qapi/parser: enable pylint checks
[qemu/armbru.git] / target / arm / helper-a64.c
blob19445b3c94724967d32da7da6bf1937aea4a893b
1 /*
2 * AArch64 specific helpers
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "cpu.h"
23 #include "exec/gdbstub.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/host-utils.h"
26 #include "qemu/log.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/bitops.h"
29 #include "internals.h"
30 #include "qemu/crc32c.h"
31 #include "exec/exec-all.h"
32 #include "exec/cpu_ldst.h"
33 #include "qemu/int128.h"
34 #include "qemu/atomic128.h"
35 #include "tcg/tcg.h"
36 #include "fpu/softfloat.h"
37 #include <zlib.h> /* For crc32 */
39 /* C2.4.7 Multiply and divide */
40 /* special cases for 0 and LLONG_MIN are mandated by the standard */
41 uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
43 if (den == 0) {
44 return 0;
46 return num / den;
49 int64_t HELPER(sdiv64)(int64_t num, int64_t den)
51 if (den == 0) {
52 return 0;
54 if (num == LLONG_MIN && den == -1) {
55 return LLONG_MIN;
57 return num / den;
60 uint64_t HELPER(rbit64)(uint64_t x)
62 return revbit64(x);
65 void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
67 update_spsel(env, imm);
70 static void daif_check(CPUARMState *env, uint32_t op,
71 uint32_t imm, uintptr_t ra)
73 /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set. */
74 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
75 raise_exception_ra(env, EXCP_UDEF,
76 syn_aa64_sysregtrap(0, extract32(op, 0, 3),
77 extract32(op, 3, 3), 4,
78 imm, 0x1f, 0),
79 exception_target_el(env), ra);
83 void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
85 daif_check(env, 0x1e, imm, GETPC());
86 env->daif |= (imm << 6) & PSTATE_DAIF;
89 void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
91 daif_check(env, 0x1f, imm, GETPC());
92 env->daif &= ~((imm << 6) & PSTATE_DAIF);
95 /* Convert a softfloat float_relation_ (as returned by
96 * the float*_compare functions) to the correct ARM
97 * NZCV flag state.
99 static inline uint32_t float_rel_to_flags(int res)
101 uint64_t flags;
102 switch (res) {
103 case float_relation_equal:
104 flags = PSTATE_Z | PSTATE_C;
105 break;
106 case float_relation_less:
107 flags = PSTATE_N;
108 break;
109 case float_relation_greater:
110 flags = PSTATE_C;
111 break;
112 case float_relation_unordered:
113 default:
114 flags = PSTATE_C | PSTATE_V;
115 break;
117 return flags;
120 uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status)
122 return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
125 uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status)
127 return float_rel_to_flags(float16_compare(x, y, fp_status));
130 uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
132 return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
135 uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
137 return float_rel_to_flags(float32_compare(x, y, fp_status));
140 uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
142 return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
145 uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
147 return float_rel_to_flags(float64_compare(x, y, fp_status));
150 float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
152 float_status *fpst = fpstp;
154 a = float32_squash_input_denormal(a, fpst);
155 b = float32_squash_input_denormal(b, fpst);
157 if ((float32_is_zero(a) && float32_is_infinity(b)) ||
158 (float32_is_infinity(a) && float32_is_zero(b))) {
159 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
160 return make_float32((1U << 30) |
161 ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
163 return float32_mul(a, b, fpst);
166 float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
168 float_status *fpst = fpstp;
170 a = float64_squash_input_denormal(a, fpst);
171 b = float64_squash_input_denormal(b, fpst);
173 if ((float64_is_zero(a) && float64_is_infinity(b)) ||
174 (float64_is_infinity(a) && float64_is_zero(b))) {
175 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
176 return make_float64((1ULL << 62) |
177 ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
179 return float64_mul(a, b, fpst);
182 /* 64bit/double versions of the neon float compare functions */
183 uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
185 float_status *fpst = fpstp;
186 return -float64_eq_quiet(a, b, fpst);
189 uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
191 float_status *fpst = fpstp;
192 return -float64_le(b, a, fpst);
195 uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
197 float_status *fpst = fpstp;
198 return -float64_lt(b, a, fpst);
201 /* Reciprocal step and sqrt step. Note that unlike the A32/T32
202 * versions, these do a fully fused multiply-add or
203 * multiply-add-and-halve.
