2 * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
4 * Copyright (c) 2020 Wind River Systems, Inc.
7 * Bin Meng <bin.meng@windriver.com>
9 * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
11 * 0) CLINT (Core Level Interruptor)
12 * 1) PLIC (Platform Level Interrupt Controller)
13 * 2) eNVM (Embedded Non-Volatile Memory)
14 * 3) MMUARTs (Multi-Mode UART)
15 * 4) Cadence eMMC/SDHC controller and an SD card connected to it
16 * 5) SiFive Platform DMA (Direct Memory Access Controller)
17 * 6) GEM (Gigabit Ethernet MAC Controller)
18 * 7) DMC (DDR Memory Controller)
21 * This board currently generates devicetree dynamically that indicates at least
22 * two harts and up to five harts.
24 * This program is free software; you can redistribute it and/or modify it
25 * under the terms and conditions of the GNU General Public License,
26 * version 2 or later, as published by the Free Software Foundation.
28 * This program is distributed in the hope it will be useful, but WITHOUT
29 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
30 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
33 * You should have received a copy of the GNU General Public License along with
34 * this program. If not, see <http://www.gnu.org/licenses/>.
37 #include "qemu/osdep.h"
38 #include "qemu/error-report.h"
39 #include "qemu/units.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/boards.h"
43 #include "hw/loader.h"
44 #include "hw/sysbus.h"
45 #include "chardev/char.h"
46 #include "hw/cpu/cluster.h"
47 #include "target/riscv/cpu.h"
48 #include "hw/misc/unimp.h"
49 #include "hw/riscv/boot.h"
50 #include "hw/riscv/riscv_hart.h"
51 #include "hw/riscv/microchip_pfsoc.h"
52 #include "hw/intc/riscv_aclint.h"
53 #include "hw/intc/sifive_plic.h"
54 #include "sysemu/device_tree.h"
55 #include "sysemu/sysemu.h"
58 * The BIOS image used by this machine is called Hart Software Services (HSS).
59 * See https://github.com/polarfire-soc/hart-software-services
61 #define BIOS_FILENAME "hss.bin"
62 #define RESET_VECTOR 0x20220000
64 /* CLINT timebase frequency */
65 #define CLINT_TIMEBASE_FREQ 1000000
68 #define GEM_REVISION 0x0107010c
71 * The complete description of the whole PolarFire SoC memory map is scattered
72 * in different documents. There are several places to look at for memory maps:
74 * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
75 * Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
76 * https://www.microsemi.com/document-portal/doc_download/
77 * 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
78 * describes the whole picture of the PolarFire SoC memory map.
80 * 2 A zip file for PolarFire soC memory map, which can be downloaded from
81 * https://www.microsemi.com/document-portal/doc_download/
