qapi/parser: enable pylint checks
[qemu/armbru.git] / hw / ssi / aspeed_smc.c
blob331a2c544635d3f1911accfc70b297e26c04d6a3
1 /*
2 * ASPEED AST2400 SMC Controller (SPI Flash Only)
4 * Copyright (C) 2016 IBM Corp.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "qemu/units.h"
33 #include "trace.h"
35 #include "hw/irq.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/ssi/aspeed_smc.h"
39 /* CE Type Setting Register */
40 #define R_CONF (0x00 / 4)
41 #define CONF_LEGACY_DISABLE (1 << 31)
42 #define CONF_ENABLE_W4 20
43 #define CONF_ENABLE_W3 19
44 #define CONF_ENABLE_W2 18
45 #define CONF_ENABLE_W1 17
46 #define CONF_ENABLE_W0 16
47 #define CONF_FLASH_TYPE4 8
48 #define CONF_FLASH_TYPE3 6
49 #define CONF_FLASH_TYPE2 4
50 #define CONF_FLASH_TYPE1 2
51 #define CONF_FLASH_TYPE0 0
52 #define CONF_FLASH_TYPE_NOR 0x0
53 #define CONF_FLASH_TYPE_NAND 0x1
54 #define CONF_FLASH_TYPE_SPI 0x2 /* AST2600 is SPI only */
56 /* CE Control Register */
57 #define R_CE_CTRL (0x04 / 4)
58 #define CTRL_EXTENDED4 4 /* 32 bit addressing for SPI */
59 #define CTRL_EXTENDED3 3 /* 32 bit addressing for SPI */
60 #define CTRL_EXTENDED2 2 /* 32 bit addressing for SPI */
61 #define CTRL_EXTENDED1 1 /* 32 bit addressing for SPI */
62 #define CTRL_EXTENDED0 0 /* 32 bit addressing for SPI */
64 /* Interrupt Control and Status Register */
65 #define R_INTR_CTRL (0x08 / 4)
66 #define INTR_CTRL_DMA_STATUS (1 << 11)
67 #define INTR_CTRL_CMD_ABORT_STATUS (1 << 10)
68 #define INTR_CTRL_WRITE_PROTECT_STATUS (1 << 9)
69 #define INTR_CTRL_DMA_EN (1 << 3)
70 #define INTR_CTRL_CMD_ABORT_EN (1 << 2)
71 #define INTR_CTRL_WRITE_PROTECT_EN (1 << 1)
73 /* Command Control Register */
74 #define R_CE_CMD_CTRL (0x0C / 4)
75 #define CTRL_ADDR_BYTE0_DISABLE_SHIFT 4
76 #define CTRL_DATA_BYTE0_DISABLE_SHIFT 0
78 #define aspeed_smc_addr_byte_enabled(s, i) \
79 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i)))))
80 #define aspeed_smc_data_byte_enabled(s, i) \
81 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i)))))
83 /* CEx Control Register */
84 #define R_CTRL0 (0x10 / 4)
85 #define CTRL_IO_QPI (1 << 31)
86 #define CTRL_IO_QUAD_DATA (1 << 30)
87 #define CTRL_IO_DUAL_DATA (1 << 29)
88 #define CTRL_IO_DUAL_ADDR_DATA (1 << 28) /* Includes dummies */
89 #define CTRL_IO_QUAD_ADDR_DATA (1 << 28) /* Includes dummies */
90 #define CTRL_CMD_SHIFT 16
91 #define CTRL_CMD_MASK 0xff
92 #define CTRL_DUMMY_HIGH_SHIFT 14
93 #define CTRL_AST2400_SPI_4BYTE (1 << 13)
94 #define CE_CTRL_CLOCK_FREQ_SHIFT 8
95 #define CE_CTRL_CLOCK_FREQ_MASK 0xf
96 #define CE_CTRL_CLOCK_FREQ(div) \
97 (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
98 #define CTRL_DUMMY_LOW_SHIFT 6 /* 2 bits [7:6] */
99 #define CTRL_CE_STOP_ACTIVE (1 << 2)
100 #define CTRL_CMD_MODE_MASK 0x3
101 #define CTRL_READMODE 0x0
102 #define CTRL_FREADMODE 0x1
103 #define CTRL_WRITEMODE 0x2
104 #define CTRL_USERMODE 0x3
105 #define R_CTRL1 (0x14 / 4)
106 #define R_CTRL2 (0x18 / 4)
107 #define R_CTRL3 (0x1C / 4)
108 #define R_CTRL4 (0x20 / 4)
110 /* CEx Segment Address Register */
111 #define R_SEG_ADDR0 (0x30 / 4)
112 #define SEG_END_SHIFT 24 /* 8MB units */
113 #define SEG_END_MASK 0xff
114 #define SEG_START_SHIFT 16 /* address bit [A29-A23] */
115 #define SEG_START_MASK 0xff
116 #define R_SEG_ADDR1 (0x34 / 4)
117 #define R_SEG_ADDR2 (0x38 / 4)
118 #define R_SEG_ADDR3 (0x3C / 4)
119 #define R_SEG_ADDR4 (0x40 / 4)
121 /* Misc Control Register #1 */
122 #define R_MISC_CTRL1 (0x50 / 4)
124 /* SPI dummy cycle data */
125 #define R_DUMMY_DATA (0x54 / 4)
127 /* DMA Control/Status Register */
128 #define R_DMA_CTRL (0x80 / 4)
129 #define DMA_CTRL_REQUEST (1 << 31)
130 #define DMA_CTRL_GRANT (1 << 30)
131 #define DMA_CTRL_DELAY_MASK 0xf
132 #define DMA_CTRL_DELAY_SHIFT 8
133 #define DMA_CTRL_FREQ_MASK 0xf
134 #define DMA_CTRL_FREQ_SHIFT 4
135 #define DMA_CTRL_CALIB (1 << 3)
136 #define DMA_CTRL_CKSUM (1 << 2)
137 #define DMA_CTRL_WRITE (1 << 1)
138 #define DMA_CTRL_ENABLE (1 << 0)
140 /* DMA Flash Side Address */
141 #define R_DMA_FLASH_ADDR (0x84 / 4)
143 /* DMA DRAM Side Address */
144 #define R_DMA_DRAM_ADDR (0x88 / 4)
146 /* DMA Length Register */
147 #define R_DMA_LEN (0x8C / 4)
149 /* Checksum Calculation Result */
150 #define R_DMA_CHECKSUM (0x90 / 4)
152 /* Read Timing Compensation Register */
153 #define R_TIMINGS (0x94 / 4)
155 /* SPI controller registers and bits (AST2400) */
156 #define R_SPI_CONF (0x00 / 4)
157 #define SPI_CONF_ENABLE_W0 0
158 #define R_SPI_CTRL0 (0x4 / 4)
159 #define R_SPI_MISC_CTRL (0x10 / 4)
160 #define R_SPI_TIMINGS (0x14 / 4)
162 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
163 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
165 #define ASPEED_SOC_SMC_FLASH_BASE 0x10000000
166 #define ASPEED_SOC_FMC_FLASH_BASE 0x20000000
167 #define ASPEED_SOC_SPI_FLASH_BASE 0x30000000
168 #define ASPEED_SOC_SPI2_FLASH_BASE 0x38000000
171 * DMA DRAM addresses should be 4 bytes aligned and the valid address
172 * range is 0x40000000 - 0x5FFFFFFF (AST2400)
173 * 0x80000000 - 0xBFFFFFFF (AST2500)
175 * DMA flash addresses should be 4 bytes aligned and the valid address
176 * range is 0x20000000 - 0x2FFFFFFF.
