qapi/parser: enable pylint checks
[qemu/armbru.git] / hw / riscv / virt.c
blobec0cb69b8c737bf43b1a84dfb732529b5e18aa53
1 /*
2 * QEMU RISC-V VirtIO Board
4 * Copyright (c) 2017 SiFive, Inc.
6 * RISC-V machine with 16550a UART and VirtIO MMIO
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2 or later, as published by the Free Software Foundation.
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
17 * You should have received a copy of the GNU General Public License along with
18 * this program. If not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qemu/units.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/boards.h"
26 #include "hw/loader.h"
27 #include "hw/sysbus.h"
28 #include "hw/qdev-properties.h"
29 #include "hw/char/serial.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/riscv/riscv_hart.h"
32 #include "hw/riscv/virt.h"
33 #include "hw/riscv/boot.h"
34 #include "hw/riscv/numa.h"
35 #include "hw/intc/riscv_aclint.h"
36 #include "hw/intc/sifive_plic.h"
37 #include "hw/misc/sifive_test.h"
38 #include "chardev/char.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 #include "hw/pci/pci.h"
42 #include "hw/pci-host/gpex.h"
43 #include "hw/display/ramfb.h"
45 static const MemMapEntry virt_memmap[] = {
46 [VIRT_DEBUG] = { 0x0, 0x100 },
47 [VIRT_MROM] = { 0x1000, 0xf000 },
48 [VIRT_TEST] = { 0x100000, 0x1000 },
49 [VIRT_RTC] = { 0x101000, 0x1000 },
50 [VIRT_CLINT] = { 0x2000000, 0x10000 },
51 [VIRT_ACLINT_SSWI] = { 0x2F00000, 0x4000 },
52 [VIRT_PCIE_PIO] = { 0x3000000, 0x10000 },
53 [VIRT_PLIC] = { 0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) },
54 [VIRT_UART0] = { 0x10000000, 0x100 },
55 [VIRT_VIRTIO] = { 0x10001000, 0x1000 },
56 [VIRT_FW_CFG] = { 0x10100000, 0x18 },
57 [VIRT_FLASH] = { 0x20000000, 0x4000000 },
58 [VIRT_PCIE_ECAM] = { 0x30000000, 0x10000000 },
59 [VIRT_PCIE_MMIO] = { 0x40000000, 0x40000000 },
60 [VIRT_DRAM] = { 0x80000000, 0x0 },
63 /* PCIe high mmio is fixed for RV32 */
64 #define VIRT32_HIGH_PCIE_MMIO_BASE 0x300000000ULL
65 #define VIRT32_HIGH_PCIE_MMIO_SIZE (4 * GiB)
67 /* PCIe high mmio for RV64, size is fixed but base depends on top of RAM */
68 #define VIRT64_HIGH_PCIE_MMIO_SIZE (16 * GiB)
70 static MemMapEntry virt_high_pcie_memmap;
72 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
74 static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
75 const char *name,
76 const char *alias_prop_name)
79 * Create a single flash device. We use the same parameters as
80 * the flash devices on the ARM virt board.
82 DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
84 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
85 qdev_prop_set_uint8(dev, "width", 4);
86 qdev_prop_set_uint8(dev, "device-width", 2);
87 qdev_prop_set_bit(dev, "big-endian", false);
88 qdev_prop_set_uint16(dev, "id0", 0x89);
89 qdev_prop_set_uint16(dev, "id1", 0x18);
90 qdev_prop_set_uint16(dev, "id2", 0x00);
91 qdev_prop_set_uint16(dev, "id3", 0x00);
92 qdev_prop_set_string(dev, "name", name);
94 object_property_add_child(OBJECT(s), name, OBJECT(dev));
95 object_property_add_alias(OBJECT(s), alias_prop_name,
96 OBJECT(dev), "drive");
98 return PFLASH_CFI01(dev);
101 static void virt_flash_create(RISCVVirtState *s)
103 s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
104 s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
107 static void virt_flash_map1(PFlashCFI01 *flash,
108 hwaddr base, hwaddr size,
109 MemoryRegion *sysmem)
111 DeviceState *dev = DEVICE(flash);
113 assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
114 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
115 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
116 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
118 memory_region_add_subregion(sysmem, base,
119 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
120 0));
123 static void virt_flash_map(RISCVVirtState *s,
124 MemoryRegion *sysmem)
126 hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
127 hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
129 virt_flash_map1(s->flash[0], flashbase, flashsize,
130 sysmem);
131 virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
132 sysmem);
135 static void create_pcie_irq_map(void *fdt, char *nodename,
136 uint32_t plic_phandle)
138 int pin, dev;
139 uint32_t
140 full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * FDT_INT_MAP_WIDTH] = {};
141 uint32_t *irq_map = full_irq_map;
143 /* This code creates a standard swizzle of interrupts such that
144 * each device's first interrupt is based on it's PCI_SLOT number.
145 * (See pci_swizzle_map_irq_fn())
147 * We only need one entry per interrupt in the table (not one per
148 * possible slot) seeing the interrupt-map-mask will allow the table
149 * to wrap to any number of devices.