82 * 1244581-polarfire-soc-register-map, contains the following 2 major parts:
83 * - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
84 * describes the complete integrated peripherals memory map
85 * - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
86 * describes the complete IOSCB modules memory maps
88 static const MemMapEntry microchip_pfsoc_memmap
[] = {
89 [MICROCHIP_PFSOC_RSVD0
] = { 0x0, 0x100 },
90 [MICROCHIP_PFSOC_DEBUG
] = { 0x100, 0xf00 },
91 [MICROCHIP_PFSOC_E51_DTIM
] = { 0x1000000, 0x2000 },
92 [MICROCHIP_PFSOC_BUSERR_UNIT0
] = { 0x1700000, 0x1000 },
93 [MICROCHIP_PFSOC_BUSERR_UNIT1
] = { 0x1701000, 0x1000 },
94 [MICROCHIP_PFSOC_BUSERR_UNIT2
] = { 0x1702000, 0x1000 },
95 [MICROCHIP_PFSOC_BUSERR_UNIT3
] = { 0x1703000, 0x1000 },
96 [MICROCHIP_PFSOC_BUSERR_UNIT4
] = { 0x1704000, 0x1000 },
97 [MICROCHIP_PFSOC_CLINT
] = { 0x2000000, 0x10000 },
98 [MICROCHIP_PFSOC_L2CC
] = { 0x2010000, 0x1000 },
99 [MICROCHIP_PFSOC_DMA
] = { 0x3000000, 0x100000 },
100 [MICROCHIP_PFSOC_L2LIM
] = { 0x8000000, 0x2000000 },
101 [MICROCHIP_PFSOC_PLIC
] = { 0xc000000, 0x4000000 },
102 [MICROCHIP_PFSOC_MMUART0
] = { 0x20000000, 0x1000 },
103 [MICROCHIP_PFSOC_SYSREG
] = { 0x20002000, 0x2000 },
104 [MICROCHIP_PFSOC_MPUCFG
] = { 0x20005000, 0x1000 },
105 [MICROCHIP_PFSOC_DDR_SGMII_PHY
] = { 0x20007000, 0x1000 },
106 [MICROCHIP_PFSOC_EMMC_SD
] = { 0x20008000, 0x1000 },
107 [MICROCHIP_PFSOC_DDR_CFG
] = { 0x20080000, 0x40000 },
108 [MICROCHIP_PFSOC_MMUART1
] = { 0x20100000, 0x1000 },
109 [MICROCHIP_PFSOC_MMUART2
] = { 0x20102000, 0x1000 },
110 [MICROCHIP_PFSOC_MMUART3
] = { 0x20104000, 0x1000 },
111 [MICROCHIP_PFSOC_MMUART4
] = { 0x20106000, 0x1000 },
112 [MICROCHIP_PFSOC_SPI0
] = { 0x20108000, 0x1000 },
113 [MICROCHIP_PFSOC_SPI1
] = { 0x20109000, 0x1000 },
114 [MICROCHIP_PFSOC_I2C1
] = { 0x2010b000, 0x1000 },
115 [MICROCHIP_PFSOC_GEM0
] = { 0x20110000, 0x2000 },
116 [MICROCHIP_PFSOC_GEM1
] = { 0x20112000, 0x2000 },
117 [MICROCHIP_PFSOC_GPIO0
] = { 0x20120000, 0x1000 },
118 [MICROCHIP_PFSOC_GPIO1
] = { 0x20121000, 0x1000 },
119 [MICROCHIP_PFSOC_GPIO2
] = { 0x20122000, 0x1000 },
120 [MICROCHIP_PFSOC_ENVM_CFG
] = { 0x20200000, 0x1000 },
121 [MICROCHIP_PFSOC_ENVM_DATA
] = { 0x20220000, 0x20000 },
122 [MICROCHIP_PFSOC_QSPI_XIP
] = { 0x21000000, 0x1000000 },
123 [MICROCHIP_PFSOC_IOSCB
] = { 0x30000000, 0x10000000 },
124 [MICROCHIP_PFSOC_EMMC_SD_MUX
] = { 0x4f000000, 0x4 },
125 [MICROCHIP_PFSOC_DRAM_LO
] = { 0x80000000, 0x40000000 },
126 [MICROCHIP_PFSOC_DRAM_LO_ALIAS
] = { 0xc0000000, 0x40000000 },
127 [MICROCHIP_PFSOC_DRAM_HI
] = { 0x1000000000, 0x0 },
128 [MICROCHIP_PFSOC_DRAM_HI_ALIAS
] = { 0x1400000000, 0x0 },
131 static void microchip_pfsoc_soc_instance_init(Object
*obj
)
133 MachineState
*ms
= MACHINE(qdev_get_machine());
134 MicrochipPFSoCState
*s
= MICROCHIP_PFSOC(obj
);