178 * DMA length is from 4 bytes to 32MB
179 * 0: 4 bytes
180 * 0x7FFFFF: 32M bytes
182 #define DMA_DRAM_ADDR(s, val) ((val) & (s)->ctrl->dma_dram_mask)
183 #define DMA_FLASH_ADDR(s, val) ((val) & (s)->ctrl->dma_flash_mask)
184 #define DMA_LENGTH(val) ((val) & 0x01FFFFFC)
186 /* Flash opcodes. */
187 #define SPI_OP_READ 0x03 /* Read data bytes (low frequency) */
189 #define SNOOP_OFF 0xFF
190 #define SNOOP_START 0x0
193 * Default segments mapping addresses and size for each peripheral per
194 * controller. These can be changed when board is initialized with the
195 * Segment Address Registers.
197 static const AspeedSegments aspeed_segments_legacy[] = {
198 { 0x10000000, 32 * 1024 * 1024 },
201 static const AspeedSegments aspeed_segments_fmc[] = {
202 { 0x20000000, 64 * 1024 * 1024 }, /* start address is readonly */
203 { 0x24000000, 32 * 1024 * 1024 },
204 { 0x26000000, 32 * 1024 * 1024 },
205 { 0x28000000, 32 * 1024 * 1024 },
206 { 0x2A000000, 32 * 1024 * 1024 }
209 static const AspeedSegments aspeed_segments_spi[] = {
210 { 0x30000000, 64 * 1024 * 1024 },
213 static const AspeedSegments aspeed_segments_ast2500_fmc[] = {
214 { 0x20000000, 128 * 1024 * 1024 }, /* start address is readonly */
215 { 0x28000000, 32 * 1024 * 1024 },
216 { 0x2A000000, 32 * 1024 * 1024 },
219 static const AspeedSegments aspeed_segments_ast2500_spi1[] = {
220 { 0x30000000, 32 * 1024 * 1024 }, /* start address is readonly */
221 { 0x32000000, 96 * 1024 * 1024 }, /* end address is readonly */
224 static const AspeedSegments aspeed_segments_ast2500_spi2[] = {
225 { 0x38000000, 32 * 1024 * 1024 }, /* start address is readonly */
226 { 0x3A000000, 96 * 1024 * 1024 }, /* end address is readonly */
228 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
229 const AspeedSegments *seg);
230 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s, uint32_t reg,
231 AspeedSegments *seg);
232 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint32_t value);
235 * AST2600 definitions
237 #define ASPEED26_SOC_FMC_FLASH_BASE 0x20000000
238 #define ASPEED26_SOC_SPI_FLASH_BASE 0x30000000
239 #define ASPEED26_SOC_SPI2_FLASH_BASE 0x50000000
241 static const AspeedSegments aspeed_segments_ast2600_fmc[] = {
242 { 0x0, 128 * MiB }, /* start address is readonly */
243 { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
244 { 0x0, 0 }, /* disabled */
247 static const AspeedSegments aspeed_segments_ast2600_spi1[] = {
248 { 0x0, 128 * MiB }, /* start address is readonly */
249 { 0x0, 0 }, /* disabled */
252 static const AspeedSegments aspeed_segments_ast2600_spi2[] = {
253 { 0x0, 128 * MiB }, /* start address is readonly */
254 { 0x0, 0 }, /* disabled */
255 { 0x0, 0 }, /* disabled */
258 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
259 const AspeedSegments *seg);
260 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
261 uint32_t reg, AspeedSegments *seg);
262 static void aspeed_2600_smc_dma_ctrl(AspeedSMCState *s, uint32_t value);
264 #define ASPEED_SMC_FEATURE_DMA 0x1
265 #define ASPEED_SMC_FEATURE_DMA_GRANT 0x2
267 static inline bool aspeed_smc_has_dma(const AspeedSMCState *s)
269 return !!(s->ctrl->features & ASPEED_SMC_FEATURE_DMA);
272 static const AspeedSMCController controllers[] = {
274 .name = "aspeed.smc-ast2400",
275 .r_conf = R_CONF,
276 .r_ce_ctrl = R_CE_CTRL,
277 .r_ctrl0 = R_CTRL0,
278 .r_timings = R_TIMINGS,
279 .nregs_timings = 1,
280 .conf_enable_w0 = CONF_ENABLE_W0,
281 .max_peripherals = 1,
282 .segments = aspeed_segments_legacy,
283 .flash_window_base = ASPEED_SOC_SMC_FLASH_BASE,
284 .flash_window_size = 0x6000000,
285 .features = 0x0,
286 .nregs = ASPEED_SMC_R_SMC_MAX,
287 .segment_to_reg = aspeed_smc_segment_to_reg,
288 .reg_to_segment = aspeed_smc_reg_to_segment,
289 .dma_ctrl = aspeed_smc_dma_ctrl,
290 }, {
291 .name = "aspeed.fmc-ast2400",
292 .r_conf = R_CONF,
293 .r_ce_ctrl = R_CE_CTRL,
294 .r_ctrl0 = R_CTRL0,
295 .r_timings = R_TIMINGS,
296 .nregs_timings = 1,
297 .conf_enable_w0 = CONF_ENABLE_W0,
298 .max_peripherals = 5,
299 .segments = aspeed_segments_fmc,
300 .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
301 .flash_window_size = 0x10000000,
302 .features = ASPEED_SMC_FEATURE_DMA,
303 .dma_flash_mask = 0x0FFFFFFC,
304 .dma_dram_mask = 0x1FFFFFFC,
305 .nregs = ASPEED_SMC_R_MAX,
306 .segment_to_reg = aspeed_smc_segment_to_reg,
307 .reg_to_segment = aspeed_smc_reg_to_segment,
308 .dma_ctrl = aspeed_smc_dma_ctrl,
309 }, {
310 .name = "aspeed.spi1-ast2400",
311 .r_conf = R_SPI_CONF,
312 .r_ce_ctrl = 0xff,
