs
, dimm_state
, next
);
3590 static SpaprDimmState
*spapr_recover_pending_dimm_state(SpaprMachineState
*ms
,
3594 uint64_t size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
),
3596 uint32_t nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3597 uint32_t avail_lmbs
= 0;
3598 uint64_t addr_start
, addr
;
3601 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3605 for (i
= 0; i
< nr_lmbs
; i
++) {
3606 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3607 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3612 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3615 return spapr_pending_dimm_unplugs_add(ms
, avail_lmbs
, dimm
);
3618 void spapr_memory_unplug_rollback(SpaprMachineState
*spapr
, DeviceState
*dev
)
3624 uint64_t size
, addr_start
, addr
;
3625 g_autofree
char *qapi_error
= NULL
;
3632 dimm
= PC_DIMM(dev
);
3633 ds
= spapr_pending_dimm_unplugs_find(spapr
, dimm
);
3636 * 'ds == NULL' would mean that the DIMM doesn't have a pending
3637 * unplug state, but one of its DRC is marked as unplug_requested.
3638 * This is bad and weird enough to g_assert() out.
3642 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3644 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &error_abort
);
3645 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3647 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3651 for (i
= 0; i
< nr_lmbs
; i
++) {
3652 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3653 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3656 drc
->unplug_requested
= false;
3657 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3661 * Tell QAPI that something happened and the memory
3662 * hotunplug wasn't successful. Keep sending
3663 * MEM_UNPLUG_ERROR even while sending
3664 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3665 * MEM_UNPLUG_ERROR is due.
3667 qapi_error
= g_strdup_printf("Memory hotunplug rejected by the guest "
3668 "for device %s", dev
->id
);
3670 qapi_event_send_mem_unplug_error(dev
->id
? : "", qapi_error
);
3672 qapi_event_send_device_unplug_guest_error(!!dev
->id
, dev
->id
,
3673 dev
->canonical_path
);
3676 /* Callback to be called during DRC release. */
3677 void spapr_lmb_release(DeviceState
*dev
)
3679 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3680 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_ctrl
);
3681 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3683 /* This information will get lost if a migration occurs
3684 * during the unplug process. In this case recover it. */
3686 ds
= spapr_recover_pending_dimm_state(spapr
, PC_DIMM(dev
));
3688 /* The DRC being examined by the caller at least must be counted */
3689 g_assert(ds
->nr_lmbs
);
3692 if (--ds
->nr_lmbs
) {
3697 * Now that all the LMBs have been removed by the guest, call the
3698 * unplug handler chain. This can never fail.
3700 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3701 object_unparent(OBJECT(dev
));
3704 static void spapr_memory_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3706 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3707 SpaprDimmState
*ds
= spapr_pending_dimm_unplugs_find(spapr
, PC_DIMM(dev
));
3709 /* We really shouldn't get this far without anything to unplug */
3712 pc_dimm_unplug(PC_DIMM(dev
), MACHINE(hotplug_dev
));
3713 qdev_unrealize(dev
);
3714 spapr_pending_dimm_unplugs_remove(spapr
, ds
);
3717 static void spapr_memory_unplug_request(HotplugHandler
*hotplug_dev
,
3718 DeviceState
*dev
, Error
**errp
)
3720 SpaprMachineState
*spapr
= SPAPR_MACHINE(hotplug_dev
);
3721 PCDIMMDevice
*dimm
= PC_DIMM(dev
);
3723 uint64_t size
, addr_start
, addr
;
3727 if (object_dynamic_cast(OBJECT(dev
), TYPE_NVDIMM
)) {
3728 error_setg(errp
, "nvdimm device hot unplug is not supported yet.");
3732 size
= memory_device_get_region_size(MEMORY_DEVICE(dimm
), &error_abort
);
3733 nr_lmbs
= size
/ SPAPR_MEMORY_BLOCK_SIZE
;
3735 addr_start
= object_property_get_uint(OBJECT(dimm
), PC_DIMM_ADDR_PROP
,
3739 * An existing pending dimm state for this DIMM means that there is an
3740 * unplug operation in progress, waiting for the spapr_lmb_release
3741 * callback to complete the job (BQL can't cover that far). In this case,
3742 * bail out to avoid detaching DRCs that were already released.
3744 if (spapr_pending_dimm_unplugs_find(spapr
, dimm
)) {
3745 error_setg(errp
, "Memory unplug already in progress for device %s",
3750 spapr_pending_dimm_unplugs_add(spapr
, nr_lmbs
, dimm
);
3753 for (i
= 0; i
< nr_lmbs
; i
++) {
3754 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3755 addr
/ SPAPR_MEMORY_BLOCK_SIZE
);
3758 spapr_drc_unplug_request(drc
);
3759 addr
+= SPAPR_MEMORY_BLOCK_SIZE
;
3762 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_LMB
,
3763 addr_start
/ SPAPR_MEMORY_BLOCK_SIZE
);
3764 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB
,
3765 nr_lmbs
, spapr_drc_index(drc
));
3768 /* Callback to be called during DRC release. */
3769 void spapr_core_release(DeviceState
*dev
)
3771 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
3773 /* Call the unplug handler chain. This can never fail. */
3774 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
3775 object_unparent(OBJECT(dev
));
3778 static void spapr_core_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3780 MachineState
*ms
= MACHINE(hotplug_dev
);
3781 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(ms
);
3782 CPUCore
*cc
= CPU_CORE(dev
);
3783 CPUArchId
*core_slot
= spapr_find_cpu_slot(ms
, cc
->core_id
, NULL
);
3785 if (smc
->pre_2_10_has_unused_icps
) {
3786 SpaprCpuCore
*sc
= SPAPR_CPU_CORE(OBJECT(dev
));
3789 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3790 CPUState
*cs
= CPU(sc
->threads
[i
]);
3792 pre_2_10_vmstate_register_dummy_icp(cs
->cpu_index
);
3797 core_slot
->cpu
= NULL
;
3798 qdev_unrealize(dev
);
3802 void spapr_core_unplug_request(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3805 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3808 CPUCore
*cc
= CPU_CORE(dev
);
3810 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
)) {
3811 error_setg(errp
, "Unable to find CPU core with core-id: %d",
3816 error_setg(errp
, "Boot CPU core may not be unplugged");
3820 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3821 spapr_vcpu_id(spapr
, cc
->core_id
));
3824 if (!spapr_drc_unplug_requested(drc
)) {
3825 spapr_drc_unplug_request(drc
);
3829 * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3830 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3831 * pulses removing the same CPU. Otherwise, in an failed hotunplug
3832 * attempt (e.g. the kernel will refuse to remove the last online
3833 * CPU), we will never attempt it again because unplug_requested
3834 * will still be 'true' in that case.