136 object_initialize_child(obj
, "e-cluster", &s
->e_cluster
, TYPE_CPU_CLUSTER
);
137 qdev_prop_set_uint32(DEVICE(&s
->e_cluster
), "cluster-id", 0);
139 object_initialize_child(OBJECT(&s
->e_cluster
), "e-cpus", &s
->e_cpus
,
140 TYPE_RISCV_HART_ARRAY
);
141 qdev_prop_set_uint32(DEVICE(&s
->e_cpus
), "num-harts", 1);
142 qdev_prop_set_uint32(DEVICE(&s
->e_cpus
), "hartid-base", 0);
143 qdev_prop_set_string(DEVICE(&s
->e_cpus
), "cpu-type",
144 TYPE_RISCV_CPU_SIFIVE_E51
);
145 qdev_prop_set_uint64(DEVICE(&s
->e_cpus
), "resetvec", RESET_VECTOR
);
147 object_initialize_child(obj
, "u-cluster", &s
->u_cluster
, TYPE_CPU_CLUSTER
);
148 qdev_prop_set_uint32(DEVICE(&s
->u_cluster
), "cluster-id", 1);
150 object_initialize_child(OBJECT(&s
->u_cluster
), "u-cpus", &s
->u_cpus
,
151 TYPE_RISCV_HART_ARRAY
);
152 qdev_prop_set_uint32(DEVICE(&s
->u_cpus
), "num-harts", ms
->smp
.cpus
- 1);
153 qdev_prop_set_uint32(DEVICE(&s
->u_cpus
), "hartid-base", 1);
154 qdev_prop_set_string(DEVICE(&s
->u_cpus
), "cpu-type",
155 TYPE_RISCV_CPU_SIFIVE_U54
);
156 qdev_prop_set_uint64(DEVICE(&s
->u_cpus
), "resetvec", RESET_VECTOR
);
158 object_initialize_child(obj
, "dma-controller", &s
->dma
,
161 object_initialize_child(obj
, "sysreg", &s
->sysreg
,
162 TYPE_MCHP_PFSOC_SYSREG
);
164 object_initialize_child(obj
, "ddr-sgmii-phy", &s
->ddr_sgmii_phy
,
165 TYPE_MCHP_PFSOC_DDR_SGMII_PHY
);
166 object_initialize_child(obj
, "ddr-cfg", &s
->ddr_cfg
,
167 TYPE_MCHP_PFSOC_DDR_CFG
);
169 object_initialize_child(obj
, "gem0", &s
->gem0
, TYPE_CADENCE_GEM
);
170 object_initialize_child(obj
, "gem1", &s
->gem1
, TYPE_CADENCE_GEM
);
172 object_initialize_child(obj
, "sd-controller", &s
->sdhci
,
175 object_initialize_child(obj
, "ioscb", &s
->ioscb
, TYPE_MCHP_PFSOC_IOSCB
);
178 static void microchip_pfsoc_soc_realize(DeviceState
*dev
, Error
**errp
)
180 MachineState
*ms
= MACHINE(qdev_get_machine());
181 MicrochipPFSoCState
*s
= MICROCHIP_PFSOC(dev
);
182 const MemMapEntry
*memmap
= microchip_pfsoc_memmap
;
183 MemoryRegion
*system_memory
= get_system_memory();
184 MemoryRegion
*rsvd0_mem
= g_new(MemoryRegion
, 1);
185 MemoryRegion
*e51_dtim_mem
= g_new(MemoryRegion
, 1);
186 MemoryRegion
*l2lim_mem
= g_new(MemoryRegion
, 1);
187 MemoryRegion
*envm_data
= g_new(MemoryRegion
, 1);
188 MemoryRegion
*qspi_xip_mem
= g_new(MemoryRegion
, 1);
189 char *plic_hart_config
;
190 size_t plic_hart_config_len
;
194 sysbus_realize(SYS_BUS_DEVICE(&s
->e_cpus
), &error_abort
);
195 sysbus_realize(SYS_BUS_DEVICE(&s
->u_cpus
), &error_abort
);
197 * The cluster must be realized after the RISC-V hart array container,
198 * as the container's CPU object is only created on realize, and the
199 * CPU must exist and have been parented into the cluster before the
200 * cluster is realized.