313 .r_ctrl0 = R_SPI_CTRL0,
314 .r_timings = R_SPI_TIMINGS,
315 .nregs_timings = 1,
316 .conf_enable_w0 = SPI_CONF_ENABLE_W0,
317 .max_peripherals = 1,
318 .segments = aspeed_segments_spi,
319 .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
320 .flash_window_size = 0x10000000,
321 .features = 0x0,
322 .nregs = ASPEED_SMC_R_SPI_MAX,
323 .segment_to_reg = aspeed_smc_segment_to_reg,
324 .reg_to_segment = aspeed_smc_reg_to_segment,
325 .dma_ctrl = aspeed_smc_dma_ctrl,
326 }, {
327 .name = "aspeed.fmc-ast2500",
328 .r_conf = R_CONF,
329 .r_ce_ctrl = R_CE_CTRL,
330 .r_ctrl0 = R_CTRL0,
331 .r_timings = R_TIMINGS,
332 .nregs_timings = 1,
333 .conf_enable_w0 = CONF_ENABLE_W0,
334 .max_peripherals = 3,
335 .segments = aspeed_segments_ast2500_fmc,
336 .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
337 .flash_window_size = 0x10000000,
338 .features = ASPEED_SMC_FEATURE_DMA,
339 .dma_flash_mask = 0x0FFFFFFC,
340 .dma_dram_mask = 0x3FFFFFFC,
341 .nregs = ASPEED_SMC_R_MAX,
342 .segment_to_reg = aspeed_smc_segment_to_reg,
343 .reg_to_segment = aspeed_smc_reg_to_segment,
344 .dma_ctrl = aspeed_smc_dma_ctrl,
345 }, {
346 .name = "aspeed.spi1-ast2500",
347 .r_conf = R_CONF,
348 .r_ce_ctrl = R_CE_CTRL,
349 .r_ctrl0 = R_CTRL0,
350 .r_timings = R_TIMINGS,
351 .nregs_timings = 1,
352 .conf_enable_w0 = CONF_ENABLE_W0,
353 .max_peripherals = 2,
354 .segments = aspeed_segments_ast2500_spi1,
355 .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
356 .flash_window_size = 0x8000000,
357 .features = 0x0,
358 .nregs = ASPEED_SMC_R_MAX,
359 .segment_to_reg = aspeed_smc_segment_to_reg,
360 .reg_to_segment = aspeed_smc_reg_to_segment,
361 .dma_ctrl = aspeed_smc_dma_ctrl,
362 }, {
363 .name = "aspeed.spi2-ast2500",
364 .r_conf = R_CONF,
365 .r_ce_ctrl = R_CE_CTRL,
366 .r_ctrl0 = R_CTRL0,
367 .r_timings = R_TIMINGS,
368 .nregs_timings = 1,
369 .conf_enable_w0 = CONF_ENABLE_W0,
370 .max_peripherals = 2,
371 .segments = aspeed_segments_ast2500_spi2,
372 .flash_window_base = ASPEED_SOC_SPI2_FLASH_BASE,
373 .flash_window_size = 0x8000000,
374 .features = 0x0,
375 .nregs = ASPEED_SMC_R_MAX,
376 .segment_to_reg = aspeed_smc_segment_to_reg,
377 .reg_to_segment = aspeed_smc_reg_to_segment,
378 .dma_ctrl = aspeed_smc_dma_ctrl,
379 }, {
380 .name = "aspeed.fmc-ast2600",
381 .r_conf = R_CONF,
382 .r_ce_ctrl = R_CE_CTRL,
383 .r_ctrl0 = R_CTRL0,
384 .r_timings = R_TIMINGS,
385 .nregs_timings = 1,
386 .conf_enable_w0 = CONF_ENABLE_W0,
387 .max_peripherals = 3,
388 .segments = aspeed_segments_ast2600_fmc,
389 .flash_window_base = ASPEED26_SOC_FMC_FLASH_BASE,
390 .flash_window_size = 0x10000000,
391 .features = ASPEED_SMC_FEATURE_DMA,
392 .dma_flash_mask = 0x0FFFFFFC,
393 .dma_dram_mask = 0x3FFFFFFC,
394 .nregs = ASPEED_SMC_R_MAX,
395 .segment_to_reg = aspeed_2600_smc_segment_to_reg,
396 .reg_to_segment = aspeed_2600_smc_reg_to_segment,
397 .dma_ctrl = aspeed_2600_smc_dma_ctrl,
398 }, {
399 .name = "aspeed.spi1-ast2600",
400 .r_conf = R_CONF,
401 .r_ce_ctrl = R_CE_CTRL,
402 .r_ctrl0 = R_CTRL0,
403 .r_timings = R_TIMINGS,
404 .nregs_timings = 2,
405 .conf_enable_w0 = CONF_ENABLE_W0,
406 .max_peripherals = 2,
407 .segments = aspeed_segments_ast2600_spi1,
408 .flash_window_base = ASPEED26_SOC_SPI_FLASH_BASE,
409 .flash_window_size = 0x10000000,
410 .features = ASPEED_SMC_FEATURE_DMA |
411 ASPEED_SMC_FEATURE_DMA_GRANT,
412 .dma_flash_mask = 0x0FFFFFFC,
413 .dma_dram_mask = 0x3FFFFFFC,
414 .nregs = ASPEED_SMC_R_MAX,
415 .segment_to_reg = aspeed_2600_smc_segment_to_reg,
416 .reg_to_segment = aspeed_2600_smc_reg_to_segment,
417 .dma_ctrl = aspeed_2600_smc_dma_ctrl,
418 }, {
419 .name = "aspeed.spi2-ast2600",
420 .r_conf = R_CONF,
421 .r_ce_ctrl = R_CE_CTRL,
422 .r_ctrl0 = R_CTRL0,
423 .r_timings = R_TIMINGS,
424 .nregs_timings = 3,
425 .conf_enable_w0 = CONF_ENABLE_W0,
426 .max_peripherals = 3,
427 .segments = aspeed_segments_ast2600_spi2,
428 .flash_window_base = ASPEED26_SOC_SPI2_FLASH_BASE,
429 .flash_window_size = 0x10000000,
430 .features = ASPEED_SMC_FEATURE_DMA |
431 ASPEED_SMC_FEATURE_DMA_GRANT,
432 .dma_flash_mask = 0x0FFFFFFC,
433 .dma_dram_mask = 0x3FFFFFFC,
434 .nregs = ASPEED_SMC_R_MAX,
435 .segment_to_reg = aspeed_2600_smc_segment_to_reg,
436 .reg_to_segment = aspeed_2600_smc_reg_to_segment,
437 .dma_ctrl = aspeed_2600_smc_dma_ctrl,
442 * The Segment Registers of the AST2400 and AST2500 have a 8MB
443 * unit. The address range of a flash SPI peripheral is encoded with
444 * absolute addresses which should be part of the overall controller
445 * window.
