2 * AArch64 specific helpers
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
23 #include "exec/gdbstub.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/host-utils.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/bitops.h"
29 #include "internals.h"
30 #include "qemu/crc32c.h"
31 #include "exec/exec-all.h"
32 #include "exec/cpu_ldst.h"
33 #include "qemu/int128.h"
34 #include "qemu/atomic128.h"
36 #include "fpu/softfloat.h"
37 #include <zlib.h> /* For crc32 */
39 /* C2.4.7 Multiply and divide */
40 /* special cases for 0 and LLONG_MIN are mandated by the standard */
41 uint64_t HELPER(udiv64
)(uint64_t num
, uint64_t den
)
49 int64_t HELPER(sdiv64
)(int64_t num
, int64_t den
)
54 if (num
== LLONG_MIN
&& den
== -1) {
60 uint64_t HELPER(rbit64
)(uint64_t x
)
65 void HELPER(msr_i_spsel
)(CPUARMState
*env
, uint32_t imm
)
67 update_spsel(env
, imm
);
70 static void daif_check(CPUARMState
*env
, uint32_t op
,
71 uint32_t imm
, uintptr_t ra
)
73 /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set. */
74 if (arm_current_el(env
) == 0 && !(arm_sctlr(env
, 0) & SCTLR_UMA
)) {
75 raise_exception_ra(env
, EXCP_UDEF
,
76 syn_aa64_sysregtrap(0, extract32(op
, 0, 3),
77 extract32(op
, 3, 3), 4,
79 exception_target_el(env
), ra
);
83 void HELPER(msr_i_daifset
)(CPUARMState
*env
, uint32_t imm
)
85 daif_check(env
, 0x1e, imm
, GETPC());
86 env
->daif
|= (imm
<< 6) & PSTATE_DAIF
;
89 void HELPER(msr_i_daifclear
)(CPUARMState
*env
, uint32_t imm
)
91 daif_check(env
, 0x1f, imm
, GETPC());
92 env
->daif
&= ~((imm
<< 6) & PSTATE_DAIF
);
95 /* Convert a softfloat float_relation_ (as returned by
96 * the float*_compare functions) to the correct ARM
99 static inline uint32_t float_rel_to_flags(int res
)
103 case float_relation_equal
:
104 flags
= PSTATE_Z
| PSTATE_C
;
106 case float_relation_less
:
109 case float_relation_greater
:
112 case float_relation_unordered
:
114 flags
= PSTATE_C
| PSTATE_V
;
120 uint64_t HELPER(vfp_cmph_a64
)(uint32_t x
, uint32_t y
, void *fp_status
)
122 return float_rel_to_flags(float16_compare_quiet(x
, y
, fp_status
));
125 uint64_t HELPER(vfp_cmpeh_a64
)(uint32_t x
, uint32_t y
, void *fp_status
)
127 return float_rel_to_flags(float16_compare(x
, y
, fp_status
));
130 uint64_t HELPER(vfp_cmps_a64
)(float32 x
, float32 y
, void *fp_status
)
132 return float_rel_to_flags(float32_compare_quiet(x
, y
, fp_status
));
135 uint64_t HELPER(vfp_cmpes_a64
)(float32 x
, float32 y
, void *fp_status
)
137 return float_rel_to_flags(float32_compare(x
, y
, fp_status
));
140 uint64_t HELPER(vfp_cmpd_a64
)(float64 x
, float64 y
, void *fp_status
)
142 return float_rel_to_flags(float64_compare_quiet(x
, y
, fp_status
));
145 uint64_t HELPER(vfp_cmped_a64
)(float64 x
, float64 y
, void *fp_status
)
147 return float_rel_to_flags(float64_compare(x
, y
, fp_status
));
150 float32
HELPER(vfp_mulxs
)(float32 a
, float32 b
, void *fpstp
)
152 float_status
*fpst
= fpstp
;
154 a
= float32_squash_input_denormal(a
, fpst
);
155 b
= float32_squash_input_denormal(b
, fpst
);
157 if ((float32_is_zero(a
) && float32_is_infinity(b
)) ||
158 (float32_is_infinity(a
) && float32_is_zero(b
))) {
159 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
160 return make_float32((1U << 30) |
161 ((float32_val(a
) ^ float32_val(b
)) & (1U << 31)));
163 return float32_mul(a
, b
, fpst
);
166 float64
HELPER(vfp_mulxd
)(float64 a
, float64 b
, void *fpstp
)
168 float_status
*fpst
= fpstp
;
170 a
= float64_squash_input_denormal(a
, fpst
);
171 b
= float64_squash_input_denormal(b
, fpst
);
173 if ((float64_is_zero(a
) && float64_is_infinity(b
)) ||
174 (float64_is_infinity(a
) && float64_is_zero(b
))) {
175 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
176 return make_float64((1ULL << 62) |
177 ((float64_val(a
) ^ float64_val(b
)) & (1ULL << 63)));
179 return float64_mul(a
, b
, fpst
);
182 /* 64bit/double versions of the neon float compare functions */
183 uint64_t HELPER(neon_ceq_f64
)(float64 a
, float64 b
, void *fpstp
)
185 float_status
*fpst
= fpstp
;
186 return -float64_eq_quiet(a
, b
, fpst
);
189 uint64_t HELPER(neon_cge_f64
)(float64 a
, float64 b
, void *fpstp
)
191 float_status
*fpst
= fpstp
;
192 return -float64_le(b
, a
, fpst
);
195 uint64_t HELPER(neon_cgt_f64
)(float64 a
, float64 b
, void *fpstp
)
197 float_status
*fpst
= fpstp
;
198 return -float64_lt(b
, a
, fpst
);
201 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
202 * versions, these do a fully fused multiply-add or
203 * multiply-add-and-halve.