151 for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
152 int devfn = dev * 0x8;
154 for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
155 int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
156 int i = 0;
158 irq_map[i] = cpu_to_be32(devfn << 8);
160 i += FDT_PCI_ADDR_CELLS;
161 irq_map[i] = cpu_to_be32(pin + 1);
163 i += FDT_PCI_INT_CELLS;
164 irq_map[i++] = cpu_to_be32(plic_phandle);
166 i += FDT_PLIC_ADDR_CELLS;
167 irq_map[i] = cpu_to_be32(irq_nr);
169 irq_map += FDT_INT_MAP_WIDTH;
173 qemu_fdt_setprop(fdt, nodename, "interrupt-map",
174 full_irq_map, sizeof(full_irq_map));
176 qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
177 0x1800, 0, 0, 0x7);
180 static void create_fdt_socket_cpus(RISCVVirtState *s, int socket,
181 char *clust_name, uint32_t *phandle,
182 bool is_32_bit, uint32_t *intc_phandles)
184 int cpu;
185 uint32_t cpu_phandle;
186 MachineState *mc = MACHINE(s);
187 char *name, *cpu_name, *core_name, *intc_name;
189 for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
190 cpu_phandle = (*phandle)++;
192 cpu_name = g_strdup_printf("/cpus/cpu@%d",
193 s->soc[socket].hartid_base + cpu);
194 qemu_fdt_add_subnode(mc->fdt, cpu_name);
195 qemu_fdt_setprop_string(mc->fdt, cpu_name, "mmu-type",
196 (is_32_bit) ? "riscv,sv32" : "riscv,sv48");
197 name = riscv_isa_string(&s->soc[socket].harts[cpu]);
198 qemu_fdt_setprop_string(mc->fdt, cpu_name, "riscv,isa", name);
199 g_free(name);
200 qemu_fdt_setprop_string(mc->fdt, cpu_name, "compatible", "riscv");
201 qemu_fdt_setprop_string(mc->fdt, cpu_name, "status", "okay");
202 qemu_fdt_setprop_cell(mc->fdt, cpu_name, "reg",
203 s->soc[socket].hartid_base + cpu);
204 qemu_fdt_setprop_string(mc->fdt, cpu_name, "device_type", "cpu");
205 riscv_socket_fdt_write_id(mc, mc->fdt, cpu_name, socket);
206 qemu_fdt_setprop_cell(mc->fdt, cpu_name, "phandle", cpu_phandle);
208 intc_phandles[cpu] = (*phandle)++;
210 intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
211 qemu_fdt_add_subnode(mc->fdt, intc_name);
212 qemu_fdt_setprop_cell(mc->fdt, intc_name, "phandle",
213 intc_phandles[cpu]);
214 qemu_fdt_setprop_string(mc->fdt, intc_name, "compatible",
215 "riscv,cpu-intc");
216 qemu_fdt_setprop(mc->fdt, intc_name, "interrupt-controller", NULL, 0);
217 qemu_fdt_setprop_cell(mc->fdt, intc_name, "#interrupt-cells", 1);
219 core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
220 qemu_fdt_add_subnode(mc->fdt, core_name);
221 qemu_fdt_setprop_cell(mc->fdt, core_name, "cpu", cpu_phandle);
223 g_free(core_name);
224 g_free(intc_name);
225 g_free(cpu_name);
229 static void create_fdt_socket_memory(RISCVVirtState *s,
230 const MemMapEntry *memmap, int socket)
232 char *mem_name;
233 uint64_t addr, size;
234 MachineState *mc = MACHINE(s);
236 addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(mc, socket);
237 size = riscv_socket_mem_size(mc, socket);
238 mem_name = g_strdup_printf("/memory@%lx", (long)addr);
239 qemu_fdt_add_subnode(mc->fdt, mem_name);
240 qemu_fdt_setprop_cells(mc->fdt, mem_name, "reg",
241 addr >> 32, addr, size >> 32, size);
242 qemu_fdt_setprop_string(mc->fdt, mem_name, "device_type", "memory");
243 riscv_socket_fdt_write_id(mc, mc->fdt, mem_name, socket);
244 g_free(mem_name);
247 static void create_fdt_socket_clint(RISCVVirtState *s,
248 const MemMapEntry *memmap, int socket,
249 uint32_t *intc_phandles)
251 int cpu;
252 char *clint_name;
253 uint32_t *clint_cells;
254 unsigned long clint_addr;
255 MachineState *mc = MACHINE(s);
256 static const char * const clint_compat[2] = {
257 "sifive,clint0", "riscv,clint0"
260 clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
262 for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
263 clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
264 clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
265 clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
266 clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
269 clint_addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
270 clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
271 qemu_fdt_add_subnode(mc->fdt, clint_name);
272 qemu_fdt_setprop_string_array(mc->fdt, clint_name, "compatible",
273 (char **)&clint_compat,
274 ARRAY_SIZE(clint_compat));
275 qemu_fdt_setprop_cells(mc->fdt, clint_name, "reg",
276 0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size);
277 qemu_fdt_setprop(mc->fdt, clint_name, "interrupts-extended",
278 clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
279 riscv_socket_fdt_write_id(mc, mc->fdt, clint_name, socket);
280 g_free(clint_name);