447 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
448 const AspeedSegments *seg)
450 uint32_t reg = 0;
451 reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
452 reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
453 return reg;
456 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
457 uint32_t reg, AspeedSegments *seg)
459 seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
460 seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
464 * The Segment Registers of the AST2600 have a 1MB unit. The address
465 * range of a flash SPI peripheral is encoded with offsets in the overall
466 * controller window. The previous SoC AST2400 and AST2500 used
467 * absolute addresses. Only bits [27:20] are relevant and the end
468 * address is an upper bound limit.
470 #define AST2600_SEG_ADDR_MASK 0x0ff00000
472 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
473 const AspeedSegments *seg)
475 uint32_t reg = 0;
477 /* Disabled segments have a nil register */
478 if (!seg->size) {
479 return 0;
482 reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
483 reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
484 return reg;
487 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
488 uint32_t reg, AspeedSegments *seg)
490 uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
491 uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
493 if (reg) {
494 seg->addr = s->ctrl->flash_window_base + start_offset;
495 seg->size = end_offset + MiB - start_offset;
496 } else {
497 seg->addr = s->ctrl->flash_window_base;
498 seg->size = 0;
502 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
503 const AspeedSegments *new,
504 int cs)
506 AspeedSegments seg;
507 int i;
509 for (i = 0; i < s->ctrl->max_peripherals; i++) {
510 if (i == cs) {
511 continue;
514 s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
516 if (new->addr + new->size > seg.addr &&
517 new->addr < seg.addr + seg.size) {
518 qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment CS%d [ 0x%"
519 HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
520 "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
521 s->ctrl->name, cs, new->addr, new->addr + new->size,
522 i, seg.addr, seg.addr + seg.size);
523 return true;
526 return false;
529 static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
530 uint64_t regval)
532 AspeedSMCFlash *fl = &s->flashes[cs];
533 AspeedSegments seg;
535 s->ctrl->reg_to_segment(s, regval, &seg);
537 memory_region_transaction_begin();
538 memory_region_set_size(&fl->mmio, seg.size);
539 memory_region_set_address(&fl->mmio, seg.addr - s->ctrl->flash_window_base);
540 memory_region_set_enabled(&fl->mmio, !!seg.size);
541 memory_region_transaction_commit();
543 s->regs[R_SEG_ADDR0 + cs] = regval;
546 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
547 uint64_t new)
549 AspeedSegments seg;
551 s->ctrl->reg_to_segment(s, new, &seg);
553 trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
555 /* The start address of CS0 is read-only */
556 if (cs == 0 && seg.addr != s->ctrl->flash_window_base) {
557 qemu_log_mask(LOG_GUEST_ERROR,
558 "%s: Tried to change CS0 start address to 0x%"
559 HWADDR_PRIx "\n", s->ctrl->name, seg.addr);
560 seg.addr = s->ctrl->flash_window_base;
561 new = s->ctrl->segment_to_reg(s, &seg);
565 * The end address of the AST2500 spi controllers is also
566 * read-only.
568 if ((s->ctrl->segments == aspeed_segments_ast2500_spi1 ||
569 s->ctrl->segments == aspeed_segments_ast2500_spi2) &&
570 cs == s->ctrl->max_peripherals &&
571 seg.addr + seg.size != s->ctrl->segments[cs].addr +
572 s->ctrl->segments[cs].size) {
573 qemu_log_mask(LOG_GUEST_ERROR,
574 "%s: Tried to change CS%d end address to 0x%"
575 HWADDR_PRIx "\n", s->ctrl->name, cs, seg.addr + seg.size);
576 seg.size = s->ctrl->segments[cs].addr + s->ctrl->segments[cs].size -
577 seg.addr;
578 new = s->ctrl->segment_to_reg(s, &seg);
581 /* Keep the segment in the overall flash window */
582 if (seg.size &&
583 (seg.addr + seg.size <= s->ctrl->flash_window_base ||
584 seg.addr > s->ctrl->flash_window_base + s->ctrl->flash_window_size)) {
585 qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is invalid : "
586 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
587 s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
588 return;
591 /* Check start address vs. alignment */
592 if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
593 qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is not "
594 "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
595 s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
598 /* And segments should not overlap (in the specs) */
599 aspeed_smc_flash_overlap(s, &seg, cs);
601 /* All should be fine now to move the region */
602 aspeed_smc_flash_set_segment_region(s, cs, new);
605 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
606 unsigned size)
608 qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u"
609 PRIx64 "\n", __func__, addr, size);
610 return 0;
613 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
614 uint64_t data, unsigned size)
616 qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u: 0x%"
617 PRIx64 "\n", __func__, addr, size, data);
620 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
621 .read = aspeed_smc_flash_default_read,
622 .write = aspeed_smc_flash_default_write,
623 .endianness = DEVICE_LITTLE_ENDIAN,
624 .valid = {
625 .min_access_size = 1,
626 .max_access_size = 4,
630 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
632 const AspeedSMCState *s = fl->controller;
634 return s->regs[s->r_ctrl0 + fl->id] & CTRL_CMD_MODE_MASK;