3836 spapr_hotplug_req_remove_by_index(drc
);
3839 int spapr_core_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3840 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3842 SpaprCpuCore
*core
= SPAPR_CPU_CORE(drc
->dev
);
3843 CPUState
*cs
= CPU(core
->threads
[0]);
3844 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
3845 DeviceClass
*dc
= DEVICE_GET_CLASS(cs
);
3846 int id
= spapr_get_vcpu_id(cpu
);
3847 g_autofree
char *nodename
= NULL
;
3850 nodename
= g_strdup_printf("%s@%x", dc
->fw_name
, id
);
3851 offset
= fdt_add_subnode(fdt
, 0, nodename
);
3853 spapr_dt_cpu(cs
, fdt
, offset
, spapr
);
3856 * spapr_dt_cpu() does not fill the 'name' property in the
3857 * CPU node. The function is called during boot process, before
3858 * and after CAS, and overwriting the 'name' property written
3859 * by SLOF is not allowed.
3861 * Write it manually after spapr_dt_cpu(). This makes the hotplug
3862 * CPUs more compatible with the coldplugged ones, which have
3863 * the 'name' property. Linux Kernel also relies on this
3864 * property to identify CPU nodes.
3866 _FDT((fdt_setprop_string(fdt
, offset
, "name", nodename
)));
3868 *fdt_start_offset
= offset
;
3872 static void spapr_core_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
3874 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
3875 MachineClass
*mc
= MACHINE_GET_CLASS(spapr
);
3876 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
3877 SpaprCpuCore
*core
= SPAPR_CPU_CORE(OBJECT(dev
));
3878 CPUCore
*cc
= CPU_CORE(dev
);
3881 CPUArchId
*core_slot
;
3883 bool hotplugged
= spapr_drc_hotplugged(dev
);
3886 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3887 g_assert(core_slot
); /* Already checked in spapr_core_pre_plug() */
3889 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_CPU
,
3890 spapr_vcpu_id(spapr
, cc
->core_id
));
3892 g_assert(drc
|| !mc
->has_hotpluggable_cpus
);
3896 * spapr_core_pre_plug() already buys us this is a brand new
3897 * core being plugged into a free slot. Nothing should already
3898 * be attached to the corresponding DRC.
3900 spapr_drc_attach(drc
, dev
);
3904 * Send hotplug notification interrupt to the guest only
3905 * in case of hotplugged CPUs.
3907 spapr_hotplug_req_add_by_index(drc
);
3909 spapr_drc_reset(drc
);
3913 core_slot
->cpu
= OBJECT(dev
);
3916 * Set compatibility mode to match the boot CPU, which was either set
3917 * by the machine reset code or by CAS. This really shouldn't fail at
3921 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3922 ppc_set_compat(core
->threads
[i
], POWERPC_CPU(first_cpu
)->compat_pvr
,
3927 if (smc
->pre_2_10_has_unused_icps
) {
3928 for (i
= 0; i
< cc
->nr_threads
; i
++) {
3929 cs
= CPU(core
->threads
[i
]);
3930 pre_2_10_vmstate_unregister_dummy_icp(cs
->cpu_index
);
3935 static void spapr_core_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
3938 MachineState
*machine
= MACHINE(OBJECT(hotplug_dev
));
3939 MachineClass
*mc
= MACHINE_GET_CLASS(hotplug_dev
);
3940 CPUCore
*cc
= CPU_CORE(dev
);
3941 const char *base_core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
3942 const char *type
= object_get_typename(OBJECT(dev
));
3943 CPUArchId
*core_slot
;
3945 unsigned int smp_threads
= machine
->smp
.threads
;
3947 if (dev
->hotplugged
&& !mc
->has_hotpluggable_cpus
) {
3948 error_setg(errp
, "CPU hotplug not supported for this machine");
3952 if (strcmp(base_core_type
, type
)) {
3953 error_setg(errp
, "CPU core type should be %s", base_core_type
);
3957 if (cc
->core_id
% smp_threads
) {
3958 error_setg(errp
, "invalid core id %d", cc
->core_id
);
3963 * In general we should have homogeneous threads-per-core, but old
3964 * (pre hotplug support) machine types allow the last core to have
3965 * reduced threads as a compatibility hack for when we allowed
3966 * total vcpus not a multiple of threads-per-core.
3968 if (mc
->has_hotpluggable_cpus
&& (cc
->nr_threads
!= smp_threads
)) {
3969 error_setg(errp
, "invalid nr-threads %d, must be %d", cc
->nr_threads
,
3974 core_slot
= spapr_find_cpu_slot(MACHINE(hotplug_dev
), cc
->core_id
, &index
);
3976 error_setg(errp
, "core id %d out of range", cc
->core_id
);
3980 if (core_slot
->cpu
) {
3981 error_setg(errp
, "core %d already populated", cc
->core_id
);
3985 numa_cpu_pre_plug(core_slot
, dev
, errp
);
3988 int spapr_phb_dt_populate(SpaprDrc
*drc
, SpaprMachineState
*spapr
,
3989 void *fdt
, int *fdt_start_offset
, Error
**errp
)
3991 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(drc
->dev
);
3994 intc_phandle
= spapr_irq_get_phandle(spapr
, spapr
->fdt_blob
, errp
);
3995 if (intc_phandle
<= 0) {
3999 if (spapr_dt_phb(spapr
, sphb
, intc_phandle
, fdt
, fdt_start_offset
)) {
4000 error_setg(errp
, "unable to create FDT node for PHB %d", sphb
->index
);
4004 /* generally SLOF creates these, for hotplug it's up to QEMU */
4005 _FDT(fdt_setprop_string(fdt
, *fdt_start_offset
, "name", "pci"));
4010 static bool spapr_phb_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
4013 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4014 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
4015 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
4016 const unsigned windows_supported
= spapr_phb_windows_supported(sphb
);
4019 if (dev
->hotplugged
&& !smc
->dr_phb_enabled
) {
4020 error_setg(errp
, "PHB hotplug not supported for this machine");
4024 if (sphb
->index
== (uint32_t)-1) {
4025 error_setg(errp
, "\"index\" for PAPR PHB is mandatory");
4029 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
4030 if (drc
&& drc
->dev
) {
4031 error_setg(errp
, "PHB %d already attached", sphb
->index
);
4036 * This will check that sphb->index doesn't exceed the maximum number of
4037 * PHBs for the current machine type.