282 g_free(clint_cells);
285 static void create_fdt_socket_aclint(RISCVVirtState *s,
286 const MemMapEntry *memmap, int socket,
287 uint32_t *intc_phandles)
289 int cpu;
290 char *name;
291 unsigned long addr;
292 uint32_t aclint_cells_size;
293 uint32_t *aclint_mswi_cells;
294 uint32_t *aclint_sswi_cells;
295 uint32_t *aclint_mtimer_cells;
296 MachineState *mc = MACHINE(s);
298 aclint_mswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
299 aclint_mtimer_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
300 aclint_sswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
302 for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
303 aclint_mswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
304 aclint_mswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_SOFT);
305 aclint_mtimer_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
306 aclint_mtimer_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_TIMER);
307 aclint_sswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
308 aclint_sswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_SOFT);
310 aclint_cells_size = s->soc[socket].num_harts * sizeof(uint32_t) * 2;
312 addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
313 name = g_strdup_printf("/soc/mswi@%lx", addr);
314 qemu_fdt_add_subnode(mc->fdt, name);
315 qemu_fdt_setprop_string(mc->fdt, name, "compatible", "riscv,aclint-mswi");
316 qemu_fdt_setprop_cells(mc->fdt, name, "reg",
317 0x0, addr, 0x0, RISCV_ACLINT_SWI_SIZE);
318 qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
319 aclint_mswi_cells, aclint_cells_size);
320 qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
321 qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
322 riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
323 g_free(name);
325 addr = memmap[VIRT_CLINT].base + RISCV_ACLINT_SWI_SIZE +
326 (memmap[VIRT_CLINT].size * socket);
327 name = g_strdup_printf("/soc/mtimer@%lx", addr);
328 qemu_fdt_add_subnode(mc->fdt, name);
329 qemu_fdt_setprop_string(mc->fdt, name, "compatible",
330 "riscv,aclint-mtimer");
331 qemu_fdt_setprop_cells(mc->fdt, name, "reg",
332 0x0, addr + RISCV_ACLINT_DEFAULT_MTIME,
333 0x0, memmap[VIRT_CLINT].size - RISCV_ACLINT_SWI_SIZE -
334 RISCV_ACLINT_DEFAULT_MTIME,
335 0x0, addr + RISCV_ACLINT_DEFAULT_MTIMECMP,
336 0x0, RISCV_ACLINT_DEFAULT_MTIME);
337 qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
338 aclint_mtimer_cells, aclint_cells_size);
339 riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
340 g_free(name);
342 addr = memmap[VIRT_ACLINT_SSWI].base +
343 (memmap[VIRT_ACLINT_SSWI].size * socket);
344 name = g_strdup_printf("/soc/sswi@%lx", addr);
345 qemu_fdt_add_subnode(mc->fdt, name);
346 qemu_fdt_setprop_string(mc->fdt, name, "compatible", "riscv,aclint-sswi");
347 qemu_fdt_setprop_cells(mc->fdt, name, "reg",
348 0x0, addr, 0x0, memmap[VIRT_ACLINT_SSWI].size);
349 qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
350 aclint_sswi_cells, aclint_cells_size);
351 qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
352 qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
353 riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
354 g_free(name);
356 g_free(aclint_mswi_cells);
357 g_free(aclint_mtimer_cells);
358 g_free(aclint_sswi_cells);
361 static void create_fdt_socket_plic(RISCVVirtState *s,
362 const MemMapEntry *memmap, int socket,
363 uint32_t *phandle, uint32_t *intc_phandles,
364 uint32_t *plic_phandles)
366 int cpu;
367 char *plic_name;
368 uint32_t *plic_cells;
369 unsigned long plic_addr;
370 MachineState *mc = MACHINE(s);
371 static const char * const plic_compat[2] = {
372 "sifive,plic-1.0.0", "riscv,plic0"
375 plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
377 for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
378 plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
379 plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
380 plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
381 plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
384 plic_phandles[socket] = (*phandle)++;
385 plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket);
386 plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr);
387 qemu_fdt_add_subnode(mc->fdt, plic_name);
388 qemu_fdt_setprop_cell(mc->fdt, plic_name,
389 "#address-cells", FDT_PLIC_ADDR_CELLS);
390 qemu_fdt_setprop_cell(mc->fdt, plic_name,
391 "#interrupt-cells", FDT_PLIC_INT_CELLS);
392 qemu_fdt_setprop_string_array(mc->fdt, plic_name, "compatible",
393 (char **)&plic_compat,
394 ARRAY_SIZE(plic_compat));