637 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
639 const AspeedSMCState *s = fl->controller;
641 return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->id));
644 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
646 const AspeedSMCState *s = fl->controller;
647 int cmd = (s->regs[s->r_ctrl0 + fl->id] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
650 * In read mode, the default SPI command is READ (0x3). In other
651 * modes, the command should necessarily be defined
653 * TODO: add support for READ4 (0x13) on AST2600
655 if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
656 cmd = SPI_OP_READ;
659 if (!cmd) {
660 qemu_log_mask(LOG_GUEST_ERROR, "%s: no command defined for mode %d\n",
661 __func__, aspeed_smc_flash_mode(fl));
664 return cmd;
667 static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
669 const AspeedSMCState *s = fl->controller;
671 if (s->ctrl->segments == aspeed_segments_spi) {
672 return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
673 } else {
674 return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->id));
678 static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
680 AspeedSMCState *s = fl->controller;
682 trace_aspeed_smc_flash_select(fl->id, unselect ? "un" : "");
684 qemu_set_irq(s->cs_lines[fl->id], unselect);
687 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
689 aspeed_smc_flash_do_select(fl, false);
692 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
694 aspeed_smc_flash_do_select(fl, true);
697 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
698 uint32_t addr)
700 const AspeedSMCState *s = fl->controller;
701 AspeedSegments seg;
703 s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->id], &seg);
704 if ((addr % seg.size) != addr) {
705 qemu_log_mask(LOG_GUEST_ERROR,
706 "%s: invalid address 0x%08x for CS%d segment : "
707 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
708 s->ctrl->name, addr, fl->id, seg.addr,
709 seg.addr + seg.size);
710 addr %= seg.size;
713 return addr;
716 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
718 const AspeedSMCState *s = fl->controller;
719 uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->id];
720 uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
721 uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
722 uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
724 if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
725 dummies /= 2;
728 return dummies;
731 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
733 const AspeedSMCState *s = fl->controller;
734 uint8_t cmd = aspeed_smc_flash_cmd(fl);
735 int i = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
737 /* Flash access can not exceed CS segment */
738 addr = aspeed_smc_check_segment_addr(fl, addr);
740 ssi_transfer(s->spi, cmd);
741 while (i--) {
742 if (aspeed_smc_addr_byte_enabled(s, i)) {
743 ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff);
748 * Use fake transfers to model dummy bytes. The value should
749 * be configured to some non-zero value in fast read mode and
750 * zero in read mode. But, as the HW allows inconsistent
751 * settings, let's check for fast read mode.
753 if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
754 for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
755 ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
760 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
762 AspeedSMCFlash *fl = opaque;
763 AspeedSMCState *s = fl->controller;
764 uint64_t ret = 0;
765 int i;
767 switch (aspeed_smc_flash_mode(fl)) {
768 case CTRL_USERMODE:
769 for (i = 0; i < size; i++) {
770 ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
772 break;
773 case CTRL_READMODE:
774 case CTRL_FREADMODE:
775 aspeed_smc_flash_select(fl);
776 aspeed_smc_flash_setup(fl, addr);
778 for (i = 0; i < size; i++) {
779 ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
782 aspeed_smc_flash_unselect(fl);
783 break;
784 default:
785 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
786 __func__, aspeed_smc_flash_mode(fl));
789 trace_aspeed_smc_flash_read(fl->id, addr, size, ret,
790 aspeed_smc_flash_mode(fl));
791 return ret;
795 * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
796 * common include header.
798 typedef enum {
799 READ = 0x3, READ_4 = 0x13,
800 FAST_READ = 0xb, FAST_READ_4 = 0x0c,
801 DOR = 0x3b, DOR_4 = 0x3c,
802 QOR = 0x6b, QOR_4 = 0x6c,
803 DIOR = 0xbb, DIOR_4 = 0xbc,
804 QIOR = 0xeb, QIOR_4 = 0xec,
806 PP = 0x2, PP_4 = 0x12,
807 DPP = 0xa2,
808 QPP = 0x32, QPP_4 = 0x34,
809 } FlashCMD;
811 static int aspeed_smc_num_dummies(uint8_t command)
813 switch (command) { /* check for dummies */
814 case READ: /* no dummy bytes/cycles */
815 case PP:
816 case DPP:
817 case QPP:
818 case READ_4:
819 case PP_4:
820 case QPP_4:
821 return 0;
822 case FAST_READ:
823 case DOR:
824 case QOR:
825 case FAST_READ_4:
826 case DOR_4:
827 case QOR_4:
828 return 1;
829 case DIOR:
830 case DIOR_4:
831 return 2;
832 case QIOR:
833 case QIOR_4:
834 return 4;
835 default:
836 return -1;
840 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl, uint64_t data,
841 unsigned size)
843 AspeedSMCState *s = fl->controller;
844 uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
846 trace_aspeed_smc_do_snoop(fl->id, s->snoop_index, s->snoop_dummies,
847 (uint8_t) data & 0xff);
849 if (s->snoop_index == SNOOP_OFF) {
850 return false; /* Do nothing */
852 } else if (s->snoop_index == SNOOP_START) {
853 uint8_t cmd = data & 0xff;
854 int ndummies = aspeed_smc_num_dummies(cmd);
857 * No dummy cycles are expected with the current command. Turn
858 * off snooping and let the transfer proceed normally.