206 uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp)
208 float_status *fpst = fpstp;
210 a = float16_squash_input_denormal(a, fpst);
211 b = float16_squash_input_denormal(b, fpst);
213 a = float16_chs(a);
214 if ((float16_is_infinity(a) && float16_is_zero(b)) ||
215 (float16_is_infinity(b) && float16_is_zero(a))) {
216 return float16_two;
218 return float16_muladd(a, b, float16_two, 0, fpst);
221 float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
223 float_status *fpst = fpstp;
225 a = float32_squash_input_denormal(a, fpst);
226 b = float32_squash_input_denormal(b, fpst);
228 a = float32_chs(a);
229 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
230 (float32_is_infinity(b) && float32_is_zero(a))) {
231 return float32_two;
233 return float32_muladd(a, b, float32_two, 0, fpst);
236 float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
238 float_status *fpst = fpstp;
240 a = float64_squash_input_denormal(a, fpst);
241 b = float64_squash_input_denormal(b, fpst);
243 a = float64_chs(a);
244 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
245 (float64_is_infinity(b) && float64_is_zero(a))) {
246 return float64_two;
248 return float64_muladd(a, b, float64_two, 0, fpst);
251 uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp)
253 float_status *fpst = fpstp;
255 a = float16_squash_input_denormal(a, fpst);
256 b = float16_squash_input_denormal(b, fpst);
258 a = float16_chs(a);
259 if ((float16_is_infinity(a) && float16_is_zero(b)) ||
260 (float16_is_infinity(b) && float16_is_zero(a))) {
261 return float16_one_point_five;
263 return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
266 float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
268 float_status *fpst = fpstp;
270 a = float32_squash_input_denormal(a, fpst);
271 b = float32_squash_input_denormal(b, fpst);
273 a = float32_chs(a);
274 if ((float32_is_infinity(a) && float32_is_zero(b)) ||
275 (float32_is_infinity(b) && float32_is_zero(a))) {
276 return float32_one_point_five;
278 return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
281 float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
283 float_status *fpst = fpstp;
285 a = float64_squash_input_denormal(a, fpst);
286 b = float64_squash_input_denormal(b, fpst);
288 a = float64_chs(a);
289 if ((float64_is_infinity(a) && float64_is_zero(b)) ||
290 (float64_is_infinity(b) && float64_is_zero(a))) {
291 return float64_one_point_five;
293 return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
296 /* Pairwise long add: add pairs of adjacent elements into
297 * double-width elements in the result (eg _s8 is an 8x8->16 op)
299 uint64_t HELPER(neon_addlp_s8)(uint64_t a)
301 uint64_t nsignmask = 0x0080008000800080ULL;
302 uint64_t wsignmask = 0x8000800080008000ULL;
303 uint64_t elementmask = 0x00ff00ff00ff00ffULL;
304 uint64_t tmp1, tmp2;
305 uint64_t res, signres;
307 /* Extract odd elements, sign extend each to a 16 bit field */
308 tmp1 = a & elementmask;
309 tmp1 ^= nsignmask;
310 tmp1 |= wsignmask;
311 tmp1 = (tmp1 - nsignmask) ^ wsignmask;
312 /* Ditto for the even elements */
313 tmp2 = (a >> 8) & elementmask;
314 tmp2 ^= nsignmask;
315 tmp2 |= wsignmask;
316 tmp2 = (tmp2 - nsignmask) ^ wsignmask;
318 /* calculate the result by summing bits 0..14, 16..22, etc,
319 * and then adjusting the sign bits 15, 23, etc manually.
320 * This ensures the addition can't overflow the 16 bit field.