395 qemu_fdt_setprop(mc->fdt, plic_name, "interrupt-controller", NULL, 0);
396 qemu_fdt_setprop(mc->fdt, plic_name, "interrupts-extended",
397 plic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
398 qemu_fdt_setprop_cells(mc->fdt, plic_name, "reg",
399 0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size);
400 qemu_fdt_setprop_cell(mc->fdt, plic_name, "riscv,ndev", VIRTIO_NDEV);
401 riscv_socket_fdt_write_id(mc, mc->fdt, plic_name, socket);
402 qemu_fdt_setprop_cell(mc->fdt, plic_name, "phandle",
403 plic_phandles[socket]);
404 g_free(plic_name);
406 g_free(plic_cells);
409 static void create_fdt_sockets(RISCVVirtState *s, const MemMapEntry *memmap,
410 bool is_32_bit, uint32_t *phandle,
411 uint32_t *irq_mmio_phandle,
412 uint32_t *irq_pcie_phandle,
413 uint32_t *irq_virtio_phandle)
415 int socket;
416 char *clust_name;
417 uint32_t *intc_phandles;
418 MachineState *mc = MACHINE(s);
419 uint32_t xplic_phandles[MAX_NODES];
421 qemu_fdt_add_subnode(mc->fdt, "/cpus");
422 qemu_fdt_setprop_cell(mc->fdt, "/cpus", "timebase-frequency",
423 RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
424 qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#size-cells", 0x0);
425 qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#address-cells", 0x1);
426 qemu_fdt_add_subnode(mc->fdt, "/cpus/cpu-map");
428 for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
429 clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
430 qemu_fdt_add_subnode(mc->fdt, clust_name);
432 intc_phandles = g_new0(uint32_t, s->soc[socket].num_harts);
434 create_fdt_socket_cpus(s, socket, clust_name, phandle,
435 is_32_bit, intc_phandles);
437 create_fdt_socket_memory(s, memmap, socket);
439 if (s->have_aclint) {
440 create_fdt_socket_aclint(s, memmap, socket, intc_phandles);
441 } else {
442 create_fdt_socket_clint(s, memmap, socket, intc_phandles);
445 create_fdt_socket_plic(s, memmap, socket, phandle,
446 intc_phandles, xplic_phandles);
448 g_free(intc_phandles);
449 g_free(clust_name);
452 for (socket = 0; socket < riscv_socket_count(mc); socket++) {
453 if (socket == 0) {
454 *irq_mmio_phandle = xplic_phandles[socket];
455 *irq_virtio_phandle = xplic_phandles[socket];
456 *irq_pcie_phandle = xplic_phandles[socket];
458 if (socket == 1) {
459 *irq_virtio_phandle = xplic_phandles[socket];
460 *irq_pcie_phandle = xplic_phandles[socket];
462 if (socket == 2) {
463 *irq_pcie_phandle = xplic_phandles[socket];
467 riscv_socket_fdt_write_distance_matrix(mc, mc->fdt);
470 static void create_fdt_virtio(RISCVVirtState *s, const MemMapEntry *memmap,
471 uint32_t irq_virtio_phandle)
473 int i;
474 char *name;
475 MachineState *mc = MACHINE(s);
477 for (i = 0; i < VIRTIO_COUNT; i++) {
478 name = g_strdup_printf("/soc/virtio_mmio@%lx",
479 (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
480 qemu_fdt_add_subnode(mc->fdt, name);
481 qemu_fdt_setprop_string(mc->fdt, name, "compatible", "virtio,mmio");
482 qemu_fdt_setprop_cells(mc->fdt, name, "reg",
483 0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
484 0x0, memmap[VIRT_VIRTIO].size);
485 qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
486 irq_virtio_phandle);
487 qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", VIRTIO_IRQ + i);
488 g_free(name);
492 static void create_fdt_pcie(RISCVVirtState *s, const MemMapEntry *memmap,
493 uint32_t irq_pcie_phandle)
495 char *name;
496 MachineState *mc = MACHINE(s);
498 name = g_strdup_printf("/soc/pci@%lx",
499 (long) memmap[VIRT_PCIE_ECAM].base);
500 qemu_fdt_add_subnode(mc->fdt, name);
501 qemu_fdt_setprop_cell(mc->fdt, name, "#address-cells",
502 FDT_PCI_ADDR_CELLS);
503 qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells",
504 FDT_PCI_INT_CELLS);
505 qemu_fdt_setprop_cell(mc->fdt, name, "#size-cells", 0x2);
506 qemu_fdt_setprop_string(mc->fdt, name, "compatible",
507 "pci-host-ecam-generic");
508 qemu_fdt_setprop_string(mc->fdt, name, "device_type", "pci");
509 qemu_fdt_setprop_cell(mc->fdt, name, "linux,pci-domain", 0);
510 qemu_fdt_setprop_cells(mc->fdt, name, "bus-range", 0,
511 memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1);
512 qemu_fdt_setprop(mc->fdt, name, "dma-coherent", NULL, 0);
513 qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0,
514 memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size);
515 qemu_fdt_setprop_sized_cells(mc->fdt, name, "ranges",
516 1, FDT_PCI_RANGE_IOPORT, 2, 0,
517 2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
518 1, FDT_PCI_RANGE_MMIO,
519 2, memmap[VIRT_PCIE_MMIO].base,
520 2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size,