4040 smc
->phb_placement(spapr
, sphb
->index
,
4041 &sphb
->buid
, &sphb
->io_win_addr
,
4042 &sphb
->mem_win_addr
, &sphb
->mem64_win_addr
,
4043 windows_supported
, sphb
->dma_liobn
,
4044 &sphb
->nv2_gpa_win_addr
, &sphb
->nv2_atsd_win_addr
,
4048 static void spapr_phb_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4050 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4051 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
4052 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
4054 bool hotplugged
= spapr_drc_hotplugged(dev
);
4056 if (!smc
->dr_phb_enabled
) {
4060 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
4061 /* hotplug hooks should check it's enabled before getting this far */
4064 /* spapr_phb_pre_plug() already checked the DRC is attachable */
4065 spapr_drc_attach(drc
, dev
);
4068 spapr_hotplug_req_add_by_index(drc
);
4070 spapr_drc_reset(drc
);
4074 void spapr_phb_release(DeviceState
*dev
)
4076 HotplugHandler
*hotplug_ctrl
= qdev_get_hotplug_handler(dev
);
4078 hotplug_handler_unplug(hotplug_ctrl
, dev
, &error_abort
);
4079 object_unparent(OBJECT(dev
));
4082 static void spapr_phb_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4084 qdev_unrealize(dev
);
4087 static void spapr_phb_unplug_request(HotplugHandler
*hotplug_dev
,
4088 DeviceState
*dev
, Error
**errp
)
4090 SpaprPhbState
*sphb
= SPAPR_PCI_HOST_BRIDGE(dev
);
4093 drc
= spapr_drc_by_id(TYPE_SPAPR_DRC_PHB
, sphb
->index
);
4096 if (!spapr_drc_unplug_requested(drc
)) {
4097 spapr_drc_unplug_request(drc
);
4098 spapr_hotplug_req_remove_by_index(drc
);
4101 "PCI Host Bridge unplug already in progress for device %s",
4107 bool spapr_tpm_proxy_pre_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
,
4110 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4112 if (spapr
->tpm_proxy
!= NULL
) {
4113 error_setg(errp
, "Only one TPM proxy can be specified for this machine");
4120 static void spapr_tpm_proxy_plug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4122 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4123 SpaprTpmProxy
*tpm_proxy
= SPAPR_TPM_PROXY(dev
);
4125 /* Already checked in spapr_tpm_proxy_pre_plug() */
4126 g_assert(spapr
->tpm_proxy
== NULL
);
4128 spapr
->tpm_proxy
= tpm_proxy
;
4131 static void spapr_tpm_proxy_unplug(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
4133 SpaprMachineState
*spapr
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4135 qdev_unrealize(dev
);
4136 object_unparent(OBJECT(dev
));
4137 spapr
->tpm_proxy
= NULL
;
4140 static void spapr_machine_device_plug(HotplugHandler
*hotplug_dev
,
4141 DeviceState
*dev
, Error
**errp
)
4143 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4144 spapr_memory_plug(hotplug_dev
, dev
);
4145 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4146 spapr_core_plug(hotplug_dev
, dev
);
4147 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4148 spapr_phb_plug(hotplug_dev
, dev
);
4149 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4150 spapr_tpm_proxy_plug(hotplug_dev
, dev
);
4154 static void spapr_machine_device_unplug(HotplugHandler
*hotplug_dev
,
4155 DeviceState
*dev
, Error
**errp
)
4157 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4158 spapr_memory_unplug(hotplug_dev
, dev
);
4159 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4160 spapr_core_unplug(hotplug_dev
, dev
);
4161 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4162 spapr_phb_unplug(hotplug_dev
, dev
);
4163 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4164 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4168 bool spapr_memory_hot_unplug_supported(SpaprMachineState
*spapr
)
4170 return spapr_ovec_test(spapr
->ov5_cas
, OV5_HP_EVT
) ||
4172 * CAS will process all pending unplug requests.
4174 * HACK: a guest could theoretically have cleared all bits in OV5,
4175 * but none of the guests we care for do.
4177 spapr_ovec_empty(spapr
->ov5_cas
);
4180 static void spapr_machine_device_unplug_request(HotplugHandler
*hotplug_dev
,
4181 DeviceState
*dev
, Error
**errp
)
4183 SpaprMachineState
*sms
= SPAPR_MACHINE(OBJECT(hotplug_dev
));
4184 MachineClass
*mc
= MACHINE_GET_CLASS(sms
);
4185 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4187 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4188 if (spapr_memory_hot_unplug_supported(sms
)) {
4189 spapr_memory_unplug_request(hotplug_dev
, dev
, errp
);
4191 error_setg(errp
, "Memory hot unplug not supported for this guest");
4193 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4194 if (!mc
->has_hotpluggable_cpus
) {
4195 error_setg(errp
, "CPU hot unplug not supported on this machine");
4198 spapr_core_unplug_request(hotplug_dev
, dev
, errp
);
4199 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4200 if (!smc
->dr_phb_enabled
) {
4201 error_setg(errp
, "PHB hot unplug not supported on this machine");
4204 spapr_phb_unplug_request(hotplug_dev
, dev
, errp
);
4205 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4206 spapr_tpm_proxy_unplug(hotplug_dev
, dev
);
4210 static void spapr_machine_device_pre_plug(HotplugHandler
*hotplug_dev
,
4211 DeviceState
*dev
, Error
**errp
)
4213 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
)) {
4214 spapr_memory_pre_plug(hotplug_dev
, dev
, errp
);
4215 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
)) {
4216 spapr_core_pre_plug(hotplug_dev
, dev
, errp
);
4217 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
)) {
4218 spapr_phb_pre_plug(hotplug_dev
, dev
, errp
);
4219 } else if (object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4220 spapr_tpm_proxy_pre_plug(hotplug_dev
, dev
, errp
);
4224 static HotplugHandler
*spapr_get_hotplug_handler(MachineState
*machine
,
4227 if (object_dynamic_cast(OBJECT(dev
), TYPE_PC_DIMM
) ||
4228 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_CPU_CORE
) ||
4229 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_PCI_HOST_BRIDGE
) ||
4230 object_dynamic_cast(OBJECT(dev
), TYPE_SPAPR_TPM_PROXY
)) {
4231 return HOTPLUG_HANDLER(machine