322 signres = (tmp1 ^ tmp2) & wsignmask;
323 res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
324 res ^= signres;
326 return res;
329 uint64_t HELPER(neon_addlp_u8)(uint64_t a)
331 uint64_t tmp;
333 tmp = a & 0x00ff00ff00ff00ffULL;
334 tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
335 return tmp;
338 uint64_t HELPER(neon_addlp_s16)(uint64_t a)
340 int32_t reslo, reshi;
342 reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
343 reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
345 return (uint32_t)reslo | (((uint64_t)reshi) << 32);
348 uint64_t HELPER(neon_addlp_u16)(uint64_t a)
350 uint64_t tmp;
352 tmp = a & 0x0000ffff0000ffffULL;
353 tmp += (a >> 16) & 0x0000ffff0000ffffULL;
354 return tmp;
357 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
358 uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp)
360 float_status *fpst = fpstp;
361 uint16_t val16, sbit;
362 int16_t exp;
364 if (float16_is_any_nan(a)) {
365 float16 nan = a;
366 if (float16_is_signaling_nan(a, fpst)) {
367 float_raise(float_flag_invalid, fpst);
368 if (!fpst->default_nan_mode) {
369 nan = float16_silence_nan(a, fpst);
372 if (fpst->default_nan_mode) {
373 nan = float16_default_nan(fpst);
375 return nan;
378 a = float16_squash_input_denormal(a, fpst);
380 val16 = float16_val(a);
381 sbit = 0x8000 & val16;
382 exp = extract32(val16, 10, 5);
384 if (exp == 0) {
385 return make_float16(deposit32(sbit, 10, 5, 0x1e));
386 } else {
387 return make_float16(deposit32(sbit, 10, 5, ~exp));
391 float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
393 float_status *fpst = fpstp;
394 uint32_t val32, sbit;
395 int32_t exp;
397 if (float32_is_any_nan(a)) {
398 float32 nan = a;
399 if (float32_is_signaling_nan(a, fpst)) {
400 float_raise(float_flag_invalid, fpst);
401 if (!fpst->default_nan_mode) {
402 nan = float32_silence_nan(a, fpst);
405 if (fpst->default_nan_mode) {
406 nan = float32_default_nan(fpst);
408 return nan;
411 a = float32_squash_input_denormal(a, fpst);
413 val32 = float32_val(a);
414 sbit = 0x80000000ULL & val32;
415 exp = extract32(val32, 23, 8);
417 if (exp == 0) {
418 return make_float32(sbit | (0xfe << 23));
419 } else {
420 return make_float32(sbit | (~exp & 0xff) << 23);
424 float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
426 float_status *fpst = fpstp;
427 uint64_t val64, sbit;
428 int64_t exp;
430 if (float64_is_any_nan(a)) {
431 float64 nan = a;
432 if (float64_is_signaling_nan(a, fpst)) {
433 float_raise(float_flag_invalid, fpst);
434 if (!fpst->default_nan_mode) {
435 nan = float64_silence_nan(a, fpst);
438 if (fpst->default_nan_mode) {
439 nan = float64_default_nan(fpst);
441 return nan;
444 a = float64_squash_input_denormal(a, fpst);
446 val64 = float64_val(a);
447 sbit = 0x8000000000000000ULL & val64;
448 exp = extract64(float64_val(a), 52, 11);
450 if (exp == 0) {
451 return make_float64(sbit | (0x7feULL << 52));
452 } else {
453 return make_float64(sbit | (~exp & 0x7ffULL) << 52);
457 float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
459 /* Von Neumann rounding is implemented by using round-to-zero
460 * and then setting the LSB of the result if Inexact was raised.