206 uint32_t HELPER(recpsf_f16
)(uint32_t a
, uint32_t b
, void *fpstp
)
208 float_status
*fpst
= fpstp
;
210 a
= float16_squash_input_denormal(a
, fpst
);
211 b
= float16_squash_input_denormal(b
, fpst
);
214 if ((float16_is_infinity(a
) && float16_is_zero(b
)) ||
215 (float16_is_infinity(b
) && float16_is_zero(a
))) {
218 return float16_muladd(a
, b
, float16_two
, 0, fpst
);
221 float32
HELPER(recpsf_f32
)(float32 a
, float32 b
, void *fpstp
)
223 float_status
*fpst
= fpstp
;
225 a
= float32_squash_input_denormal(a
, fpst
);
226 b
= float32_squash_input_denormal(b
, fpst
);
229 if ((float32_is_infinity(a
) && float32_is_zero(b
)) ||
230 (float32_is_infinity(b
) && float32_is_zero(a
))) {
233 return float32_muladd(a
, b
, float32_two
, 0, fpst
);
236 float64
HELPER(recpsf_f64
)(float64 a
, float64 b
, void *fpstp
)
238 float_status
*fpst
= fpstp
;
240 a
= float64_squash_input_denormal(a
, fpst
);
241 b
= float64_squash_input_denormal(b
, fpst
);
244 if ((float64_is_infinity(a
) && float64_is_zero(b
)) ||
245 (float64_is_infinity(b
) && float64_is_zero(a
))) {
248 return float64_muladd(a
, b
, float64_two
, 0, fpst
);
251 uint32_t HELPER(rsqrtsf_f16
)(uint32_t a
, uint32_t b
, void *fpstp
)
253 float_status
*fpst
= fpstp
;
255 a
= float16_squash_input_denormal(a
, fpst
);
256 b
= float16_squash_input_denormal(b
, fpst
);
259 if ((float16_is_infinity(a
) && float16_is_zero(b
)) ||
260 (float16_is_infinity(b
) && float16_is_zero(a
))) {
261 return float16_one_point_five
;
263 return float16_muladd(a
, b
, float16_three
, float_muladd_halve_result
, fpst
);
266 float32
HELPER(rsqrtsf_f32
)(float32 a
, float32 b
, void *fpstp
)
268 float_status
*fpst
= fpstp
;
270 a
= float32_squash_input_denormal(a
, fpst
);
271 b
= float32_squash_input_denormal(b
, fpst
);
274 if ((float32_is_infinity(a
) && float32_is_zero(b
)) ||
275 (float32_is_infinity(b
) && float32_is_zero(a
))) {
276 return float32_one_point_five
;
278 return float32_muladd(a
, b
, float32_three
, float_muladd_halve_result
, fpst
);
281 float64
HELPER(rsqrtsf_f64
)(float64 a
, float64 b
, void *fpstp
)
283 float_status
*fpst
= fpstp
;
285 a
= float64_squash_input_denormal(a
, fpst
);
286 b
= float64_squash_input_denormal(b
, fpst
);
289 if ((float64_is_infinity(a
) && float64_is_zero(b
)) ||
290 (float64_is_infinity(b
) && float64_is_zero(a
))) {
291 return float64_one_point_five
;
293 return float64_muladd(a
, b
, float64_three
, float_muladd_halve_result
, fpst
);
296 /* Pairwise long add: add pairs of adjacent elements into
297 * double-width elements in the result (eg _s8 is an 8x8->16 op)
299 uint64_t HELPER(neon_addlp_s8
)(uint64_t a
)
301 uint64_t nsignmask
= 0x0080008000800080ULL
;
302 uint64_t wsignmask
= 0x8000800080008000ULL
;
303 uint64_t elementmask
= 0x00ff00ff00ff00ffULL
;
305 uint64_t res
, signres
;
307 /* Extract odd elements, sign extend each to a 16 bit field */
308 tmp1
= a
& elementmask
;
311 tmp1
= (tmp1
- nsignmask
) ^ wsignmask
;
312 /* Ditto for the even elements */
313 tmp2
= (a
>> 8) & elementmask
;
316 tmp2
= (tmp2
- nsignmask
) ^ wsignmask
;
318 /* calculate the result by summing bits 0..14, 16..22, etc,
319 * and then adjusting the sign bits 15, 23, etc manually.