);
4233 if (object_dynamic_cast(OBJECT(dev
), TYPE_PCI_DEVICE
)) {
4234 PCIDevice
*pcidev
= PCI_DEVICE(dev
);
4235 PCIBus
*root
= pci_device_root_bus(pcidev
);
4236 SpaprPhbState
*phb
=
4237 (SpaprPhbState
*)object_dynamic_cast(OBJECT(BUS(root
)->parent
),
4238 TYPE_SPAPR_PCI_HOST_BRIDGE
);
4241 return HOTPLUG_HANDLER(phb
);
4247 static CpuInstanceProperties
4248 spapr_cpu_index_to_props(MachineState
*machine
, unsigned cpu_index
)
4250 CPUArchId
*core_slot
;
4251 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4253 /* make sure possible_cpu are intialized */
4254 mc
->possible_cpu_arch_ids(machine
);
4255 /* get CPU core slot containing thread that matches cpu_index */
4256 core_slot
= spapr_find_cpu_slot(machine
, cpu_index
, NULL
);
4258 return core_slot
->props
;
4261 static int64_t spapr_get_default_cpu_node_id(const MachineState
*ms
, int idx
)
4263 return idx
/ ms
->smp
.cores
% ms
->numa_state
->num_nodes
;
4266 static const CPUArchIdList
*spapr_possible_cpu_arch_ids(MachineState
*machine
)
4269 unsigned int smp_threads
= machine
->smp
.threads
;
4270 unsigned int smp_cpus
= machine
->smp
.cpus
;
4271 const char *core_type
;
4272 int spapr_max_cores
= machine
->smp
.max_cpus
/ smp_threads
;
4273 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
4275 if (!mc
->has_hotpluggable_cpus
) {
4276 spapr_max_cores
= QEMU_ALIGN_UP(smp_cpus
, smp_threads
) / smp_threads
;
4278 if (machine
->possible_cpus
) {
4279 assert(machine
->possible_cpus
->len
== spapr_max_cores
);
4280 return machine
->possible_cpus
;
4283 core_type
= spapr_get_cpu_core_type(machine
->cpu_type
);
4285 error_report("Unable to find sPAPR CPU Core definition");
4289 machine
->possible_cpus
= g_malloc0(sizeof(CPUArchIdList
) +
4290 sizeof(CPUArchId
) * spapr_max_cores
);
4291 machine
->possible_cpus
->len
= spapr_max_cores
;
4292 for (i
= 0; i
< machine
->possible_cpus
->len
; i
++) {
4293 int core_id
= i
* smp_threads
;
4295 machine
->possible_cpus
->cpus
[i
].type
= core_type
;
4296 machine
->possible_cpus
->cpus
[i
].vcpus_count
= smp_threads
;
4297 machine
->possible_cpus
->cpus
[i
].arch_id
= core_id
;
4298 machine
->possible_cpus
->cpus
[i
].props
.has_core_id
= true;
4299 machine
->possible_cpus
->cpus
[i
].props
.core_id
= core_id
;
4301 return machine
->possible_cpus
;
4304 static bool spapr_phb_placement(SpaprMachineState
*spapr
, uint32_t index
,
4305 uint64_t *buid
, hwaddr
*pio
,
4306 hwaddr
*mmio32
, hwaddr
*mmio64
,
4307 unsigned n_dma
, uint32_t *liobns
,
4308 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4311 * New-style PHB window placement.
4313 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4314 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4317 * Some guest kernels can't work with MMIO windows above 1<<46
4318 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4320 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4321 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
4322 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
4323 * 1TiB 64-bit MMIO windows for each PHB.
4325 const uint64_t base_buid
= 0x800000020000000ULL
;
4328 /* Sanity check natural alignments */
4329 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4330 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT
% SPAPR_PCI_MEM64_WIN_SIZE
) != 0);
4331 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE
% SPAPR_PCI_MEM32_WIN_SIZE
) != 0);
4332 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE
% SPAPR_PCI_IO_WIN_SIZE
) != 0);
4333 /* Sanity check bounds */
4334 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_IO_WIN_SIZE
) >
4335 SPAPR_PCI_MEM32_WIN_SIZE
);
4336 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS
* SPAPR_PCI_MEM32_WIN_SIZE
) >
4337 SPAPR_PCI_MEM64_WIN_SIZE
);
4339 if (index
>= SPAPR_MAX_PHBS
) {
4340 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %llu)",
4341 SPAPR_MAX_PHBS
- 1);
4345 *buid
= base_buid
+ index
;
4346 for (i
= 0; i
< n_dma
; ++i
) {
4347 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
4350 *pio
= SPAPR_PCI_BASE
+ index
* SPAPR_PCI_IO_WIN_SIZE
;
4351 *mmio32
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM32_WIN_SIZE
;
4352 *mmio64
= SPAPR_PCI_BASE
+ (index
+ 1) * SPAPR_PCI_MEM64_WIN_SIZE
;
4354 *nv2gpa
= SPAPR_PCI_NV2RAM64_WIN_BASE
+ index
* SPAPR_PCI_NV2RAM64_WIN_SIZE
;
4355 *nv2atsd
= SPAPR_PCI_NV2ATSD_WIN_BASE
+ index
* SPAPR_PCI_NV2ATSD_WIN_SIZE
;
4359 static ICSState
*spapr_ics_get(XICSFabric
*dev
, int irq
)
4361 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4363 return ics_valid_irq(spapr
->ics
, irq
) ? spapr
->ics
: NULL
;
4366 static void spapr_ics_resend(XICSFabric
*dev
)
4368 SpaprMachineState
*spapr
= SPAPR_MACHINE(dev
);
4370 ics_resend(spapr
->ics
);
4373 static ICPState
*spapr_icp_get(XICSFabric
*xi
, int vcpu_id
)
4375 PowerPCCPU
*cpu
= spapr_find_cpu(vcpu_id
);
4377 return cpu
? spapr_cpu_state(cpu
)->icp
: NULL
;
4380 static void spapr_pic_print_info(InterruptStatsProvider
*obj
,
4383 SpaprMachineState
*spapr
= SPAPR_MACHINE(obj
);
4385 spapr_irq_print_info(spapr
, mon
);
4386 monitor_printf(mon
, "irqchip: %s\n",
4387 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4391 * This is a XIVE only operation
4393 static int spapr_match_nvt(XiveFabric
*xfb
, uint8_t format
,
4394 uint8_t nvt_blk
, uint32_t nvt_idx
,
4395 bool cam_ignore
, uint8_t priority
,
4396 uint32_t logic_serv
, XiveTCTXMatch
*match
)
4398 SpaprMachineState
*spapr
= SPAPR_MACHINE(xfb
);
4399 XivePresenter
*xptr
= XIVE_PRESENTER(spapr
->active_intc
);
4400 XivePresenterClass
*xpc
= XIVE_PRESENTER_GET_CLASS(xptr
);
4403 count
= xpc
->match_nvt(xptr
, format
, nvt_blk
, nvt_idx
, cam_ignore
,
4404 priority
, logic_serv
, match
);
4410 * When we implement the save and restore of the thread interrupt
4411 * contexts in the enter/exit CPU handlers of the machine and the
4412 * escalations in QEMU, we should be able to handle non dispatched
4415 * Until this is done, the sPAPR machine should find at least one
4416 * matching context always.