462 float32 r;
463 float_status *fpst = &env->vfp.fp_status;
464 float_status tstat = *fpst;
465 int exflags;
467 set_float_rounding_mode(float_round_to_zero, &tstat);
468 set_float_exception_flags(0, &tstat);
469 r = float64_to_float32(a, &tstat);
470 exflags = get_float_exception_flags(&tstat);
471 if (exflags & float_flag_inexact) {
472 r = make_float32(float32_val(r) | 1);
474 exflags |= get_float_exception_flags(fpst);
475 set_float_exception_flags(exflags, fpst);
476 return r;
479 /* 64-bit versions of the CRC helpers. Note that although the operation
480 * (and the prototypes of crc32c() and crc32() mean that only the bottom
481 * 32 bits of the accumulator and result are used, we pass and return
482 * uint64_t for convenience of the generated code. Unlike the 32-bit
483 * instruction set versions, val may genuinely have 64 bits of data in it.
484 * The upper bytes of val (above the number specified by 'bytes') must have
485 * been zeroed out by the caller.
487 uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
489 uint8_t buf[8];
491 stq_le_p(buf, val);
493 /* zlib crc32 converts the accumulator and output to one's complement. */
494 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
497 uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
499 uint8_t buf[8];
501 stq_le_p(buf, val);
503 /* Linux crc32c converts the output to one's complement. */
504 return crc32c(acc, buf, bytes) ^ 0xffffffff;
507 uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
508 uint64_t new_lo, uint64_t new_hi)
510 Int128 cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
511 Int128 newv = int128_make128(new_lo, new_hi);
512 Int128 oldv;
513 uintptr_t ra = GETPC();
514 uint64_t o0, o1;
515 bool success;
517 #ifdef CONFIG_USER_ONLY
518 /* ??? Enforce alignment. */
519 uint64_t *haddr = g2h(env_cpu(env), addr);
521 set_helper_retaddr(ra);
522 o0 = ldq_le_p(haddr + 0);
523 o1 = ldq_le_p(haddr + 1);
524 oldv = int128_make128(o0, o1);
526 success = int128_eq(oldv, cmpv);
527 if (success) {
528 stq_le_p(haddr + 0, int128_getlo(newv));
529 stq_le_p(haddr + 1, int128_gethi(newv));
531 clear_helper_retaddr();
532 #else
533 int mem_idx = cpu_mmu_index(env, false);
534 TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
535 TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx);
537 o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra);
538 o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra);
539 oldv = int128_make128(o0, o1);
541 success = int128_eq(oldv, cmpv);
542 if (success) {
543 helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
544 helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
546 #endif
548 return !success;
551 uint64_t HELPER(paired_cmpxchg64_le_parallel)(CPUARMState *env, uint64_t addr,
552 uint64_t new_lo, uint64_t new_hi)
554 Int128 oldv, cmpv, newv;
555 uintptr_t ra = GETPC();
556 bool success;
557 int mem_idx;
558 TCGMemOpIdx oi;
560 assert(HAVE_CMPXCHG128);
562 mem_idx = cpu_mmu_index(env, false);
563 oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
565 cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
566 newv = int128_make128(new_lo, new_hi);
567 oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
569 success = int128_eq(oldv, cmpv);
570 return !success;
573 uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
574 uint64_t new_lo, uint64_t new_hi)
577 * High and low need to be switched here because this is not actually a
578 * 128bit store but two doublewords stored consecutively
580 Int128 cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
581 Int128 newv = int128_make128(new_hi, new_lo);
582 Int128 oldv;
583 uintptr_t ra = GETPC();
584 uint64_t o0, o1;
585 bool success;
587 #ifdef CONFIG_USER_ONLY
588 /* ??? Enforce alignment. */
589 uint64_t *haddr = g2h(env_cpu(env), addr);
