qapi/parser: enable pylint checks
[qemu/armbru.git] / hw / ssi / imx_spi.c
blob189423bb3a539c9f8d7123053061dd090580204e
1 /*
2 * IMX SPI Controller
4 * Copyright (c) 2016 Jean-Christophe Dubois <jcd@tribudubois.net>
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include "hw/irq.h"
13 #include "hw/ssi/imx_spi.h"
14 #include "migration/vmstate.h"
15 #include "qemu/log.h"
16 #include "qemu/module.h"
18 #ifndef DEBUG_IMX_SPI
19 #define DEBUG_IMX_SPI 0
20 #endif
22 #define DPRINTF(fmt, args...) \
23 do { \
24 if (DEBUG_IMX_SPI) { \
25 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_SPI, \
26 __func__, ##args); \
27 } \
28 } while (0)
30 static const char *imx_spi_reg_name(uint32_t reg)
32 static char unknown[20];
34 switch (reg) {
35 case ECSPI_RXDATA:
36 return "ECSPI_RXDATA";
37 case ECSPI_TXDATA:
38 return "ECSPI_TXDATA";
39 case ECSPI_CONREG:
40 return "ECSPI_CONREG";
41 case ECSPI_CONFIGREG:
42 return "ECSPI_CONFIGREG";
43 case ECSPI_INTREG:
44 return "ECSPI_INTREG";
45 case ECSPI_DMAREG:
46 return "ECSPI_DMAREG";
47 case ECSPI_STATREG:
48 return "ECSPI_STATREG";
49 case ECSPI_PERIODREG:
50 return "ECSPI_PERIODREG";
51 case ECSPI_TESTREG:
52 return "ECSPI_TESTREG";
53 case ECSPI_MSGDATA:
54 return "ECSPI_MSGDATA";
55 default:
56 sprintf(unknown, "%u ?", reg);
57 return unknown;
61 static const VMStateDescription vmstate_imx_spi = {
62 .name = TYPE_IMX_SPI,
63 .version_id = 1,
64 .minimum_version_id = 1,
65 .fields = (VMStateField[]) {
66 VMSTATE_FIFO32(tx_fifo, IMXSPIState),
67 VMSTATE_FIFO32(rx_fifo, IMXSPIState),
68 VMSTATE_INT16(burst_length, IMXSPIState),
69 VMSTATE_UINT32_ARRAY(regs, IMXSPIState, ECSPI_MAX),
70 VMSTATE_END_OF_LIST()
74 static void imx_spi_txfifo_reset(IMXSPIState *s)
76 fifo32_reset(&s->tx_fifo);
77 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
78 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
81 static void imx_spi_rxfifo_reset(IMXSPIState *s)
83 fifo32_reset(&s->rx_fifo);
84 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
85 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
86 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RO;
89 static void imx_spi_update_irq(IMXSPIState *s)
91 int level;
93 if (fifo32_is_empty(&s->rx_fifo)) {
94 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
95 } else {
96 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RR;
99 if (fifo32_is_full(&s->rx_fifo)) {
100 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RF;
101 } else {
102 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
105 if (fifo32_is_empty(&s->tx_fifo)) {
106 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
107 } else {
108 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TE;
111 if (fifo32_is_full(&s->tx_fifo)) {
112 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TF;
113 } else {
114 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
117 level = s->regs[ECSPI_STATREG] & s->regs[ECSPI_INTREG] ? 1 : 0;
119 qemu_set_irq(s->irq, level);
121 DPRINTF("IRQ level is %d\n", level);
124 static uint8_t imx_spi_selected_channel(IMXSPIState *s)
126 return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_SELECT);
129 static uint32_t imx_spi_burst_length(IMXSPIState *s)
131 uint32_t burst;
133 burst = EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_BURST_LENGTH) + 1;
134 if (burst % 8) {
135 burst = ROUND_UP(burst, 8);
138 return burst;
141 static bool imx_spi_is_enabled(IMXSPIState *s)
143 return s->regs[ECSPI_CONREG] & ECSPI_CONREG_EN;
146 static bool imx_spi_channel_is_master(IMXSPIState *s)
148 uint8_t mode = EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_MODE);
150 return (mode & (1 << imx_spi_selected_channel(s))) ? true : false;
153 static bool imx_spi_is_multiple_master_burst(IMXSPIState *s)
155 uint8_t wave = EXTRACT(s->regs[ECSPI_CONFIGREG], ECSPI_CONFIGREG_SS_CTL);
157 return imx_spi_channel_is_master(s) &&
158 !(s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC) &&
159 ((wave & (1 << imx_spi_selected_channel(s))) ? true : false);
162 static void imx_spi_flush_txfifo(IMXSPIState *s)
164 uint32_t tx;
165 uint32_t rx;
167 DPRINTF("Begin: TX Fifo Size = %d, RX Fifo Size = %d\n",
168 fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
170 while (!fifo32_is_empty(&s->tx_fifo)) {
171 int tx_burst = 0;
173 if (s->burst_length <= 0) {