860 if (ndummies <= 0) {
861 s->snoop_index = SNOOP_OFF;
862 return false;
865 s->snoop_dummies = ndummies * 8;
867 } else if (s->snoop_index >= addr_width + 1) {
869 /* The SPI transfer has reached the dummy cycles sequence */
870 for (; s->snoop_dummies; s->snoop_dummies--) {
871 ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
874 /* If no more dummy cycles are expected, turn off snooping */
875 if (!s->snoop_dummies) {
876 s->snoop_index = SNOOP_OFF;
877 } else {
878 s->snoop_index += size;
882 * Dummy cycles have been faked already. Ignore the current
883 * SPI transfer
885 return true;
888 s->snoop_index += size;
889 return false;
892 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
893 unsigned size)
895 AspeedSMCFlash *fl = opaque;
896 AspeedSMCState *s = fl->controller;
897 int i;
899 trace_aspeed_smc_flash_write(fl->id, addr, size, data,
900 aspeed_smc_flash_mode(fl));
902 if (!aspeed_smc_is_writable(fl)) {
903 qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%"
904 HWADDR_PRIx "\n", __func__, addr);
905 return;
908 switch (aspeed_smc_flash_mode(fl)) {
909 case CTRL_USERMODE:
910 if (aspeed_smc_do_snoop(fl, data, size)) {
911 break;
914 for (i = 0; i < size; i++) {
915 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
917 break;
918 case CTRL_WRITEMODE:
919 aspeed_smc_flash_select(fl);
920 aspeed_smc_flash_setup(fl, addr);
922 for (i = 0; i < size; i++) {
923 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
926 aspeed_smc_flash_unselect(fl);
927 break;
928 default:
929 qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
930 __func__, aspeed_smc_flash_mode(fl));
934 static const MemoryRegionOps aspeed_smc_flash_ops = {
935 .read = aspeed_smc_flash_read,
936 .write = aspeed_smc_flash_write,
937 .endianness = DEVICE_LITTLE_ENDIAN,
938 .valid = {
939 .min_access_size = 1,
940 .max_access_size = 4,
944 static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
946 AspeedSMCState *s = fl->controller;
947 bool unselect;
949 /* User mode selects the CS, other modes unselect */
950 unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE;
952 /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
953 if (!(s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE) &&
954 value & CTRL_CE_STOP_ACTIVE) {
955 unselect = true;
958 s->regs[s->r_ctrl0 + fl->id] = value;
960 s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
962 aspeed_smc_flash_do_select(fl, unselect);
965 static void aspeed_smc_reset(DeviceState *d)
967 AspeedSMCState *s = ASPEED_SMC(d);
968 int i;
970 memset(s->regs, 0, sizeof s->regs);
972 /* Unselect all peripherals */
973 for (i = 0; i < s->num_cs; ++i) {
974 s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
975 qemu_set_irq(s->cs_lines[i], true);
978 /* setup the default segment register values and regions for all */
979 for (i = 0; i < s->ctrl->max_peripherals; ++i) {
980 aspeed_smc_flash_set_segment_region(s, i,
981 s->ctrl->segment_to_reg(s, &s->ctrl->segments[i]));
984 /* HW strapping flash type for the AST2600 controllers */
985 if (s->ctrl->segments == aspeed_segments_ast2600_fmc) {
986 /* flash type is fixed to SPI for all */
987 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
988 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
989 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2);
992 /* HW strapping flash type for FMC controllers */
993 if (s->ctrl->segments == aspeed_segments_ast2500_fmc) {
994 /* flash type is fixed to SPI for CE0 and CE1 */
995 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
996 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
999 /* HW strapping for AST2400 FMC controllers (SCU70). Let's use the
1000 * configuration of the palmetto-bmc machine */
1001 if (s->ctrl->segments == aspeed_segments_fmc) {
1002 s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
1005 s->snoop_index = SNOOP_OFF;
1006 s->snoop_dummies = 0;
1009 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
1011 AspeedSMCState *s = ASPEED_SMC(opaque);
1013 addr >>= 2;
1015 if (addr == s->r_conf ||
1016 (addr >= s->r_timings &&
1017 addr < s->r_timings + s->ctrl->nregs_timings) ||
1018 addr == s->r_ce_ctrl ||
1019 addr == R_CE_CMD_CTRL ||
1020 addr == R_INTR_CTRL ||
1021 addr == R_DUMMY_DATA ||
1022 (aspeed_smc_has_dma(s) && addr == R_DMA_CTRL) ||
1023 (aspeed_smc_has_dma(s) && addr == R_DMA_FLASH_ADDR) ||
1024 (aspeed_smc_has_dma(s) && addr == R_DMA_DRAM_ADDR) ||
1025 (aspeed_smc_has_dma(s) && addr == R_DMA_LEN) ||
1026 (aspeed_smc_has_dma(s) && addr == R_DMA_CHECKSUM) ||
1027 (addr >= R_SEG_ADDR0 &&
1028 addr < R_SEG_ADDR0 + s->ctrl->max_peripherals) ||
1029 (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->ctrl->max_peripherals)) {
1031 trace_aspeed_smc_read(addr, size, s->regs[addr]);
1033 return s->regs[addr];
1034 } else {
1035 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1036 __func__, addr);
1037 return -1;
1041 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
1043 /* HCLK/1 .. HCLK/16 */
1044 const uint8_t hclk_divisors[] = {
1045 15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
1047 int i;
1049 for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
1050 if (hclk_mask == hclk_divisors[i]) {
1051 return i + 1;
1055 qemu_log_mask(LOG_GUEST_ERROR, "invalid HCLK mask %x", hclk_mask);
1056 return 0;
1060 * When doing calibration, the SPI clock rate in the CE0 Control
1061 * Register and the read delay cycles in the Read Timing Compensation
1062 * Register are set using bit[11:4] of the DMA Control Register.
1064 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
1066 uint8_t delay =
1067 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1068 uint8_t hclk_mask =
1069 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1070 uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
1071 uint32_t hclk_shift = (hclk_div - 1) << 2;
1072 uint8_t cs;
1075 * The Read Timing Compensation Register values apply to all CS on
1076 * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
1078 if (hclk_div && hclk_div < 6) {
1079 s->regs[s->r_timings] &= ~(0xf << hclk_shift);
1080 s->regs[s->r_timings] |= delay << hclk_shift;
1084 * TODO: compute the CS from the DMA address and the segment
1085 * registers. This is not really a problem for now because the
1086 * Timing Register values apply to all CS and software uses CS0 to
1087 * do calibration.
1089 cs = 0;
1090 s->regs[s->r_ctrl0 + cs] &=
1091 ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
1092 s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
1096 * Emulate read errors in the DMA Checksum Register for high
1097 * frequencies and optimistic settings of the Read Timing Compensation
1098 * Register. This will help in tuning the SPI timing calibration
1099 * algorithm.
1101 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
1103 uint8_t delay =
1104 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1105 uint8_t hclk_mask =
1106 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1109 * Typical values of a palmetto-bmc machine.
1111 switch (aspeed_smc_hclk_divisor(hclk_mask)) {
1112 case 4 ... 16:
1113 return false;
1114 case 3: /* at least one HCLK cycle delay */
1115 return (delay & 0x7) < 1;
1116 case 2: /* at least two HCLK cycle delay */
1117 return (delay & 0x7) < 2;
1118 case 1: /* (> 100MHz) is above the max freq of the controller */
1119 return true;
1120 default:
1121 g_assert_not_reached();
1126 * Accumulate the result of the reads to provide a checksum that will
1127 * be used to validate the read timing settings.