591 set_helper_retaddr(ra);
592 o1 = ldq_be_p(haddr + 0);
593 o0 = ldq_be_p(haddr + 1);
594 oldv = int128_make128(o0, o1);
596 success = int128_eq(oldv, cmpv);
597 if (success) {
598 stq_be_p(haddr + 0, int128_gethi(newv));
599 stq_be_p(haddr + 1, int128_getlo(newv));
601 clear_helper_retaddr();
602 #else
603 int mem_idx = cpu_mmu_index(env, false);
604 TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
605 TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx);
607 o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra);
608 o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra);
609 oldv = int128_make128(o0, o1);
611 success = int128_eq(oldv, cmpv);
612 if (success) {
613 helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
614 helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
616 #endif
618 return !success;
621 uint64_t HELPER(paired_cmpxchg64_be_parallel)(CPUARMState *env, uint64_t addr,
622 uint64_t new_lo, uint64_t new_hi)
624 Int128 oldv, cmpv, newv;
625 uintptr_t ra = GETPC();
626 bool success;
627 int mem_idx;
628 TCGMemOpIdx oi;
630 assert(HAVE_CMPXCHG128);
632 mem_idx = cpu_mmu_index(env, false);
633 oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
636 * High and low need to be switched here because this is not actually a
637 * 128bit store but two doublewords stored consecutively
639 cmpv = int128_make128(env->exclusive_high, env->exclusive_val);
640 newv = int128_make128(new_hi, new_lo);
641 oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
643 success = int128_eq(oldv, cmpv);
644 return !success;
647 /* Writes back the old data into Rs. */
648 void HELPER(casp_le_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
649 uint64_t new_lo, uint64_t new_hi)
651 Int128 oldv, cmpv, newv;
652 uintptr_t ra = GETPC();
653 int mem_idx;
654 TCGMemOpIdx oi;
656 assert(HAVE_CMPXCHG128);
658 mem_idx = cpu_mmu_index(env, false);
659 oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
661 cmpv = int128_make128(env->xregs[rs], env->xregs[rs + 1]);
662 newv = int128_make128(new_lo, new_hi);
663 oldv = cpu_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
665 env->xregs[rs] = int128_getlo(oldv);
666 env->xregs[rs + 1] = int128_gethi(oldv);
669 void HELPER(casp_be_parallel)(CPUARMState *env, uint32_t rs, uint64_t addr,
670 uint64_t new_hi, uint64_t new_lo)
672 Int128 oldv, cmpv, newv;
673 uintptr_t ra = GETPC();
674 int mem_idx;
675 TCGMemOpIdx oi;
677 assert(HAVE_CMPXCHG128);
679 mem_idx = cpu_mmu_index(env, false);
680 oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
682 cmpv = int128_make128(env->xregs[rs + 1], env->xregs[rs]);
683 newv = int128_make128(new_lo, new_hi);
684 oldv = cpu_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
686 env->xregs[rs + 1] = int128_getlo(oldv);
687 env->xregs[rs] = int128_gethi(oldv);
691 * AdvSIMD half-precision
694 #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
696 #define ADVSIMD_HALFOP(name) \
697 uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \
699 float_status *fpst = fpstp; \
700 return float16_ ## name(a, b, fpst); \
703 ADVSIMD_HALFOP(add)
704 ADVSIMD_HALFOP(sub)
705 ADVSIMD_HALFOP(mul)
706 ADVSIMD_HALFOP(div)
707 ADVSIMD_HALFOP(min)
708 ADVSIMD_HALFOP(max)
709 ADVSIMD_HALFOP(minnum)
710 ADVSIMD_HALFOP(maxnum)
712 #define ADVSIMD_TWOHALFOP(name) \
713 uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
715 float16 a1, a2, b1, b2; \
716 uint32_t r1, r2; \
717 float_status *fpst = fpstp; \
718 a1 = extract32(two_a, 0, 16); \
719 a2 = extract32(two_a, 16, 16); \
720 b1 = extract32(two_b, 0, 16); \
721 b2 = extract32(two_b, 16, 16); \
722 r1 = float16_ ## name(a1, b1, fpst); \
723 r2 = float16_ ## name(a2, b2, fpst); \
724 return deposit32(r1, 16, 16, r2); \
727 ADVSIMD_TWOHALFOP(add)
728 ADVSIMD_TWOHALFOP(sub)