174 s->burst_length = imx_spi_burst_length(s);
176 DPRINTF("Burst length = %d\n", s->burst_length);
178 if (imx_spi_is_multiple_master_burst(s)) {
179 s->regs[ECSPI_CONREG] |= ECSPI_CONREG_XCH;
183 tx = fifo32_pop(&s->tx_fifo);
185 DPRINTF("data tx:0x%08x\n", tx);
187 tx_burst = (s->burst_length % 32) ? : 32;
189 rx = 0;
191 while (tx_burst > 0) {
192 uint8_t byte = tx >> (tx_burst - 8);
194 DPRINTF("writing 0x%02x\n", (uint32_t)byte);
196 /* We need to write one byte at a time */
197 byte = ssi_transfer(s->bus, byte);
199 DPRINTF("0x%02x read\n", (uint32_t)byte);
201 rx = (rx << 8) | byte;
203 /* Remove 8 bits from the actual burst */
204 tx_burst -= 8;
205 s->burst_length -= 8;
208 DPRINTF("data rx:0x%08x\n", rx);
210 if (fifo32_is_full(&s->rx_fifo)) {
211 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RO;
212 } else {
213 fifo32_push(&s->rx_fifo, rx);
216 if (s->burst_length <= 0) {
217 if (!imx_spi_is_multiple_master_burst(s)) {
218 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
219 break;
224 if (fifo32_is_empty(&s->tx_fifo)) {
225 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
226 s->regs[ECSPI_CONREG] &= ~ECSPI_CONREG_XCH;
229 /* TODO: We should also use TDR and RDR bits */
231 DPRINTF("End: TX Fifo Size = %d, RX Fifo Size = %d\n",
232 fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
235 static void imx_spi_common_reset(IMXSPIState *s)
237 int i;
239 for (i = 0; i < ARRAY_SIZE(s->regs); i++) {
240 switch (i) {
241 case ECSPI_CONREG:
242 /* CONREG is not updated on soft reset */
243 break;
244 case ECSPI_STATREG:
245 s->regs[i] = 0x00000003;
246 break;
247 default:
248 s->regs[i] = 0;
249 break;
253 imx_spi_rxfifo_reset(s);
254 imx_spi_txfifo_reset(s);
256 s->burst_length = 0;
259 static void imx_spi_soft_reset(IMXSPIState *s)
261 int i;
263 imx_spi_common_reset(s);
265 imx_spi_update_irq(s);
267 for (i = 0; i < ECSPI_NUM_CS; i++) {
268 qemu_set_irq(s->cs_lines[i], 1);
272 static void imx_spi_reset(DeviceState *dev)
274 IMXSPIState *s = IMX_SPI(dev);
276 imx_spi_common_reset(s);
277 s->regs[ECSPI_CONREG] = 0;
280 static uint64_t imx_spi_read(void *opaque, hwaddr offset, unsigned size)
282 uint32_t value = 0;
283 IMXSPIState *s = opaque;
284 uint32_t index = offset >> 2;
286 if (index >= ECSPI_MAX) {
287 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
288 HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
289 return 0;
292 value = s->regs[index];
294 if (imx_spi_is_enabled(s)) {
295 switch (index) {
296 case ECSPI_RXDATA:
297 if (fifo32_is_empty(&s->rx_fifo)) {
298 /* value is undefined */
299 value = 0xdeadbeef;
300 } else {
301 /* read from the RX FIFO */
302 value = fifo32_pop(&s->rx_fifo);
304 break;
305 case ECSPI_TXDATA:
306 qemu_log_mask(LOG_GUEST_ERROR,
307 "[%s]%s: Trying to read from TX FIFO\n",
308 TYPE_IMX_SPI, __func__);
310 /* Reading from TXDATA gives 0 */
311 break;
312 case ECSPI_MSGDATA:
313 qemu_log_mask(LOG_GUEST_ERROR,
314 "[%s]%s: Trying to read from MSG FIFO\n",
315 TYPE_IMX_SPI, __func__);
316 /* Reading from MSGDATA gives 0 */
317 break;
318 default:
319 break;
322 imx_spi_update_irq(s);
324 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_spi_reg_name(index), value);
326 return (uint64_t)value;
329 static void imx_spi_write(void *opaque, hwaddr offset, uint64_t value,
330 unsigned size)
332 IMXSPIState *s = opaque;
333 uint32_t index = offset >> 2;
334 uint32_t change_mask;
335 uint32_t burst;
337 if (index >= ECSPI_MAX) {
338 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
339 HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
340 return;
343 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_spi_reg_name(index),
344 (uint32_t)value);
346 if (!imx_spi_is_enabled(s)) {
347 /* Block is disabled */
348 if (index != ECSPI_CONREG) {
349 /* Ignore access */
350 return;
354 change_mask = s->regs[index] ^ value;
356 switch (index) {
357 case ECSPI_RXDATA:
358 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to write to RX FIFO\n",
359 TYPE_IMX_SPI, __func__);
360 break;
361 case ECSPI_TXDATA:
362 if (fifo32_is_full(&s->tx_fifo)) {
363 /* Ignore writes if queue is full */
364 break;
367 fifo32_push(&s->tx_fifo, (uint32_t)value);
369 if (imx_spi_channel_is_master(s) &&
370 (s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC)) {
372 * Start emitting if current channel is master and SMC bit is
373 * set.