521 1, FDT_PCI_RANGE_MMIO_64BIT,
522 2, virt_high_pcie_memmap.base,
523 2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.size);
525 create_pcie_irq_map(mc->fdt, name, irq_pcie_phandle);
526 g_free(name);
529 static void create_fdt_reset(RISCVVirtState *s, const MemMapEntry *memmap,
530 uint32_t *phandle)
532 char *name;
533 uint32_t test_phandle;
534 MachineState *mc = MACHINE(s);
536 test_phandle = (*phandle)++;
537 name = g_strdup_printf("/soc/test@%lx",
538 (long)memmap[VIRT_TEST].base);
539 qemu_fdt_add_subnode(mc->fdt, name);
541 static const char * const compat[3] = {
542 "sifive,test1", "sifive,test0", "syscon"
544 qemu_fdt_setprop_string_array(mc->fdt, name, "compatible",
545 (char **)&compat, ARRAY_SIZE(compat));
547 qemu_fdt_setprop_cells(mc->fdt, name, "reg",
548 0x0, memmap[VIRT_TEST].base, 0x0, memmap[VIRT_TEST].size);
549 qemu_fdt_setprop_cell(mc->fdt, name, "phandle", test_phandle);
550 test_phandle = qemu_fdt_get_phandle(mc->fdt, name);
551 g_free(name);
553 name = g_strdup_printf("/soc/reboot");
554 qemu_fdt_add_subnode(mc->fdt, name);
555 qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-reboot");
556 qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
557 qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
558 qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_RESET);
559 g_free(name);
561 name = g_strdup_printf("/soc/poweroff");
562 qemu_fdt_add_subnode(mc->fdt, name);
563 qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-poweroff");
564 qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
565 qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
566 qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_PASS);
567 g_free(name);
570 static void create_fdt_uart(RISCVVirtState *s, const MemMapEntry *memmap,
571 uint32_t irq_mmio_phandle)
573 char *name;
574 MachineState *mc = MACHINE(s);
576 name = g_strdup_printf("/soc/uart@%lx", (long)memmap[VIRT_UART0].base);
577 qemu_fdt_add_subnode(mc->fdt, name);
578 qemu_fdt_setprop_string(mc->fdt, name, "compatible", "ns16550a");
579 qemu_fdt_setprop_cells(mc->fdt, name, "reg",
580 0x0, memmap[VIRT_UART0].base,
581 0x0, memmap[VIRT_UART0].size);
582 qemu_fdt_setprop_cell(mc->fdt, name, "clock-frequency", 3686400);
583 qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent", irq_mmio_phandle);
584 qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", UART0_IRQ);
586 qemu_fdt_add_subnode(mc->fdt, "/chosen");
587 qemu_fdt_setprop_string(mc->fdt, "/chosen", "stdout-path", name);
588 g_free(name);
591 static void create_fdt_rtc(RISCVVirtState *s, const MemMapEntry *memmap,
592 uint32_t irq_mmio_phandle)
594 char *name;
595 MachineState *mc = MACHINE(s);
597 name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base);
598 qemu_fdt_add_subnode(mc->fdt, name);
599 qemu_fdt_setprop_string(mc->fdt, name, "compatible",
600 "google,goldfish-rtc");
601 qemu_fdt_setprop_cells(mc->fdt, name, "reg",
602 0x0, memmap[VIRT_RTC].base, 0x0, memmap[VIRT_RTC].size);
603 qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
604 irq_mmio_phandle);
605 qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", RTC_IRQ);
606 g_free(name);
609 static void create_fdt_flash(RISCVVirtState *s, const MemMapEntry *memmap)
611 char *name;
612 MachineState *mc = MACHINE(s);
613 hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
614 hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
616 name = g_strdup_printf("/flash@%" PRIx64, flashbase);
617 qemu_fdt_add_subnode(mc->fdt, name);
618 qemu_fdt_setprop_string(mc->fdt, name, "compatible", "cfi-flash");
619 qemu_fdt_setprop_sized_cells(mc->fdt, name, "reg",
620 2, flashbase, 2, flashsize,
621 2, flashbase + flashsize, 2, flashsize);
622 qemu_fdt_setprop_cell(mc->fdt, name, "bank-width", 4);
623 g_free(name);
626 static void create_fdt(RISCVVirtState *s, const MemMapEntry *memmap,
627 uint64_t mem_size, const char *cmdline, bool is_32_bit)
629 MachineState *mc = MACHINE(s);
630 uint32_t phandle = 1, irq_mmio_phandle = 1;
631 uint32_t irq_pcie_phandle = 1, irq_virtio_phandle = 1;
633 if (mc->dtb) {
634 mc->fdt = load_device_tree(mc->dtb, &s->fdt_size);
635 if (!mc->fdt) {
636 error_report("load_device_tree() failed");
637 exit(1);
639 goto update_bootargs;
640 } else {
641 mc->fdt = create_device_tree(&s->fdt_size);
642 if (!mc->fdt) {
643 error_report("create_device_tree() failed");
644 exit(1);
648 qemu_fdt_setprop_string(mc->fdt, "/", "model", "riscv-virtio,qemu");
649 qemu_fdt_setprop_string(mc->fdt, "/", "compatible", "riscv-virtio");
650 qemu_fdt_setprop_cell(mc->fdt, "/", "#size-cells", 0x2);