320 * This ensures the addition can't overflow the 16 bit field.
322 signres
= (tmp1
^ tmp2
) & wsignmask
;
323 res
= (tmp1
& ~wsignmask
) + (tmp2
& ~wsignmask
);
329 uint64_t HELPER(neon_addlp_u8
)(uint64_t a
)
333 tmp
= a
& 0x00ff00ff00ff00ffULL
;
334 tmp
+= (a
>> 8) & 0x00ff00ff00ff00ffULL
;
338 uint64_t HELPER(neon_addlp_s16
)(uint64_t a
)
340 int32_t reslo
, reshi
;
342 reslo
= (int32_t)(int16_t)a
+ (int32_t)(int16_t)(a
>> 16);
343 reshi
= (int32_t)(int16_t)(a
>> 32) + (int32_t)(int16_t)(a
>> 48);
345 return (uint32_t)reslo
| (((uint64_t)reshi
) << 32);
348 uint64_t HELPER(neon_addlp_u16
)(uint64_t a
)
352 tmp
= a
& 0x0000ffff0000ffffULL
;
353 tmp
+= (a
>> 16) & 0x0000ffff0000ffffULL
;
357 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
358 uint32_t HELPER(frecpx_f16
)(uint32_t a
, void *fpstp
)
360 float_status
*fpst
= fpstp
;
361 uint16_t val16
, sbit
;
364 if (float16_is_any_nan(a
)) {
366 if (float16_is_signaling_nan(a
, fpst
)) {
367 float_raise(float_flag_invalid
, fpst
);
368 if (!fpst
->default_nan_mode
) {
369 nan
= float16_silence_nan(a
, fpst
);
372 if (fpst
->default_nan_mode
) {
373 nan
= float16_default_nan(fpst
);
378 a
= float16_squash_input_denormal(a
, fpst
);
380 val16
= float16_val(a
);
381 sbit
= 0x8000 & val16
;
382 exp
= extract32(val16
, 10, 5);
385 return make_float16(deposit32(sbit
, 10, 5, 0x1e));
387 return make_float16(deposit32(sbit
, 10, 5, ~exp
));
391 float32
HELPER(frecpx_f32
)(float32 a
, void *fpstp
)
393 float_status
*fpst
= fpstp
;
394 uint32_t val32
, sbit
;
397 if (float32_is_any_nan(a
)) {
399 if (float32_is_signaling_nan(a
, fpst
)) {
400 float_raise(float_flag_invalid
, fpst
);
401 if (!fpst
->default_nan_mode
) {
402 nan
= float32_silence_nan(a
, fpst
);
405 if (fpst
->default_nan_mode
) {
406 nan
= float32_default_nan(fpst
);
411 a
= float32_squash_input_denormal(a
, fpst
);
413 val32
= float32_val(a
);
414 sbit
= 0x80000000ULL
& val32
;
415 exp
= extract32(val32
, 23, 8);
418 return make_float32(sbit
| (0xfe << 23));
420 return make_float32(sbit
| (~exp
& 0xff) << 23);
424 float64
HELPER(frecpx_f64
)(float64 a
, void *fpstp
)
426 float_status
*fpst
= fpstp
;
427 uint64_t val64
, sbit
;
430 if (float64_is_any_nan(a
)) {
432 if (float64_is_signaling_nan(a
, fpst
)) {
433 float_raise(float_flag_invalid
, fpst
);
434 if (!fpst
->default_nan_mode
) {
435 nan
= float64_silence_nan(a
, fpst
);
438 if (fpst
->default_nan_mode
) {
439 nan
= float64_default_nan(fpst
);
444 a
= float64_squash_input_denormal(a
, fpst
);
446 val64
= float64_val(a
);
447 sbit
= 0x8000000000000000ULL
& val64
;
448 exp
= extract64(float64_val(a
), 52, 11);
451 return make_float64(sbit
| (0x7feULL
<< 52));
453 return make_float64(sbit
| (~exp
& 0x7ffULL
) << 52);
457 float32
HELPER(fcvtx_f64_to_f32
)(float64 a
, CPUARMState
*env
)
459 /* Von Neumann rounding is implemented by using round-to-zero
460 * and then setting the LSB of the result if Inexact was raised.