4419 qemu_log_mask(LOG_GUEST_ERROR
, "XIVE: NVT %x/%x is not dispatched\n",
4426 int spapr_get_vcpu_id(PowerPCCPU
*cpu
)
4428 return cpu
->vcpu_id
;
4431 bool spapr_set_vcpu_id(PowerPCCPU
*cpu
, int cpu_index
, Error
**errp
)
4433 SpaprMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
4434 MachineState
*ms
= MACHINE(spapr
);
4437 vcpu_id
= spapr_vcpu_id(spapr
, cpu_index
);
4439 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id
)) {
4440 error_setg(errp
, "Can't create CPU with id %d in KVM", vcpu_id
);
4441 error_append_hint(errp
, "Adjust the number of cpus to %d "
4442 "or try to raise the number of threads per core\n",
4443 vcpu_id
* ms
->smp
.threads
/ spapr
->vsmt
);
4447 cpu
->vcpu_id
= vcpu_id
;
4451 PowerPCCPU
*spapr_find_cpu(int vcpu_id
)
4456 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
4458 if (spapr_get_vcpu_id(cpu
) == vcpu_id
) {
4466 static void spapr_cpu_exec_enter(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4468 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4470 /* These are only called by TCG, KVM maintains dispatch state */
4472 spapr_cpu
->prod
= false;
4473 if (spapr_cpu
->vpa_addr
) {
4474 CPUState
*cs
= CPU(cpu
);
4477 dispatch
= ldl_be_phys(cs
->as
,
4478 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4480 if ((dispatch
& 1) != 0) {
4481 qemu_log_mask(LOG_GUEST_ERROR
,
4482 "VPA: incorrect dispatch counter value for "
4483 "dispatched partition %u, correcting.\n", dispatch
);
4487 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4491 static void spapr_cpu_exec_exit(PPCVirtualHypervisor
*vhyp
, PowerPCCPU
*cpu
)
4493 SpaprCpuState
*spapr_cpu
= spapr_cpu_state(cpu
);
4495 if (spapr_cpu
->vpa_addr
) {
4496 CPUState
*cs
= CPU(cpu
);
4499 dispatch
= ldl_be_phys(cs
->as
,
4500 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
);
4502 if ((dispatch
& 1) != 1) {
4503 qemu_log_mask(LOG_GUEST_ERROR
,
4504 "VPA: incorrect dispatch counter value for "
4505 "preempted partition %u, correcting.\n", dispatch
);
4509 spapr_cpu
->vpa_addr
+ VPA_DISPATCH_COUNTER
, dispatch
);
4513 static void spapr_machine_class_init(ObjectClass
*oc
, void *data
)
4515 MachineClass
*mc
= MACHINE_CLASS(oc
);
4516 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(oc
);
4517 FWPathProviderClass
*fwc
= FW_PATH_PROVIDER_CLASS(oc
);
4518 NMIClass
*nc
= NMI_CLASS(oc
);
4519 HotplugHandlerClass
*hc
= HOTPLUG_HANDLER_CLASS(oc
);
4520 PPCVirtualHypervisorClass
*vhc
= PPC_VIRTUAL_HYPERVISOR_CLASS(oc
);
4521 XICSFabricClass
*xic
= XICS_FABRIC_CLASS(oc
);
4522 InterruptStatsProviderClass
*ispc
= INTERRUPT_STATS_PROVIDER_CLASS(oc
);
4523 XiveFabricClass
*xfc
= XIVE_FABRIC_CLASS(oc
);
4524 VofMachineIfClass
*vmc
= VOF_MACHINE_CLASS(oc
);
4526 mc
->desc
= "pSeries Logical Partition (PAPR compliant)";
4527 mc
->ignore_boot_device_suffixes
= true;
4530 * We set up the default / latest behaviour here. The class_init
4531 * functions for the specific versioned machine types can override
4532 * these details for backwards compatibility
4534 mc
->init
= spapr_machine_init
;
4535 mc
->reset
= spapr_machine_reset
;
4536 mc
->block_default_type
= IF_SCSI
;
4539 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4540 * should be limited by the host capability instead of hardcoded.
4541 * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4542 * guests are welcome to have as many CPUs as the host are capable
4545 mc
->max_cpus
= INT32_MAX
;
4547 mc
->no_parallel
= 1;
4548 mc
->default_boot_order
= "";
4549 mc
->default_ram_size
= 512 * MiB
;
4550 mc
->default_ram_id
= "ppc_spapr.ram";
4551 mc
->default_display
= "std";
4552 mc
->kvm_type
= spapr_kvm_type
;
4553 machine_class_allow_dynamic_sysbus_dev(mc
, TYPE_SPAPR_PCI_HOST_BRIDGE
);
4554 mc
->pci_allow_0_address
= true;
4555 assert(!mc
->get_hotplug_handler
);
4556 mc
->get_hotplug_handler
= spapr_get_hotplug_handler
;
4557 hc
->pre_plug
= spapr_machine_device_pre_plug
;
4558 hc
->plug
= spapr_machine_device_plug
;
4559 mc
->cpu_index_to_instance_props
= spapr_cpu_index_to_props
;
4560 mc
->get_default_cpu_node_id
= spapr_get_default_cpu_node_id
;
4561 mc
->possible_cpu_arch_ids
= spapr_possible_cpu_arch_ids
;
4562 hc
->unplug_request
= spapr_machine_device_unplug_request
;
4563 hc
->unplug
= spapr_machine_device_unplug
;
4565 smc
->dr_lmb_enabled
= true;
4566 smc
->update_dt_enabled
= true;
4567 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power9_v2.0");
4568 mc
->has_hotpluggable_cpus
= true;
4569 mc
->nvdimm_supported
= true;
4570 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_ENABLED
;
4571 fwc
->get_dev_path
= spapr_get_fw_dev_path
;
4572 nc
->nmi_monitor_handler
= spapr_nmi
;
4573 smc
->phb_placement
= spapr_phb_placement
;
4574 vhc
->hypercall
= emulate_spapr_hypercall
;
4575 vhc
->hpt_mask
= spapr_hpt_mask
;
4576 vhc
->map_hptes
= spapr_map_hptes
;
4577 vhc
->unmap_hptes
= spapr_unmap_hptes
;
4578 vhc
->hpte_set_c
= spapr_hpte_set_c
;
4579 vhc
->hpte_set_r
= spapr_hpte_set_r
;
4580 vhc
->get_pate
= spapr_get_pate
;
4581 vhc
->encode_hpt_for_kvm_pr
= spapr_encode_hpt_for_kvm_pr
;
4582 vhc
->cpu_exec_enter
= spapr_cpu_exec_enter
;
4583 vhc
->cpu_exec_exit
= spapr_cpu_exec_exit
;
4584 xic
->ics_get
= spapr_ics_get
;
4585 xic
->ics_resend
= spapr_ics_resend
;
4586 xic
->icp_get
= spapr_icp_get
;
4587 ispc
->print_info