202 qdev_realize(DEVICE(&s
->e_cluster
), NULL
, &error_abort
);
203 qdev_realize(DEVICE(&s
->u_cluster
), NULL
, &error_abort
);
205 /* Reserved Memory at address 0 */
206 memory_region_init_ram(rsvd0_mem
, NULL
, "microchip.pfsoc.rsvd0_mem",
207 memmap
[MICROCHIP_PFSOC_RSVD0
].size
, &error_fatal
);
208 memory_region_add_subregion(system_memory
,
209 memmap
[MICROCHIP_PFSOC_RSVD0
].base
,
213 memory_region_init_ram(e51_dtim_mem
, NULL
, "microchip.pfsoc.e51_dtim_mem",
214 memmap
[MICROCHIP_PFSOC_E51_DTIM
].size
, &error_fatal
);
215 memory_region_add_subregion(system_memory
,
216 memmap
[MICROCHIP_PFSOC_E51_DTIM
].base
,
219 /* Bus Error Units */
220 create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
221 memmap
[MICROCHIP_PFSOC_BUSERR_UNIT0
].base
,
222 memmap
[MICROCHIP_PFSOC_BUSERR_UNIT0
].size
);
223 create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
224 memmap
[MICROCHIP_PFSOC_BUSERR_UNIT1
].base
,
225 memmap
[MICROCHIP_PFSOC_BUSERR_UNIT1
].size
);
226 create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
227 memmap
[MICROCHIP_PFSOC_BUSERR_UNIT2
].base
,
228 memmap
[MICROCHIP_PFSOC_BUSERR_UNIT2
].size
);
229 create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
230 memmap
[MICROCHIP_PFSOC_BUSERR_UNIT3
].base
,
231 memmap
[MICROCHIP_PFSOC_BUSERR_UNIT3
].size
);
232 create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
233 memmap
[MICROCHIP_PFSOC_BUSERR_UNIT4
].base
,
234 memmap
[MICROCHIP_PFSOC_BUSERR_UNIT4
].size
);
237 riscv_aclint_swi_create(memmap
[MICROCHIP_PFSOC_CLINT
].base
,
238 0, ms
->smp
.cpus
, false);
239 riscv_aclint_mtimer_create(
240 memmap
[MICROCHIP_PFSOC_CLINT
].base
+ RISCV_ACLINT_SWI_SIZE
,
241 RISCV_ACLINT_DEFAULT_MTIMER_SIZE
, 0, ms
->smp
.cpus
,
242 RISCV_ACLINT_DEFAULT_MTIMECMP
, RISCV_ACLINT_DEFAULT_MTIME
,
243 CLINT_TIMEBASE_FREQ
, false);
245 /* L2 cache controller */
246 create_unimplemented_device("microchip.pfsoc.l2cc",
247 memmap
[MICROCHIP_PFSOC_L2CC
].base
, memmap
[MICROCHIP_PFSOC_L2CC
].size
);
250 * Add L2-LIM at reset size.
251 * This should be reduced in size as the L2 Cache Controller WayEnable
252 * register is incremented. Unfortunately I don't see a nice (or any) way
253 * to handle reducing or blocking out the L2 LIM while still allowing it
254 * be re returned to all enabled after a reset. For the time being, just
255 * leave it enabled all the time. This won't break anything, but will be
256 * too generous to misbehaving guests.