463 float_status
*fpst
= &env
->vfp
.fp_status
;
464 float_status tstat
= *fpst
;
467 set_float_rounding_mode(float_round_to_zero
, &tstat
);
468 set_float_exception_flags(0, &tstat
);
469 r
= float64_to_float32(a
, &tstat
);
470 exflags
= get_float_exception_flags(&tstat
);
471 if (exflags
& float_flag_inexact
) {
472 r
= make_float32(float32_val(r
) | 1);
474 exflags
|= get_float_exception_flags(fpst
);
475 set_float_exception_flags(exflags
, fpst
);
479 /* 64-bit versions of the CRC helpers. Note that although the operation
480 * (and the prototypes of crc32c() and crc32() mean that only the bottom
481 * 32 bits of the accumulator and result are used, we pass and return
482 * uint64_t for convenience of the generated code. Unlike the 32-bit
483 * instruction set versions, val may genuinely have 64 bits of data in it.
484 * The upper bytes of val (above the number specified by 'bytes') must have
485 * been zeroed out by the caller.
487 uint64_t HELPER(crc32_64
)(uint64_t acc
, uint64_t val
, uint32_t bytes
)
493 /* zlib crc32 converts the accumulator and output to one's complement. */
494 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
497 uint64_t HELPER(crc32c_64
)(uint64_t acc
, uint64_t val
, uint32_t bytes
)
503 /* Linux crc32c converts the output to one's complement. */
504 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;
507 uint64_t HELPER(paired_cmpxchg64_le
)(CPUARMState
*env
, uint64_t addr
,
508 uint64_t new_lo
, uint64_t new_hi
)
510 Int128 cmpv
= int128_make128(env
->exclusive_val
, env
->exclusive_high
);
511 Int128 newv
= int128_make128(new_lo
, new_hi
);
513 uintptr_t ra
= GETPC();
517 #ifdef CONFIG_USER_ONLY
518 /* ??? Enforce alignment. */
519 uint64_t *haddr
= g2h(env_cpu(env
), addr
);
521 set_helper_retaddr(ra
);
522 o0
= ldq_le_p(haddr
+ 0);
523 o1
= ldq_le_p(haddr
+ 1);
524 oldv
= int128_make128(o0
, o1
);
526 success
= int128_eq(oldv
, cmpv
);
528 stq_le_p(haddr
+ 0, int128_getlo(newv
));
529 stq_le_p(haddr
+ 1, int128_gethi(newv
));
531 clear_helper_retaddr();
533 int mem_idx
= cpu_mmu_index(env
, false);
534 TCGMemOpIdx oi0
= make_memop_idx(MO_LEQ
| MO_ALIGN_16
, mem_idx
);
535 TCGMemOpIdx oi1
= make_memop_idx(MO_LEQ
, mem_idx
);
537 o0
= helper_le_ldq_mmu(env
, addr
+ 0, oi0
, ra
);
538 o1
= helper_le_ldq_mmu(env
, addr
+ 8, oi1
, ra
);
539 oldv
= int128_make128(o0
, o1
);
541 success
= int128_eq(oldv
, cmpv
);
543 helper_le_stq_mmu(env
, addr
+ 0, int128_getlo(newv
), oi1
, ra
);
544 helper_le_stq_mmu(env
, addr
+ 8, int128_gethi(newv
), oi1
, ra
);
551 uint64_t HELPER(paired_cmpxchg64_le_parallel
)(CPUARMState
*env
, uint64_t addr
,
552 uint64_t new_lo
, uint64_t new_hi
)
554 Int128 oldv
, cmpv
, newv
;
555 uintptr_t ra
= GETPC();
560 assert(HAVE_CMPXCHG128
);
562 mem_idx
= cpu_mmu_index(env
, false);
563 oi
= make_memop_idx(MO_LEQ
| MO_ALIGN_16
, mem_idx
);
565 cmpv
= int128_make128(env
->exclusive_val
, env
->exclusive_high
);
566 newv
= int128_make128(new_lo
, new_hi
);
567 oldv
= cpu_atomic_cmpxchgo_le_mmu(env
, addr
, cmpv
, newv
, oi
, ra
);
569 success
= int128_eq(oldv
, cmpv
);
573 uint64_t HELPER(paired_cmpxchg64_be
)(CPUARMState
*env
, uint64_t addr
,
574 uint64_t new_lo
, uint64_t new_hi
)
577 * High and low need to be switched here because this is not actually a
578 * 128bit store but two doublewords stored consecutively
580 Int128 cmpv
= int128_make128(env
->exclusive_high
, env
->exclusive_val
);
581 Int128 newv
= int128_make128(new_hi
, new_lo
);
583 uintptr_t ra
= GETPC();
587 #ifdef CONFIG_USER_ONLY
588 /* ??? Enforce alignment. */
589 uint64_t *haddr
= g2h(env_cpu(env
), addr
);
591 set_helper_retaddr(ra
);
592 o1
= ldq_be_p(haddr