1129 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
1131 MemTxResult result;
1132 uint32_t data;
1134 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1135 qemu_log_mask(LOG_GUEST_ERROR,
1136 "%s: invalid direction for DMA checksum\n", __func__);
1137 return;
1140 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
1141 aspeed_smc_dma_calibration(s);
1144 while (s->regs[R_DMA_LEN]) {
1145 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1146 MEMTXATTRS_UNSPECIFIED, &result);
1147 if (result != MEMTX_OK) {
1148 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1149 __func__, s->regs[R_DMA_FLASH_ADDR]);
1150 return;
1152 trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
1155 * When the DMA is on-going, the DMA registers are updated
1156 * with the current working addresses and length.
1158 s->regs[R_DMA_CHECKSUM] += data;
1159 s->regs[R_DMA_FLASH_ADDR] += 4;
1160 s->regs[R_DMA_LEN] -= 4;
1163 if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
1164 s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
1169 static void aspeed_smc_dma_rw(AspeedSMCState *s)
1171 MemTxResult result;
1172 uint32_t data;
1174 trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ?
1175 "write" : "read",
1176 s->regs[R_DMA_FLASH_ADDR],
1177 s->regs[R_DMA_DRAM_ADDR],
1178 s->regs[R_DMA_LEN]);
1179 while (s->regs[R_DMA_LEN]) {
1180 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1181 data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1182 MEMTXATTRS_UNSPECIFIED, &result);
1183 if (result != MEMTX_OK) {
1184 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM read failed @%08x\n",
1185 __func__, s->regs[R_DMA_DRAM_ADDR]);
1186 return;
1189 address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1190 data, MEMTXATTRS_UNSPECIFIED, &result);
1191 if (result != MEMTX_OK) {
1192 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash write failed @%08x\n",
1193 __func__, s->regs[R_DMA_FLASH_ADDR]);
1194 return;
1196 } else {
1197 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1198 MEMTXATTRS_UNSPECIFIED, &result);
1199 if (result != MEMTX_OK) {
1200 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1201 __func__, s->regs[R_DMA_FLASH_ADDR]);
1202 return;
1205 address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1206 data, MEMTXATTRS_UNSPECIFIED, &result);
1207 if (result != MEMTX_OK) {
1208 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM write failed @%08x\n",
1209 __func__, s->regs[R_DMA_DRAM_ADDR]);
1210 return;
1215 * When the DMA is on-going, the DMA registers are updated
1216 * with the current working addresses and length.
1218 s->regs[R_DMA_FLASH_ADDR] += 4;
1219 s->regs[R_DMA_DRAM_ADDR] += 4;
1220 s->regs[R_DMA_LEN] -= 4;
1221 s->regs[R_DMA_CHECKSUM] += data;
1225 static void aspeed_smc_dma_stop(AspeedSMCState *s)
1228 * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
1229 * engine is idle
1231 s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
1232 s->regs[R_DMA_CHECKSUM] = 0;
1235 * Lower the DMA irq in any case. The IRQ control register could
1236 * have been cleared before disabling the DMA.
1238 qemu_irq_lower(s->irq);
1242 * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
1243 * can start even if the result of the previous was not collected.
1245 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
1247 return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
1248 !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
1251 static void aspeed_smc_dma_done(AspeedSMCState *s)
1253 s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
1254 if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
1255 qemu_irq_raise(s->irq);
1259 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
1261 if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
1262 s->regs[R_DMA_CTRL] = dma_ctrl;
1264 aspeed_smc_dma_stop(s);
1265 return;
1268 if (aspeed_smc_dma_in_progress(s)) {
1269 qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA in progress\n", __func__);
1270 return;
1273 s->regs[R_DMA_CTRL] = dma_ctrl;
1275 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
1276 aspeed_smc_dma_checksum(s);
1277 } else {
1278 aspeed_smc_dma_rw(s);
1281 aspeed_smc_dma_done(s);
1284 static inline bool aspeed_smc_dma_granted(AspeedSMCState *s)
1286 if (!(s->ctrl->features & ASPEED_SMC_FEATURE_DMA_GRANT)) {
1287 return true;
1290 if (!(s->regs[R_DMA_CTRL] & DMA_CTRL_GRANT)) {
1291 qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA not granted\n", __func__);
1292 return false;
1295 return true;
1298 static void aspeed_2600_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
1300 /* Preserve DMA bits */
1301 dma_ctrl |= s->regs[R_DMA_CTRL] & (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1303 if (dma_ctrl == 0xAEED0000) {
1304 /* automatically grant request */
1305 s->regs[R_DMA_CTRL] |= (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1306 return;
1309 /* clear request */
1310 if (dma_ctrl == 0xDEEA0000) {
1311 s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1312 return;
1315 if (!aspeed_smc_dma_granted(s)) {
1316 qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA not granted\n", __func__);
1317 return;
1320 aspeed_smc_dma_ctrl(s, dma_ctrl);
1321 s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1324 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1325 unsigned int size)
1327 AspeedSMCState *s = ASPEED_SMC(opaque);
1328 uint32_t value = data;
1330 addr >>= 2;
1332 trace_aspeed_smc_write(addr, size, data);
1334 if (addr == s->r_conf ||
1335 (addr >= s->r_timings &&
1336 addr < s->r_timings + s->ctrl->nregs_timings) ||
1337 addr == s->r_ce_ctrl) {
1338 s->regs[addr] = value;
1339 } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1340 int cs = addr - s->r_ctrl0;
1341 aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
1342 } else if (addr >= R_SEG_ADDR0 &&
1343 addr < R_SEG_ADDR0 + s->ctrl->max_peripherals) {
1344 int cs = addr - R_SEG_ADDR0;
1346 if (value != s->regs[R_SEG_ADDR0 + cs]) {