258 memory_region_init_ram(l2lim_mem
, NULL
, "microchip.pfsoc.l2lim",
259 memmap
[MICROCHIP_PFSOC_L2LIM
].size
, &error_fatal
);
260 memory_region_add_subregion(system_memory
,
261 memmap
[MICROCHIP_PFSOC_L2LIM
].base
,
264 /* create PLIC hart topology configuration string */
265 plic_hart_config_len
= (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG
) + 1) *
267 plic_hart_config
= g_malloc0(plic_hart_config_len
);
268 for (i
= 0; i
< ms
->smp
.cpus
; i
++) {
270 strncat(plic_hart_config
, "," MICROCHIP_PFSOC_PLIC_HART_CONFIG
,
271 plic_hart_config_len
);
273 strncat(plic_hart_config
, "M", plic_hart_config_len
);
275 plic_hart_config_len
-= (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG
) + 1);
279 s
->plic
= sifive_plic_create(memmap
[MICROCHIP_PFSOC_PLIC
].base
,
280 plic_hart_config
, ms
->smp
.cpus
, 0,
281 MICROCHIP_PFSOC_PLIC_NUM_SOURCES
,
282 MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES
,
283 MICROCHIP_PFSOC_PLIC_PRIORITY_BASE
,
284 MICROCHIP_PFSOC_PLIC_PENDING_BASE
,
285 MICROCHIP_PFSOC_PLIC_ENABLE_BASE
,
286 MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE
,
287 MICROCHIP_PFSOC_PLIC_CONTEXT_BASE
,
288 MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE
,
289 memmap
[MICROCHIP_PFSOC_PLIC
].size
);
290 g_free(plic_hart_config
);
293 sysbus_realize(SYS_BUS_DEVICE(&s
->dma
), errp
);
294 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->dma
), 0,
295 memmap
[MICROCHIP_PFSOC_DMA
].base
);
296 for (i
= 0; i
< SIFIVE_PDMA_IRQS
; i
++) {
297 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->dma
), i
,
298 qdev_get_gpio_in(DEVICE(s
->plic
),
299 MICROCHIP_PFSOC_DMA_IRQ0
+ i
));
303 sysbus_realize(SYS_BUS_DEVICE(&s
->sysreg
), errp
);
304 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->sysreg
), 0,
305 memmap
[MICROCHIP_PFSOC_SYSREG
].base
);
308 create_unimplemented_device("microchip.pfsoc.mpucfg",
309 memmap
[MICROCHIP_PFSOC_MPUCFG
].base
,
310 memmap
[MICROCHIP_PFSOC_MPUCFG
].size
);
313 sysbus_realize(SYS_BUS_DEVICE(&s
->ddr_sgmii_phy
), errp
);
314 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->ddr_sgmii_phy
), 0,
315 memmap
[MICROCHIP_PFSOC_DDR_SGMII_PHY
].base
);
318 sysbus_realize(SYS_BUS_DEVICE(&s
->ddr_cfg
), errp
);
319 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->ddr_cfg
), 0,
320 memmap
[MICROCHIP_PFSOC_DDR_CFG
].base
);
323 sysbus_realize(SYS_BUS_DEVICE(&s
->sdhci
), errp
);
324 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->sdhci
), 0,
325 memmap
[MICROCHIP_PFSOC_EMMC_SD
].base
);
326 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->sdhci
), 0,
327 qdev_get_gpio_in(DEVICE(s
->plic
), MICROCHIP_PFSOC_EMMC_SD_IRQ
));
330 s
->serial0
= mchp_pfsoc_mmuart_create(system_memory
,
331 memmap
[MICROCHIP_PFSOC_MMUART0
].base
,
332 qdev_get_gpio_in(DEVICE(s
->plic
), MICROCHIP_PFSOC_MMUART0_IRQ
),
334 s
->serial1
= mchp_pfsoc_mmuart_create(system_memory
,
335 memmap
[MICROCHIP_PFSOC_MMUART1
].base
,
336 qdev_get_gpio_in(DEVICE(s
->plic
), MICROCHIP_PFSOC_MMUART1_IRQ
),
338 s
->serial2
= mchp_pfsoc_mmuart_create(system_memory
,
339 memmap
[MICROCHIP_PFSOC_MMUART2
].base
,
340 qdev_get_gpio_in(DEVICE(s
->plic