+ 0);
593 o0
= ldq_be_p(haddr
+ 1);
594 oldv
= int128_make128(o0
, o1
);
596 success
= int128_eq(oldv
, cmpv
);
598 stq_be_p(haddr
+ 0, int128_gethi(newv
));
599 stq_be_p(haddr
+ 1, int128_getlo(newv
));
601 clear_helper_retaddr();
603 int mem_idx
= cpu_mmu_index(env
, false);
604 TCGMemOpIdx oi0
= make_memop_idx(MO_BEQ
| MO_ALIGN_16
, mem_idx
);
605 TCGMemOpIdx oi1
= make_memop_idx(MO_BEQ
, mem_idx
);
607 o1
= helper_be_ldq_mmu(env
, addr
+ 0, oi0
, ra
);
608 o0
= helper_be_ldq_mmu(env
, addr
+ 8, oi1
, ra
);
609 oldv
= int128_make128(o0
, o1
);
611 success
= int128_eq(oldv
, cmpv
);
613 helper_be_stq_mmu(env
, addr
+ 0, int128_gethi(newv
), oi1
, ra
);
614 helper_be_stq_mmu(env
, addr
+ 8, int128_getlo(newv
), oi1
, ra
);
621 uint64_t HELPER(paired_cmpxchg64_be_parallel
)(CPUARMState
*env
, uint64_t addr
,
622 uint64_t new_lo
, uint64_t new_hi
)
624 Int128 oldv
, cmpv
, newv
;
625 uintptr_t ra
= GETPC();
630 assert(HAVE_CMPXCHG128
);
632 mem_idx
= cpu_mmu_index(env
, false);
633 oi
= make_memop_idx(MO_BEQ
| MO_ALIGN_16
, mem_idx
);
636 * High and low need to be switched here because this is not actually a
637 * 128bit store but two doublewords stored consecutively
639 cmpv
= int128_make128(env
->exclusive_high
, env
->exclusive_val
);
640 newv
= int128_make128(new_hi
, new_lo
);
641 oldv
= cpu_atomic_cmpxchgo_be_mmu(env
, addr
, cmpv
, newv
, oi
, ra
);
643 success
= int128_eq(oldv
, cmpv
);
647 /* Writes back the old data into Rs. */
648 void HELPER(casp_le_parallel
)(CPUARMState
*env
, uint32_t rs
, uint64_t addr
,
649 uint64_t new_lo
, uint64_t new_hi
)
651 Int128 oldv
, cmpv
, newv
;
652 uintptr_t ra
= GETPC();
656 assert(HAVE_CMPXCHG128
);
658 mem_idx
= cpu_mmu_index(env
, false);
659 oi
= make_memop_idx(MO_LEQ
| MO_ALIGN_16
, mem_idx
);
661 cmpv
= int128_make128(env
->xregs
[rs
], env
->xregs
[rs
+ 1]);
662 newv
= int128_make128(new_lo
, new_hi
);
663 oldv
= cpu_atomic_cmpxchgo_le_mmu(env
, addr
, cmpv
, newv
, oi
, ra
);
665 env
->xregs
[rs
] = int128_getlo(oldv
);
666 env
->xregs
[rs
+ 1] = int128_gethi(oldv
);
669 void HELPER(casp_be_parallel
)(CPUARMState
*env
, uint32_t rs
, uint64_t addr
,
670 uint64_t new_hi
, uint64_t new_lo
)
672 Int128 oldv
, cmpv
, newv
;
673 uintptr_t ra
= GETPC();
677 assert(HAVE_CMPXCHG128
);
679 mem_idx
= cpu_mmu_index(env
, false);
680 oi
= make_memop_idx(MO_LEQ
| MO_ALIGN_16
, mem_idx
);
682 cmpv
= int128_make128(env
->xregs
[rs
+ 1], env
->xregs
[rs
]);
683 newv
= int128_make128(new_lo
, new_hi
);
684 oldv
= cpu_atomic_cmpxchgo_be_mmu(env
, addr
, cmpv
, newv
, oi
, ra
);
686 env
->xregs
[rs
+ 1] = int128_getlo(oldv
);
687 env
->xregs
[rs
] = int128_gethi(oldv
);
691 * AdvSIMD half-precision
694 #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
696 #define ADVSIMD_HALFOP(name) \
697 uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \
699 float_status *fpst = fpstp; \
700 return float16_ ## name(a, b, fpst); \
709 ADVSIMD_HALFOP(minnum
)
710 ADVSIMD_HALFOP(maxnum
)
712 #define ADVSIMD_TWOHALFOP(name) \
713 uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
715 float16 a1, a2, b1, b2; \
717 float_status *fpst = fpstp; \
718 a1 = extract32(two_a, 0, 16); \
719 a2 = extract32(two_a, 16, 16); \
720 b1 = extract32(two_b, 0, 16); \
721 b2 = extract32(two_b, 16, 16); \
722 r1 = float16_ ## name(a1, b1, fpst); \
723 r2 = float16_ ## name(a2, b2, fpst); \
724 return deposit32(r1, 16, 16, r2); \
727 ADVSIMD_TWOHALFOP(add
)
728 ADVSIMD_TWOHALFOP(sub
)
729 ADVSIMD_TWOHALFOP(mul
)
730 ADVSIMD_TWOHALFOP(div
)
731 ADVSIMD_TWOHALFOP(min
)
732 ADVSIMD_TWOHALFOP(max
)
733 ADVSIMD_TWOHALFOP(minnum
)
734 ADVSIMD_TWOHALFOP(maxnum
)