= spapr_pic_print_info
;
4588 /* Force NUMA node memory size to be a multiple of
4589 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4590 * in which LMBs are represented and hot-added
4592 mc
->numa_mem_align_shift
= 28;
4593 mc
->auto_enable_numa
= true;
4595 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_OFF
;
4596 smc
->default_caps
.caps
[SPAPR_CAP_VSX
] = SPAPR_CAP_ON
;
4597 smc
->default_caps
.caps
[SPAPR_CAP_DFP
] = SPAPR_CAP_ON
;
4598 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4599 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4600 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_WORKAROUND
;
4601 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 16; /* 64kiB */
4602 smc
->default_caps
.caps
[SPAPR_CAP_NESTED_KVM_HV
] = SPAPR_CAP_OFF
;
4603 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_ON
;
4604 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_ON
;
4605 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_ON
;
4606 smc
->default_caps
.caps
[SPAPR_CAP_RPT_INVALIDATE
] = SPAPR_CAP_OFF
;
4607 spapr_caps_add_properties(smc
);
4608 smc
->irq
= &spapr_irq_dual
;
4609 smc
->dr_phb_enabled
= true;
4610 smc
->linux_pci_probe
= true;
4611 smc
->smp_threads_vsmt
= true;
4612 smc
->nr_xirqs
= SPAPR_NR_XIRQS
;
4613 xfc
->match_nvt
= spapr_match_nvt
;
4614 vmc
->client_architecture_support
= spapr_vof_client_architecture_support
;
4615 vmc
->quiesce
= spapr_vof_quiesce
;
4616 vmc
->setprop
= spapr_vof_setprop
;
4619 static const TypeInfo spapr_machine_info
= {
4620 .name
= TYPE_SPAPR_MACHINE
,
4621 .parent
= TYPE_MACHINE
,
4623 .instance_size
= sizeof(SpaprMachineState
),
4624 .instance_init
= spapr_instance_init
,
4625 .instance_finalize
= spapr_machine_finalizefn
,
4626 .class_size
= sizeof(SpaprMachineClass
),
4627 .class_init
= spapr_machine_class_init
,
4628 .interfaces
= (InterfaceInfo
[]) {
4629 { TYPE_FW_PATH_PROVIDER
},
4631 { TYPE_HOTPLUG_HANDLER
},
4632 { TYPE_PPC_VIRTUAL_HYPERVISOR
},
4633 { TYPE_XICS_FABRIC
},
4634 { TYPE_INTERRUPT_STATS_PROVIDER
},
4635 { TYPE_XIVE_FABRIC
},
4636 { TYPE_VOF_MACHINE_IF
},
4641 static void spapr_machine_latest_class_options(MachineClass
*mc
)
4643 mc
->alias
= "pseries";
4644 mc
->is_default
= true;
4647 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
4648 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4651 MachineClass *mc = MACHINE_CLASS(oc); \
4652 spapr_machine_##suffix##_class_options(mc); \
4654 spapr_machine_latest_class_options(mc); \
4657 static const TypeInfo spapr_machine_##suffix##_info = { \
4658 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
4659 .parent = TYPE_SPAPR_MACHINE, \
4660 .class_init = spapr_machine_##suffix##_class_init, \
4662 static void spapr_machine_register_##suffix(void) \
4664 type_register(&spapr_machine_##suffix##_info); \
4666 type_init(spapr_machine_register_##suffix)
4671 static void spapr_machine_6_2_class_options(MachineClass
*mc
)
4673 /* Defaults for the latest behaviour inherited from the base class */
4676 DEFINE_SPAPR_MACHINE(6_2
, "6.2", true);
4681 static void spapr_machine_6_1_class_options(MachineClass
*mc
)
4683 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4685 spapr_machine_6_2_class_options(mc
);
4686 compat_props_add(mc
->compat_props
, hw_compat_6_1
, hw_compat_6_1_len
);
4687 smc
->pre_6_2_numa_affinity
= true;
4688 mc
->smp_props
.prefer_sockets
= true;
4691 DEFINE_SPAPR_MACHINE(6_1
, "6.1", false);
4696 static void spapr_machine_6_0_class_options(MachineClass
*mc
)
4698 spapr_machine_6_1_class_options(mc
);
4699 compat_props_add(mc
->compat_props
, hw_compat_6_0
, hw_compat_6_0_len
);
4702 DEFINE_SPAPR_MACHINE(6_0
, "6.0", false);
4707 static void spapr_machine_5_2_class_options(MachineClass
*mc
)
4709 spapr_machine_6_0_class_options(mc
);
4710 compat_props_add(mc
->compat_props
, hw_compat_5_2
, hw_compat_5_2_len
);
4713 DEFINE_SPAPR_MACHINE(5_2
, "5.2", false);
4718 static void spapr_machine_5_1_class_options(MachineClass
*mc
)
4720 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4722 spapr_machine_5_2_class_options(mc
);
4723 compat_props_add(mc
->compat_props
, hw_compat_5_1
, hw_compat_5_1_len
);
4724 smc
->pre_5_2_numa_associativity
= true;
4727 DEFINE_SPAPR_MACHINE(5_1
, "5.1", false);
4732 static void spapr_machine_5_0_class_options(MachineClass
*mc
)
4734 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4735 static GlobalProperty compat
[] = {
4736 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-5.1-associativity", "on" },
4739 spapr_machine_5_1_class_options(mc
);
4740 compat_props_add(mc
->compat_props
, hw_compat_5_0
, hw_compat_5_0_len
);
4741 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4742 mc
->numa_mem_supported
= true;
4743 smc
->pre_5_1_assoc_refpoints
= true;
4746 DEFINE_SPAPR_MACHINE(5_0
, "5.0", false);
4751 static void spapr_machine_4_2_class_options(MachineClass
*mc
)
4753 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4755 spapr_machine_5_0_class_options(mc
);
4756 compat_props_add(mc
->compat_props
, hw_compat_4_2
, hw_compat_4_2_len
);
4757 smc
->default_caps
.caps
[SPAPR_CAP_CCF_ASSIST
] = SPAPR_CAP_OFF
;
4758 smc
->default_caps
.caps
[SPAPR_CAP_FWNMI
] = SPAPR_CAP_OFF
;
4759 smc
->rma_limit
= 16 * GiB
;
4760 mc
->nvdimm_supported
= false;
4763 DEFINE_SPAPR_MACHINE(4_2