729 ADVSIMD_TWOHALFOP(mul)
730 ADVSIMD_TWOHALFOP(div)
731 ADVSIMD_TWOHALFOP(min)
732 ADVSIMD_TWOHALFOP(max)
733 ADVSIMD_TWOHALFOP(minnum)
734 ADVSIMD_TWOHALFOP(maxnum)
736 /* Data processing - scalar floating-point and advanced SIMD */
737 static float16 float16_mulx(float16 a, float16 b, void *fpstp)
739 float_status *fpst = fpstp;
741 a = float16_squash_input_denormal(a, fpst);
742 b = float16_squash_input_denormal(b, fpst);
744 if ((float16_is_zero(a) && float16_is_infinity(b)) ||
745 (float16_is_infinity(a) && float16_is_zero(b))) {
746 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
747 return make_float16((1U << 14) |
748 ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
750 return float16_mul(a, b, fpst);
753 ADVSIMD_HALFOP(mulx)
754 ADVSIMD_TWOHALFOP(mulx)
756 /* fused multiply-accumulate */
757 uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
758 void *fpstp)
760 float_status *fpst = fpstp;
761 return float16_muladd(a, b, c, 0, fpst);
764 uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
765 uint32_t two_c, void *fpstp)
767 float_status *fpst = fpstp;
768 float16 a1, a2, b1, b2, c1, c2;
769 uint32_t r1, r2;
770 a1 = extract32(two_a, 0, 16);
771 a2 = extract32(two_a, 16, 16);
772 b1 = extract32(two_b, 0, 16);
773 b2 = extract32(two_b, 16, 16);
774 c1 = extract32(two_c, 0, 16);
775 c2 = extract32(two_c, 16, 16);
776 r1 = float16_muladd(a1, b1, c1, 0, fpst);
777 r2 = float16_muladd(a2, b2, c2, 0, fpst);
778 return deposit32(r1, 16, 16, r2);
782 * Floating point comparisons produce an integer result. Softfloat
783 * routines return float_relation types which we convert to the 0/-1
784 * Neon requires.
787 #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
789 uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp)
791 float_status *fpst = fpstp;
792 int compare = float16_compare_quiet(a, b, fpst);
793 return ADVSIMD_CMPRES(compare == float_relation_equal);
796 uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp)
798 float_status *fpst = fpstp;
799 int compare = float16_compare(a, b, fpst);
800 return ADVSIMD_CMPRES(compare == float_relation_greater ||
801 compare == float_relation_equal);
804 uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp)
806 float_status *fpst = fpstp;
807 int compare = float16_compare(a, b, fpst);
808 return ADVSIMD_CMPRES(compare == float_relation_greater);
811 uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp)
813 float_status *fpst = fpstp;
814 float16 f0 = float16_abs(a);
815 float16 f1 = float16_abs(b);
816 int compare = float16_compare(f0, f1, fpst);
817 return ADVSIMD_CMPRES(compare == float_relation_greater ||
818 compare == float_relation_equal);
821 uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp)
823 float_status *fpst = fpstp;
824 float16 f0 = float16_abs(a);
825 float16 f1 = float16_abs(b);
826 int compare = float16_compare(f0, f1, fpst);
827 return ADVSIMD_CMPRES(compare == float_relation_greater);
830 /* round to integral */
831 uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status)
833 return float16_round_to_int(x, fp_status);
836 uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status)
838 int old_flags = get_float_exception_flags(fp_status), new_flags;
839 float16 ret;
841 ret = float16_round_to_int(x, fp_status);
843 /* Suppress any inexact exceptions the conversion produced */
844 if (!(old_flags & float_flag_inexact)) {
845 new_flags = get_float_exception_flags(fp_status);
846 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
849 return ret;
853 * Half-precision floating point conversion functions
855 * There are a multitude of conversion functions with various
856 * different rounding modes. This is dealt with by the calling code
857 * setting the mode appropriately before calling the helper.