), MICROCHIP_PFSOC_MMUART2_IRQ
),
342 s
->serial3
= mchp_pfsoc_mmuart_create(system_memory
,
343 memmap
[MICROCHIP_PFSOC_MMUART3
].base
,
344 qdev_get_gpio_in(DEVICE(s
->plic
), MICROCHIP_PFSOC_MMUART3_IRQ
),
346 s
->serial4
= mchp_pfsoc_mmuart_create(system_memory
,
347 memmap
[MICROCHIP_PFSOC_MMUART4
].base
,
348 qdev_get_gpio_in(DEVICE(s
->plic
), MICROCHIP_PFSOC_MMUART4_IRQ
),
352 create_unimplemented_device("microchip.pfsoc.spi0",
353 memmap
[MICROCHIP_PFSOC_SPI0
].base
,
354 memmap
[MICROCHIP_PFSOC_SPI0
].size
);
355 create_unimplemented_device("microchip.pfsoc.spi1",
356 memmap
[MICROCHIP_PFSOC_SPI1
].base
,
357 memmap
[MICROCHIP_PFSOC_SPI1
].size
);
360 create_unimplemented_device("microchip.pfsoc.i2c1",
361 memmap
[MICROCHIP_PFSOC_I2C1
].base
,
362 memmap
[MICROCHIP_PFSOC_I2C1
].size
);
368 qemu_check_nic_model(nd
, TYPE_CADENCE_GEM
);
369 qdev_set_nic_properties(DEVICE(&s
->gem0
), nd
);
373 qemu_check_nic_model(nd
, TYPE_CADENCE_GEM
);
374 qdev_set_nic_properties(DEVICE(&s
->gem1
), nd
);
377 object_property_set_int(OBJECT(&s
->gem0
), "revision", GEM_REVISION
, errp
);
378 object_property_set_int(OBJECT(&s
->gem0
), "phy-addr", 8, errp
);
379 sysbus_realize(SYS_BUS_DEVICE(&s
->gem0
), errp
);
380 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->gem0
), 0,
381 memmap
[MICROCHIP_PFSOC_GEM0
].base
);
382 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->gem0
), 0,
383 qdev_get_gpio_in(DEVICE(s
->plic
), MICROCHIP_PFSOC_GEM0_IRQ
));
385 object_property_set_int(OBJECT(&s
->gem1
), "revision", GEM_REVISION
, errp
);
386 object_property_set_int(OBJECT(&s
->gem1
), "phy-addr", 9, errp
);
387 sysbus_realize(SYS_BUS_DEVICE(&s
->gem1
), errp
);
388 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->gem1
), 0,
389 memmap
[MICROCHIP_PFSOC_GEM1
].base
);
390 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->gem1
), 0,
391 qdev_get_gpio_in(DEVICE(s
->plic
), MICROCHIP_PFSOC_GEM1_IRQ
));
394 create_unimplemented_device("microchip.pfsoc.gpio0",
395 memmap
[MICROCHIP_PFSOC_GPIO0
].base
,
396 memmap
[MICROCHIP_PFSOC_GPIO0
].size
);
397 create_unimplemented_device("microchip.pfsoc.gpio1",
398 memmap
[MICROCHIP_PFSOC_GPIO1
].base
,
399 memmap
[MICROCHIP_PFSOC_GPIO1
].size
);
400 create_unimplemented_device("microchip.pfsoc.gpio2",
401 memmap
[MICROCHIP_PFSOC_GPIO2
].base
,
402 memmap
[MICROCHIP_PFSOC_GPIO2
].size
);
405 memory_region_init_rom(envm_data
, OBJECT(dev
), "microchip.pfsoc.envm.data",
406 memmap
[MICROCHIP_PFSOC_ENVM_DATA
].size
,
408 memory_region_add_subregion(system_memory
,
409 memmap
[MICROCHIP_PFSOC_ENVM_DATA
].base
,
413 sysbus_realize(SYS_BUS_DEVICE(&s
->ioscb
), errp
);
414 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->ioscb
), 0,
415 memmap
[MICROCHIP_PFSOC_IOSCB
].base
);
418 create_unimplemented_device("microchip.pfsoc.emmc_sd_mux",
419 memmap
[MICROCHIP_PFSOC_EMMC_SD_MUX
].base
,
420 memmap
[MICROCHIP_PFSOC_EMMC_SD_MUX
].size
);
423 memory_region_init_rom(qspi_xip_mem
, OBJECT(dev
),
424 "microchip.pfsoc.qspi_xip",
425 memmap
[MICROCHIP_PFSOC_QSPI_XIP
].size
,
427 memory_region_add_subregion(system_memory
,
428 memmap
[MICROCHIP_PFSOC_QSPI_XIP
].base
,
432 static void microchip_pfsoc_soc_class_init(ObjectClass