1347 aspeed_smc_flash_set_segment(s, cs, value);
1349 } else if (addr == R_CE_CMD_CTRL) {
1350 s->regs[addr] = value & 0xff;
1351 } else if (addr == R_DUMMY_DATA) {
1352 s->regs[addr] = value & 0xff;
1353 } else if (addr == R_INTR_CTRL) {
1354 s->regs[addr] = value;
1355 } else if (aspeed_smc_has_dma(s) && addr == R_DMA_CTRL) {
1356 s->ctrl->dma_ctrl(s, value);
1357 } else if (aspeed_smc_has_dma(s) && addr == R_DMA_DRAM_ADDR &&
1358 aspeed_smc_dma_granted(s)) {
1359 s->regs[addr] = DMA_DRAM_ADDR(s, value);
1360 } else if (aspeed_smc_has_dma(s) && addr == R_DMA_FLASH_ADDR &&
1361 aspeed_smc_dma_granted(s)) {
1362 s->regs[addr] = DMA_FLASH_ADDR(s, value);
1363 } else if (aspeed_smc_has_dma(s) && addr == R_DMA_LEN &&
1364 aspeed_smc_dma_granted(s)) {
1365 s->regs[addr] = DMA_LENGTH(value);
1366 } else {
1367 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1368 __func__, addr);
1369 return;
1373 static const MemoryRegionOps aspeed_smc_ops = {
1374 .read = aspeed_smc_read,
1375 .write = aspeed_smc_write,
1376 .endianness = DEVICE_LITTLE_ENDIAN,
1380 * Initialize the custom address spaces for DMAs
1382 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1384 char *name;
1386 if (!s->dram_mr) {
1387 error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1388 return;
1391 name = g_strdup_printf("%s-dma-flash", s->ctrl->name);
1392 address_space_init(&s->flash_as, &s->mmio_flash, name);
1393 g_free(name);
1395 name = g_strdup_printf("%s-dma-dram", s->ctrl->name);
1396 address_space_init(&s->dram_as, s->dram_mr, name);
1397 g_free(name);
1400 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1402 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1403 AspeedSMCState *s = ASPEED_SMC(dev);
1404 AspeedSMCClass *mc = ASPEED_SMC_GET_CLASS(s);
1405 int i;
1406 char name[32];
1407 hwaddr offset = 0;
1409 s->ctrl = mc->ctrl;
1411 /* keep a copy under AspeedSMCState to speed up accesses */
1412 s->r_conf = s->ctrl->r_conf;
1413 s->r_ce_ctrl = s->ctrl->r_ce_ctrl;
1414 s->r_ctrl0 = s->ctrl->r_ctrl0;
1415 s->r_timings = s->ctrl->r_timings;
1416 s->conf_enable_w0 = s->ctrl->conf_enable_w0;
1418 /* Enforce some real HW limits */
1419 if (s->num_cs > s->ctrl->max_peripherals) {
1420 qemu_log_mask(LOG_GUEST_ERROR, "%s: num_cs cannot exceed: %d\n",
1421 __func__, s->ctrl->max_peripherals);
1422 s->num_cs = s->ctrl->max_peripherals;
1425 /* DMA irq. Keep it first for the initialization in the SoC */
1426 sysbus_init_irq(sbd, &s->irq);
1428 s->spi = ssi_create_bus(dev, "spi");
1430 /* Setup cs_lines for peripherals */
1431 s->cs_lines = g_new0(qemu_irq, s->num_cs);
1433 for (i = 0; i < s->num_cs; ++i) {
1434 sysbus_init_irq(sbd, &s->cs_lines[i]);
1437 /* The memory region for the controller registers */
1438 memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1439 s->ctrl->name, s->ctrl->nregs * 4);
1440 sysbus_init_mmio(sbd, &s->mmio);
1443 * The container memory region representing the address space
1444 * window in which the flash modules are mapped. The size and
1445 * address depends on the SoC model and controller type.
1447 snprintf(name, sizeof(name), "%s.flash", s->ctrl->name);
1449 memory_region_init_io(&s->mmio_flash, OBJECT(s),
1450 &aspeed_smc_flash_default_ops, s, name,
1451 s->ctrl->flash_window_size);
1452 memory_region_init_alias(&s->mmio_flash_alias, OBJECT(s), name,
1453 &s->mmio_flash, 0, s->ctrl->flash_window_size);
1454 sysbus_init_mmio(sbd, &s->mmio_flash_alias);
1456 s->flashes = g_new0(AspeedSMCFlash, s->ctrl->max_peripherals);
1459 * Let's create a sub memory region for each possible peripheral. All
1460 * have a configurable memory segment in the overall flash mapping
1461 * window of the controller but, there is not necessarily a flash
1462 * module behind to handle the memory accesses. This depends on
1463 * the board configuration.
1465 for (i = 0; i < s->ctrl->max_peripherals; ++i) {
1466 AspeedSMCFlash *fl = &s->flashes[i];
1468 snprintf(name, sizeof(name), "%s.%d", s->ctrl->name, i);
1470 fl->id = i;
1471 fl->controller = s;
1472 fl->size = s->ctrl->segments[i].size;
1473 memory_region_init_io(&fl->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1474 fl, name, fl->size);
1475 memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1476 offset += fl->size;
1479 /* DMA support */
1480 if (aspeed_smc_has_dma(s)) {
1481 aspeed_smc_dma_setup(s, errp);
1485 static const VMStateDescription vmstate_aspeed_smc = {
1486 .name = "aspeed.smc",
1487 .version_id = 2,
1488 .minimum_version_id = 2,
1489 .fields = (VMStateField[]) {
1490 VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1491 VMSTATE_UINT8(snoop_index, AspeedSMCState),
1492 VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1493 VMSTATE_END_OF_LIST()
1497 static Property aspeed_smc_properties[] = {
1498 DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1499 DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1500 DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1501 TYPE_MEMORY_REGION, MemoryRegion *),
1502 DEFINE_PROP_END_OF_LIST(),
1505 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1507 DeviceClass *dc = DEVICE_CLASS(klass);
1508 AspeedSMCClass *mc = ASPEED_SMC_CLASS(klass);
1510 dc->realize = aspeed_smc_realize;
1511 dc->reset = aspeed_smc_reset;
1512 device_class_set_props(dc, aspeed_smc_properties);
1513 dc->vmsd = &vmstate_aspeed_smc;
1514 mc->ctrl = data;
1517 static const TypeInfo aspeed_smc_info = {
1518 .name = TYPE_ASPEED_SMC,
1519 .parent = TYPE_SYS_BUS_DEVICE,
1520 .instance_size = sizeof(AspeedSMCState),
1521 .class_size = sizeof(AspeedSMCClass),
1522 .abstract = true,
1525 static void aspeed_smc_register_types(void)
1527 int i;
1529 type_register_static(&aspeed_smc_info);
1530 for (i = 0; i < ARRAY_SIZE(controllers); ++i) {
1531 TypeInfo ti = {
1532 .name = controllers[i].name,
1533 .parent = TYPE_ASPEED_SMC,
1534 .class_init = aspeed_smc_class_init,
1535 .class_data = (void *)&controllers[i],
1537 type_register(&ti);
1541 type_init(aspeed_smc_register_types)