375 imx_spi_flush_txfifo(s);
378 break;
379 case ECSPI_STATREG:
380 /* the RO and TC bits are write-one-to-clear */
381 value &= ECSPI_STATREG_RO | ECSPI_STATREG_TC;
382 s->regs[ECSPI_STATREG] &= ~value;
384 break;
385 case ECSPI_CONREG:
386 s->regs[ECSPI_CONREG] = value;
388 burst = EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_BURST_LENGTH) + 1;
389 if (burst % 8) {
390 qemu_log_mask(LOG_UNIMP,
391 "[%s]%s: burst length %d not supported: rounding up to next multiple of 8\n",
392 TYPE_IMX_SPI, __func__, burst);
395 if (!imx_spi_is_enabled(s)) {
396 /* device is disabled, so this is a soft reset */
397 imx_spi_soft_reset(s);
399 return;
402 if (imx_spi_channel_is_master(s)) {
403 int i;
405 /* We are in master mode */
407 for (i = 0; i < ECSPI_NUM_CS; i++) {
408 qemu_set_irq(s->cs_lines[i],
409 i == imx_spi_selected_channel(s) ? 0 : 1);
412 if ((value & change_mask & ECSPI_CONREG_SMC) &&
413 !fifo32_is_empty(&s->tx_fifo)) {
414 /* SMC bit is set and TX FIFO has some slots filled in */
415 imx_spi_flush_txfifo(s);
416 } else if ((value & change_mask & ECSPI_CONREG_XCH) &&
417 !(value & ECSPI_CONREG_SMC)) {
418 /* This is a request to start emitting */
419 imx_spi_flush_txfifo(s);
423 break;
424 case ECSPI_MSGDATA:
425 /* it is not clear from the spec what MSGDATA is for */
426 /* Anyway it is not used by Linux driver */
427 /* So for now we just ignore it */
428 qemu_log_mask(LOG_UNIMP,
429 "[%s]%s: Trying to write to MSGDATA, ignoring\n",
430 TYPE_IMX_SPI, __func__);
431 break;
432 default:
433 s->regs[index] = value;
435 break;
438 imx_spi_update_irq(s);
441 static const struct MemoryRegionOps imx_spi_ops = {
442 .read = imx_spi_read,
443 .write = imx_spi_write,
444 .endianness = DEVICE_NATIVE_ENDIAN,
445 .valid = {
447 * Our device would not work correctly if the guest was doing
448 * unaligned access. This might not be a limitation on the real
449 * device but in practice there is no reason for a guest to access
450 * this device unaligned.
452 .min_access_size = 4,
453 .max_access_size = 4,
454 .unaligned = false,
458 static void imx_spi_realize(DeviceState *dev, Error **errp)
460 IMXSPIState *s = IMX_SPI(dev);
461 int i;
463 s->bus = ssi_create_bus(dev, "spi");
465 memory_region_init_io(&s->iomem, OBJECT(dev), &imx_spi_ops, s,
466 TYPE_IMX_SPI, 0x1000);
467 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
468 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq);
470 for (i = 0; i < ECSPI_NUM_CS; ++i) {
471 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->cs_lines[i]);
474 fifo32_create(&s->tx_fifo, ECSPI_FIFO_SIZE);
475 fifo32_create(&s->rx_fifo, ECSPI_FIFO_SIZE);
478 static void imx_spi_class_init(ObjectClass *klass, void *data)
480 DeviceClass *dc = DEVICE_CLASS(klass);
482 dc->realize = imx_spi_realize;
483 dc->vmsd = &vmstate_imx_spi;
484 dc->reset = imx_spi_reset;
485 dc->desc = "i.MX SPI Controller";
488 static const TypeInfo imx_spi_info = {
489 .name = TYPE_IMX_SPI,
490 .parent = TYPE_SYS_BUS_DEVICE,
491 .instance_size = sizeof(IMXSPIState),
492 .class_init = imx_spi_class_init,
495 static void imx_spi_register_types(void)
497 type_register_static(&imx_spi_info);
500 type_init(imx_spi_register_types)