860 uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp)
862 float_status *fpst = fpstp;
864 /* Invalid if we are passed a NaN */
865 if (float16_is_any_nan(a)) {
866 float_raise(float_flag_invalid, fpst);
867 return 0;
869 return float16_to_int16(a, fpst);
872 uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp)
874 float_status *fpst = fpstp;
876 /* Invalid if we are passed a NaN */
877 if (float16_is_any_nan(a)) {
878 float_raise(float_flag_invalid, fpst);
879 return 0;
881 return float16_to_uint16(a, fpst);
884 static int el_from_spsr(uint32_t spsr)
886 /* Return the exception level that this SPSR is requesting a return to,
887 * or -1 if it is invalid (an illegal return)
889 if (spsr & PSTATE_nRW) {
890 switch (spsr & CPSR_M) {
891 case ARM_CPU_MODE_USR:
892 return 0;
893 case ARM_CPU_MODE_HYP:
894 return 2;
895 case ARM_CPU_MODE_FIQ:
896 case ARM_CPU_MODE_IRQ:
897 case ARM_CPU_MODE_SVC:
898 case ARM_CPU_MODE_ABT:
899 case ARM_CPU_MODE_UND:
900 case ARM_CPU_MODE_SYS:
901 return 1;
902 case ARM_CPU_MODE_MON:
903 /* Returning to Mon from AArch64 is never possible,
904 * so this is an illegal return.
906 default:
907 return -1;
909 } else {
910 if (extract32(spsr, 1, 1)) {
911 /* Return with reserved M[1] bit set */
912 return -1;
914 if (extract32(spsr, 0, 4) == 1) {
915 /* return to EL0 with M[0] bit set */
916 return -1;
918 return extract32(spsr, 2, 2);
922 static void cpsr_write_from_spsr_elx(CPUARMState *env,
923 uint32_t val)
925 uint32_t mask;
927 /* Save SPSR_ELx.SS into PSTATE. */
928 env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS);
929 val &= ~PSTATE_SS;
931 /* Move DIT to the correct location for CPSR */
932 if (val & PSTATE_DIT) {
933 val &= ~PSTATE_DIT;
934 val |= CPSR_DIT;
937 mask = aarch32_cpsr_valid_mask(env->features, \
938 &env_archcpu(env)->isar);
939 cpsr_write(env, val, mask, CPSRWriteRaw);
942 void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
944 int cur_el = arm_current_el(env);
945 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
946 uint32_t spsr = env->banked_spsr[spsr_idx];
947 int new_el;
948 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
950 aarch64_save_sp(env, cur_el);
952 arm_clear_exclusive(env);
954 /* We must squash the PSTATE.SS bit to zero unless both of the
955 * following hold:
956 * 1. debug exceptions are currently disabled
957 * 2. singlestep will be active in the EL we return to
958 * We check 1 here and 2 after we've done the pstate/cpsr write() to
959 * transition to the EL we're going to.
961 if (arm_generate_debug_exceptions(env)) {
962 spsr &= ~PSTATE_SS;
965 new_el = el_from_spsr(spsr);
966 if (new_el == -1) {
967 goto illegal_return;
969 if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) {
970 /* Disallow return to an EL which is unimplemented or higher
971 * than the current one.
973 goto illegal_return;
976 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
977 /* Return to an EL which is configured for a different register width */
978 goto illegal_return;
981 if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
982 goto illegal_return;
985 qemu_mutex_lock_iothread();
986 arm_call_pre_el_change_hook(env_archcpu(env));
987 qemu_mutex_unlock_iothread();
989 if (!return_to_aa64) {
990 env->aarch64 = 0;
991 /* We do a raw CPSR write because aarch64_sync_64_to_32()
992 * will sort the register banks out for us, and we've already
993 * caught all the bad-mode cases in el_from_spsr().