651 qemu_fdt_setprop_cell(mc->fdt, "/", "#address-cells", 0x2);
653 qemu_fdt_add_subnode(mc->fdt, "/soc");
654 qemu_fdt_setprop(mc->fdt, "/soc", "ranges", NULL, 0);
655 qemu_fdt_setprop_string(mc->fdt, "/soc", "compatible", "simple-bus");
656 qemu_fdt_setprop_cell(mc->fdt, "/soc", "#size-cells", 0x2);
657 qemu_fdt_setprop_cell(mc->fdt, "/soc", "#address-cells", 0x2);
659 create_fdt_sockets(s, memmap, is_32_bit, &phandle,
660 &irq_mmio_phandle, &irq_pcie_phandle, &irq_virtio_phandle);
662 create_fdt_virtio(s, memmap, irq_virtio_phandle);
664 create_fdt_pcie(s, memmap, irq_pcie_phandle);
666 create_fdt_reset(s, memmap, &phandle);
668 create_fdt_uart(s, memmap, irq_mmio_phandle);
670 create_fdt_rtc(s, memmap, irq_mmio_phandle);
672 create_fdt_flash(s, memmap);
674 update_bootargs:
675 if (cmdline) {
676 qemu_fdt_setprop_string(mc->fdt, "/chosen", "bootargs", cmdline);
680 static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
681 hwaddr ecam_base, hwaddr ecam_size,
682 hwaddr mmio_base, hwaddr mmio_size,
683 hwaddr high_mmio_base,
684 hwaddr high_mmio_size,
685 hwaddr pio_base,
686 DeviceState *plic)
688 DeviceState *dev;
689 MemoryRegion *ecam_alias, *ecam_reg;
690 MemoryRegion *mmio_alias, *high_mmio_alias, *mmio_reg;
691 qemu_irq irq;
692 int i;
694 dev = qdev_new(TYPE_GPEX_HOST);
696 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
698 ecam_alias = g_new0(MemoryRegion, 1);
699 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
700 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
701 ecam_reg, 0, ecam_size);
702 memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
704 mmio_alias = g_new0(MemoryRegion, 1);
705 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
706 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
707 mmio_reg, mmio_base, mmio_size);
708 memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
710 /* Map high MMIO space */
711 high_mmio_alias = g_new0(MemoryRegion, 1);
712 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
713 mmio_reg, high_mmio_base, high_mmio_size);
714 memory_region_add_subregion(get_system_memory(), high_mmio_base,
715 high_mmio_alias);
717 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
719 for (i = 0; i < GPEX_NUM_IRQS; i++) {
720 irq = qdev_get_gpio_in(plic, PCIE_IRQ + i);
722 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
723 gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
726 return dev;
729 static FWCfgState *create_fw_cfg(const MachineState *mc)
731 hwaddr base = virt_memmap[VIRT_FW_CFG].base;
732 hwaddr size = virt_memmap[VIRT_FW_CFG].size;
733 FWCfgState *fw_cfg;
734 char *nodename;
736 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16,
737 &address_space_memory);
738 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)mc->smp.cpus);
740 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
741 qemu_fdt_add_subnode(mc->fdt, nodename);
742 qemu_fdt_setprop_string(mc->fdt, nodename,
743 "compatible", "qemu,fw-cfg-mmio");
744 qemu_fdt_setprop_sized_cells(mc->fdt, nodename, "reg",
745 2, base, 2, size);
746 qemu_fdt_setprop(mc->fdt, nodename, "dma-coherent", NULL, 0);
747 g_free(nodename);
748 return fw_cfg;
752 * Return the per-socket PLIC hart topology configuration string
753 * (caller must free with g_free())
755 static char *plic_hart_config_string(int hart_count)
757 g_autofree const char **vals = g_new(const char *, hart_count + 1);
758 int i;
760 for (i = 0; i < hart_count; i++) {
761 vals[i] = VIRT_PLIC_HART_CONFIG;
763 vals[i] = NULL;
765 /* g_strjoinv() obliges us to cast away const here */
766 return g_strjoinv(",", (char **)vals);
769 static void virt_machine_init(MachineState *machine)
771 const MemMapEntry *memmap = virt_memmap;
772 RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
773 MemoryRegion *system_memory = get_system_memory();
774 MemoryRegion *main_mem = g_new(MemoryRegion, 1);
775 MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
776 char *plic_hart_config, *soc_name;
777 target_ulong start_addr = memmap[VIRT_DRAM].base;
778 target_ulong firmware_end_addr, kernel_start_addr;
779 uint32_t fdt_load_addr;
780 uint64_t kernel_entry;
781 DeviceState *mmio_plic, *virtio_plic, *pcie_plic;
782 int i, base_hartid, hart_count;
784 /* Check socket count limit */
785 if (VIRT_SOCKETS_MAX < riscv_socket_count(machine)) {
786 error_report("number of sockets/nodes should be less than %d",
787 VIRT_SOCKETS_MAX);
788 exit(1);
791 /* Initialize sockets */
792 mmio_plic = virtio_plic = pcie_plic = NULL;
793 for (i = 0; i < riscv_socket_count(machine); i++) {