736 /* Data processing - scalar floating-point and advanced SIMD */
737 static float16
float16_mulx(float16 a
, float16 b
, void *fpstp
)
739 float_status
*fpst
= fpstp
;
741 a
= float16_squash_input_denormal(a
, fpst
);
742 b
= float16_squash_input_denormal(b
, fpst
);
744 if ((float16_is_zero(a
) && float16_is_infinity(b
)) ||
745 (float16_is_infinity(a
) && float16_is_zero(b
))) {
746 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
747 return make_float16((1U << 14) |
748 ((float16_val(a
) ^ float16_val(b
)) & (1U << 15)));
750 return float16_mul(a
, b
, fpst
);
754 ADVSIMD_TWOHALFOP(mulx
)
756 /* fused multiply-accumulate */
757 uint32_t HELPER(advsimd_muladdh
)(uint32_t a
, uint32_t b
, uint32_t c
,
760 float_status
*fpst
= fpstp
;
761 return float16_muladd(a
, b
, c
, 0, fpst
);
764 uint32_t HELPER(advsimd_muladd2h
)(uint32_t two_a
, uint32_t two_b
,
765 uint32_t two_c
, void *fpstp
)
767 float_status
*fpst
= fpstp
;
768 float16 a1
, a2
, b1
, b2
, c1
, c2
;
770 a1
= extract32(two_a
, 0, 16);
771 a2
= extract32(two_a
, 16, 16);
772 b1
= extract32(two_b
, 0, 16);
773 b2
= extract32(two_b
, 16, 16);
774 c1
= extract32(two_c
, 0, 16);
775 c2
= extract32(two_c
, 16, 16);
776 r1
= float16_muladd(a1
, b1
, c1
, 0, fpst
);
777 r2
= float16_muladd(a2
, b2
, c2
, 0, fpst
);
778 return deposit32(r1
, 16, 16, r2
);
782 * Floating point comparisons produce an integer result. Softfloat
783 * routines return float_relation types which we convert to the 0/-1
787 #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
789 uint32_t HELPER(advsimd_ceq_f16
)(uint32_t a
, uint32_t b
, void *fpstp
)
791 float_status
*fpst
= fpstp
;
792 int compare
= float16_compare_quiet(a
, b
, fpst
);
793 return ADVSIMD_CMPRES(compare
== float_relation_equal
);
796 uint32_t HELPER(advsimd_cge_f16
)(uint32_t a
, uint32_t b
, void *fpstp
)
798 float_status
*fpst
= fpstp
;
799 int compare
= float16_compare(a
, b
, fpst
);
800 return ADVSIMD_CMPRES(compare
== float_relation_greater
||
801 compare
== float_relation_equal
);
804 uint32_t HELPER(advsimd_cgt_f16
)(uint32_t a
, uint32_t b
, void *fpstp
)
806 float_status
*fpst
= fpstp
;
807 int compare
= float16_compare(a
, b
, fpst
);
808 return ADVSIMD_CMPRES(compare
== float_relation_greater
);
811 uint32_t HELPER(advsimd_acge_f16
)(uint32_t a
, uint32_t b
, void *fpstp
)
813 float_status
*fpst
= fpstp
;
814 float16 f0
= float16_abs(a
);
815 float16 f1
= float16_abs(b
);
816 int compare
= float16_compare(f0
, f1
, fpst
);
817 return ADVSIMD_CMPRES(compare
== float_relation_greater
||
818 compare
== float_relation_equal
);
821 uint32_t HELPER(advsimd_acgt_f16
)(uint32_t a
, uint32_t b
, void *fpstp
)
823 float_status
*fpst
= fpstp
;
824 float16 f0
= float16_abs(a
);
825 float16 f1
= float16_abs(b
);
826 int compare
= float16_compare(f0
, f1
, fpst
);
827 return ADVSIMD_CMPRES(compare
== float_relation_greater
);
830 /* round to integral */
831 uint32_t HELPER(advsimd_rinth_exact
)(uint32_t x
, void *fp_status
)
833 return float16_round_to_int(x
, fp_status
);
836 uint32_t HELPER(advsimd_rinth
)(uint32_t x
, void *fp_status
)
838 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
841 ret
= float16_round_to_int(x
, fp_status
);
843 /* Suppress any inexact exceptions the conversion produced */
844 if (!(old_flags
& float_flag_inexact
)) {
845 new_flags
= get_float_exception_flags(fp_status
);
846 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
853 * Half-precision floating point conversion functions
855 * There are a multitude of conversion functions with various
856 * different rounding modes. This is dealt with by the calling code
857 * setting the mode appropriately before calling the helper.