995 cpsr_write_from_spsr_elx(env, spsr);
996 if (!arm_singlestep_active(env)) {
997 env->pstate &= ~PSTATE_SS;
999 aarch64_sync_64_to_32(env);
1001 if (spsr & CPSR_T) {
1002 env->regs[15] = new_pc & ~0x1;
1003 } else {
1004 env->regs[15] = new_pc & ~0x3;
1006 helper_rebuild_hflags_a32(env, new_el);
1007 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1008 "AArch32 EL%d PC 0x%" PRIx32 "\n",
1009 cur_el, new_el, env->regs[15]);
1010 } else {
1011 int tbii;
1013 env->aarch64 = 1;
1014 spsr &= aarch64_pstate_valid_mask(&env_archcpu(env)->isar);
1015 pstate_write(env, spsr);
1016 if (!arm_singlestep_active(env)) {
1017 env->pstate &= ~PSTATE_SS;
1019 aarch64_restore_sp(env, new_el);
1020 helper_rebuild_hflags_a64(env, new_el);
1023 * Apply TBI to the exception return address. We had to delay this
1024 * until after we selected the new EL, so that we could select the
1025 * correct TBI+TBID bits. This is made easier by waiting until after
1026 * the hflags rebuild, since we can pull the composite TBII field
1027 * from there.
1029 tbii = EX_TBFLAG_A64(env->hflags, TBII);
1030 if ((tbii >> extract64(new_pc, 55, 1)) & 1) {
1031 /* TBI is enabled. */
1032 int core_mmu_idx = cpu_mmu_index(env, false);
1033 if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) {
1034 new_pc = sextract64(new_pc, 0, 56);
1035 } else {
1036 new_pc = extract64(new_pc, 0, 56);
1039 env->pc = new_pc;
1041 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
1042 "AArch64 EL%d PC 0x%" PRIx64 "\n",
1043 cur_el, new_el, env->pc);
1047 * Note that cur_el can never be 0. If new_el is 0, then
1048 * el0_a64 is return_to_aa64, else el0_a64 is ignored.
1050 aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);
1052 qemu_mutex_lock_iothread();
1053 arm_call_el_change_hook(env_archcpu(env));
1054 qemu_mutex_unlock_iothread();
1056 return;
1058 illegal_return:
1059 /* Illegal return events of various kinds have architecturally
1060 * mandated behaviour:
1061 * restore NZCV and DAIF from SPSR_ELx
1062 * set PSTATE.IL
1063 * restore PC from ELR_ELx
1064 * no change to exception level, execution state or stack pointer
1066 env->pstate |= PSTATE_IL;
1067 env->pc = new_pc;
1068 spsr &= PSTATE_NZCV | PSTATE_DAIF;
1069 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
1070 pstate_write(env, spsr);
1071 if (!arm_singlestep_active(env)) {
1072 env->pstate &= ~PSTATE_SS;
1074 helper_rebuild_hflags_a64(env, cur_el);
1075 qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
1076 "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
1080 * Square Root and Reciprocal square root
1083 uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp)
1085 float_status *s = fpstp;
1087 return float16_sqrt(a, s);
1090 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
1093 * Implement DC ZVA, which zeroes a fixed-length block of memory.
1094 * Note that we do not implement the (architecturally mandated)
1095 * alignment fault for attempts to use this on Device memory
1096 * (which matches the usual QEMU behaviour of not implementing either
1097 * alignment faults or any memory attribute handling).
1099 int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
1100 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
1101 int mmu_idx = cpu_mmu_index(env, false);
1102 void *mem;
1105 * Trapless lookup. In addition to actual invalid page, may
1106 * return NULL for I/O, watchpoints, clean pages, etc.
1108 mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
1110 #ifndef CONFIG_USER_ONLY
1111 if (unlikely(!mem)) {
1112 uintptr_t ra = GETPC();
1115 * Trap if accessing an invalid page. DC_ZVA requires that we supply
1116 * the original pointer for an invalid page. But watchpoints require
1117 * that we probe the actual space. So do both.
1119 (void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
1120 mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);
1122 if (unlikely(!mem)) {
1124 * The only remaining reason for mem == NULL is I/O.
1125 * Just do a series of byte writes as the architecture demands.
1127 for (int i = 0; i < blocklen; i++) {
1128 cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
1130 return;
1133 #endif
1135 memset(mem, 0, blocklen);