794 if (!riscv_socket_check_hartids(machine, i)) {
795 error_report("discontinuous hartids in socket%d", i);
796 exit(1);
799 base_hartid = riscv_socket_first_hartid(machine, i);
800 if (base_hartid < 0) {
801 error_report("can't find hartid base for socket%d", i);
802 exit(1);
805 hart_count = riscv_socket_hart_count(machine, i);
806 if (hart_count < 0) {
807 error_report("can't find hart count for socket%d", i);
808 exit(1);
811 soc_name = g_strdup_printf("soc%d", i);
812 object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
813 TYPE_RISCV_HART_ARRAY);
814 g_free(soc_name);
815 object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
816 machine->cpu_type, &error_abort);
817 object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
818 base_hartid, &error_abort);
819 object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
820 hart_count, &error_abort);
821 sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
823 /* Per-socket CLINT */
824 riscv_aclint_swi_create(
825 memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size,
826 base_hartid, hart_count, false);
827 riscv_aclint_mtimer_create(
828 memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size +
829 RISCV_ACLINT_SWI_SIZE,
830 RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
831 RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
832 RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
834 /* Per-socket ACLINT SSWI */
835 if (s->have_aclint) {
836 riscv_aclint_swi_create(
837 memmap[VIRT_ACLINT_SSWI].base +
838 i * memmap[VIRT_ACLINT_SSWI].size,
839 base_hartid, hart_count, true);
842 /* Per-socket PLIC hart topology configuration string */
843 plic_hart_config = plic_hart_config_string(hart_count);
845 /* Per-socket PLIC */
846 s->plic[i] = sifive_plic_create(
847 memmap[VIRT_PLIC].base + i * memmap[VIRT_PLIC].size,
848 plic_hart_config, hart_count, base_hartid,
849 VIRT_PLIC_NUM_SOURCES,
850 VIRT_PLIC_NUM_PRIORITIES,
851 VIRT_PLIC_PRIORITY_BASE,
852 VIRT_PLIC_PENDING_BASE,
853 VIRT_PLIC_ENABLE_BASE,
854 VIRT_PLIC_ENABLE_STRIDE,
855 VIRT_PLIC_CONTEXT_BASE,
856 VIRT_PLIC_CONTEXT_STRIDE,
857 memmap[VIRT_PLIC].size);
858 g_free(plic_hart_config);
860 /* Try to use different PLIC instance based device type */
861 if (i == 0) {
862 mmio_plic = s->plic[i];
863 virtio_plic = s->plic[i];
864 pcie_plic = s->plic[i];
866 if (i == 1) {
867 virtio_plic = s->plic[i];
868 pcie_plic = s->plic[i];
870 if (i == 2) {
871 pcie_plic = s->plic[i];
875 if (riscv_is_32bit(&s->soc[0])) {
876 #if HOST_LONG_BITS == 64
877 /* limit RAM size in a 32-bit system */
878 if (machine->ram_size > 10 * GiB) {
879 machine->ram_size = 10 * GiB;
880 error_report("Limiting RAM size to 10 GiB");
882 #endif
883 virt_high_pcie_memmap.base = VIRT32_HIGH_PCIE_MMIO_BASE;
884 virt_high_pcie_memmap.size = VIRT32_HIGH_PCIE_MMIO_SIZE;
885 } else {
886 virt_high_pcie_memmap.size = VIRT64_HIGH_PCIE_MMIO_SIZE;
887 virt_high_pcie_memmap.base = memmap[VIRT_DRAM].base + machine->ram_size;
888 virt_high_pcie_memmap.base =
889 ROUND_UP(virt_high_pcie_memmap.base, virt_high_pcie_memmap.size);
892 /* register system main memory (actual RAM) */
893 memory_region_init_ram(main_mem, NULL, "riscv_virt_board.ram",
894 machine->ram_size, &error_fatal);
895 memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
896 main_mem);
898 /* create device tree */
899 create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
900 riscv_is_32bit(&s->soc[0]));
902 /* boot rom */
903 memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
904 memmap[VIRT_MROM].size, &error_fatal);
905 memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
906 mask_rom);
908 if (riscv_is_32bit(&s->soc[0])) {
909 firmware_end_addr = riscv_find_and_load_firmware(machine,
910 RISCV32_BIOS_BIN, start_addr, NULL);
911 } else {
912 firmware_end_addr = riscv_find_and_load_firmware(machine,
913 RISCV64_BIOS_BIN, start_addr, NULL);
916 if (machine->kernel_filename) {
917 kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
918 firmware_end_addr);
920 kernel_entry = riscv_load_kernel(machine->kernel_filename,
921 kernel_start_addr, NULL);
923 if (machine->initrd_filename) {
924 hwaddr start;
925 hwaddr end = riscv_load_initrd(machine->initrd_filename,
926 machine->ram_size, kernel_entry,
927 &start);
928 qemu_fdt_setprop_cell(machine->fdt, "/chosen",
929 "linux,initrd-start", start);
930 qemu_fdt_setprop_cell(machine->fdt, "/chosen", "linux,initrd-end",
931 end);
933 } else {
935 * If dynamic firmware is used, it doesn't know where is the next mode
936 * if kernel argument is not set.