860 uint32_t HELPER(advsimd_f16tosinth
)(uint32_t a
, void *fpstp
)
862 float_status
*fpst
= fpstp
;
864 /* Invalid if we are passed a NaN */
865 if (float16_is_any_nan(a
)) {
866 float_raise(float_flag_invalid
, fpst
);
869 return float16_to_int16(a
, fpst
);
872 uint32_t HELPER(advsimd_f16touinth
)(uint32_t a
, void *fpstp
)
874 float_status
*fpst
= fpstp
;
876 /* Invalid if we are passed a NaN */
877 if (float16_is_any_nan(a
)) {
878 float_raise(float_flag_invalid
, fpst
);
881 return float16_to_uint16(a
, fpst
);
884 static int el_from_spsr(uint32_t spsr
)
886 /* Return the exception level that this SPSR is requesting a return to,
887 * or -1 if it is invalid (an illegal return)
889 if (spsr
& PSTATE_nRW
) {
890 switch (spsr
& CPSR_M
) {
891 case ARM_CPU_MODE_USR
:
893 case ARM_CPU_MODE_HYP
:
895 case ARM_CPU_MODE_FIQ
:
896 case ARM_CPU_MODE_IRQ
:
897 case ARM_CPU_MODE_SVC
:
898 case ARM_CPU_MODE_ABT
:
899 case ARM_CPU_MODE_UND
:
900 case ARM_CPU_MODE_SYS
:
902 case ARM_CPU_MODE_MON
:
903 /* Returning to Mon from AArch64 is never possible,
904 * so this is an illegal return.
910 if (extract32(spsr
, 1, 1)) {
911 /* Return with reserved M[1] bit set */
914 if (extract32(spsr
, 0, 4) == 1) {
915 /* return to EL0 with M[0] bit set */
918 return extract32(spsr
, 2, 2);
922 static void cpsr_write_from_spsr_elx(CPUARMState
*env
,
927 /* Save SPSR_ELx.SS into PSTATE. */
928 env
->pstate
= (env
->pstate
& ~PSTATE_SS
) | (val
& PSTATE_SS
);
931 /* Move DIT to the correct location for CPSR */
932 if (val
& PSTATE_DIT
) {
937 mask
= aarch32_cpsr_valid_mask(env
->features
, \
938 &env_archcpu(env
)->isar
);
939 cpsr_write(env
, val
, mask
, CPSRWriteRaw
);
942 void HELPER(exception_return
)(CPUARMState
*env
, uint64_t new_pc
)
944 int cur_el
= arm_current_el(env
);
945 unsigned int spsr_idx
= aarch64_banked_spsr_index(cur_el
);
946 uint32_t spsr
= env
->banked_spsr
[spsr_idx
];
948 bool return_to_aa64
= (spsr
& PSTATE_nRW
) == 0;
950 aarch64_save_sp(env
, cur_el
);
952 arm_clear_exclusive(env
);
954 /* We must squash the PSTATE.SS bit to zero unless both of the
956 * 1. debug exceptions are currently disabled
957 * 2. singlestep will be active in the EL we return to
958 * We check 1 here and 2 after we've done the pstate/cpsr write() to
959 * transition to the EL we're going to.
961 if (arm_generate_debug_exceptions(env
)) {
965 new_el
= el_from_spsr(spsr
);
969 if (new_el
> cur_el
|| (new_el
== 2 && !arm_is_el2_enabled(env
))) {
970 /* Disallow return to an EL which is unimplemented or higher
971 * than the current one.
976 if (new_el
!= 0 && arm_el_is_aa64(env
, new_el
) != return_to_aa64
) {
977 /* Return to an EL which is configured for a different register width */
981 if (new_el
== 1 && (arm_hcr_el2_eff(env
) & HCR_TGE
)) {
985 qemu_mutex_lock_iothread();
986 arm_call_pre_el_change_hook(env_archcpu(env
));
987 qemu_mutex_unlock_iothread();
989 if (!return_to_aa64
) {
991 /* We do a raw CPSR write because aarch64_sync_64_to_32()
992 * will sort the register banks out for us, and we've already
993 * caught all the bad-mode cases in el_from_spsr().