*oc
, void *data
)
434 DeviceClass
*dc
= DEVICE_CLASS(oc
);
436 dc
->realize
= microchip_pfsoc_soc_realize
;
437 /* Reason: Uses serial_hds in realize function, thus can't be used twice */
438 dc
->user_creatable
= false;
441 static const TypeInfo microchip_pfsoc_soc_type_info
= {
442 .name
= TYPE_MICROCHIP_PFSOC
,
443 .parent
= TYPE_DEVICE
,
444 .instance_size
= sizeof(MicrochipPFSoCState
),
445 .instance_init
= microchip_pfsoc_soc_instance_init
,
446 .class_init
= microchip_pfsoc_soc_class_init
,
449 static void microchip_pfsoc_soc_register_types(void)
451 type_register_static(µchip_pfsoc_soc_type_info
);
454 type_init(microchip_pfsoc_soc_register_types
)
456 static void microchip_icicle_kit_machine_init(MachineState
*machine
)
458 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
459 const MemMapEntry
*memmap
= microchip_pfsoc_memmap
;
460 MicrochipIcicleKitState
*s
= MICROCHIP_ICICLE_KIT_MACHINE(machine
);
461 MemoryRegion
*system_memory
= get_system_memory();
462 MemoryRegion
*mem_low
= g_new(MemoryRegion
, 1);
463 MemoryRegion
*mem_low_alias
= g_new(MemoryRegion
, 1);
464 MemoryRegion
*mem_high
= g_new(MemoryRegion
, 1);
465 MemoryRegion
*mem_high_alias
= g_new(MemoryRegion
, 1);
466 uint64_t mem_high_size
;
467 hwaddr firmware_load_addr
;
468 const char *firmware_name
;
469 bool kernel_as_payload
= false;
470 target_ulong firmware_end_addr
, kernel_start_addr
;
471 uint64_t kernel_entry
;
472 uint32_t fdt_load_addr
;
473 DriveInfo
*dinfo
= drive_get_next(IF_SD
);
475 /* Sanity check on RAM size */
476 if (machine
->ram_size
< mc
->default_ram_size
) {
477 char *sz
= size_to_str(mc
->default_ram_size
);
478 error_report("Invalid RAM size, should be bigger than %s", sz
);
484 object_initialize_child(OBJECT(machine
), "soc", &s
->soc
,
485 TYPE_MICROCHIP_PFSOC
);
486 qdev_realize(DEVICE(&s
->soc
), NULL
, &error_abort
);
489 memory_region_init_ram(mem_low
, NULL
, "microchip.icicle.kit.ram_low",
490 memmap
[MICROCHIP_PFSOC_DRAM_LO
].size
,
492 memory_region_init_alias(mem_low_alias
, NULL
,
493 "microchip.icicle.kit.ram_low.alias",
495 memmap
[MICROCHIP_PFSOC_DRAM_LO_ALIAS
].size
);
496 memory_region_add_subregion(system_memory
,
497 memmap
[MICROCHIP_PFSOC_DRAM_LO
].base
,
499 memory_region_add_subregion(system_memory
,
500 memmap
[MICROCHIP_PFSOC_DRAM_LO_ALIAS
].base
,
503 mem_high_size
= machine
->ram_size
- 1 * GiB
;
505 memory_region_init_ram(mem_high
, NULL
, "microchip.icicle.kit.ram_high",
506 mem_high_size
, &error_fatal
);
507 memory_region_init_alias(mem_high_alias
, NULL
,
508 "microchip.icicle.kit.ram_high.alias",
509 mem_high
, 0, mem_high_size
);
510 memory_region_add_subregion(system_memory
,
511 memmap
[MICROCHIP_PFSOC_DRAM_HI
].base
,
513 memory_region_add_subregion(system_memory
,
514 memmap
[MICROCHIP_PFSOC_DRAM_HI_ALIAS
].base
,
517 /* Attach an SD card */
519 CadenceSDHCIState
*sdhci
= &(s
->soc
.sdhci
);
520 DeviceState
*card
= qdev_new(TYPE_SD_CARD
);
522 qdev_prop_set_drive_err(card
, "drive", blk_by_legacy_dinfo(dinfo
),
524 qdev_realize_and_unref(card
, sdhci
->bus
, &error_fatal
);
528 * We follow the following table to select which payload we execute.