, "4.2", false);
4768 static void spapr_machine_4_1_class_options(MachineClass
*mc
)
4770 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4771 static GlobalProperty compat
[] = {
4772 /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4773 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pgsz", "0x11000" },
4776 spapr_machine_4_2_class_options(mc
);
4777 smc
->linux_pci_probe
= false;
4778 smc
->smp_threads_vsmt
= false;
4779 compat_props_add(mc
->compat_props
, hw_compat_4_1
, hw_compat_4_1_len
);
4780 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4783 DEFINE_SPAPR_MACHINE(4_1
, "4.1", false);
4788 static bool phb_placement_4_0(SpaprMachineState
*spapr
, uint32_t index
,
4789 uint64_t *buid
, hwaddr
*pio
,
4790 hwaddr
*mmio32
, hwaddr
*mmio64
,
4791 unsigned n_dma
, uint32_t *liobns
,
4792 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4794 if (!spapr_phb_placement(spapr
, index
, buid
, pio
, mmio32
, mmio64
, n_dma
,
4795 liobns
, nv2gpa
, nv2atsd
, errp
)) {
4803 static void spapr_machine_4_0_class_options(MachineClass
*mc
)
4805 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4807 spapr_machine_4_1_class_options(mc
);
4808 compat_props_add(mc
->compat_props
, hw_compat_4_0
, hw_compat_4_0_len
);
4809 smc
->phb_placement
= phb_placement_4_0
;
4810 smc
->irq
= &spapr_irq_xics
;
4811 smc
->pre_4_1_migration
= true;
4814 DEFINE_SPAPR_MACHINE(4_0
, "4.0", false);
4819 static void spapr_machine_3_1_class_options(MachineClass
*mc
)
4821 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4823 spapr_machine_4_0_class_options(mc
);
4824 compat_props_add(mc
->compat_props
, hw_compat_3_1
, hw_compat_3_1_len
);
4826 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power8_v2.0");
4827 smc
->update_dt_enabled
= false;
4828 smc
->dr_phb_enabled
= false;
4829 smc
->broken_host_serial_model
= true;
4830 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_BROKEN
;
4831 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_BROKEN
;
4832 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_BROKEN
;
4833 smc
->default_caps
.caps
[SPAPR_CAP_LARGE_DECREMENTER
] = SPAPR_CAP_OFF
;
4836 DEFINE_SPAPR_MACHINE(3_1
, "3.1", false);
4842 static void spapr_machine_3_0_class_options(MachineClass
*mc
)
4844 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4846 spapr_machine_3_1_class_options(mc
);
4847 compat_props_add(mc
->compat_props
, hw_compat_3_0
, hw_compat_3_0_len
);
4849 smc
->legacy_irq_allocation
= true;
4850 smc
->nr_xirqs
= 0x400;
4851 smc
->irq
= &spapr_irq_xics_legacy
;
4854 DEFINE_SPAPR_MACHINE(3_0
, "3.0", false);
4859 static void spapr_machine_2_12_class_options(MachineClass
*mc
)
4861 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4862 static GlobalProperty compat
[] = {
4863 { TYPE_POWERPC_CPU
, "pre-3.0-migration", "on" },
4864 { TYPE_SPAPR_CPU_CORE
, "pre-3.0-migration", "on" },
4867 spapr_machine_3_0_class_options(mc
);
4868 compat_props_add(mc
->compat_props
, hw_compat_2_12
, hw_compat_2_12_len
);
4869 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4871 /* We depend on kvm_enabled() to choose a default value for the
4872 * hpt-max-page-size capability. Of course we can't do it here
4873 * because this is too early and the HW accelerator isn't initialzed
4874 * yet. Postpone this to machine init (see default_caps_with_cpu()).
4876 smc
->default_caps
.caps
[SPAPR_CAP_HPT_MAXPAGESIZE
] = 0;
4879 DEFINE_SPAPR_MACHINE(2_12
, "2.12", false);
4881 static void spapr_machine_2_12_sxxm_class_options(MachineClass
*mc
)
4883 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4885 spapr_machine_2_12_class_options(mc
);
4886 smc
->default_caps
.caps
[SPAPR_CAP_CFPC
] = SPAPR_CAP_WORKAROUND
;
4887 smc
->default_caps
.caps
[SPAPR_CAP_SBBC
] = SPAPR_CAP_WORKAROUND
;
4888 smc
->default_caps
.caps
[SPAPR_CAP_IBS
] = SPAPR_CAP_FIXED_CCD
;
4891 DEFINE_SPAPR_MACHINE(2_12_sxxm
, "2.12-sxxm", false);
4897 static void spapr_machine_2_11_class_options(MachineClass
*mc
)
4899 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4901 spapr_machine_2_12_class_options(mc
);
4902 smc
->default_caps
.caps
[SPAPR_CAP_HTM
] = SPAPR_CAP_ON
;
4903 compat_props_add(mc
->compat_props
, hw_compat_2_11
, hw_compat_2_11_len
);
4906 DEFINE_SPAPR_MACHINE(2_11
, "2.11", false);
4912 static void spapr_machine_2_10_class_options(MachineClass
*mc
)
4914 spapr_machine_2_11_class_options(mc
);
4915 compat_props_add(mc
->compat_props
, hw_compat_2_10
, hw_compat_2_10_len
);
4918 DEFINE_SPAPR_MACHINE(2_10
, "2.10", false);
4924 static void spapr_machine_2_9_class_options(MachineClass
*mc
)
4926 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
4927 static GlobalProperty compat
[] = {
4928 { TYPE_POWERPC_CPU
, "pre-2.10-migration", "on" },
4931 spapr_machine_2_10_class_options(mc
);
4932 compat_props_add(mc
->compat_props
, hw_compat_2_9
, hw_compat_2_9_len
);
4933 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4934 smc
->pre_2_10_has_unused_icps
= true;
4935 smc
->resize_hpt_default
= SPAPR_RESIZE_HPT_DISABLED
;
4938 DEFINE_SPAPR_MACHINE(2_9
, "2.9", false);
4944 static void spapr_machine_2_8_class_options(MachineClass
*mc
)
4946 static GlobalProperty compat
[] = {
4947 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pcie-extended-configuration-space", "off" },
4950 spapr_machine_2_9_class_options(mc