995 cpsr_write_from_spsr_elx(env
, spsr
);
996 if (!arm_singlestep_active(env
)) {
997 env
->pstate
&= ~PSTATE_SS
;
999 aarch64_sync_64_to_32(env
);
1001 if (spsr
& CPSR_T
) {
1002 env
->regs
[15] = new_pc
& ~0x1;
1004 env
->regs
[15] = new_pc
& ~0x3;
1006 helper_rebuild_hflags_a32(env
, new_el
);
1007 qemu_log_mask(CPU_LOG_INT
, "Exception return from AArch64 EL%d to "
1008 "AArch32 EL%d PC 0x%" PRIx32
"\n",
1009 cur_el
, new_el
, env
->regs
[15]);
1014 spsr
&= aarch64_pstate_valid_mask(&env_archcpu(env
)->isar
);
1015 pstate_write(env
, spsr
);
1016 if (!arm_singlestep_active(env
)) {
1017 env
->pstate
&= ~PSTATE_SS
;
1019 aarch64_restore_sp(env
, new_el
);
1020 helper_rebuild_hflags_a64(env
, new_el
);
1023 * Apply TBI to the exception return address. We had to delay this
1024 * until after we selected the new EL, so that we could select the
1025 * correct TBI+TBID bits. This is made easier by waiting until after
1026 * the hflags rebuild, since we can pull the composite TBII field
1029 tbii
= EX_TBFLAG_A64(env
->hflags
, TBII
);
1030 if ((tbii
>> extract64(new_pc
, 55, 1)) & 1) {
1031 /* TBI is enabled. */
1032 int core_mmu_idx
= cpu_mmu_index(env
, false);
1033 if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx
))) {
1034 new_pc
= sextract64(new_pc
, 0, 56);
1036 new_pc
= extract64(new_pc
, 0, 56);
1041 qemu_log_mask(CPU_LOG_INT
, "Exception return from AArch64 EL%d to "
1042 "AArch64 EL%d PC 0x%" PRIx64
"\n",
1043 cur_el
, new_el
, env
->pc
);
1047 * Note that cur_el can never be 0. If new_el is 0, then
1048 * el0_a64 is return_to_aa64, else el0_a64 is ignored.
1050 aarch64_sve_change_el(env
, cur_el
, new_el
, return_to_aa64
);
1052 qemu_mutex_lock_iothread();
1053 arm_call_el_change_hook(env_archcpu(env
));
1054 qemu_mutex_unlock_iothread();
1059 /* Illegal return events of various kinds have architecturally
1060 * mandated behaviour:
1061 * restore NZCV and DAIF from SPSR_ELx
1063 * restore PC from ELR_ELx
1064 * no change to exception level, execution state or stack pointer
1066 env
->pstate
|= PSTATE_IL
;
1068 spsr
&= PSTATE_NZCV
| PSTATE_DAIF
;
1069 spsr
|= pstate_read(env
) & ~(PSTATE_NZCV
| PSTATE_DAIF
);
1070 pstate_write(env
, spsr
);
1071 if (!arm_singlestep_active(env
)) {
1072 env
->pstate
&= ~PSTATE_SS
;
1074 helper_rebuild_hflags_a64(env
, cur_el
);
1075 qemu_log_mask(LOG_GUEST_ERROR
, "Illegal exception return at EL%d: "
1076 "resuming execution at 0x%" PRIx64
"\n", cur_el
, env
->pc
);
1080 * Square Root and Reciprocal square root
1083 uint32_t HELPER(sqrt_f16
)(uint32_t a
, void *fpstp
)
1085 float_status
*s
= fpstp
;
1087 return float16_sqrt(a
, s
);
1090 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
1093 * Implement DC ZVA, which zeroes a fixed-length block of memory.
1094 * Note that we do not implement the (architecturally mandated)
1095 * alignment fault for attempts to use this on Device memory
1096 * (which matches the usual QEMU behaviour of not implementing either
1097 * alignment faults or any memory attribute handling).
1099 int blocklen
= 4 << env_archcpu(env
)->dcz_blocksize
;
1100 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
1101 int mmu_idx
= cpu_mmu_index(env
, false);
1105 * Trapless lookup. In addition to actual invalid page, may
1106 * return NULL for I/O, watchpoints, clean pages, etc.
1108 mem
= tlb_vaddr_to_host(env
, vaddr
, MMU_DATA_STORE
, mmu_idx
);
1110 #ifndef CONFIG_USER_ONLY
1111 if (unlikely(!mem
)) {
1112 uintptr_t ra
= GETPC();
1115 * Trap if accessing an invalid page. DC_ZVA requires that we supply
1116 * the original pointer for an invalid page. But watchpoints require
1117 * that we probe the actual space. So do both.
1119 (void) probe_write(env
, vaddr_in
, 1, mmu_idx
, ra
);
1120 mem
= probe_write(env
, vaddr
, blocklen
, mmu_idx
, ra
);
1122 if (unlikely(!mem
)) {
1124 * The only remaining reason for mem == NULL is I/O.
1125 * Just do a series of byte writes as the architecture demands.
1127 for (int i
= 0; i
< blocklen
; i
++) {
1128 cpu_stb_mmuidx_ra(env
, vaddr
+ i
, 0, mmu_idx
, ra
);
1135 memset(mem
, 0, blocklen
);