938 kernel_entry = 0;
941 if (drive_get(IF_PFLASH, 0, 0)) {
943 * Pflash was supplied, let's overwrite the address we jump to after
944 * reset to the base of the flash.
946 start_addr = virt_memmap[VIRT_FLASH].base;
950 * Init fw_cfg. Must be done before riscv_load_fdt, otherwise the device
951 * tree cannot be altered and we get FDT_ERR_NOSPACE.
953 s->fw_cfg = create_fw_cfg(machine);
954 rom_set_fw(s->fw_cfg);
956 /* Compute the fdt load address in dram */
957 fdt_load_addr = riscv_load_fdt(memmap[VIRT_DRAM].base,
958 machine->ram_size, machine->fdt);
959 /* load the reset vector */
960 riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr,
961 virt_memmap[VIRT_MROM].base,
962 virt_memmap[VIRT_MROM].size, kernel_entry,
963 fdt_load_addr, machine->fdt);
965 /* SiFive Test MMIO device */
966 sifive_test_create(memmap[VIRT_TEST].base);
968 /* VirtIO MMIO devices */
969 for (i = 0; i < VIRTIO_COUNT; i++) {
970 sysbus_create_simple("virtio-mmio",
971 memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
972 qdev_get_gpio_in(DEVICE(virtio_plic), VIRTIO_IRQ + i));
975 gpex_pcie_init(system_memory,
976 memmap[VIRT_PCIE_ECAM].base,
977 memmap[VIRT_PCIE_ECAM].size,
978 memmap[VIRT_PCIE_MMIO].base,
979 memmap[VIRT_PCIE_MMIO].size,
980 virt_high_pcie_memmap.base,
981 virt_high_pcie_memmap.size,
982 memmap[VIRT_PCIE_PIO].base,
983 DEVICE(pcie_plic));
985 serial_mm_init(system_memory, memmap[VIRT_UART0].base,
986 0, qdev_get_gpio_in(DEVICE(mmio_plic), UART0_IRQ), 399193,
987 serial_hd(0), DEVICE_LITTLE_ENDIAN);
989 sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base,
990 qdev_get_gpio_in(DEVICE(mmio_plic), RTC_IRQ));
992 virt_flash_create(s);
994 for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
995 /* Map legacy -drive if=pflash to machine properties */
996 pflash_cfi01_legacy_drive(s->flash[i],
997 drive_get(IF_PFLASH, 0, i));
999 virt_flash_map(s, system_memory);
1002 static void virt_machine_instance_init(Object *obj)
1006 static bool virt_get_aclint(Object *obj, Error **errp)
1008 MachineState *ms = MACHINE(obj);
1009 RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
1011 return s->have_aclint;
1014 static void virt_set_aclint(Object *obj, bool value, Error **errp)
1016 MachineState *ms = MACHINE(obj);
1017 RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
1019 s->have_aclint = value;
1022 static void virt_machine_class_init(ObjectClass *oc, void *data)
1024 MachineClass *mc = MACHINE_CLASS(oc);
1026 mc->desc = "RISC-V VirtIO board";
1027 mc->init = virt_machine_init;
1028 mc->max_cpus = VIRT_CPUS_MAX;
1029 mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
1030 mc->pci_allow_0_address = true;
1031 mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
1032 mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
1033 mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
1034 mc->numa_mem_supported = true;
1036 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1038 object_class_property_add_bool(oc, "aclint", virt_get_aclint,
1039 virt_set_aclint);
1040 object_class_property_set_description(oc, "aclint",
1041 "Set on/off to enable/disable "
1042 "emulating ACLINT devices");
1045 static const TypeInfo virt_machine_typeinfo = {
1046 .name = MACHINE_TYPE_NAME("virt"),
1047 .parent = TYPE_MACHINE,
1048 .class_init = virt_machine_class_init,
1049 .instance_init = virt_machine_instance_init,
1050 .instance_size = sizeof(RISCVVirtState),
1053 static void virt_machine_init_register_types(void)
1055 type_register_static(&virt_machine_typeinfo);
1058 type_init(virt_machine_init_register_types)