530 * -bios | -kernel | payload
531 * -------+------------+--------
533 * Y | don't care | HSS
536 * This ensures backwards compatibility with how we used to expose -bios
537 * to users but allows them to run through direct kernel booting as well.
539 * When -kernel is used for direct boot, -dtb must be present to provide
540 * a valid device tree for the board, as we don't generate device tree.
543 if (machine
->kernel_filename
&& machine
->dtb
) {
545 machine
->fdt
= load_device_tree(machine
->dtb
, &fdt_size
);
547 error_report("load_device_tree() failed");
551 firmware_name
= RISCV64_BIOS_BIN
;
552 firmware_load_addr
= memmap
[MICROCHIP_PFSOC_DRAM_LO
].base
;
553 kernel_as_payload
= true;
556 if (!kernel_as_payload
) {
557 firmware_name
= BIOS_FILENAME
;
558 firmware_load_addr
= RESET_VECTOR
;
561 /* Load the firmware */
562 firmware_end_addr
= riscv_find_and_load_firmware(machine
, firmware_name
,
563 firmware_load_addr
, NULL
);
565 if (kernel_as_payload
) {
566 kernel_start_addr
= riscv_calc_kernel_start_addr(&s
->soc
.u_cpus
,
569 kernel_entry
= riscv_load_kernel(machine
->kernel_filename
,
570 kernel_start_addr
, NULL
);
572 if (machine
->initrd_filename
) {
574 hwaddr end
= riscv_load_initrd(machine
->initrd_filename
,
575 machine
->ram_size
, kernel_entry
,
577 qemu_fdt_setprop_cell(machine
->fdt
, "/chosen",
578 "linux,initrd-start", start
);
579 qemu_fdt_setprop_cell(machine
->fdt
, "/chosen",
580 "linux,initrd-end", end
);
583 if (machine
->kernel_cmdline
) {
584 qemu_fdt_setprop_string(machine
->fdt
, "/chosen",
585 "bootargs", machine
->kernel_cmdline
);
588 /* Compute the fdt load address in dram */
589 fdt_load_addr
= riscv_load_fdt(memmap
[MICROCHIP_PFSOC_DRAM_LO
].base
,
590 machine
->ram_size
, machine
->fdt
);
591 /* Load the reset vector */
592 riscv_setup_rom_reset_vec(machine
, &s
->soc
.u_cpus
, firmware_load_addr
,
593 memmap
[MICROCHIP_PFSOC_ENVM_DATA
].base
,
594 memmap
[MICROCHIP_PFSOC_ENVM_DATA
].size
,
595 kernel_entry
, fdt_load_addr
, machine
->fdt
);
599 static void microchip_icicle_kit_machine_class_init(ObjectClass
*oc
, void *data
)
601 MachineClass
*mc
= MACHINE_CLASS(oc
);
603 mc
->desc
= "Microchip PolarFire SoC Icicle Kit";
604 mc
->init
= microchip_icicle_kit_machine_init
;
605 mc
->max_cpus
= MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT
+
606 MICROCHIP_PFSOC_COMPUTE_CPU_COUNT
;
607 mc
->min_cpus
= MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT
+ 1;
608 mc
->default_cpus
= mc
->min_cpus
;
611 * Map 513 MiB high memory, the mimimum required high memory size, because
612 * HSS will do memory test against the high memory address range regardless
613 * of physical memory installed.
615 * See memory_tests() in mss_ddr.c in the HSS source code.
617 mc
->default_ram_size
= 1537 * MiB
;
620 static const TypeInfo microchip_icicle_kit_machine_typeinfo
= {
621 .name
= MACHINE_TYPE_NAME("microchip-icicle-kit"),
622 .parent
= TYPE_MACHINE
,
623 .class_init
= microchip_icicle_kit_machine_class_init
,
624 .instance_size
= sizeof(MicrochipIcicleKitState
),
627 static void microchip_icicle_kit_machine_init_register_types(void)
629 type_register_static(µchip_icicle_kit_machine_typeinfo
);
632 type_init(microchip_icicle_kit_machine_init_register_types
)