);
4951 compat_props_add(mc
->compat_props
, hw_compat_2_8
, hw_compat_2_8_len
);
4952 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
4953 mc
->numa_mem_align_shift
= 23;
4956 DEFINE_SPAPR_MACHINE(2_8
, "2.8", false);
4962 static bool phb_placement_2_7(SpaprMachineState
*spapr
, uint32_t index
,
4963 uint64_t *buid
, hwaddr
*pio
,
4964 hwaddr
*mmio32
, hwaddr
*mmio64
,
4965 unsigned n_dma
, uint32_t *liobns
,
4966 hwaddr
*nv2gpa
, hwaddr
*nv2atsd
, Error
**errp
)
4968 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4969 const uint64_t base_buid
= 0x800000020000000ULL
;
4970 const hwaddr phb_spacing
= 0x1000000000ULL
; /* 64 GiB */
4971 const hwaddr mmio_offset
= 0xa0000000; /* 2 GiB + 512 MiB */
4972 const hwaddr pio_offset
= 0x80000000; /* 2 GiB */
4973 const uint32_t max_index
= 255;
4974 const hwaddr phb0_alignment
= 0x10000000000ULL
; /* 1 TiB */
4976 uint64_t ram_top
= MACHINE(spapr
)->ram_size
;
4977 hwaddr phb0_base
, phb_base
;
4980 /* Do we have device memory? */
4981 if (MACHINE(spapr
)->maxram_size
> ram_top
) {
4982 /* Can't just use maxram_size, because there may be an
4983 * alignment gap between normal and device memory regions
4985 ram_top
= MACHINE(spapr
)->device_memory
->base
+
4986 memory_region_size(&MACHINE(spapr
)->device_memory
->mr
);
4989 phb0_base
= QEMU_ALIGN_UP(ram_top
, phb0_alignment
);
4991 if (index
> max_index
) {
4992 error_setg(errp
, "\"index\" for PAPR PHB is too large (max %u)",
4997 *buid
= base_buid
+ index
;
4998 for (i
= 0; i
< n_dma
; ++i
) {
4999 liobns
[i
] = SPAPR_PCI_LIOBN(index
, i
);
5002 phb_base
= phb0_base
+ index
* phb_spacing
;
5003 *pio
= phb_base
+ pio_offset
;
5004 *mmio32
= phb_base
+ mmio_offset
;
5006 * We don't set the 64-bit MMIO window, relying on the PHB's
5007 * fallback behaviour of automatically splitting a large "32-bit"
5008 * window into contiguous 32-bit and 64-bit windows
5016 static void spapr_machine_2_7_class_options(MachineClass
*mc
)
5018 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
5019 static GlobalProperty compat
[] = {
5020 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0xf80000000", },
5021 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem64_win_size", "0", },
5022 { TYPE_POWERPC_CPU
, "pre-2.8-migration", "on", },
5023 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "pre-2.8-migration", "on", },
5026 spapr_machine_2_8_class_options(mc
);
5027 mc
->default_cpu_type
= POWERPC_CPU_TYPE_NAME("power7_v2.3");
5028 mc
->default_machine_opts
= "modern-hotplug-events=off";
5029 compat_props_add(mc
->compat_props
, hw_compat_2_7
, hw_compat_2_7_len
);
5030 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5031 smc
->phb_placement
= phb_placement_2_7
;
5034 DEFINE_SPAPR_MACHINE(2_7
, "2.7", false);
5040 static void spapr_machine_2_6_class_options(MachineClass
*mc
)
5042 static GlobalProperty compat
[] = {
5043 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "ddw", "off" },
5046 spapr_machine_2_7_class_options(mc
);
5047 mc
->has_hotpluggable_cpus
= false;
5048 compat_props_add(mc
->compat_props
, hw_compat_2_6
, hw_compat_2_6_len
);
5049 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5052 DEFINE_SPAPR_MACHINE(2_6
, "2.6", false);
5058 static void spapr_machine_2_5_class_options(MachineClass
*mc
)
5060 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
5061 static GlobalProperty compat
[] = {
5062 { "spapr-vlan", "use-rx-buffer-pools", "off" },
5065 spapr_machine_2_6_class_options(mc
);
5066 smc
->use_ohci_by_default
= true;
5067 compat_props_add(mc
->compat_props
, hw_compat_2_5
, hw_compat_2_5_len
);
5068 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5071 DEFINE_SPAPR_MACHINE(2_5
, "2.5", false);
5077 static void spapr_machine_2_4_class_options(MachineClass
*mc
)
5079 SpaprMachineClass
*smc
= SPAPR_MACHINE_CLASS(mc
);
5081 spapr_machine_2_5_class_options(mc
);
5082 smc
->dr_lmb_enabled
= false;
5083 compat_props_add(mc
->compat_props
, hw_compat_2_4
, hw_compat_2_4_len
);
5086 DEFINE_SPAPR_MACHINE(2_4
, "2.4", false);
5092 static void spapr_machine_2_3_class_options(MachineClass
*mc
)
5094 static GlobalProperty compat
[] = {
5095 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5097 spapr_machine_2_4_class_options(mc
);
5098 compat_props_add(mc
->compat_props
, hw_compat_2_3
, hw_compat_2_3_len
);
5099 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5101 DEFINE_SPAPR_MACHINE(2_3
, "2.3", false);
5107 static void spapr_machine_2_2_class_options(MachineClass
*mc
)
5109 static GlobalProperty compat
[] = {
5110 { TYPE_SPAPR_PCI_HOST_BRIDGE
, "mem_win_size", "0x20000000" },
5113 spapr_machine_2_3_class_options(mc
);
5114 compat_props_add(mc
->compat_props
, hw_compat_2_2
, hw_compat_2_2_len
);
5115 compat_props_add(mc
->compat_props
, compat
, G_N_ELEMENTS(compat
));
5116 mc
->default_machine_opts
= "modern-hotplug-events=off,suppress-vmdesc=on";
5118 DEFINE_SPAPR_MACHINE(2_2
, "2.2", false);
5124 static void spapr_machine_2_1_class_options(MachineClass
*mc
)
5126 spapr_machine_2_2_class_options(mc
);
5127 compat_props_add(mc
->compat_props
, hw_compat_2_1
, hw_compat_2_1_len
);
5129 DEFINE_SPAPR_MACHINE(2_1
, "2.1", false);
5131 static void spapr_machine_register_types(void)
5133 type_register_static(&spapr_machine_info
);
5136 type_init(spapr_machine_register_types
)